
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020 5283

Towards Finite File Packetizations in Wireless

Device-to-Device Caching Networks

Nicholas Woolsey , Student Member, IEEE, Rong-Rong Chen, Member, IEEE, and Mingyue Ji , Member, IEEE

Abstract— We consider wireless device-to-device (D2D) caching
networks with single-hop transmissions. Previous work has
demonstrated that caching and coded multicasting can signifi-
cantly increase per user throughput. However, the state-of-the-art
coded caching schemes for D2D networks are generally imprac-
tical because content files are partitioned into an exponential
number of packets with respect to the number of users if both
library and memory sizes are fixed. In this paper, we present
two combinatorial approaches of D2D coded caching network
design with reduced packetizations and desired throughput gain
compared to the conventional uncoded unicasting. The first
approach uses a “hypercube” design, where each user caches
a “hyperplane” in this hypercube and the intersections of
“hyperplanes” represent coded multicasting codewords. In addi-
tion, we extend the hypercube approach to a decentralized
design. The second approach uses the Ruzsa-Szeméredi graph
to define the cache placement. Disjoint matchings on this graph
represent coded multicasting codewords. Both approaches yield
an exponential reduction of packetizations while providing a
per-user throughput that is comparable to the state-of-the-art
designs in the literature. Furthermore, we apply spatial reuse
to the new D2D network designs to further reduce the required
packetizations and significantly improve per user throughput for
some parameter regimes.

Index Terms— Coded caching, device-to-device communica-
tions, packetizations, spatial reuse.

I. INTRODUCTION

W IRELESS caching is a promising approach to sig-

nificantly improve the user throughput and simulta-

neously accommodate a large number of user demands in

future generations of wireless networks [1]–[13]. In this paper,

we investigate achievable coded caching schemes in device-

to-device (D2D) caching networks, where users strategically

cache packets of content files to enable coded multicasting

which serves distinct content to multiple users with one

channel use. Different from the seminal shared-link caching

networks [1], where one source node (base station) with access

Manuscript received October 16, 2019; revised March 17, 2020, May 27,
2020, and June 23, 2020; accepted June 23, 2020. Date of publication July 3,

2020; date of current version September 16, 2020. Work supported through the

National Science Foundation grants CCF-1817154 and SpecEES-1824558 and
the Idaho National Laboratory (INL) Laboratory Directed Research and

Development (LDRD) Program under DOE Idaho Operations Office Contract

DE-AC07-05ID14517. The associate editor coordinating the review of this

article and approving it for publication was L. Ong. (Corresponding authors:
Nicholas Woolsey; Mingyue Ji.)

The authors are with the Department of Electrical and Computer Engi-

neering, The University of Utah, Salt Lake City, UT 84112 USA (e-mail:
nicholas.woolsey@utah.edu; rchen@ece.utah.edu; mingyue.ji@utah.edu).

Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2020.3006897

to the entire library serves all the users over a multicast

channel, in D2D networks, users receive requested packets

from other users. For such a network consisting of n users,

each caching an equivalent M files out of a library of m
files, previous work demonstrates that if Mn ≥ m and

m ≥ n and when spatial reuse is not allowed, meaning that

any transmission can be successfully received by any users

in the network, the transmission rate (i.e., normalized traffic

load) is Θ
(

m
M

)
, which is not a function of n. Hence, the

aggregate throughput of the network is scalable [14].1 This

surprising result shows that the transmission rate of the shared-

link caching scheme in [1] and D2D caching scheme in [14]

are identical for a large number of users.2

D2D caching networks have the potential to provide some

unique advantages. For example, D2D caching networks have

a greater flexibility to implement spatial reuse in comparison to

shared-link caching networks. The authors in [14] demonstrate

that users in a D2D network can be grouped into clusters based

on proximity. These clusters can perform the coded multicast-

ing delivery simultaneously and surprisingly, the order-optimal

traffic load in each cluster is identical to the traffic load when

no clustering is enabled (e.g., consider the entire network as a

single cluster). Nevertheless, clustering may improve per user

throughput since the link rate (bits/second/Hz) in each cluster

may increase as the size of each cluster decreases. Due to their

unique characteristics, the study of the fundamental limits of

D2D caching networks has become a popular topic in the past

few years [10], [14]–[23].

The promised gain in per user throughput of the state-of-

the-art coded D2D caching schemes relies on a large amount

of file packetization which makes the networks impractical to

implement. Files need to be split into a very large number

of packets and therefore the files will be unrealistically large

for many caching network implementations. In this paper,

we study and propose new achievable coded caching schemes

in D2D networks such that the packetization of each file is

significantly reduced without sacrificing much throughput of

the currently proposed D2D caching schemes.

1Note that when no spatial reuse is allowed, the per user throughput is
inversely proportional to the traffic load in the network.

2We will use the following standard “order” notation: given two functions
f and g, we say that: 1) f(n) = O (g(n)) if there exists a constant c and

integer N such that f(n) ≤ cg(n) for n > N . 2) f(n) = o (g(n)) if

limn→∞ f(n)
g(n)

= 0. 3) f(n) = Ω(g(n)) if g(n) = O (f(n)). 4) f(n) =

ω (g(n)) if g(n) = o (f(n)). 5) f(n) = Θ(g(n)) if f(n) = O (g(n))
and g(n) = O (f(n)).

0090-6778 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5284 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

There have been many results studying the large packeti-

zation issue in shared-link caching networks [24]–[26] and

we discuss some of them here. The work of [24] used a

Placement Delivery Array (PDA) to investigate new placement

and delivery schemes. One of the scheme in [24] reduces the

number of users served in each coded multicast transmission

by 1 while significantly reducing the packetization compared

to the seminal work of [1]. In this way, the rate only increases

slightly while greatly increasing the number of practical para-

meters regimes. Furthermore, the authors of [25] demonstrated

the connection between (m, k) linear block codes over GF(q)
with coded caching network design. The generated codeword

matrix defines the cache of mk users and at most (k + 1)qk

file packetizations are necessary. While the scheme only works

for linear block codes with the (k, k + 1)-consecutive column

property (see [25]), the authors demonstrated the flexibility of

this approach and in some cases it can be used to design a

caching network given n, m and M while meeting a specific

packetization requirement. While the schemes of [24] and [25]

significantly reduce the file packetization compared to [1],

all of these schemes require an exponential number of packets

per file compared to the number of users. A recent result has

demonstrated that caching schemes where a linear number of

packets per file are necessary by using a Ruzsa-Szeméredi

graph [27], [28] to design coded caching scheme in order to

have the global caching gain [1], [29]. While this approach

requires a large number of users, it has proven the existence

of sub-exponential schemes which inspires the search for

practical caching schemes with reduced packetizations.

There has been limited work studying file packetization in

D2D caching networks. In [14], the authors demonstrate that

if no spatial reuse is allowed, let t = nM
m ∈ Z

+, the required

number of packets per file is K = t
(
n
t

)
which grows expo-

nentially as the number of users, n, increases. The authors

of [14] also explored the concept of user clustering in order to

exploit spatial reuse to increase per user throughput. Moreover,

it was found that clustering also has the potential to reduce

packetizations. Another approach to study D2D coded caching

networks is the use of a D2D Placement Delivery Array

(DPDA) [30]. By using the DPDA, the authors first derived

a lower bound for the rate of a coded caching network as

R ≥ m
M −1 and also a lower bound for packetizations when the

rate lower bound is met and t ∈ {1, 2, n−2, n−1}. The work

of [30] also demonstrated that the scheme of [14] meets the

lower bound on rate always, meets the lower bound on packe-

tization for t ∈ {1, n− 1} but does not meet the lower bound

on packetization when t ∈ {2, n − 2}. The authors of [30]

developed a specific scheme for t = 2 and t = n − 2 which

meets the lower bound on rate and packetization. An extension

of this work can be found in [31], where the authors adopted

the approach introduced in [14] to any PDA based designs to

yield a D2D coded caching design. However, this approach

requires extra packetization for placement. An open question

remains as to the existence of D2D coded caching networks

which work for a large range of t and are designed specif-

ically for D2D and not simply adapted from a shared-link

scheme. Furthermore, only the scheme of [14] has considered

spatial reuse which is a potential advantage of D2D networks

to further reduce packetizations without reducing per user

throughput.

In this paper, we study several approaches to design coded

caching networks with reduced packetizations. We propose

two combinatorial designs for centralized D2D caching net-

works which have reduced packetization compared to [14].

The first approach uses a hypercube to define the cache place-

ment and we demonstrate how the geometry of this hypercube

relates to coded multicasting opportunities for delivery. The

hypercube approach is optimized specifically for D2D caching

networks such that, for some cases, it does not require addi-

tional packetization beyond the placement phase as seen with

previous D2D coded caching designs. In addition, by adopting

the idea recently proposed in [32], we extend this approach

to a decentralized coded D2D caching scheme, which allows

a much more flexible design for given network parameters.

Meanwhile, the advantage of the reduced packetization of

the hypercube approach still remains in the decentralized

D2D caching networks. The second approach is based on an

application of the Ruzsa-Szeméredi graph [27], [28], which is

first used for shared-link caching in [29]. We extend the use

of Ruzsa-Szeméredi graph to D2D caching networks. Both

D2D combinatorial designs, sustain the significant throughput

gain compared to conventional uncoded unicast [16] and the

required packetizations are reduced exponentially compared

to [14] with respect to the number of users n while keep-

ing the library size m and memory size M fixed. Finally,

we study the impact of enabling spatial reuse in these caching

network designs and show this can further reduce the required

packetizations, while also improving the per user through-

put significantly for some parameter regimes. The work we

present here includes and expands on our previous conference

submissions [33], [34].

This work makes two key contributions. First, while it

is commonly believed that a D2D caching scheme should

be converted from a shared-link caching scheme (as shown

in [14]) instead of being designed from scratch, this work

establishes the existence of the first expandable D2D schemes

based on hypercube designs that are not derived from

shared-link schemes. The proposed hypercube design can

achieve a load-memory-subpacketization tradeoff that has not

been achieved in prior works. It has an appealing geo-

metric interpretation that is essential for a better under-

standing of the differences between shared-link and D2D

caching schemes. Furthermore, the hypercube design allows

possible extensions to the design of heterogeneous coded

distributed computing schemes [35], [36], which are equiva-

lent to heterogeneous D2D coded caching schemes. Second,

unlike shared-link D2D caching networks, spatial reuse is an

important feature for D2D networks. However, the impact

of spatial reuse has largely been ignored for coded D2D

caching schemes. In this work, we adopt the Ruzsa-Szeméredi

graph approach from shared-link caching networks [29] to

D2D networks and show for the first time that spatial

reuse can significantly increase the per-user throughput while

reducing subpacketization dramatically (about quadratic in

terms of the number of users per cluster) of D2D caching

networks.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: TOWARDS FINITE FILE PACKETIZATIONS IN WIRELESS D2D CACHING NETWORKS 5285

Fig. 1. a) Representation of 81 users on a square grid. Users are divided

into 9 equally sized clusters of 9 users based on user proximity. The clusters

highlighted in green represent clusters which can be simultaneously active

assuming that cluster highlighted in red are not active. b) A larger network
which includes the 81 users of Fig. 1(a) where the clusters highlighted in

green can be simultaneously active. The reuse factor is K = 4.

