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Abstract— We consider wireless device-to-device (D2D) caching
networks with single-hop transmissions. Previous work has
demonstrated that caching and coded multicasting can signifi-
cantly increase per user throughput. However, the state-of-the-art
coded caching schemes for D2D networks are generally imprac-
tical because content files are partitioned into an exponential
number of packets with respect to the number of users if both
library and memory sizes are fixed. In this paper, we present
two combinatorial approaches of D2D coded caching network
design with reduced packetizations and desired throughput gain
compared to the conventional uncoded unicasting. The first
approach uses a ‘“hypercube” design, where each user caches
a ‘“hyperplane” in this hypercube and the intersections of
“hyperplanes” represent coded multicasting codewords. In addi-
tion, we extend the hypercube approach to a decentralized
design. The second approach uses the Ruzsa-Szeméredi graph
to define the cache placement. Disjoint matchings on this graph
represent coded multicasting codewords. Both approaches yield
an exponential reduction of packetizations while providing a
per-user throughput that is comparable to the state-of-the-art
designs in the literature. Furthermore, we apply spatial reuse
to the new D2D network designs to further reduce the required
packetizations and significantly improve per user throughput for
some parameter regimes.

Index Terms— Coded caching, device-to-device communica-
tions, packetizations, spatial reuse.

I. INTRODUCTION

WIRELESS caching is a promising approach to sig-
nificantly improve the user throughput and simulta-

neously accommodate a large number of user demands in
future generations of wireless networks [1]-[13]. In this paper,
we investigate achievable coded caching schemes in device-
to-device (D2D) caching networks, where users strategically
cache packets of content files to enable coded multicasting
which serves distinct content to multiple users with one
channel use. Different from the seminal shared-link caching
networks [1], where one source node (base station) with access
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to the entire library serves all the users over a multicast
channel, in D2D networks, users receive requested packets
from other users. For such a network consisting of n users,
each caching an equivalent M files out of a library of m
files, previous work demonstrates that if Mn > m and
m > n and when spatial reuse is not allowed, meaning that
any transmission can be successfully received by any users
in the network, the transmission rate (i.e., normalized traffic
load) is © (%) which is not a function of n. Hence, the
aggregate throughput of the network is scalable [14]." This
surprising result shows that the transmission rate of the shared-
link caching scheme in [1] and D2D caching scheme in [14]
are identical for a large number of users.’

D2D caching networks have the potential to provide some
unique advantages. For example, D2D caching networks have
a greater flexibility to implement spatial reuse in comparison to
shared-link caching networks. The authors in [14] demonstrate
that users in a D2D network can be grouped into clusters based
on proximity. These clusters can perform the coded multicast-
ing delivery simultaneously and surprisingly, the order-optimal
traffic load in each cluster is identical to the traffic load when
no clustering is enabled (e.g., consider the entire network as a
single cluster). Nevertheless, clustering may improve per user
throughput since the link rate (bits/second/Hz) in each cluster
may increase as the size of each cluster decreases. Due to their
unique characteristics, the study of the fundamental limits of
D2D caching networks has become a popular topic in the past
few years [10], [14]-[23].

The promised gain in per user throughput of the state-of-
the-art coded D2D caching schemes relies on a large amount
of file packetization which makes the networks impractical to
implement. Files need to be split into a very large number
of packets and therefore the files will be unrealistically large
for many caching network implementations. In this paper,
we study and propose new achievable coded caching schemes
in D2D networks such that the packetization of each file is
significantly reduced without sacrificing much throughput of
the currently proposed D2D caching schemes.

"Note that when no spatial reuse is allowed, the per user throughput is
inversely proportional to the traffic load in the network.

2We will use the following standard “order” notation: given two functions
f and g, we say that: 1) f(n) = O (g(n)) if there exists a constant ¢ and
integer N such that f(n) < cg(n) for n > N. 2) f(n) = o(g(n)) if
limg oo 282 = 0.3) f(n) = Q(g(n) if g(n) = O (f(n)). 4) f(n) =

w(g(n)) if g(n) = o(f(n)). 5) f(n) = ©(g9(n)) if f(n) = O(g(n))
and g(n) = O (f(n)).
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There have been many results studying the large packeti-
zation issue in shared-link caching networks [24]-[26] and
we discuss some of them here. The work of [24] used a
Placement Delivery Array (PDA) to investigate new placement
and delivery schemes. One of the scheme in [24] reduces the
number of users served in each coded multicast transmission
by 1 while significantly reducing the packetization compared
to the seminal work of [1]. In this way, the rate only increases
slightly while greatly increasing the number of practical para-
meters regimes. Furthermore, the authors of [25] demonstrated
the connection between (m, k) linear block codes over GF(q)
with coded caching network design. The generated codeword
matrix defines the cache of mk users and at most (k + 1)g*
file packetizations are necessary. While the scheme only works
for linear block codes with the (k, k + 1)-consecutive column
property (see [25]), the authors demonstrated the flexibility of
this approach and in some cases it can be used to design a
caching network given n, m and M while meeting a specific
packetization requirement. While the schemes of [24] and [25]
significantly reduce the file packetization compared to [1],
all of these schemes require an exponential number of packets
per file compared to the number of users. A recent result has
demonstrated that caching schemes where a linear number of
packets per file are necessary by using a Ruzsa-Szeméredi
graph [27], [28] to design coded caching scheme in order to
have the global caching gain [1], [29]. While this approach
requires a large number of users, it has proven the existence
of sub-exponential schemes which inspires the search for
practical caching schemes with reduced packetizations.

There has been limited work studying file packetization in
D2D caching networks. In [14], the authors demonstrate that
if no spatial reuse is allowed, let ¢t = % e Z*, the required
number of packets per file is K = t(7}) which grows expo-
nentially as the number of users, n, increases. The authors
of [14] also explored the concept of user clustering in order to
exploit spatial reuse to increase per user throughput. Moreover,
it was found that clustering also has the potential to reduce
packetizations. Another approach to study D2D coded caching
networks is the use of a D2D Placement Delivery Array
(DPDA) [30]. By using the DPDA, the authors first derived
a lower bound for the rate of a coded caching network as
R > 77 —1 and also a lower bound for packetizations when the
rate lower bound is met and ¢ € {1,2,n—2,n —1}. The work
of [30] also demonstrated that the scheme of [14] meets the
lower bound on rate always, meets the lower bound on packe-
tization for ¢ € {1,n — 1} but does not meet the lower bound
on packetization when ¢ € {2,n — 2}. The authors of [30]
developed a specific scheme for ¢ = 2 and ¢ = n — 2 which
meets the lower bound on rate and packetization. An extension
of this work can be found in [31], where the authors adopted
the approach introduced in [14] to any PDA based designs to
yield a D2D coded caching design. However, this approach
requires extra packetization for placement. An open question
remains as to the existence of D2D coded caching networks
which work for a large range of ¢ and are designed specif-
ically for D2D and not simply adapted from a shared-link
scheme. Furthermore, only the scheme of [14] has considered
spatial reuse which is a potential advantage of D2D networks
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to further reduce packetizations without reducing per user
throughput.