The outline of this paper is as follows. In section II,

we introduce the D2D network model and problem formu-

lation. In Section III, we describe the proposed centralized

hypercube based coded caching approach and analyze its

performance. In Section IV, we extend the hypercube design

to a decentralized D2D caching network. Section V introduces

the Ruzsa-Szeméredi graph based coded caching approach and

analyzes its performance. In Section VI, we show how the

proposed schemes can take advantage of spatial reuse. Finally,

we conclude the paper in Section VII.

Notation Convention: We use | · | to represent the cardinality

of a set or the length of a vector. For n, m ∈ Z
+, let [n] :=

{1, 2, . . . , n} and define [n]m as the set of all m-length vectors

whose elements are in [n]. A bold symbol such as a indicates

a vector and ai denotes the i-th element of a.

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a wireless D2D network with single-hop trans-

missions formed by the set of users U = {1, . . . , n}. The users

are uniformly distributed on a unit grid with a minimum dis-

tance of 1/
√

n as shown in Fig. 1(a). Each user u ∈ U makes

a request fu ∈ F , where F = {1, · · · , m} is a file library

of m independently generated messages {W1, . . . , Wm} with

entropy F bits each. We denote the demand vector as f =
(f1, · · · , fn). The file library, F , is generated once and kept

unchanged during subsequent network operations. In addition,

we assume m ≥ n and users request distinct files. Each

user locally caches the equivalent of M files, or MF bits.

Furthermore, define t
Δ= nM/m ≥ 1, as the number of times

the library is cached collectively among the users.

Users have active links between one another based on the

protocol model [37] described as follows. A communication

link, consisting of user u transmitting to user v, will be

successful if and only if the distance between user u and v
is less than or equal to r and user v is at least a distance

of (1 + Δ)r from all transmitting users other than user u.

The parameters r, Δ > 0 are given by the protocol model.

We assume that any r > 0 is possible and r dictates a constant

data rate, Cr, in the unit of bits/s/Hz.3

3In practice, Cr can be a function of the transmission range r. However,

the protocol model does not capture this relationship.

The protocol model allows for spatial reuse as shown

in Fig. 1(a). 4 users, one in each green cluster, are transmitting

to 8 local users who are at most a distance of r away. The

users receiving the transmission are at least a distance of

(1 + Δ)r from the other three transmitting users. The users

of Fig. 1(a) may be part of a larger network of users as

shown in Fig. 1(b) which depicts active clusters (involved

in a successful communication link) in green and non-active

clusters (neither receiving or transmitting) in red. The set of

active clusters highlighted in green is one of K sets. K is

defined as the reuse factor or the number of cluster sets such

that, for any given set, each cluster of that set can be active

without interference and the K cluster sets collectively include

all clusters.

A D2D caching scheme consists of three phases: the cache

placement phase, the coded delivery phase, and the transmis-

sion phase. These are defined as follows.

Definition 1: (Cache Placement Phase) The cache place-

ment phase maps the file library F onto the cache of each

user. For u ∈ U , the function φu : F
mF
2 → F

MF
2 generates

the cache content Zu � φu(Wf : f ∈ F) stored in the cache

of user u and kept fixed throughout subsequent operations. ♦
The cache functions {φu : u ∈ U} can be centralized or

decentralized. In this work, the centralized setting means that

the cache of each user is dependent of the cache of the other

users; while in the decentralized setting, each user’s cache is

independent of any other user’s cache and independent of the

total number of users n.

Definition 2: (Coded Delivery Phase) The coded delivery

phase is defined by two sets of functions: the node encoding

functions, denoted by {ψu : u ∈ U}, and the node decoding

functions, denoted by {λu : u ∈ U}. Let RT
u denote the

number of coded bits transmitted by node u to satisfy the

demand vector f . The transmission rate of node u is defined by

Ru = RT
u

F . The function ψu : F
MF
2 × Fn → F

FRu

2 generates

the transmitted message Xu,f � ψu(Zu, f) of node u as a

function of its cache content Zu and the demand vector f .4

Let Du denote the set of users whose transmit messages are

received by user u (according to some transmission policy in

Definition 3). The function λu : F
F
�

v∈Du
Rv

2 ×F
MF
2 ×Fn →

F
F
2 decodes the request of user u from the received messages

and its own cache, i.e., we have

Ŵu,f � λu({Xv,f : v ∈ Du}, Zu, f). ♦
Definition 3: (Transmission Phase) The transmission pol-

icy Π is a rule to activate D2D links in the network. Let L
denote the set of all directed links. Let A ⊆ 2L denote the

set of all possible feasible subsets of links (this is a subset

of the power set of L, formed by all sets of links forming

independent sets in the network interference graph induced

by the protocol model). Let At ⊂ A denote a feasible set of

simultaneously active links at time t. A feasible transmission

policy Π consists of a sequence of activation sets, i.e., sets of

active transmission links, {At : t = 1, 2, 3, . . .}, such that at

each time t the active links in At do not violate the protocol

model. ♦
4We also refer the transmission rate to traffic load in this paper.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5286 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Since users make arbitrary requests, similar to [1], [14],

we focus on the worst-case error probability defined as

Pe = max
f∈Fn

max
u∈U

P

(
Ŵu,f �= Wfu

)
.

For a given number of users n and library size m, letting the

transmission rate R =
∑

u∈U Ru, we say that the cache-rate

pair (M, R) is achievable if ∀ ε > 0 there exists a sequence

indexed by the file size F → ∞ of cache encoding func-

tions {φu}, delivery functions {ψu} and decoding functions

{λu}, with rate R(F) and probability of error P
(F)
e such that

lim supF→∞ R(F) ≤ R and lim supF→∞ P
(F)
e ≤ ε. Note that

RF gives the achievable total traffic load transmitted in the

whole network.

Different from the shared-link network model [1], the per-

formance of D2D caching networks cannot be completely

characterized by the transmission rate, R, because of spatial

reuse under the protocol model. Hence, we define the per user

throughput as follows,

T
Δ=

F

D
, (1)

where D is the number of channel uses required to satisfy

all user requests. The pair (M, T) is achievable if (M, R)
is achievable and there exists a transmission policy Π such

that the RF encoded bits are delivered to their destinations in

D ≤ F
T channel uses. The optimal achievable throughput is

defined as

T ∗(M) � sup{T : (M, T) is achievable}.

Remark 1: When considering clustering and assuming that

the transmission rate of each cluster is exactly Rc, we can

obtain D = RcFK
Cr

. Therefore, the per user throughput for a

clustering scheme is

Tc =
Cr

RcK
. (2)

In the following, we will compare the per user throughput of

clustering and non-clustering schemes.

III. CENTRALIZED HYPERCUBE CODED

CACHING APPROACH

In this section, we outline the proposed hypercube scheme

which is a new combinatorial design of a centralized D2D

caching network. Moreover, we consider the case when the

transmission range r ≥
√

2. In other words, a transmission

from any user can be received by the rest of the users in

the network and there is no user clustering. In the following,

we present the achievable rate and packetization of the hyper-

cube scheme and then provide a definition of the scheme and

examples.

Theorem 1: Let m, n, M be the library size, number of

users and the cache size per user, respectively. For r ≥
√

2
and t, m

M ∈ Z
+ and t ≥ 2, the following rate is achievable:

Rhc(M) =
t

t − 1

(m

M
− 1
)

(3)

with the requirement of Khc =
(

m
M

)t
when

m
M −1

t−1 ∈ Z
+,

or Khc = (t − 1)
(

m
M

)t
when

m
M −1

t−1 /∈ Z
+. �

A. Proof of Theorem 1, the Hypercube Scheme

To prove Theorem 1 and explain the hypercube scheme,

we use the following definitions.

Definition 4: (Hypercube) A hypercube with dimension

d ∈ Z
+ and side length x ∈ Z

+ is the set of points [x]d.

The hypercube contains xd unique points. ♦
Definition 5: (Hyperplane) A hyperplane, Py,i, normal to

dimension i ∈ [d] at position y ∈ [x] is the set of points where

the i-th dimension is fixed such that Py,i = {ξ ∈ [x]d : ξi =
y}. The hypercube contains xd unique hyperplanes and each

hyperplane contains |Py,i| = xd−1 points. ♦
Definition 6: (Line) A line oriented to dimension i ∈

[d] and passes through the point ν ∈ [x]d is the set of

points Lν,i =
{
ξ ∈ [x]d : ξj = νj , ∀j ∈ [x] \ i

}
. Alterna-

tively, a line is defined as the intersection of a set of d − 1
perpendicular hyperplanes, Lν,i =

⋂
j∈[d]\i

Pνj ,j . Given i, j ∈

[d] and ξ, ν ∈ [x]d, two lines are equivalent, Lξ,i = Lν,j , if
and only if i = j and ξk = νk for all k ∈ [d]\i. The hypercube

contains dxd−1 unique lines and each line contains |Lν,i| = x
points. ♦

The placement phase of the Hypercube caching scheme is

defined as follows.

1) Cache Placement Phase: Given that t, m
M ∈ Z

+, define

a hypercube, of dimension d = t and side length x = m
M . Split

each file Wf into a set of disjoint and equally-sized packets{
Wf,ν : ν ∈

[
m
M

]t}
. Each point, ν ∈

[
m
M

]t
, represents a set

of packets {Wf,ν : f ∈ [m]}. Each hyperplane, Py,i, repre-

sents the cache of a user so that there is a one-to-one mapping

between the set of users and the hyperplanes. For all values

y ∈
[

m
M

]
and dimensions i ∈ [t], there is one user who caches

Zy,i = {Wf,ξ : f ∈ [m], ξ ∈ Py,i}. (4)

To validate this cache placement, we find that there are t ·
m
M = n hyperplanes and therefore a one-to-one mapping exists

between the users and the hyperplanes. Next, each hyperplane

contains
(

m
M

)t−1
points and, therefore, the number of bits

cached at each user is(
m
M

)t−1(
m
M

)t · mF = MF. (5)

Example 1 Cache Placement: Consider a cache network of

n = 15 users where each user is capable of storing M
m =

1
5 of the file library and t = 3. We construct a hypercube

of dimension t = 3 and side length m
M = 5. In this case,

the hypercube is simply a cube and similarly, the hyperplanes

are planes. The cube is the set of points [5]3. We split each

file into 53 = 125 disjoint and equal-size packets, mapping

each packet to a point of the cube. Each user caches a set of

packets from every file represented by a plane. For example,

the cache of one particular user is

Z2,1 = {Wf,ν : f ∈ [m], ν ∈ P2,1}
= {Wf,ν : f ∈ [m], ν1 = 2}. (6)

Then another user caches the packets of Z4,1 = {Wf,ν : f ∈
[m], ν1 = 4} and has no cached packets in common with the

user who caches Z2,1 as their respectively planes are parallel.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: TOWARDS FINITE FILE PACKETIZATIONS IN WIRELESS D2D CACHING NETWORKS 5287

Fig. 2. Six representations of a hypercube of dimension 3 and side length 5. For the caching design, each point represents a set of packets, one from each
file of the library. (a), (b) and (c) depict all the hyperplanes of the hypercube normal to the first, second and third dimension, respectively, of the hypercube.