In this paper, we study several approaches to design coded
caching networks with reduced packetizations. We propose
two combinatorial designs for centralized D2D caching net-
works which have reduced packetization compared to [14].
The first approach uses a hypercube to define the cache place-
ment and we demonstrate how the geometry of this hypercube
relates to coded multicasting opportunities for delivery. The
hypercube approach is optimized specifically for D2D caching
networks such that, for some cases, it does not require addi-
tional packetization beyond the placement phase as seen with
previous D2D coded caching designs. In addition, by adopting
the idea recently proposed in [32], we extend this approach
to a decentralized coded D2D caching scheme, which allows
a much more flexible design for given network parameters.
Meanwhile, the advantage of the reduced packetization of
the hypercube approach still remains in the decentralized
D2D caching networks. The second approach is based on an
application of the Ruzsa-Szeméredi graph [27], [28], which is
first used for shared-link caching in [29]. We extend the use
of Ruzsa-Szeméredi graph to D2D caching networks. Both
D2D combinatorial designs, sustain the significant throughput
gain compared to conventional uncoded unicast [16] and the
required packetizations are reduced exponentially compared
to [14] with respect to the number of users n while keep-
ing the library size m and memory size M fixed. Finally,
we study the impact of enabling spatial reuse in these caching
network designs and show this can further reduce the required
packetizations, while also improving the per user through-
put significantly for some parameter regimes. The work we
present here includes and expands on our previous conference
submissions [33], [34].

This work makes two key contributions. First, while it
is commonly believed that a D2D caching scheme should
be converted from a shared-link caching scheme (as shown
in [14]) instead of being designed from scratch, this work
establishes the existence of the first expandable D2D schemes
based on hypercube designs that are not derived from
shared-link schemes. The proposed hypercube design can
achieve a load-memory-subpacketization tradeoff that has not
been achieved in prior works. It has an appealing geo-
metric interpretation that is essential for a better under-
standing of the differences between shared-link and D2D
caching schemes. Furthermore, the hypercube design allows
possible extensions to the design of heterogeneous coded
distributed computing schemes [35], [36], which are equiva-
lent to heterogeneous D2D coded caching schemes. Second,
unlike shared-link D2D caching networks, spatial reuse is an
important feature for D2D networks. However, the impact
of spatial reuse has largely been ignored for coded D2D
caching schemes. In this work, we adopt the Ruzsa-Szeméredi
graph approach from shared-link caching networks [29] to
D2D networks and show for the first time that spatial
reuse can significantly increase the per-user throughput while
reducing subpacketization dramatically (about quadratic in
terms of the number of users per cluster) of D2D caching
networks.
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Fig. 1. a) Representation of 81 users on a square grid. Users are divided
into 9 equally sized clusters of 9 users based on user proximity. The clusters
highlighted in green represent clusters which can be simultaneously active
assuming that cluster highlighted in red are not active. b) A larger network
which includes the 81 users of Fig. 1(a) where the clusters highlighted in
green can be simultaneously active. The reuse factor is K = 4.

The outline of this paper is as follows. In section II,
we introduce the D2D network model and problem formu-
lation. In Section III, we describe the proposed centralized
hypercube based coded caching approach and analyze its
performance. In Section IV, we extend the hypercube design
to a decentralized D2D caching network. Section V introduces
the Ruzsa-Szeméredi graph based coded caching approach and
analyzes its performance. In Section VI, we show how the
proposed schemes can take advantage of spatial reuse. Finally,
we conclude the paper in Section VII.

Notation Convention: We use |-| to represent the cardinality
of a set or the length of a vector. For n,m € Z™, let [n] :=
{1,2,...,n} and define [n]™ as the set of all m-length vectors
whose elements are in [n]. A bold symbol such as a indicates
a vector and a; denotes the i-th element of a.

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a wireless D2D network with single-hop trans-
missions formed by the set of users &/ = {1,...,n}. The users
are uniformly distributed on a unit grid with a minimum dis-
tance of 1/4/n as shown in Fig. 1(a). Each user u € I/ makes
a request f, € F, where F = {1,--- ,m} is a file library
of m independently generated messages {W1,..., W,,} with
entropy I bits each. We denote the demand vector as f =
(f1,-+, fn). The file library, F, is generated once and kept
unchanged during subsequent network operations. In addition,
we assume m > n and users request distinct files. Each
user locally caches the equivalent of M files, or M F' bits.
Furthermore, define ¢ E nM/m > 1, as the number of times
the library is cached collectively among the users.

Users have active links between one another based on the
protocol model [37] described as follows. A communication
link, consisting of user u transmitting to user v, will be
successful if and only if the distance between user u and v
is less than or equal to r and user v is at least a distance
of (1 + A)r from all transmitting users other than user w.
The parameters 7, A > 0 are given by the protocol model.
We assume that any r» > 0 is possible and r dictates a constant
data rate, C,, in the unit of bits/s/Hz.3

3In practice, C)» can be a function of the transmission range r. However,
the protocol model does not capture this relationship.
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The protocol model allows for spatial reuse as shown
in Fig. 1(a). 4 users, one in each green cluster, are transmitting
to 8 local users who are at most a distance of r away. The
users receiving the transmission are at least a distance of
(1 4+ A)r from the other three transmitting users. The users
of Fig. 1(a) may be part of a larger network of users as
shown in Fig. 1(b) which depicts active clusters (involved
in a successful communication link) in green and non-active
clusters (neither receiving or transmitting) in red. The set of
active clusters highlighted in green is one of K sets. /C is
defined as the reuse factor or the number of cluster sets such
that, for any given set, each cluster of that set can be active
without interference and the /C cluster sets collectively include
all clusters.

A D2D caching scheme consists of three phases: the cache
placement phase, the coded delivery phase, and the transmis-
sion phase. These are defined as follows.

Definition 1: (Cache Placement Phase) The cache place-
ment phase maps the file library F onto the cache of each
user. For v € U, the function ¢, : IE‘;”F — FéWF generates
the cache content Z,, £ ¢, (Wy : f € F) stored in the cache
of user u and kept fixed throughout subsequent operations. ¢

The cache functions {¢,, : u € U} can be centralized or
decentralized. In this work, the centralized setting means that
the cache of each user is dependent of the cache of the other
users; while in the decentralized setting, each user’s cache is
independent of any other user’s cache and independent of the
total number of users n.

Definition 2: (Coded Delivery Phase) The coded delivery
phase is defined by two sets of functions: the node encoding
functions, denoted by {v,, : u € U}, and the node decoding
functions, denoted by {\, : u € U}. Let R} denote the
number of coded bits transmitted by node u to satisfy the
demand ¥ector f. The transmission rate of node w is defined by
R, = %. The function %, : FéVIF X F" — FgR“ generates
the transmitted message X, y = ¥, (Zy, f) of node u as a
function of its cache content Z, and the demand vector f.*
Let D, denote the set of users whose transmit messages are
received by user u (according to some transmission policy in
Definition 3). The function \,, : F§ Zvepu oy ' s 7m —
IF§ decodes the request of user u from the received messages
and its own cache, i.e., we have

VAV%f £ Au({Xv,f VU E Du},Zu, f) O

Definition 3: (Transmission Phase) The transmission pol-
icy II is a rule to activate D2D links in the network. Let £
denote the set of all directed links. Let A C 2% denote the
set of all possible feasible subsets of links (this is a subset
of the power set of £, formed by all sets of links forming
independent sets in the network interference graph induced
by the protocol model). Let Ay C A denote a feasible set of
simultaneously active links at time t. A feasible transmission
policy II consists of a sequence of activation sets, i.e., sets of
active transmission links, {A; : t = 1,2,3,...}, such that at
each time t the active links in A; do not violate the protocol
model. O

4We also refer the transmission rate to traffic load in this paper.
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Since users make arbitrary requests, similar to [1], [14],
we focus on the worst-case error probability defined as

P. = P (W # Wy, ).
e = max max P (W5 7 Wy,

For a given number of users n and library size m, letting the
transmission rate R = Zueu R, we say that the cache-rate
pair (M, R) is achievable if ¥ ¢ > 0 there exists a sequence
indexed by the file size F' — oo of cache encoding func-
tions {¢,}, delivery functions {v,,} and decoding functions
{\.}, with rate R(*) and probability of error PY) such that
lim supp_, R) < R and lim SUPp oo Pe(F) < e. Note that
RF gives the achievable total traffic load transmitted in the
whole network.

Different from the shared-link network model [1], the per-
formance of D2D caching networks cannot be completely
characterized by the transmission rate, R, because of spatial
reuse under the protocol model. Hence, we define the per user
throughput as follows,

A F

T=5 (1

where D is the number of channel uses required to satisfy
all user requests. The pair (M, T) is achievable if (M, R)
is achievable and there exists a transmission policy II such
that the RF’ encoded bits are delivered to their destinations in
D < % channel uses. The optimal achievable throughput is
defined as

T*(M) £ sup{T : (M, T) is achievable}.

Remark 1: When considering clustering and assuming that
the transmission rate of each cluster is exactly R., we can
obtain D = R“‘C—F’C. Therefore, the per user throughput for a
clustering scheme is

Cr
. 2
RK (2)
In the following, we will compare the per user throughput of
clustering and non-clustering schemes.

T. =

III. CENTRALIZED HYPERCUBE CODED
CACHING APPROACH

In this section, we outline the proposed hypercube scheme
which is a new combinatorial design of a centralized D2D
caching network. Moreover, we consider the case when the
transmission range r > /2. In other words, a transmission
from any user can be received by the rest of the users in
the network and there is no user clustering. In the following,
we present the achievable rate and packetization of the hyper-
cube scheme and then provide a definition of the scheme and
examples.

Theorem 1: Let m,n, M be the library size, number of
users and the cache size per user, respectively. For 7 > /2

and t, % € 77 and t > 2, the following rate is achievable:

t m
Rbe(M) = " (— - 1) 3
(M) = — (57 3)
with the requirement of K"¢ = (%)t when ?:11 € 7,
or KB = (t—1) (7—]\’/’[)t when —?:11 /A O
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A. Proof of Theorem 1, the Hypercube Scheme

To prove Theorem 1 and explain the hypercube scheme,
we use the following definitions.

Definition 4: (Hypercube) A hypercube with dimension
d € Z* and side length z € Z7 is the set of points [z]<.
The hypercube contains ¢ unique points. O

Definition 5: (Hyperplane) A hyperplane, P, ;, normal to
dimension ¢ € [d] at position y € [z] is the set of points where
the i-th dimension is fixed such that P, ; = {€ € [2]? : & =
y}. The hypercube contains xd unique hyperplanes and each
hyperplane contains |P, ;| = x4~ points. O

Definition 6: (Line) A line oriented to dimension 7 €
[d] and passes through the point v € [z]? is the set of
points L,; = {€&€[z]?:& =v;, Vj€[z]\i}. Alterna-
tively, a line is defined as the intersection of a set of d — 1
perpendicular hyperplanes, £, ; = () P, ;. Given i,j €

Jeld\i
[d] and &, v € [z]?, two lines are equivalent, L¢; = L, j, if
and only if i = j and &, = vy, for all k € [d]\i. The hypercube
contains dr¢~! unique lines and each line contains |£, ;| = =
points. O

The placement phase of the Hypercube caching scheme is
defined as follows.

1) Cache Placement Phase: Given that t, % € Z1, define
a hypercube, of dimension d = ¢ and side length z = 7;. Split
each file Wy into a set of disjoint and equally-sized packets
{Wfﬂ, ‘vE [%r} Each point, v € [%]t, represents a set
of packets {Wy, : f € [m]}. Each hyperplane, P, ;, repre-
sents the cache of a user so that there is a one-to-one mapping
between the set of users and the hyperplanes. For all values
Yy € [%} and dimensions ¢ € [t], there is one user who caches

Zyi ={Wye: fe[m], &€ Py} “4)

To validate this cache placement, we find that there are ¢ -
47 = n hyperplanes and therefore a one-to-one mapping exists
between the users and the hyperplanes. Next, each hyperplane

. mat—1 . .
contains (M) points and, therefore, the number of bits

cached at each user is

(m)tq
M. .mF =MF.