The hyperplanes represent user caches of Example 1. (d) Depiction of 3 orthogonal planes, representing the caches of the users in the multicast group of

Example 2. (e) The lines formed by intersections of the hyperplanes of (d), representing the transmitted packets of Example 2. (f) All normal lines to the
plane P2,2 which includes every point of the hypercube. The red points of each line represent a set of packets, Tν ,2, that the user who caches Z2,2 will

receive from a multicast group in the delivery phase to recover its requested file as described in Example 3.

However, even another user caches Z3,3 = {Wf,ν : f ∈
[m], ν3 = 3} which is represented by a plane perpendicular

to the users who cache Z2,1 and Z4,1 and therefore has

some cached packets in common with these users. Each plane

contains
(

m
M

)t−1 = 25 points and therefore each user caches a
25
125 = 1

5 fraction of each file and thusly 1
5 of the entire library.

The planes representing caches of the users defined by planes

{Py,1 : y ∈ [5]}, {Py,2 : y ∈ [5]} and {Py,3 : y ∈ [5]}
are depicted in Fig. 2(a), Fig. 2(b) and Fig. 2(c), respectively.

Each point in Fig. 2 represents a set of packets. �
2) Delivery Phase: For each point ν ∈

[
m
M

]t
of the

hypercube, we define a subset of t users

Gν = {u1, u2, · · · , ut} (7)

as a multicast group where user ui ∈ Gν is the user that

caches Zνi,i. The hyperplane cached by each user of Gν is

perpendicular to the hyperplane cached by every other user of

Gν since Gν contains one user from each dimension. For ease

of notation,5 let user ui request file W ′
i and for all i ∈ [t],

define

Tν,i =
{
W ′

i,ξ : ξ ∈ Lν,i \ ν
}

(8)

as the set of requested packets by user ui that will be received

from the other users of Gν . The packet set, Tν,i, includes the

packets cached along the line Lν,i except the packet at ν.

Also, Tν,i is not cached by user ui, but is cached by every

5The file W ′
i is a file in library set {W1, . . . , Wm} defined in Section II.

Note that, for different multicast groups, ui may represent a different user in

which case W ′
i represents a different file since users make distinct requests.

other user of Gν . Split each Tν,i into t− 1 disjoint and equal

size packet sets labeled as
{
T j

ν,i : j ∈ [t] \ i
}

. The packets of

T j
ν,i are included in a coded multicast from user uj to serve the

request of user ui. Specifically, each user uj ∈ Gν broadcasts

⊕
i∈[t]\j

T j
ν,i (9)

to the other users of Gν .

Example 2 Delivery Phase: Assume the cache placement

from Example 1 and consider the point ν = (2, 2, 3) and the

user group G(2,2,3) = {u1, u2, u3}. The cache of users u1, u2

and u3 are represented by planes P2,1 (green plane), P2,2 (red

plane), and P3,3 (blue plane), respectively, in Fig. 2(d). For

multicast opportunities, we are interested in packets requested

by one user and cached by the other two. This is analogous to

points of the cube that lie on the intersection of two planes,

but not the third. These points are highlighted in Fig. 2(e).

For example, the packets requested by user u2 from this

multicast group are represented by the red line, L(2,2,3),2, with

the exception of the point (2, 2, 3) which intersects all three

planes. Similarly, user u1 requests the green line, L(2,2,3),1 \
(2, 2, 3), and user u3 requests the blue line, L(2,2,3),3\(2, 2, 3),
in Fig. 2(d). Without loss of generality, assume users u1, u2

and u3 request files A, B and C, respectively. Then we define

T(2,2,3),1 =
{
A(1,2,3), A(3,2,3), A(4,2,3), A(5,2,3)

}
(10)

T(2,2,3),2 =
{
B(2,1,3), B(2,3,3), B(2,4,3), B(2,5,3)

}
(11)

T(2,2,3),3 =
{
C(2,2,1), C(2,2,2), C(2,2,4), C(2,2,5)

}
(12)

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5288 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

which are based on the lines of Fig. 2(d). These sets are split

up and the users transmit

user u1 : B(2,1,3) ⊕ C(2,2,1), B(2,3,3) ⊕ C(2,2,2) (13)

user u2 : A(1,2,3) ⊕ C(2,2,4), A(3,2,3) ⊕ C(2,2,5) (14)

user u3 : A(4,2,3) ⊕ B(2,4,3), A(5,2,3) ⊕ B(2,5,3). (15)

�
The delivery phase is valid for the following reasons.

Within each multicast group, defined by a point ν ∈
[

m
M

]t
,

the users exchange packets represented by lines defined by the

intersection of t−1 hyperplanes representing the users’ caches.

In other words, each packet of the set Tν,i is requested by user

ui ∈ Gν and cached at all other users of Gν . Specifically,

Tν,i =
{
W ′

i,ξ : ξ ∈ Lν,i \ ν
}

=

⎧⎨
⎩W ′

i,ξ : ξ ∈
⋂

k∈[t]\i

Pνk,k \ ν

⎫⎬
⎭

⊂
{
Wf,ξ : f ∈ [m], ξ ∈ Pνj ,j

}
= Zνj ,j (16)

for all j ∈ [t] \ i and Zνj ,j is the cache of user uj ∈ Gν .

Furthermore, T j
ν,i ⊆ Tν,i ⊂ Zνj ,j and user uj ∈ Gν is able to

broadcast
⊕

i∈[t]\j

T j
ν,i. Also, by a similar argument, user uj can

decode T k
ν,j from the transmission

⊕
i∈[t]\k

T k
ν,i from user uk.

This is true because
⋃

i∈[t]\j,k

Tν,i ⊂ Zνj ,j as we have shown

in (16).

It remains to show that every user can recover the entirety

of their requested file. To do this we use the following lemma.

Lemma 1: For all i ∈ [t] and y ∈
[

m
M

]
, the set of all points[

m
M

]t
is equivalent to the union of all the lines normal to the

plane Py,i,

⋃
ν∈Py,i

Lν,i =
[m

M

]t
. (17)

�
An example of Lemma 1 can observed in Fig. 2(f) and

the proof is presented below. Proof: The proof follows

from the fact that all normal lines to a plane are parallel and

each point is passed through by exactly one line. Notice that

Lξ,i = Lν,i if ξk = νk for all k ∈ [t] \ i. Also, for any line,

ξ ∈ Lξ,i. Given any point ξ ∈
[

m
M

]t
, define ξ′ ∈

[
m
M

]t
such

that ξ′k = ξk for all k ∈ [t]\ i and ξ′i = y. We find that Lξ′,i =
Lξ,i and ξ ∈ Lξ′,i. Moreover, Lξ′,i ∈ {Lν,i : ν ∈ Py,i} and

ξ ∈
⋃

ν∈Py,i

Lν,i.

For the user who caches Zy,i and requests file W ′
i ,

to recover the entirety of their requested file, they must have

the set of packets
{
W ′

i,ν : ν ∈
[

m
M

]t}
. Notice that this user

participates in every multicast group Gν such that ν ∈ Py,i.

We have shown that this user ui ∈ Gν will receive and decode{
W ′

i,ξ : ξ ∈ Lν,i \ ν
}

from the multicast group Gν . Given

that ν ∈ Py,i, user ui has W ′
i,ν locally cached and after the

delivery phase has all requested packets from represented by

the line Lν,i. Considering all multicast groups that this user

is a part of, {Gν : ν ∈ Py,i}, this user has the set of packets⎧⎨
⎩W ′

i,ξ : ξ ∈
⋃

ν∈Py,i

Lν,i

⎫⎬
⎭ . (18)

By Lemma 1, this is the set of all requested packets by this

user.

Example 3 File Recovery: We build on Examples 1 and

2 and show that the user that caches Z2,2 can recover all its

requested file, B. For all ν ∈ P2,2, this user will participate

in multicast group Gν . From Gν , this user will receive and

decode

Tν,2 = {Bξ : ξ ∈ Lν,2 \ ν}
=
{
B(ν1,1,ν3), B(ν1,3,ν3), B(ν1,4,ν3), B(ν1,5,ν3)

}
. (19)

Moreover, this user has Bν = B(ν1,2,ν3) locally cached and

will have the set of all requested packets cached along the

line Lν,2. Therefore, after the delivery phase, this user has

the set of requested packets represented by all lines normal to

the plane P2,2

{Bν : ν ∈ Lν,2, ∀ν ∈ P2,2} =
{
Bν : ν ∈ [5]3

}
(20)

which is the entirety of its request. This is shown in Fig. 2(f)

where the red points of each line, Lν,2, represent a different

packet set Tν,2. All of the red points of Fig. 2(f) represent

the requested received packets and the black points of P2,2

represent the cached packets. Together, the red and black

points cover all the points of the hypercube. �
The rate of the hypercube scheme can be resolved by

recognizing there are
(

m
M

)t
multicast groups and within each

group t users transmit
m
M −1

t−1 coded packets of size F

(m
M)t bits.

Therefore, the rate is

Rhc =
(m

M

)t

· t ·
m
M − 1
t − 1

· 1(
m
M

)t =
t

t − 1

(m

M
− 1
)
.

(21)

The packetization from the cache phase is
(

m
M

)t
. In many

cases, no further packetization is necessary to execute the

delivery phase different from the original D2D caching

work [14]. Any additional packetization for the hypercube

scheme occurs when splitting the packet set Tν,i into t − 1
equal size sets. If |Tν,i| = |Lν,i| − 1 = m

M − 1 is not divisible

by t−1, then extra packetization is needed. A simple solution

is to further split each packet t − 1 times. In this case the

packetization is Khc = (t − 1)
(

m
M

)t
.

Example 4 Rate and Packetization: Continuing Exam-

ples 1 through 3, we compute the rate and packetization of

this caching scheme. The rate is computed by counting all

multicast groups, the number of users per multicast group and

the normalized bits of each transmission Rhc = 53 ·3 · 2
53 = 6.

The packetization is Khc = 53 = 125 which results from

the cache phase. Note that, no additional packetization is

necessary for the delivery phase. Comparing to the scheme

of [14] with similar n, and M
m , the rate is R′ = 4 with

packetization of K ′ = 1365. The use of the hypercube scheme

has significantly reduced the packetization despite a small

increase in rate. �
This completes the proof of Theorem 1. �

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: TOWARDS FINITE FILE PACKETIZATIONS IN WIRELESS D2D CACHING NETWORKS 5289

B. Comparison to State-of-the-Art D2D Caching Networks

As was proposed in [14], the achievable rate and packeti-

zation pair is

(R′, K ′) =
(

m

M

(
1 − M

m

)
, t

(
n

t

))
=
(

m

M
− 1, t

(
n

t

))
.