(47)
Example 1 Cache Placement: Consider a cache network of
n = 15 users where each user is capable of storing % =
% of the file library and ¢ = 3. We construct a hypercube
of dimension t = 3 and side length % = 5. In this case,
the hypercube is simply a cube and similarly, the hyperplanes
are planes. The cube is the set of points [5]3. We split each
file into 5% = 125 disjoint and equal-size packets, mapping
each packet to a point of the cube. Each user caches a set of
packets from every file represented by a plane. For example,

the cache of one particular user is
Zog =AWy : f€m], v e Py}
={Wyy: fem], 1rn=2} 6)
Then another user caches the packets of Z,1 = {Wj, : f €

[m], 11 = 4} and has no cached packets in common with the
user who caches Z5 ; as their respectively planes are parallel.

(5)
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P21

Li23)1 =Pa2NPs3

Fig. 2. Six representations of a hypercube of dimension 3 and side length 5. For the caching design, each point represents a set of packets, one from each
file of the library. (a), (b) and (c) depict all the hyperplanes of the hypercube normal to the first, second and third dimension, respectively, of the hypercube.
The hyperplanes represent user caches of Example 1. (d) Depiction of 3 orthogonal planes, representing the caches of the users in the multicast group of
Example 2. (e) The lines formed by intersections of the hyperplanes of (d), representing the transmitted packets of Example 2. (f) All normal lines to the
plane P2 2 which includes every point of the hypercube. The red points of each line represent a set of packets, 7, 2, that the user who caches Zz 2 will
receive from a multicast group in the delivery phase to recover its requested file as described in Example 3.

However, even another user caches Zs3 = {W;, : f €
[m], v5 = 3} which is represented by a plane perpendicular
to the users who cache Z5; and Z,; and therefore has
some cached packets in common with these users. Each plane
. t—1 .

contains (%) = 25 points and therefore each user caches a
% = % fraction of each file and thusly % of the entire library.
The planes representing caches of the users defined by planes
{(Pya iy € B} (P2 :y € [5]} and {Pys : y € [5]}
are depicted in Fig. 2(a), Fig. 2(b) and Fig. 2(c), respectively.
Each point in Fig. 2 represents a set of packets. A

2) Delivery Phase: For each point v € [%]t of the

hypercube, we define a subset of ¢ users

(N

as a multicast group where user u; € G, is the user that
caches Z,, ;. The hyperplane cached by each user of G, is
perpendicular to the hyperplane cached by every other user of
G, since G, contains one user from each dimension. For ease
of notation, let user u; request file W/ and for all i € [t],
define

Gu = {ur,ug, - ,us}

Toi = {Wl’g €€ ly;\v} (8)

as the set of requested packets by user u; that will be received
from the other users of G,. The packet set, 7, ;, includes the
packets cached along the line £, ; except the packet at v.
Also, 7, ; is not cached by user u;, but is cached by every

5The file WZ’ is a file in library set {W1,..., Wy, } defined in Section II.
Note that, for different multicast groups, u; may represent a different user in
which case W/ represents a different file since users make distinct requests.

other user of G,,. Split each 7,, ; into ¢ — 1 disjoint and equal
size packet sets labeled as {’T,fz cjeft\ z} The packets of

7! , are included in a coded multicast from user u; to serve the
request of user ;. Specifically, each user u; € G, broadcasts

b 7. ©)

i€ft]\j

to the other users of G,,.

Example 2 Delivery Phase: Assume the cache placement
from Example 1 and consider the point v = (2,2, 3) and the
user group Gz 2.3y = {u1,u2,us3}. The cache of users uy, us
and u3 are represented by planes P2 ; (green plane), Ps o (red
plane), and P33 (blue plane), respectively, in Fig. 2(d). For
multicast opportunities, we are interested in packets requested
by one user and cached by the other two. This is analogous to
points of the cube that lie on the intersection of two planes,
but not the third. These points are highlighted in Fig. 2(e).
For example, the packets requested by user us from this
multicast group are represented by the red line, £ 3 3) 2, with
the exception of the point (2,2, 3) which intersects all three
planes. Similarly, user u; requests the green line, L33 3)1 \
(2,2,3), and user u3 requests the blue line, L3 5 3)3\(2,2,3),
in Fig. 2(d). Without loss of generality, assume users w1, U2
and ug request files A, B and C, respectively. Then we define

7'(2,2,3),1 = {A(1,2,3)»A(3,2,3)»A(4,2,3)»A(5,2,3)} (10)
(an
(12)

T2,2,3),2 = {B21,3), B23,3), B2,43), B2s3) )
T223)3 = {C2.21): C2,2.2), C(2,2,4), Ci2,2,5) }
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which are based on the lines of Fig. 2(d). These sets are split
up and the users transmit

user u : B13) ©Cr21), Bess) ©Cue2 (13)
user ug : A3 ©Cra24), As2s ©Cpras (14)
user uz : Aw23) ® B243), Apes) © Begsg)- (15)

A

The delivery phase is valid for the following reasons.
Within each multicast group, defined by a point v € [%]t,
the users exchange packets represented by lines defined by the
intersection of £—1 hyperplanes representing the users’ caches.
In other words, each packet of the set 7,, ; is requested by user

u; € G, and cached at all other users of G,,. Specifically,

Toi={Wieg:€eLlyi\v}

= Wi/,g €€ m Pu \ vV
kelt]\i

C{Wyse:felm], E€Py;}=2,,; 16)
for all j € [t] \ i and Z,, ; is the cache of user u; € G,.
Furthermore, ’Tle C7,:C Z,,,; and user u; € G, is able to
broadcast €@ 7,/ ;. Also, by a similar argument, user u; can

i€[t)\j
decode 7,); from the transmission @@ 7.7, from user uy.
i€[t]\k

This is true because |J 7,,; C Zy,.j as we have shown

1€[t]\j.k
in (16).

It remains to show that every user can recover the entirety
of their requested file. To do this we use the following lemma.

Lemma 1: Forall i € [t] and y € [1%], the set of all points
[%] s equivalent to the union of all the lines normal to the
plane P, ;,

 ceom (2]

veEPy i

A7)

O

An example of Lemma 1 can observed in Fig. 2(f) and
the proof is presented below. Proof: The proof follows
from the fact that all normal lines to a plane are parallel and
each point is passed through by exactly one line. Notice that
Lei= Ly, if & = vy, for all k € [t] \ . Also, for any line,
& € L¢;. Given any point § € [%]t, define ¢’ € [%]t such
that & = & forall k € [t]\4 and & = y. We find that L¢/ ; =
Le; and & € Lg ;. Moreover, Lgr; € {L,; : v € Py} and
Ee U Lo, ]

vEPy i
For the user who caches Z,, and requests file W7,

to recover the entirety of their requested file, they must have
t . .
the set of packets {W/ v e [%} . Notice that this user

i,V
participates in every multicast group G, such that v € P, ;.
We have shown that this user u; € G,, will receive and decode
{VV;g c€e Ly I/} from the multicast group G,. Given
that v € P, ;, user u; has W/, locally cached and after the
delivery phase has all requested packets from represented by
the line £, ;. Considering all multicast groups that this user
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is a part of, {G, : v € P, ;}, this user has the set of packets

Wie: €€ U Ly (18)

veEPy i

By Lemma 1, this is the set of all requested packets by this
user.

Example 3 File Recovery: We build on Examples 1 and
2 and show that the user that caches Z5 5 can recover all its
requested file, B. For all v € P59, this user will participate
in multicast group G,,. From G, this user will receive and
decode

T2 ={B¢:&£€ L2\ v}
= {B(V171,V3)’ B(V1,3,V3)a B(V1,4,V3)a B(u1,5,u3) } (19)

Moreover, this user has B, = By, 2.,) locally cached and
will have the set of all requested packets cached along the
line £, 2. Therefore, after the delivery phase, this user has
the set of requested packets represented by all lines normal to
the plane P >

(By v € Ly, Ve Pyo) = {B,, ve [5]3} (20)

which is the entirety of its request. This is shown in Fig. 2(f)
where the red points of each line, £, >, represent a different
packet set 7, 5. All of the red points of Fig. 2(f) represent
the requested received packets and the black points of P o
represent the cached packets. Together, the red and black
points cover all the points of the hypercube. A

The rate of the hypercube scheme can be resolved by

.. t . o
recognizing there are (ﬁ) multicast groups and within each

21 . .
coded packets of size —Z— bits.

Gi)
M

group ¢ users transmit ?71
Therefore, the rate is
-t o1t (5 -1)
. m t i '
t—1 (1\_) t—1\M
(2D

=

The packetization from the cache phase is (7_]\7/1[)15 In many

cases, no further packetization is necessary to execute the
delivery phase different from the original D2D caching
work [14]. Any additional packetization for the hypercube
scheme occurs when splitting the packet set 7, ; into ¢ — 1
equal size sets. If |7, ;| = [£, ;| — 1 = §; — 1 is not divisible
by t — 1, then extra packetization is needed. A simple solution
is to further split each packet ¢ — 1 times. In this case the
packetization is K"¢ = (t — 1) (%)f

Example 4 Rate and Packetization: Continuing Exam-
ples 1 through 3, we compute the rate and packetization of
this caching scheme. The rate is computed by counting all
multicast groups, the number of users per multicast group and
the normalized bits of each transmission R"¢ = 523 5% =6.
The packetization is K¢ = 53 = 125 which results from
the cache phase. Note that, no additional packetization is
necessary for the delivery phase. Comparing to the scheme
of [14] with similar n, and % the rate is R = 4 with
packetization of K’ = 1365. The use of the hypercube scheme
has significantly reduced the packetization despite a small
increase in rate. A

This completes the proof of Theorem 1. |
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B. Comparison to State-of-the-Art D2D Caching Networks

As was proposed in [14], the achievable rate and packeti-
zation pair is

= (-3) <) = G C)

(22)

We first compare the packetization for constant m and M and
use Stirling’s formula to demonstrate that

K t(1)
K hc (lf—l) (%)t

- m O\ (17 %)n
=0 < n <m> )

where we use the worst case packetization for the hypercube
scheme when ?:11 ¢ 7Z*. We find that the packetization of
the hypercube scheme is exponentially less than the scheme
of [14]. Furthermore, we are interested in comparing the rate

of the two schemes. Hence, we obtain

R'(M) t—1 - m

Rhe(M) — t nM’
We find that, given a constant m and M, the rate of the
two schemes are asymptotically equivalent as the number of
users, n, becomes large. The hypercube approach demonstrates
a significant decrease in the number of packetizations, espe-
cially as the number of users becomes large. Furthermore,
the rate only increases slightly, and for a large number of
users the rate of the two schemes are essentially equivalent.

Another D2D coded caching scheme is the DPDA2 scheme

of [31] published later than the current work in [34]. It is
worth mentioning that the DPDA2 scheme is equivalent to
the coded distributed computing design of [38]. The rate and
packetization of this scheme is

(RPPPA [ DPDA) _ <1§_L1 (%_1) (t—1) (%)tl)

(25)

(23)

(24)

In fact, this scheme has the same rate as the hypercube scheme.
Moreover, considering the worst case packetization of the
hypercube scheme, the DPDA has less packetization by a
constant factor of 7.

IV. DECENTRALIZED HYPERCUBE CODED
CACHING APPROACH

Recent work [32] showed that it is possible to translate a
centralized shared-link caching scheme into a decentralized
shared-link coded caching scheme. Here, the term “decentral-
ized” implies that users independently and randomly cache a
portion of the library. In this section, we expand the concept
of [32] to D2D coded caching networks and translate the
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hypercube scheme from centralized to decentralized. Gener-
ally, D2D incurs an additional cost because each multicast
serves one less user compared to the shared-link case [14].
However, in the decentralized setting, we find this additional
cost can be eliminated when serving certain multicast groups.
Moreover, we obtain a rate-packetization trade-off and expand
the use of the hypercube scheme to more general parameters,
n, m and M.

Our decentralized approach is summarized as follows. We
consider the file partition and cache placement of the hyper-
cube scheme designed for n’ (dummy) users such that each of
them caches a % fraction of the content files, where n’ < n.%

This means that we partition each file into K’ = (%)t
packets where t’ = "lTM Then, we define n’ sets of packets,
Zij for i € [#] and j € [t']. Each of the n users in the
decentralized network uniformly at random and independently
cache one of the n’ packet sets defined by the centralized
scheme. The probability of caching any packet set is nl, For
delivery, users form groups of size n’ users that collectively
cache every packet set. In general, each user group will
perform the centralized delivery scheme. However, to form
each group, some previously satisfied users may need to be
included. In this case, the users perform only some of the
transmissions from the centralized design as requests from the
previously satisfied users are ignored. Then, we find that for
some multicast groups, satisfied users can send transmissions
to unsatisfied users with the same efficiency of the shared-link
case in [32], closing the gap between the D2D and shared-link
settings. The following example demonstrates this process.