(22)

We first compare the packetization for constant m and M and

use Stirling’s formula to demonstrate that

K ′

Khc
=

t
(
n
t

)
(t − 1)

(
m
M

)t =
n!t

t!(n − t)!(t − 1)
(

m
M

)t
= Θ

(√
2πn
(

n
e

)n
2π
√

t(n − t)
(

t
e

)t (n−t
e

)(n−t) (m
M

)t
)

= Θ
(√

n

2πt(n − t)
· nn

nt(n − t)(n−t)

)

= Θ

(√
1
n
·
(

m

m − M

)(1−M
m)n
)

(23)

where we use the worst case packetization for the hypercube

scheme when
m
M −1

t−1 /∈ Z
+. We find that the packetization of

the hypercube scheme is exponentially less than the scheme

of [14]. Furthermore, we are interested in comparing the rate

of the two schemes. Hence, we obtain

R′(M)
Rhc(M)

=
t − 1

t
= 1 − m

nM
. (24)

We find that, given a constant m and M , the rate of the

two schemes are asymptotically equivalent as the number of

users, n, becomes large. The hypercube approach demonstrates

a significant decrease in the number of packetizations, espe-

cially as the number of users becomes large. Furthermore,

the rate only increases slightly, and for a large number of

users the rate of the two schemes are essentially equivalent.

Another D2D coded caching scheme is the DPDA2 scheme

of [31] published later than the current work in [34]. It is

worth mentioning that the DPDA2 scheme is equivalent to

the coded distributed computing design of [38]. The rate and

packetization of this scheme is

(RDPDA, KDPDA)=
(

t

t−1

(m

M
−1
)

, (t−1)
(m

M

)t−1
)

.

(25)

In fact, this scheme has the same rate as the hypercube scheme.

Moreover, considering the worst case packetization of the

hypercube scheme, the DPDA has less packetization by a

constant factor of m
M .

IV. DECENTRALIZED HYPERCUBE CODED

CACHING APPROACH

Recent work [32] showed that it is possible to translate a

centralized shared-link caching scheme into a decentralized

shared-link coded caching scheme. Here, the term “decentral-

ized” implies that users independently and randomly cache a

portion of the library. In this section, we expand the concept

of [32] to D2D coded caching networks and translate the

hypercube scheme from centralized to decentralized. Gener-

ally, D2D incurs an additional cost because each multicast

serves one less user compared to the shared-link case [14].

However, in the decentralized setting, we find this additional

cost can be eliminated when serving certain multicast groups.

Moreover, we obtain a rate-packetization trade-off and expand

the use of the hypercube scheme to more general parameters,

n, m and M .

Our decentralized approach is summarized as follows. We

consider the file partition and cache placement of the hyper-

cube scheme designed for n′ (dummy) users such that each of

them caches a M
m fraction of the content files, where n′ � n.6

This means that we partition each file into K ′ =
(

m
M

)t′
packets where t′ = n′M

m . Then, we define n′ sets of packets,

Zi,j for i ∈
[

m
M

]
and j ∈ [t′]. Each of the n users in the

decentralized network uniformly at random and independently

cache one of the n′ packet sets defined by the centralized

scheme. The probability of caching any packet set is 1
n′ . For

delivery, users form groups of size n′ users that collectively

cache every packet set. In general, each user group will

perform the centralized delivery scheme. However, to form

each group, some previously satisfied users may need to be

included. In this case, the users perform only some of the

transmissions from the centralized design as requests from the

previously satisfied users are ignored. Then, we find that for

some multicast groups, satisfied users can send transmissions

to unsatisfied users with the same efficiency of the shared-link

case in [32], closing the gap between the D2D and shared-link

settings. The following example demonstrates this process.

A. An Example

In this example, consider a decentralized network of n = 32
users and each user caches M

m = 1
3 of the library. Let n′ = 6

and t′ = n′M
m = 2. There are 6 packet sets defined by

a 2-dimensional hypercube (plane) where the hyperplanes

are lines in this case. The number of packets per file for

this decentralized network is K ′ = (m
M)t′ = 9. The packet

sets, corresponding to each row or column of the hypercube,

are labeled as Zi,j where i ∈ [3] and j ∈ [2]. Each

of the 32 users independently caches one of these sets at

random using a uniform distribution. A possible outcome of

the random caching is shown in Fig. 3(a) where 7 users cache

Z1,1, 6 users cache Z2,1, 6 users cache Z1,2, 3 users cache

Z2,2, etc.

To satisfy the 32 distinct user requests, there are multiple

delivery phases which are similar to the centralized delivery

design. The users form multicast groups depicted in Fig. 3 by

points of the hypercube. Different from the centralized scheme,

a multicast group may contain a both an unsatisfied user and

a previously satisfied user and are outlined with a blue square

in Fig. 3. Alternatively, a multicast group may contain only

satisfied users which is marked by a red “X” in Fig. 3.

The delivery phases are as follows. First, observe that any

set of 6 users, UD, that collectively cache every packet set,

6Note that n′ is only a dummy variable to define the packet sets for the n
users in the decentralized network to cache.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5290 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Fig. 3. A hypercube of dimension t′ = 2 and side length m
M

= 3. Each point represents a packet for every file. The numbers to the left and bottom are
the number of remaining unsatisfied users who cache the rows and columns respectively. The points also represent multicast groups of the delivery phases.

Multicast groups that contain at least one satisfied user or contain no unsatisfied users are represented by the blue squares and red “X”s, respectively.

Zi,j , can perform the centralized delivery scheme. In this

example, we pick 3 disjoint sets of users that cache all packets

sets to perform the centralized delivery phase. After this,

there are 14 remaining unsatisfied users as shown in Fig. 3(b)

and no unsatisifed users that cache Z2,2. Of these remaining

users, we consider a set of 5 users who collectively cache

every packet set except Z2,2. These 5 users can perform

a centralized delivery scheme by including one previously

satisfied user who caches Z2,2. The previously satisfied user

does not request any packets. Within each multicast group

that it belongs to, it only transmits packets to the unsatisfied

users. The transmissions of hypercube delivery that serve

the previously satisfied users are not necessary, effectively

reducing the rate.

In the third phase, as shown in Fig. 3(c), of the remaining

9 unsatisfied users, we consider 2 non-overlapping sets of 4

users who collectively cache the packet sets Z1,1, Z2,1, Z1,2

and Z3,2. These user sets can perform the delivery phases

by including previously satisfied users that cache Z3,1 and

Z2,2. In this particular example, there is one multicasting

group marked by the red “X” in Fig. 3(c) that does not need

to be considered since both users in this multicasting group

are satisfied. Similarly, after the delivery shown in Fig. 3(c),

we are left with a single user (but forming 3 multicast groups)

who can obtain the requested packets from the 3 users caching

these packets.

The transmission rate of this example is computed by

counting the number of multicasting groups in each phase that

either include or do not include a previously satisfied user. The

equivalent number of files transmitted by a multicast group

with only unsatisified users is 4
9 . For a group that contains

both a satisfied and unsatisfied user, the equivalent number of

files transmitted is 2
9 . Therefore, the rate is

R′ = (3 · 9 + 6 + 2 · 4 + 0) · 4
9

+ (0 + 3 + 2 · 4 + 3) · 2
9

=
64
3

. (26)

This decentralized scheme does not require any additional

packetization beyond the placement phase. Interestingly, the

transmission rate of this example is exactly that of conven-

tional unicasting with n
(
1 − M

m

)
= 64

3 . This occurs because

there is only unicasting for the 2-dimensional hypercube

approach, which was chosen for ease of disposition. Next,

we demonstrate how this approach applies to coded delivery.

B. General Decentralized Algorithm

The D2D hypercube decentralized caching design is defined

as follows.

1) Cache Placement Phase: Let n′ � n such that n′ ∈ Z
+

and t′ = n′M
m ∈ Z

+. Define a hypercube of dimension t′

and side length m
M . Split each file into

(
m
M

)t′
packets and

define n′ packet sets,
{
Zi,j : i ∈

[
m
M

]
, j ∈ [t′]

}
, based on the

hypercube cache design. Each of the n users independently

and randomly cache one of the n′ packet sets with equal

probability 1
n′ .

2) Delivery Phase: Initialize the set of unsatisfied users,

ŪS , to be the set of all n users, U , and initialize the set

of satisfied users, US , to be the empty set. While ŪS is

not empty, do the following. Let UD ⊆ ŪS be any largest

subset of unsatisfied users that cache different packet sets,

Zi,j . For each ν ∈
[

m
M

]t′
, define a multicast group of t′

users

Gν = {u1, · · · , ut′} ⊂ (UD ∪ US) (27)

where user uj caches Zνj ,j and uj ∈ US if and only if the

packet set Zνj ,j is not cached by any user of UD. Then,

if Gν ∩ US = ∅, the multicast group, Gν , performs the

transmissions by the centralized hypercube design. Otherwise,

if Gν contains any user from US , then any user u′ ∈ Gν ∩US

transmits ⊕
i:ui∈(Gν∩UD)

Tν,i (28)

where Tν,i is defined as the set of packets user ui receives from

multicast group Gν in the centralized hypercube design. Note

that if Gν ∩ UD = ∅, there is no transmission. After iterating

through all multicast groups
{
Gν : ν ∈

[
m
M

]t′}
, update the

set of unsatisfied users as ŪS ← ŪS \ UD and the set of

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: TOWARDS FINITE FILE PACKETIZATIONS IN WIRELESS D2D CACHING NETWORKS 5291

Algorithm 1 Decentralized Hypercube Coded Caching Deliv-

ery Design

Input: U , M
m , t′

1: ŪS ← U , US ← ∅.

2: while ŪS is not empty do
3: UD ← any largest subset of ŪS such that each user

u ∈ UD has a unique cache set

4: for ν ∈
[

m
M

]t′
do

5: Gν ← {u1, · · · , ut′} ⊂ (UD ∪ US) such that uj

caches Zνj ,j and uj ∈ US if and only if the packet set

Zνj ,j is not cached by any user of UD

6: if Gν ∩ US = ∅ then
7: Users of Gν perform the centralized delivery

method for this multicasting group

8: else
9: any user of Gν ∩ US transmits

⊕
i:ui∈(Gν∩UD)

Tν,i

10: end if
11: end for
12: ŪS ← ŪS \ UD, US ← US ∪ UD.

13: end while

satisfied users as US ← US ∪ UD. The delivery scheme ends

when ŪS = ∅, otherwise, UD is redefined and the process

is repeated. The decentralized delivery design is outlined in

Algorithm 1.

This decentralized scheme is valid since each user caches(
m
M

)t′−1
of
(

m
M

)t′
packets from each file and therefore an

M
m fraction of the library. For each delivery set of users,

UD, each user receives and decodes all requested packets

as they would if they performed the centralized delivery

scheme.