A. An Example

In this example, consider a decentralized network of n = 32
users and each user caches % = % of the library. Let n’ = 6
and t' = "/TM = 2. There are 6 packet sets defined by
a 2-dimensional hypercube (plane) where the hyperplanes
are lines in this case. The number of packets per file for
this decentralized network is K’ = (%)tl = 9. The packet
sets, corresponding to each row or column of the hypercube,
are labeled as Z;; where i« € [3] and j € [2]. Each
of the 32 users independently caches one of these sets at
random using a uniform distribution. A possible outcome of
the random caching is shown in Fig. 3(a) where 7 users cache
Z1,1, 6 users cache Z, 1, 6 users cache Z; 2, 3 users cache
Z272, etc.

To satisfy the 32 distinct user requests, there are multiple
delivery phases which are similar to the centralized delivery
design. The users form multicast groups depicted in Fig. 3 by
points of the hypercube. Different from the centralized scheme,
a multicast group may contain a both an unsatisfied user and
a previously satisfied user and are outlined with a blue square
in Fig. 3. Alternatively, a multicast group may contain only
satisfied users which is marked by a red “X” in Fig. 3.

The delivery phases are as follows. First, observe that any
set of 6 users, Up, that collectively cache every packet set,

SNote that n’ is only a dummy variable to define the packet sets for the n
users in the decentralized network to cache.
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A hypercube of dimension ¢ = 2 and side length % = 3. Each point represents a packet for every file. The numbers to the left and bottom are

the number of remaining unsatisfied users who cache the rows and columns respectively. The points also represent multicast groups of the delivery phases.
Multicast groups that contain at least one satisfied user or contain no unsatisfied users are represented by the blue squares and red “X”’s, respectively.

Z; ;> can perform the centralized delivery scheme. In this
example, we pick 3 disjoint sets of users that cache all packets
sets to perform the centralized delivery phase. After this,
there are 14 remaining unsatisfied users as shown in Fig. 3(b)
and no unsatisifed users that cache Z; 5. Of these remaining
users, we consider a set of 5 users who collectively cache
every packet set except Zs». These 5 users can perform
a centralized delivery scheme by including one previously
satisfied user who caches Z3». The previously satisfied user
does not request any packets. Within each multicast group
that it belongs to, it only transmits packets to the unsatisfied
users. The transmissions of hypercube delivery that serve
the previously satisfied users are not necessary, effectively
reducing the rate.

In the third phase, as shown in Fig. 3(c), of the remaining
9 unsatisfied users, we consider 2 non-overlapping sets of 4
users who collectively cache the packet sets Z; 1, Z21, Z1,2
and Z3 3. These user sets can perform the delivery phases
by including previously satisfied users that cache Z3; and
Za. In this particular example, there is one multicasting
group marked by the red “X” in Fig. 3(c) that does not need
to be considered since both users in this multicasting group
are satisfied. Similarly, after the delivery shown in Fig. 3(c),
we are left with a single user (but forming 3 multicast groups)
who can obtain the requested packets from the 3 users caching
these packets.

The transmission rate of this example is computed by
counting the number of multicasting groups in each phase that
either include or do not include a previously satisfied user. The
equivalent number of files transmitted by a multicast group
with only unsatisified users is %. For a group that contains
both a satisfied and unsatisfied user, the equivalent number of
2

files transmitted is 5 Therefore, the rate is

4 2
R’z(3-9+6+2-4+O)-§+(0+3+2-4+3)-§
64

This decentralized scheme does not require any additional
packetization beyond the placement phase. Interestingly, the

transmission rate of this example is exactly that of conven-
tional unicasting with n (1 — 2£) = & This occurs because
there is only unicasting for the 2-dimensional hypercube
approach, which was chosen for ease of disposition. Next,

we demonstrate how this approach applies to coded delivery.

B. General Decentralized Algorithm

The D2D hypercube decentralized caching design is defined
as follows.

1) Cache Placement Phase: Let n' < n such that n’ € ZT
and t' = % € Z*. Define a hypercube of dimension t’

and side length 7. Split each file into (%)t packets and
define n’ packet sets, {Zi,j (i€ [%} RS [t’]}, based on the
hypercube cache design. Each of the n users independently
and randomly cache one of the n’ packet sets with equal
probability .

2) Delivery Phase: Initialize the set of unsatisfied users,
Usg, to be the set of all n users, U, and initialize the set
of satisfied users, Ug, to be the empty set. While Ug is
not empty, do the following. Let Up C Us be any largest
subset of unsatisfied users/that cache different packet sets,
Z; ;. For each v € [%]t , define a multicast group of ¢’
users

gu:{ula"' aut/}c (UDUUS)

where user u; caches 7, ; and u; € Ug if and only if the
packet set Z,, ; is not cached by any user of Up. Then,
if G, NUs = (), the multicast group, G,,, performs the
transmissions by the centralized hypercube design. Otherwise,
if G,, contains any user from Ug, then any user v’ € G, NUsg

transmits
b 7.
U E(g,,ﬂL{D)

27)

(28)

where 7, ; is defined as the set of packets user u; receives from
multicast group G,, in the centralized hypercube design. Note

that if G, NUp = (), there is no transmission. After iterating
m

through all multicast groups {g,, S [ﬁ]t,}, update the

set of unsatisfied users as Us «— Us \ Up and the set of
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Algorithm 1 Decentralized Hypercube Coded Caching Deliv-
ery Design
Input: U, My
1 Usg — U, Ug 0.
2: while Us is not empty do
3:  Up « any largest subset of Us such that each user
u € Up has a un/ique cache set

for v € [%}t do

G «— {u1,---,up} C (UpUUs) such that u,

caches Z,, ; and u; € Ugs if and only if the packet set
Zy, ; is not cached by any user of Up

AN

6: if G, NUs = () then
7: Users of G, perform the centralized delivery
method for this multicasting group
8: else
o: any user of G, NUg transmits &b Ty
z’:u,;e(gl,ﬂl/lp)
10: end if

11: e_nd for_
12: Us — Z/{S \UD7
13: end while

Us — Us UUD.

satisfied users as Ug «— Us UUp. The delivery scheme ends
when Us = 0, otherwise, Up is redefined and the process
is repeated. The decentralized delivery design is outlined in
Algorithm 1.

Th1s decentrahzg:d scheme is valid since each user caches

g\% M)t packets from each file and therefore an

fractlon of the library. For each delivery set of users,
UD, each user receives and decodes all requested packets
as they would if they performed the centralized delivery
scheme.