Remark 2: During delivery phase, we might not be able

to form multicast groups entirely from unsatisfied users of

UD ⊆ ŪS . Hence, satisfied users from US are necessary. Note

that a single satisfied user of a multicasting group can serve

all requests of unsatisfied users from that multicasting group.

This is possible since by the centralized caching design, each

user requests a packet from a multicasting group such that this

packet is locally cached by every other user of the multicasting

group.

C. Performance

Performance of the decentralized design is given in the

following theorem.

Theorem 2: Let m, n, M be the library size, number of

users and the cache size per user, respectively. Assume that

r ≥
√

2 and m
M , t′ ∈ Z

+ where t′ = n′M
m ≥ 2, and

the required number of packets per file is at most K ′ =
(t′−1)

(
m
M

)t′
. Furthermore, if n ≥ βn′ log n′ for some β > 1,

then all the packet sets can be cached in the network with

probability 1 − n′1−β
, and the following transmission rate is

achieved with probability 1 − o(1) as n, n′ → ∞,

Rhc
d (M) ≤ kα

t′

t′ − 1

(m

M
− 1
)

, (29)

where

kα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(dβ − 1 + α) log n′,
if n = βn′ log n′,(

n

n′ + α

√
2n

n′ log n′
)

,

if ω (n′ log n′) = n ≤ n · polylog(n),(
n

n′ +

√
2n logn′

n′

(
1 − 1

α

log log n′

2 logn′

))
,

if n = ω
(
n (log n)3

)
.

(30)

Here, α > 1 and dβ (a number depending only on β)

are constants that define the parameter regimes of (30) and

polylog(n) denotes the class of functions
⋃

k≥1 O
(
(log n)k

)
as in [39, Theorem 1]. �

Proof: First, we show that with probability 1− n′1−β
all

packet sets are cached in the D2D network. Since each packet

set is uniformly selected by each user at random, it reduces

to a “bin-ball” problem [39] where the packet sets are the n′

bins and users are the n balls. Hence, we need to characterize

the probability that no bin is empty. Let Yk denote the event

that the k bin is empty, then we can compute

P (Yk) =
(

1 − 1
n′

)n

≤ e−n/n′
. (31)

Hence, the probability that all bins are non-empty and each

packet set is cached at least once is

P
(
∩kYk

)
= P
(
∪kYk

)
= 1 − P (∪kYk)

≥ 1 −
n′∑

k=1

P (Yk) ≥ 1 − n′e−n/n′

≥ 1 − n′e−βn′ log n′/n′
= 1 − n′1−β

. (32)

Second, we will show (29) holds with probability 1−o(1). Let

L denote the maximum number of users that cache the same

packet set, or equivalently, the maximum number of balls in

each bin. For instance, L = 7 in the example of Section IV-A.

An upper bound on the rate can be computed by assuming

that users perform L centralized delivery phases. The key is to

find kα such that the tail estimate P
(
{L ≤ kα} ∩

{
∩kYk

})
=

1 − o(1). Hence, by using (3), we can obtain Rhc
d (M) ≤

L t′
t′−1

(
m
M − 1

)
≤ kα

t′
t′−1

(
m
M − 1

)
with probability 1− o(1).

From Theorem 1 in [39], we can show that if kα, α > 1
satisfies (30), then we must have P ({L ≤ kα}) = 1 − o(1).
Furthermore, since

P ({L ≤ kα})
= P
(
{L ≤ kα} ∩

{
∩kYk

})
+ P ({L ≤ kα} ∩ {∪kYk})

= P
(
{L ≤ kα} ∩

{
∩kYk

})
+ P ({∪kYk})P ({L ≤ kα} | {∪kYk})

≤ P
(
{L ≤ kα} ∩

{
∩kYk

})
+ n′1−β

, (33)

we obtain

P
(
{L ≤ kα} ∩

{
∩kYk

})
≥ P ({L ≤ kα}) − n′1−β

= 1 − o(1). (34)

This completes the proof.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5292 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Fig. 4. Results of the hypercube approach decentralized D2D caching network simulations for n = 1000 users (left plot) and n = 2416 users (right plot).

The mean rate μR = E
�
Rhc

d (M)
�

plus or minus 3 times the standard deviation, μR ± 3σ, for a variety of hypercube constructions are compared to the
D2D uncoded rate and hypercube centralized rate.

Remark 3: Note that, the requirement that each packet set

is cached at least once is more restrictive than the general

requirement that each packet is cached at least once across

the network. As discussed, our decentralized scheme does not

operate when a packet set is missing, even though every packet

may be present in the network. However, with some changes

to the delivery design (not shown here), the scheme could

operate under this scenario.

D. Simulation Methods and Results

Decentralized networks are simulated with the number of

users, n, equal to 1000 and 2416 users. For these networks

we simulate a decentralized cache scheme for all parameter

pairs, n′, t′ ∈ Z
+, such that 3 ≤ t′ ≤ 8 and 9 ≤ n′ ≤ 64

for the network of 1000 users and 3 ≤ t′ ≤ 10 and 9 ≤
n′ ≤ 120 for the network of 2416 users, and

m
M −1

t′−1 ∈ Z
+

holds, such that the packetization is K ′ =
(

m
M

)t′
. For each

parameter pair, (n′, t′), 104 decentralized cache placement and

delivery phases are simulated. Given that n′ � n in all cases,

there were no instances of a simulated decentralized network

where a packet set was not cached at least once. The mean

and standard deviation of the rate, μR and σ, respectively, are

depicted in Fig. 4. The results are compared to the uncoded

rate Ru = n
(
1 − M

m

)
(red line) and the coded rate of the

centralized hypercube scheme Rhc =
(
1 − m

nM

)−1 ·
(

m
M − 1

)
(black dashed line).

From these results, we see that the decentralized hypercube

scheme outperforms the uncoded scheme. On both plots,

the set of points with a fixed t′ is highlighted. As t′ increases,

the rate comes closer to the centralized coded rate. However,

the number of packets per file, K ′, increases exponentially.

This result demonstrates that there is a trade-off in designing

decentralized D2D caching networks using the hypercube

approach. Specifically, we can increase the number of packets

to reduce the rate and vice versa. This may provide the

flexibility to yield a practical amount of packetization while

having limited impact on the transmission rate. Furthermore,

we see that the decentralized approach yields more realizable

constructions of the hypercube. In fact, as shown in Fig. 4,

the number of realizable hypercube schemes for 1000 and

2416 users are 2 and 3 respectively (t = 4, 10 for n = 1000
and t = 4, 8, 16 for n = 2416). In comparison, the decentral-

ized network design provides many more possibilities.

V. RUZSA-SZEMÉREDI GRAPH CODED

CACHING APPROACH

While the hypercube approach requires significantly (in fact,

exponentially) less number of packets per file compared

to [14], the hypercube approach still yields an exponential

number of packets relative to n if m and M are fixed. While

the hypercube approach certainly increases the domain for

which a D2D caching network is implementable, it is still

an open question as to whether there exists a coded D2D

caching network scheme without spatial reuse (r >
√

2)

with a sub-exponential number of packets per file. Motivated

by [29], in this section we propose a coded D2D caching

scheme based on Ruzsa-Szeméredi graphs which requires only

a sub-quadratic packetization. While the general, expandable

scheme only holds for arbitrarily large n, this work demon-

strates that sub-quadratic D2D caching schemes exist.

A. Ruzsa-Szeméredi Graphs

In this section, we focus on a specific Ruzsa-Szeméredi

graph design, which was first introduced in [27] and used

in a novel manner in [29] to construct a cache placement

and coded multicasting scheme for a shared-link caching

network. Let G(V , E) be an undirected graph, where V is the

vertex set and E is the edge set. We introduce the following

definitions [28], [29].

Definition 7: Given a graph G(V , E), a matching M in G
is a set of pairwise non-adjacent edges; that is, no two edges

share a common vertex. ♦
Definition 8: The set of edges M ∈ E is an induced

matching if for the set S of all the vertices incident on the

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: TOWARDS FINITE FILE PACKETIZATIONS IN WIRELESS D2D CACHING NETWORKS 5293

Fig. 5. a) A (2, 3)-Ruzsa-Sezmeredi graph with 6 vertices which represents

a coded caching scheme where n = 6, M
m

= 2
3

, and K = n(2γ − 1) =
3n = 18. The graph can be split into τ = 3 induced pairwise disjoint

matchings denoted by different colors in the graph, which cover all edges of
the original graph. b) An example of the proposed scheme in a D2D network

with n = m = 6, K = 18 and M = 4. Each vertex represents a user.

The content of each rectangle represents cached packets. The coded multicast
packets are shown in the center of the figure.

edges in M, the induced graph GS contains no other edges

apart from those in the matching M. ♦
Definition 9: A disjoint matching M is a matching such

that any pair of the edges in M are not adjacent to any third

edge in E . ♦
Definition 10: A graph G(V , E) is called an (γ, τ)−Ruzsa-

Szeméredi (RS) Graph if its set of edges consists of τ pairwise

disjoint induced matching, each of size γ. ♦
An example of RS graph is shown in Fig. 5(a), which is

also used in [29]. We will apply Ruzsa-Szeméredi graph to

construct a cache placement and a coded multicasting scheme

in wireless D2D caching networks. In this section, we will

focus on the case that a transmission from any user can be

received and successfully decoded by all users in the network

(e.g., r ≥
√

2). In the remainder of this section, we will first

introduce a motivating example and then present the general

achievable scheme.

B. An Example

Similar to [29], our proposed scheme is based on RS

Graphs. Here, let m = n = 6 and M = 4. Each file is

partitioned into K = 3n = 18 packets with F/K bits each.

Assume that user u requests file Wu. To find the cache

placement and the coded multicasting scheme, we build a

(2, 3)-Ruzsa-Szeméredi graph G with 6 vertices as shown

in Fig. 5(a) where each vertex is represented by 3 packets.

In our proposed achievable scheme, we partition each file into

n(2γ − 1) = 18 packets and denote the jth packet from file i
by Wi,j , i ∈ [6], j ∈ [18]. The cache placement and coded

multicasting scheme are shown in Fig. 5(b), where each vertex

represents a user and his cached packets are shown inside

each vertex. For instance, the most left vertex, vertex 1, rep-

resents user 1 and his cached packets, which are Wi,j , where

i ∈ {1, · · · , 6} and j ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

Note that these exclude the packets represented by its neigh-

boring vertices, vertex 2 and vertex 6, which are shown

in Fig. 5(b).

The coded multicasting scheme is shown in the center of

Fig. 5(b). For example, user 1 transmits W2,1 ⊕ W4,13 ⊕
W5,10, which are used by users 2, 4, 5 to decode packets

W2,1, W4,13, W5,10, respectively. In particular, it can be seen

that user 2 has W4,13 and W5,10 such that he can decode W2,1.

Similarly, user 4 and 5 can also decode the corresponding

packet in a similar manner. In this example, if we use the

achievable scheme proposed in [14], each file is split into

t
(
n
t

)
= 4
(
6
4

)
= 60 packets and the transmission rate is given

by m
M − 1 = 6

4 − 1 = 1
2 . While using the proposed scheme,

the transmission rate is 12
18 = 2

3 . Therefore, the proposed

scheme requires K = 18 instead of K = 60 as the scheme

in [14], and the achievable transmission rate of the proposed

scheme is 2
3 instead of 1

2 achived by the scheme in [14].

Hence, we observe that while sacrificing the transmission rate

by (2
3 − 1

2)/ 1
2 = 1

3 = 33%, the proposed scheme reduces the

number of packets needed per file by 60−18
60 = 7

10 = 70%.

C. General Achievable Scheme

In this section, we generalize the deterministic caching and

coded delivery scheme illustrated in Section V-B to the general

case of m, n and M .

1) Building the Ruzsa-Szeméredi graph: We build a Ruzsa-

Szeméredi graph with n vertices, each with a degree of n− t.
This graph consists of τ pairwise disjoint induced matchings

and each has γ edges.

2) Cache Placement Phase: The cache placement scheme is

closely related to the scheme in [29] and is designed according

to the Ruzsa-Szeméredi graph. Each file is divided into K =
n(2γ−1) packets, labeled by {Wi,j : i ∈ [m], j ∈ [K]}. Each

vertex in the RS graph represents 2γ−1 distinct packets. User

u caches packets corresponding to those vertices that are not

adjacent to itself and packets corresponding to the vertex itself.

3) Delivery Phase: As a consequence of the caching

scheme described above, any subset of 2γ−1 users belonging

to a disjoint matching of size γ in U = {1, . . . , n} has

the property that they share 2γ − 1 packets from each file.

Consider one such subset. For any file requested by the

remaining (2γ)-th user, by construction, there are 2γ − 1
packets shared by the other 2γ − 1 users and needed by the

(2γ)-th user. Therefore, each user in every disjoint matching

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5294 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

has 2γ − 1 packets that are useful for the remaining 2γ − 1
users. Furthermore, such sets of packets are disjoint (empty

pairwise intersections). For delivery, in each disjoint matching,

each user computes the XOR of its 2γ − 1 useful packets

and multicasts it to all other users in this disjoint matching.

In this way, for every multicast transmission exactly 2γ − 1
users will be able to decode a useful packet using “interference

cancellation” based on their cached content.

The achievable rate is given in the following.

Theorem 3: Let m, n, M be the library size, number of

users and the cache size per user, respectively. Assume n =
Λz , where Λ, z ∈ Z

+ such that z ≥ 2Λ, then there exists a

(τ, γ)-RS graph with n vertices where τ = n(1+2 ln 10.5
ln Λ +o(1))

and γ < n. Using the (τ, γ)-RS graph to define a caching

scheme for r ≥
√

2 yields the following achievable rate:

RRS(M) ≤ τ

n
· 2γ

2γ − 1
(35)

where users cache an equivalent of

M = 2mn− 1
2Λ4 ln Λ (36)

files and each file is split into at KRS = (2γ − 1)n
packets. �

Proof: Theorem 3 is proved in Appendix A.

When we consider the asymptotic regime as n becomes

large, we obtain the following corollary.

Corollary 1: For r ≥
√

2, when n → ∞, K = O
(
n2−δ

)
and M = 2mn−c1δ exp(−c2/8), where c1, c2 are some positive

constants, let t = nM
m ∈ Z

+, the following rate is achievable:

RRS(M) ≤ nδ + o(nδ), (37)

where δ = 2 ln 10.5
lnΛ . �

Corollary 1 can be proved using the value of τ given in

Appendix A and the relation γ = O (n/τ). From Corollary 1,

we can see that when Λ is large enough, or equivalently, n
is large enough, δ can be arbitrarily small. In other words,

it can be computed from (37) that RRS(M) = (10.5)2 logΛ n.

The throughput achieved by the proposed achievable scheme

is given as follows.

Corollary 2: Let Cr be the constant link rate under the

protocol model. For r ≥
√

2, the per user throughput is given

by

T RS(M) =
Cr

RRS(M)
n→∞= C√2 · n−δ + o

(
n−δ
)
, (38)

where RRS(M) and δ are given by (35) or (37), is

achievable. �
Proof: This corollary can be proved by using the same

procedure as the proof of Corollary 1.

D. Comparison to Other Schemes

Due to the sub-quadratic packetization with the number of

users n, which is significantly lower than that of the hypercube

based approach proposed in Section III, the achievable rate of

the RS graph based design given by (35) and (37) for r ≥
√

2
is obviously worse than the achievable rate of the hypercube

based design given in (3) and the original design [14], when

n increases and m and M are fixed. However, there is still a

significant gain in terms of transmission rate compared to the

conventional uncoded unicasting scheme in some parameter

regimes. In the following, we compare the transmission rates

of the uncoded scheme, Ru, and the RS Graph scheme,

RRS where m, M and n are the same for both schemes.

By solving (36) for n we obtain

n =
(
2

m

M

)2Λ4 ln Λ

(39)

which better defines the constraint relating n to M/m for the

this scheme based on the proposed RS graph design. For the

purposes of comparison, (39) holds for both the uncoded and

RS schemes. The transmission rate for the uncoded scheme is

Ru = n

(
1 − M

m

)
=
(
2

m

M

)2Λ4 ln Λ
(

1 − M

m

)
. (40)

Furthermore, the transmission rate of the RS scheme given

by (35) is

RRS = nδ + o(nδ)

=
(
2

m

M

)4Λ4 ln 10.5

+ o

((
2

m

M

)4Λ4 ln 10.5
)

(41)

Then we obtain7

RRS

Ru
=

m − M

m
·
(
2

m

M

)2Λ4(2 ln 10.5−ln Λ)

+ o

(
m − M

m
·
(
2

m

M

)2Λ4(2 ln 10.5−lnΛ)
)

. (42)

This result demonstrates that for a fixed m/M and Λ > 10.52,

by using τ = Λ
2Λ4 ln(2 m

M)
ln Λ (1+ 2 ln 10.5

ln Λ +o(1)) (see Appendix A),

we have8

lim
n→∞

RRS

Ru
= lim

Λ→∞
RRS

Ru
= 0, (43)

which shows a significant gain in terms of transmission rate

of the RS graph approach compared to uncoded unicasting

scheme.

Remark 4: It can be seen that the idea of designing the

decentralized coded caching approach discussed in Section IV

can also be extended to the RS graph coded caching methods.

The major difference is that the packet sets, each of which will

be randomly and uniformly cached by users, are constructed

based on the RS graph. The delivery procedure is similar to

that in Section IV.

VI. ACHIEVABILITY WITH SPATIAL REUSE

In this section, we study the hypercube and RS graph

D2D coded caching schemes when spatial reuse is allowed.

We use clustering to divide up a caching network into many

smaller caching networks. We reduce the transmission range

7Notice that, (42) is only dependent on M , m and Λ and not dependent

on z. This occurs because z is a function of M , m and Λ and for these

derivations z is essentially substituted with z = 2Λ4 ln
�
2 m

M

�
/ ln Λ.

8Note that the RS graph based approach cannot perform worse than the
uncoded unicasting by the construction. The reason we need the condition

that Λ > 10.52 is due to the fact that the τ obtained from [28], [29] and

used in (35) is a sufficient condition and may not be necessary.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: TOWARDS FINITE FILE PACKETIZATIONS IN WIRELESS D2D CACHING NETWORKS 5295

to be r <
√

2 in order to have localized D2D communica-

tion such that multiple clusters can communicate without

interference. In our analysis, we demonstrate that clustering

with the newly proposed D2D designs has the advantage of

significant reduction in packetization. Furthermore, we find

a throughput-packetization trade-off when using clustering

based on the reuse factor K and link rates, Cr, for spatial

reuse, and C√
2, with no spatial reuse. Surprisingly, for the

RS graph design, in some cases, we find that there is no

trade-off and throughput and packetization are strictly better

for reasonable choices of parameters K, Cr, and C√
2 and

when n is arbitrarily large. Furthermore, the transmission rate

of the hypercube and RS graph D2D schemes are dependent

on the number of users in each cluster, different from the

scheme of [14] which is independent. Therefore, in contrast

to the spatial reuse analysis of [14] where there is potentially

no order gain in throughput as n → ∞ by using spatial reuse,

in the newly proposed schemes, spatial reuse achieves a higher

throughput gain for some parameters.

Different from to the regime where r ≥
√

2, in this case,

we also need to design a non-trivial transmission policy to

schedule concurrent active D2D transmissions. Similar to the

scheduling schemes in [14], the proposed policy is based on

dividing the network into clusters of equal size gc users. Users

are allowed to receive messages only from users in the same

cluster.9 Therefore, each cluster is treated as a smaller network

compared to the entire network. Assuming that gcM ≥ m,10

the total cache size of each cluster is sufficient to store the

entire file library. Under this assumption, the cache placement

and delivery schemes introduced in Sections III-A and V-C

can be applied to each cluster. Hence, it can been seen that

the transmission rate of each cluster is given by either

Rhc
c (M) =

tc
tc − 1

m

M

(
1 − M

m

)
, (44)

for the hypercube scheme where tc
Δ= gcM/m, or

RRS
c (M) =

τ

gc

2γ

2γ − 1
gc→∞

= gδ
c + o(gδ

c), (45)

for the RS graph scheme where tc
Δ= gcM/m, gc = Λz and τ ,

γ and δ are given in Theorem 3. As mentioned in Remark 1,

a straightforward achievable transmission policy consists of

grouping the set of clusters into K spatial reuse sets such that

the clusters of the same reuse set do not interfere and can

be activated simultaneously.11 In each active cluster, a single

transmitter is active per time-slot and it is received by all users

in the cluster, as in classical time-frequency reuse schemes

with reuse factor K that are currently used in cellular networks

[41, Ch. 17]. An example of a reuse set is shown in Fig. 1.

In particular, we can pick K =
(⌈√

2(1 + Δ)
⌉

+ 1
)2

[37].

9Note that this condition can be relaxed by using the similar communication

scheme base on ITLinQ [40].
10If the condition gcM ≥ m is not satisfied, we can choose a larger

transmission range such that this condition is feasible.
11Note that the interference management in this paper is based on protocol

model. However, similar scheme can be designed for AWGN or fading channel

model based on the condition that treating interference as noise is optimal

(ITLinQ [40]).

A. Clustering With the Hypercube Caching Approach

The achievable throughput of the hypercube approach with

clustering is given by the following theorem.

Theorem 4: Let m, gc, M be the library size, number of

users in each cluster and the cache size per user, respectively.