Remark 2: During delivery phase, we might not be able
to form multicast groups entirely from unsatisfied users of
Up C Usg. Hence, satisfied users from Usg are necessary. Note
that a single satisfied user of a multicasting group can serve
all requests of unsatisfied users from that multicasting group.
This is possible since by the centralized caching design, each
user requests a packet from a multicasting group such that this
packet is locally cached by every other user of the multicasting

group.

C. Performance

Performance of the decentralized design is given in the
following theorem.

Theorem 2: Let m,n, M be the library size, number of
users and the cache size per user, respectively. Assume that
r > 2 and 2.t € ZT where ¢! = ”;nM > 2, and
the requlred number of packets per file is at most K’
(t'—1) (M) . Furthermore, if n > #n/logn’ for some 3 > 1,
then all the packet sets can be cached in the network with
probability 1 — n’ A and the following transmission rate is
achieved with probability 1 — o(1) as n,n’ — oo,

m
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where

(dg — 1+ ) logn/,
if n= 571 logn

1fw(n 1ogn < n - polylog(n),
£+ [2nlogn/ 1_llog10gn 7
n’ n' a 2logn’
ifn=w (n (logn)g) .

Here, « > 1 and dg (a number depending only on [5)
are constants that define the parameter regimes of (30) and

(30)

polylog(n) denotes the class of functions (J;~, O ((logn)¥)
as in [39, Theorem 1]. - O
Proof: First, we show that with probability 1 — n’ =0 an

packet sets are cached in the D2D network. Since each packet
set is uniformly selected by each user at random, it reduces
to a “bin-ball” problem [39] where the packet sets are the n’
bins and users are the n balls. Hence, we need to characterize
the probability that no bin is empty. Let Y}, denote the event
that the k£ bin is empty, then we can compute

1\" ,
P(Yk) = (1 _ W) < e—n/n

Hence, the probability that all bins are non-empty and each
packet set is cached at least once is

P (ﬂk?]@) =P (m) =1- ]P)(UkYk)

’
n

1= P(Yp)>1—n'e ™™
k=1
>1— n/e—ﬁn logn'/n’

€19

v

11-p

—1-n (32)

Second, we will show (29) holds with probability 1—o(1). Let
L denote the maximum number of users that cache the same
packet set, or equivalently, the maximum number of balls in
each bin. For instance, L = 7 in the example of Section IV-A.
An upper bound on the rate can be computed by assuming
that users perform L centralized delivery phases. The key is to
find k., such that the tail estimate [P ({L <ks}N {ﬂka}) =
1- 0(1). Hence, by using (3), we can obtain RE¢(M) <
Lf,t i (% — 1) < kq f, i (% — 1) with probability 1 —o(1).
From Theorem 1 in [39], we can show that if k., o > 1
satisfies (30), then we must have P ({L < k,}) =1 — o(1).
Furthermore, since

P({L < ka})
=P({L <ko}N{MYe}) +P{L < ka} N{ULYi})
=P{L <ka}n{NiYs})

+P{UnYe ) P({L < Ko} [{UrYi})
<P({L<ka}n{M¥}) +n" ", (33)
we obtain
P({L < ka} N {MwY3}) > PHL <ko})—n'"""
=1-o0(1). (34)
This completes the proof. [ ]
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—_
T
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~+

M/m M/m |t/ IR K’
1/3 3 | 0.342 27 1/3 3 | 0.339 27
1/5 3 0.414 125 1/5 3 0.409 125
08¢ i/5 | 5 | 0.223 | 3125 | | i/5 | 5 | 0.215 | 312
n = 1000 I/7 | 3 | 0.447 | 343 "= 2416 1/13 | 3 | 0.478 | 2197
% 1/7 4 | 0.311 2401 1/13 4 1 0.332 28561
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Fig. 4. Results of the hypercube approach decentralized D2D caching network simulations for n = 1000 users (left plot) and n = 2416 users (right plot).
The mean rate purp = E [REC(M )} plus or minus 3 times the standard deviation, pr % 30, for a variety of hypercube constructions are compared to the

D2D uncoded rate and hypercube centralized rate.

Remark 3: Note that, the requirement that each packet set
is cached at least once is more restrictive than the general
requirement that each packet is cached at least once across
the network. As discussed, our decentralized scheme does not
operate when a packet set is missing, even though every packet
may be present in the network. However, with some changes
to the delivery design (not shown here), the scheme could
operate under this scenario.

D. Simulation Methods and Results

Decentralized networks are simulated with the number of
users, n, equal to 1000 and 2416 users. For these networks
we simulate a decentralized cache scheme for all parameter
pairs, n’,t' € Z*, such that 3 < ¢ < 8and 9 < n/ < 64
for the network of 1000 users and 3 < ¢/ < 10 and 9 <
n’ < 120 for the network of 2416 users, and a1 ezt

t—1
holds, such that the packetization is K’ = (ﬂ)

i “. For each
parameter pair, (n’,t'), 10* decentralized cache placement and
delivery phases are simulated. Given that n’ < n in all cases,
there were no instances of a simulated decentralized network
where a packet set was not cached at least once. The mean
and standard deviation of the rate, ur and o, respectively, are
depicted in Fig. 4. The results are compared to the uncoded
rate R" = n (1 — —) (red line) and the coded rate of the
centralized hypercube scheme R" = (1 - M)fl . (% — 1)
(black dashed line).

From these results, we see that the decentralized hypercube
scheme outperforms the uncoded scheme. On both plots,
the set of points with a fixed ¢’ is highlighted. As ¢’ increases,
the rate comes closer to the centralized coded rate. However,
the number of packets per file, K’, increases exponentially.
This result demonstrates that there is a trade-off in designing
decentralized D2D caching networks using the hypercube
approach. Specifically, we can increase the number of packets
to reduce the rate and vice versa. This may provide the
flexibility to yield a practical amount of packetization while
having limited impact on the transmission rate. Furthermore,

we see that the decentralized approach yields more realizable
constructions of the hypercube. In fact, as shown in Fig. 4,
the number of realizable hypercube schemes for 1000 and
2416 users are 2 and 3 respectively (¢t = 4, 10 for n = 1000
and t =4,8,16 for n = 2416). In comparison, the decentral-
ized network design provides many more possibilities.