For r ≤
√

2, tc = gcM
m ≥ 2, and m

M , tc ∈ Z
+, the following

per user throughput T hc
c (M) is achievable:

T hc
c (M) =

Cr

K
M

m − M

tc − 1
tc

(46)

with the requirement of at most Khc
c = (tc − 1)

(
m
M

)tc
packetizations. �

Proof: By using (2), we can obtain

T hc
c (M) =

Cr

K
1

Rhc
c (M)

=
Cr

K
M

m − M

tc − 1
tc

, (47)

where Rhc
c (M) is given by (44). Noting that the packetization

of the hypercube scheme without clustering is (t − 1)
(

m
M

)t
in the worst case and replacing t by tc, we get Khc

c = (tc −
1)
(

m
M

)tc
.

The multiplicative gap of T hc
g and T hc

c throughput is given

by

Ghc
T =

T hc
c

T hc
g

=
Cr

C√2 K
1

Ghc
R

=
Cr

C√2 K
n

gc

tc − 1
t − 1

(48)

Remark 5: The throughput has increased by using the clus-

tering scheme compared to the scheme for r ≥
√

2 if Ghc
T > 1

or in other words

Cr

C√2 K >
gc

n

t − 1
tc − 1

. (49)

This relationship can be further simplified if gcM � m and

clustering will improve the throughput if Cr/K > C√2. This

provides a similar result to that was shown in [14]. The exact

relationship between link rate, Cr, and transmission range, r,

depends on the physical channel model and wireless network

design. However, Cr may not decrease as r decreases and

clustering has the potential to increase throughput.

Remark 6: Clustering reduces the number of file partitions

as also shown in [14]. For a cluster with gc users, the ratio of

the number of packetizations with and without clustering

Khc

Khc
c

=
(

t − 1
tc − 1

)(m

M

)M
m (n−gc)

. (50)

As the cluster size gc becomes smaller, an exponential decrease

in the number of file partitions is observed. Therefore, even

when clustering does not increase throughput, spatial reuse

still introduces a throughput-packetization trade-off.

B. Clustering With the RS Graph Caching Approach

In this section we first discuss the impact of clustering on

packetization and throughput with the RS graph coded caching

approach. We then consider two ways of reducing gc based on

the construction in [28], [29] and study their specific impact on

throughput and cache size requirement. The RS graph scheme

achieves the following throughput:
Theorem 5: Let m, gc, M be the library size, number of

users in each cluster and the cache size per user, respectively.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5296 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

For r <
√

2, gc = Λz, where Λ is any positive integer such

that z ≥ 2Λ, and M = 2mg
− 1

2Λ4 ln Λ
c , let tc = gcM

m ∈ Z
+,

the per user throughput is given by:

T RS
c (M) =

Cr

K
gc

τ

2γ − 1
2γ

(51)

with the requirement of KRS
c = (2γ − 1)gc packetizations.�

We have the following corollary for the asymptotic regime.

Corollary 3: For r <
√

2, when gc → ∞, KRS
c =

O
(
g2−δ

c

)
, tc ≥ 2, and M = 2mg

−c1δ exp(−c2/8)
c , where

c1, c2 are some positive constants, let tc = gcM
m ∈ Z

+,

the throughput is given by:

T RS
c (M) =

Cr

K g−δ
c + o

(
Cr

K g−δ
c

)
, (52)

where δ = 2 ln 10.5
lnΛ . �

Since the proofs of Theorem 5 and Corollary 3 are similar

to that of Theorem 4 by using Theorem 3 and Corollary 1,

the proofs are omitted due to space limitation. From Theo-

rems 3 and 5, we find the multiplicative reduction in packeti-

zation from clustering with the RS scheme is

KRS

KRS
c

= O

(
n2

g2
c

)
. (53)

To understand the impact of clustering on rate and through-

put, we need to find a cluster size such that gc = (Λ′)z′
. Let

the number of users in the caching network be n = Λz . In the

following, we explore two methods to determine gc which are

letting Λ′ = Λ, z′ < z or Λ′ < Λ, z′ = z.

1) Λ′ = Λ, z′ < z: Let n = Λz and gc = Λz′
, where

z′ < z. From (37) and (45), the multiplicative gap between

the transmission rate of RRS
c (M) and RRS(M) is given by

GRS
R =

RRS
c (M)

RRS(M)
=

gδ
c + o(gδ

c)
nδ + o(nδ)

= Λδ(z′−z) + o
(
Λδ(z′−z)

)
= 10.52(z′−z) + o

(
10.52(z′−z)

)
. (54)

From (54), we can observe that by clustering the D2D network,

the transmission rate (traffic load) can be reduced significantly.

For example, if z − z′ = 2, e.g., the network is partitioned

into Λ2 clusters, GRS
R = 10.5−4 < 10−4. Nevertheless,

due to the spatial reuse gain, by using Corollary 2 and 3,

the multiplicative gap between T RS
c (M) and T RS(M) is given

by

GRS
T =

T RS
c (M)

T RS(M)
=

Cr

K g−δ
c + o

(
Cr

K g−δ
c

)
C√2 n−δ + o

(
C√2 n−δ

)
(a)
=

Cr

C√2

1
K10.52(z−z′) + o

(
10.52(z−z′)

)
, (55)

where (a) is obtained by repeating the same procedure as (54).

Surprisingly, clustering appears to increase throughput even

when the benefit of reduced transmission range and spatial

reuse is limited (i.e. Cr

C√
2K is small). For example, if z−z′ = 2,

then from (55),

GRS
T =

Cr

C√
2

1
K10.54. (56)

As clustering is performed when Λ′ = Λ and z′ < z,

the required cache capacity M increases. For this clustering

scheme, from Theorems 3 and 5, the cache capacity M(gc)
satisfies

M(gc) = 2mg
− 1

2Λ4 ln Λ
c = 2mn− 1

2Λ4 ln Λ
g
− 1

2Λ4 ln Λ
c

n− 1
2Λ4 ln Λ

= M(n) exp
(

z − z′

2Λ4

)
. (57)

Note that by using (57), to achieve the promised throughput,

it needs M(gc) ≥ M(n) exp
(

z−z′
2Λ4

)
. For example, if z−z′ =

2, it requires M(n/Λ2) = M(n)e
1

Λ4 .

Remark 7: For a realizable RS design where z = ω(Λ4),
M(n)

m = o(1), the effects of local caching gain and

increased cache size are insignificant.12 In other words,
1−M(n)/m

1−M(n)e
1

Λ4 /m
≈ 1. The factor of 10.54 in the gain of through-

put of (56) is a direct consequence of the decrease in rate from

clustering in (54). The reduction in the rate is a consequence

of the reduced cluster size and increased multicasting gain.

2) Λ′ < Λ, z′ = z: Let n = Λz and gc = (Λ′)z , where

Λ′ < Λ. From Corollary 1 and (44), the multiplicative gap

between the transmission rate of RRS
c (M) and RRS(M) is

given by

GRS
R =

RRS
c (M)

RRS(M)
=

gδ′
c + o(gδ′

c)
nδ + o(nδ)

=
(Λ′)

2 ln 10.5
ln Λ′ z

Λ
2 ln 10.5

ln Λ z
+ o

(
(Λ′)

2 ln 10.5
ln Λ′ z

Λ
2 ln 10.5

ln Λ z

)
= 1 + o (1). (58)

From (58), we see that by clustering the D2D network,

the transmission rate is almost unchanged. It follows from

Corollary 2 and 3 that the multiplicative gap between T RS
c (M)

and T RS(M) is given by

GRS
T =

T RS
c (M)

T RS(M)
=

Cr

K g−δ′
c + o

(
Cr

K g−δ′
c

)
C√2 n−δ + o

(
C√2 n−δ

)
=

Cr

C√2

1
K + o

(
Cr

C√2

1
K

)
. (59)

From (59), we can see that similar to [14], there is no

fundamental cumulative gain by using both spatial reuse

and coded multicasting. Therefore, depending on Cr,

C√2 and K, clustering either improves throughput or intro-

duces a throughput-packetization trade-off. Note that, these

parameters are not captured by the protocol model and may

depend on the operating frequency and appropriate channel

model of the underlying wireless network physical layer [16].

VII. CONCLUSION

In this work, we study D2D coded caching network designs

which require with less packetization compared to the state-

of-the-art coded D2D caching schemes in [14]. We approach

this problem by proposing new combinatorial caching designs

12From Appendix A, M(n) = 2mn
− 1

2Λ4 ln Λ = 2m exp
�
− z

2Λ4

�
where

n = Λz . Thus if z = ω(Λ4), then
M(n)

m
= o(1).

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: TOWARDS FINITE FILE PACKETIZATIONS IN WIRELESS D2D CACHING NETWORKS 5297

and exploiting random caching and spatial reuse to intro-

duce throughput-packetization trade-offs. We propose two new

network design approaches, which are hypercube approach

and Ruzsa-Szeméredi (RS) graph approach. In particular,

the hypercube approach is unique compared to other D2D

designs because, in some cases, it does not require extra

packetization beyond the placement phase. The hypercube

approach requires exponentially less packetization as com-

pared to coded caching scheme in [14] and yields nearly

the same per user throughput for a large number of users.

The RS Graph approach was expanded from a previously

studied shared-link network design [29] and modified for D2D

networks. It requires only subquadratic packetization in terms

of the number of users and achieves a near constant per user

throughput. In addition, we demonstrate how the hypercube

scheme can be expanded to design decentralized networks

and discovered a clear trade-off between transmission rate

and packetization. Finally, we explore our new schemes with

network clustering to utilize spatial reuse and increase per user

throughput and also decrease the packetization, a property that

is unique to D2D caching networks.

APPENDIX A

PROOF OF THEOREM 3

To prove Theorem 3, we first introduce the following

construction of RS Graph from [28], [29].

Definition 11: (Graph Construction) A graph, G(V , E),
is defined such that V = [Λ]z where Λ ∈ Z

+, z is even,

and z ≥ 2Λ. Let μ = Ex,y[||x − y||22], where x and y are

sampled uniformly from V . For a pair of vertices, u, v ∈ V ,

(u, v) ∈ E if and only if | ||u − v||22 − μ| ≤ z. ♦
Given this construction, the graph consists of τ = nf edge

disjoint induced matchings and misses at most nk edges such

that f = 1 + 2 ln 10.5
ln Λ + o(1), and k = 2 − 1

2Λ4 lnΛ + o(1).
Furthermore, given a vertex, x ∈ V , the degree of x, defined

as d, is bounded by

d = |y ∈ V : (x, y) ∈ E| ≥ n
(
1 − 2n− 1

2Λ4 ln Λ

)
. (60)

The degree of any vertex defines the number of packets that a

user does not cache. Therefore, if M
m ≥ 1− dlb

n
= 2n− 1

2Λ4 ln Λ ,

where dlb is the lower bound of d, then the graph construction

can be used as a cache placement scheme. Hence, we can

pick M = 2mn− 1
2Λ4 ln Λ . Since d ≥ dlb = n

(
1 − M

m

)
=

n − t, we have t ∈ Z
+. By the construction of the proposed

scheme described in Section V-C, each file is partitioned into

n(2γ − 1) packets, and each contains F/K bits. Moreover,

for each disjoint matching in the constructed RS graph, there

are 2γ transmissions, and each has size F
n(2γ−1) bits. Since the

number of disjoint matching is τ , there are 2γ ·τ transmissions.

R(M) = 2γ · τ · F

n(2γ − 1)
· 1
F

=
τ

n

2γ

2γ − 1
. (61)

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role

of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[3] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless

caching: Technical misconceptions and business barriers,” IEEE Com-
mun. Mag., vol. 54, no. 8, pp. 16–22, Aug. 2016.

[4] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless
edge: Design aspects, challenges, and future directions,” IEEE Commun.
Mag., vol. 54, no. 9, pp. 22–28, Sep. 2016.

[5] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis,

“Finite length analysis of caching-aided coded multicasting,” in Proc.
52nd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2014, pp. 914–920.

[6] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users
than files,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016,

pp. 135–139.

[7] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded

cache placement,” in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016,

pp. 161–165.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the

rate-memory tradeoff in cache networks within a factor of 2,” 2017,
arXiv:1702.04563. [Online]. Available: http://arxiv.org/abs/1702.04563

[9] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” IEEE Trans. Inf. Theory, vol. 62, no. 6,

pp. 3212–3229, Jun. 2016.

[10] A. Sengupta and R. Tandon, “Improved approximation of storage-rate

tradeoff for caching with multiple demands,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1940–1955, May 2017.

[11] S.-W. Jeon, S.-N. Hong, M. Ji, G. Caire, and A. F. Molisch, “Wireless

multihop device-to-device caching networks,” IEEE Trans. Inf. Theory,
vol. 63, no. 3, pp. 1662–1676, Mar. 2017.

[12] A. Liu, V. Lau, and G. Caire, “Cache-induced hierarchical cooperation in

wireless device-to-device caching networks,” 2016, arXiv:1612.07417.

[Online]. Available: http://arxiv.org/abs/1612.07417

[13] S. P. Shariatpanahi, G. Caire, and B. H. Khalaj, “Physical-layer schemes

for wireless coded caching,” 2017, arXiv:1711.05969. [Online]. Avail-

able: http://arxiv.org/abs/1711.05969

[14] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching

in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp. 849–869, Feb. 2016.

[15] M. Ji, G. Caire, and A. F. Molisch, “The throughput-outage tradeoff of

wireless one-hop caching networks,” IEEE Trans. Inf. Theory, vol. 61,

no. 12, pp. 6833–6859, Dec. 2015.

[16] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching

networks: Basic principles and system performance,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[17] M. Ji, R.-R. Chen, G. Caire, and A. F. Molisch, “Fundamental limits of
distributed caching in multihop D2D wireless networks,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2950–2954.

[18] K. Wan, D. Tuninetti, M. Ji, and G. Caire, “Novel inter-file coded place-

ment and D2D delivery for a cache-aided fog-ran architecture,” 2018,

arXiv:1811.05498. [Online]. Available: https://arxiv.org/abs/1811.05498

[19] A. A. Zewail and A. Yener, “Device-to-device secure coded caching,”

2018, arXiv:1809.06844. [Online]. Available: http://arxiv.org/abs/1809.

06844

[20] Ç. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the opti-
mality of D2D coded caching with uncoded cache placement

and one-shot delivery,” 2019, arXiv:1901.05921. [Online]. Available:

http://arxiv.org/abs/1901.05921

[21] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Device-to-device coded

caching with distinct cache sizes,” 2019, arXiv:1903.08142. [Online].

Available: http://arxiv.org/abs/1903.08142

[22] M.-C. Lee, M. Ji, A. F. Molisch, and N. Sastry, “Throughput–outage
analysis and evaluation of cache-aided D2D networks with measured

popularity distributions,” IEEE Trans. Wireless Commun., vol. 18, no. 11,

pp. 5316–5332, Nov. 2019.

[23] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Device-to-device

private caching with trusted server,” 2019, arXiv:1909.12748. [Online].

Available: http://arxiv.org/abs/1909.12748

[24] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery

array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[25] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced

subpacketization from linear block codes,” IEEE Trans. Inf. Theory,

vol. 64, no. 4, pp. 3099–3120, Apr. 2018.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

5298 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

[26] H. H. S. Chittoor, M. Bhavana, and P. Krishnan, “Coded caching

via projective geometry: A new low subpacketization scheme,” 2019,

arXiv:1901.07823. [Online]. Available: http://arxiv.org/abs/1901.07823
[27] I. Z. Ruzsa and E. Szemerédi, “Triple systems with no six points carrying

three triangles,” in Proc. 5th Hungarian Colloq., Keszthely, Hungary,

1976, pp. 939–945.

[28] N. Alon, A. Moitra, and B. Sudakov, “Nearly complete graphs decom-
posable into large induced matchings and their applications,” in Proc.
44th Symp. Theory Comput. (STOC), 2012, pp. 1079–1090.

[29] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded
caching with linear subpacketization is possible using Ruzsa-Szeméredi

graphs,” 2017, arXiv:1701.07115. [Online]. Available: http://arxiv.org/

abs/1701.07115

[30] J. Wang, M. Cheng, Q. Yan, and X. Tang, “On the placement delivery
array design for coded caching scheme in D2D networks,” 2017,

arXiv:1712.06212. [Online]. Available: http://arxiv.org/abs/1712.06212

[31] J. Wang, M. Cheng, Q. Yan, and X. Tang, “Placement delivery array
design for coded caching scheme in D2D networks,” IEEE Trans.
Commun., vol. 67, no. 5, pp. 3388–3395, May 2019.

[32] S. Jin, Y. Cui, H. Liu, and G. Caire, “New order-optimal decen-

tralized coded caching schemes with good performance in the
finite file size regime,” 2016, arXiv:1604.07648. [Online]. Available:

http://arxiv.org/abs/1604.07648

[33] N. Woolsey, R.-R. Chen, and M. Ji, “Device-to-device caching networks
with subquadratic subpacketizations,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2017, pp. 1–6.

[34] N. Woolsey, R.-R. Chen, and M. Ji, “Coded caching in wireless device-

to-device networks using a hypercube approach,” in Proc. IEEE Int.
Conf. Commun. Workshops (ICC Workshops), May 2018, pp. 1–6.

[35] N. Woolsey, R.-R. Chen, and M. Ji, “Cascaded coded distributed

computing on heterogeneous networks,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2019, pp. 2644–2648.

[36] N. Woolsey, R.-R. Chen, and M. Ji, “Coded distributed computing

with heterogeneous function assignments,” 2019, arXiv:1902.10738.

[Online]. Available: http://arxiv.org/abs/1902.10738
[37] F. Xue and P. Kumar, Scaling Laws for Ad Hoc Wireless Networks:

An Information Theoretic Approach. Beirut, Lebanon: Now, 2006.

[38] K. Konstantinidis and A. Ramamoorthy, “Leveraging coding techniques

for speeding up distributed computing,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

[39] M. Raab and A. Steger, “‘Balls into bins’—A simple and tight analysis,”

in Randomization and Approximation Techniques in Computer Science.
Berlin, Germany: Springer, 1998, pp. 159–170.

[40] N. Naderializadeh, D. T. H. Kao, and A. S. Avestimehr, “How to utilize

caching to improve spectral efficiency in device-to-device wireless

networks,” in Proc. 52nd Annu. Allerton Conf. Commun., Control,
Comput. (Allerton), Sep. 2014, pp. 415–422.

[41] A. F. Molisch, Wireless Communications, 2nd ed. Hoboken, NJ, USA:

Wiley, 2011.

Nicholas Woolsey (Student Member, IEEE) received

the B.S. degree in biomedical engineering from the
University of Connecticut in 2012 and the M.Eng.

degree in bioengineering from the University of

Maryland at College Park in 2015, with a focus

on signal processing, imaging, and optics. He is
currently pursuing the Ph.D. degree with the Depart-

ment of Electrical and Computer Engineering, The

University of Utah. From 2014 to 2017, he was an
Electrical Engineer with Northrop Grumman Cor-

poration (NGC), Ogden, UT, developing test and

evaluation methods, modernization solutions and signal processing algorithms

for the sustainment of aging aircraft, and ground communication systems.

His research interests include combinatoric designs and algorithms for

resource allocation, coding and efficient communications in distributed com-
puting, and private and caching networks. While at NGC, he received the

Outside the Box Grant to investigate the design of a modern receiver that

interfaces aging technology and the 2016 Brent Scowcroft Team Award for

performing exceptional systems engineering work.

Rong-Rong Chen (Member, IEEE) received the

B.S. degree in applied mathematics from Tsinghua

University, China, in 1993, and the M.S. degree

in mathematics and the Ph.D. degree in electrical
and computer engineering from the University of

Illinois at Urbana–Champaign in 1995 and 2003,

respectively. She was an Assistant Professor with
The University of Utah, from 2003 to 2011, where

she has been an Associate Professor since 2011.

Her main research interests include communication

systems and networks, with current emphasis on
distributed computing, machine learning, caching networks, statistical signal

processing, image reconstructions, and channel coding. She was a recipient of

the M. E. Van Valkenburg Graduate Research Award for excellence in doctoral
research in the ECE Department, University of Illinois at Urbana-Champaign,

in 2003. She was a recipient of the prestigious National Science Foundation

Faculty Early Career Development (CAREER) Award in 2006. She was rated

among the Top 15% Instructors of College of Engineering, The University of
Utah, in 2017 and 2018. She has served on the technical program committees

of leading international conferences in wireless communication and networks.

She has served as an Associate Editor for IEEE TRANSACTIONS ON SIGNAL

PROCESSING and a Guest Editor for IEEE JOURNAL ON SELECTED TOPICS

IN SIGNAL PROCESSING.

Mingyue Ji (Member, IEEE) received the B.E.

degree in communication engineering from the

Beijing University of Posts and Telecommunica-
tions, China, in 2006, the M.Sc. degrees in electrical

engineering from the Royal Institute of Technol-

ogy, Sweden, and the University of California at
Santa Cruz, in 2008 and 2010, respectively, and

the Ph.D. degree from the Ming Hsieh Department

of Electrical Engineering, University of Southern

California, in 2015. He subsequently was a Staff II
System Design Scientist with Broadcom Corporation

(Broadcom Ltd.) from 2015 to 2016. He is currently an Assistant Professor

with the Electrical and Computer Engineering Department and an Adjunct
Assistant Professor with the School of Computing, The University of Utah.

His research interests include information theory, coding theory, concentration

of measure and statistics with the applications of caching networks, wireless

communications, distributed computing and storage, security and privacy,
and (statistical) signal processing. He received the IEEE Communications

Society Leonard G. Abraham Prize for the Best IEEE JSAC Paper in 2019,

the Best Paper Award in IEEE ICC 2015 Conference, the Best Student Paper
Award in IEEE European Wireless 2010 Conference, and the USC Annenberg

Fellowship from 2010 to 2014.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:44:47 UTC from IEEE Xplore. Restrictions apply.