V. RUZSA-SZEMEREDI GRAPH CODED
CACHING APPROACH

While the hypercube approach requires significantly (in fact,
exponentially) less number of packets per file compared
o [14], the hypercube approach still yields an exponential
number of packets relative to n if m and M are fixed. While
the hypercube approach certainly increases the domain for
which a D2D caching network is implementable, it is still
an open question as to whether there exists a coded D2D
caching network scheme without spatial reuse (r > +/2)
with a sub-exponential number of packets per file. Motivated
by [29], in this section we propose a coded D2D caching
scheme based on Ruzsa-Szeméredi graphs which requires only
a sub-quadratic packetization. While the general, expandable
scheme only holds for arbitrarily large n, this work demon-
strates that sub-quadratic D2D caching schemes exist.

A. Ruzsa-Szeméredi Graphs

In this section, we focus on a specific Ruzsa-Szeméredi
graph design, which was first introduced in [27] and used
in a novel manner in [29] to construct a cache placement
and coded multicasting scheme for a shared-link caching
network. Let G(V, £) be an undirected graph, where V is the
vertex set and £ is the edge set. We introduce the following
definitions [28], [29].

Definition 7: Given a graph G(V,€), a matching M in G
is a set of pairwise non-adjacent edges; that is, no two edges
share a common vertex. O

Definition 8: The set of edges M € €& is an induced
matching if for the set S of all the vertices incident on the
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Fig. 5. a) A (2, 3)-Ruzsa-Sezmeredi graph with 6 vertices which represents
a coded caching scheme where n = 6, &= = %, and K = n(2y—1) =

3n = 18. The graph can be split into " = 3 induced pairwise disjoint
matchings denoted by different colors in the graph, which cover all edges of
the original graph. b) An example of the proposed scheme in a D2D network
with n = m = 6, K = 18 and M = 4. Each vertex represents a user.
The content of each rectangle represents cached packets. The coded multicast
packets are shown in the center of the figure.

edges in M, the induced graph Gs contains no other edges
apart from those in the matching M. O

Definition 9: A disjoint matching M is a matching such
that any pair of the edges in M are not adjacent to any third
edge in &. O

Definition 10: A graph G(V, £) is called an (-, 7)—Ruzsa-
Szeméredi (RS) Graph if its set of edges consists of 7 pairwise
disjoint induced matching, each of size ~. O

An example of RS graph is shown in Fig. 5(a), which is
also used in [29]. We will apply Ruzsa-Szeméredi graph to
construct a cache placement and a coded multicasting scheme
in wireless D2D caching networks. In this section, we will
focus on the case that a transmission from any user can be
received and successfully decoded by all users in the network
(e.g.,r > \/5). In the remainder of this section, we will first
introduce a motivating example and then present the general
achievable scheme.

B. An Example

Similar to [29], our proposed scheme is based on RS
Graphs. Here, let m = n = 6 and M = 4. Each file is
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partitioned into K = 3n = 18 packets with F//K bits each.
Assume that user u requests file W,. To find the cache
placement and the coded multicasting scheme, we build a
(2,3)-Ruzsa-Szeméredi graph G with 6 vertices as shown
in Fig. 5(a) where each vertex is represented by 3 packets.
In our proposed achievable scheme, we partition each file into
n(2vy — 1) = 18 packets and denote the jth packet from file 4
by W; ;,i € [6],5 € [18]. The cache placement and coded
multicasting scheme are shown in Fig. 5(b), where each vertex
represents a user and his cached packets are shown inside
each vertex. For instance, the most left vertex, vertex 1, rep-
resents user 1 and his cached packets, which are W; ;, where
ie{l,---,6}and j € {1,2,3,7,8,9,10,11,12,13, 14, 15}.
Note that these exclude the packets represented by its neigh-
boring vertices, vertex 2 and vertex 6, which are shown
in Fig. 5(b).

The coded multicasting scheme is shown in the center of
Fig. 5(b). For example, user 1 transmits Wy @ Wy 13 ®
Ws.10, which are used by users 2, 4, 5 to decode packets
Wa.1, Wa,13, Ws 10, respectively. In particular, it can be seen
that user 2 has Wy 13 and W5 10 such that he can decode W5 ;.
Similarly, user 4 and 5 can also decode the corresponding
packet in a similar manner. In this example, if we use the
achievable scheme proposed in [14], each file is split into

( ) = 4( ) = 60 packets and the transmission rate is given
by 71— 1= g —-1= % While using the proposed scheme,
the transmission rate is % = % Therefore, the proposed
scheme requires K = 18 instead of K = 60 as the scheme
in [14], and the achievable transmission rate of the proposed
scheme is % instead of % achived by the scheme in [14].
Hence, we observe that while sacrificing the transmission rate
by (2 — 3)/4 = 1 = 33%, the proposed scheme reduces the
number of packets needed per file by 8018 = & = 70%.

C. General Achievable Scheme

In this section, we generalize the deterministic caching and
coded delivery scheme illustrated in Section V-B to the general
case of m, n and M.

1) Building the Ruzsa-Szeméredi graph: We build a Ruzsa-
Szeméredi graph with n vertices, each with a degree of n —t.
This graph consists of 7 pairwise disjoint induced matchings
and each has ~ edges.

2) Cache Placement Phase: The cache placement scheme is
closely related to the scheme in [29] and is designed according
to the Ruzsa-Szeméredi graph. Each file is divided into K =
n(2y—1) packets, labeled by {W;; : i € [m],j € [K]}. Each
vertex in the RS graph represents 2y — 1 distinct packets. User
u caches packets corresponding to those vertices that are not
adjacent to itself and packets corresponding to the vertex itself.

3) Delivery Phase: As a consequence of the caching
scheme described above, any subset of 2y — 1 users belonging
to a disjoint matching of size v in 4 = {l,...,n} has
the property that they share 2y — 1 packets from each file.
Consider one such subset. For any file requested by the
remaining (27)-th user, by construction, there are 2y — 1
packets shared by the other 2y — 1 users and needed by the
(2)-th user. Therefore, each user in every disjoint matching
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has 2y — 1 packets that are useful for the remaining 2y — 1
users. Furthermore, such sets of packets are disjoint (empty
pairwise intersections). For delivery, in each disjoint matching,
each user computes the XOR of its 2 — 1 useful packets
and multicasts it to all other users in this disjoint matching.
In this way, for every multicast transmission exactly 2y — 1
users will be able to decode a useful packet using “interference
cancellation” based on their cached content.

The achievable rate is given in the following.

Theorem 3: Let m,n, M be the library size, number of
users and the cache size per user, respectively. Assume n =
A?, where A,z € Z7T such that z > 2A, then there exists a
(1,7)-RS graph with n vertices where 7 = p(1+25558 +o(1))
and v < n. Using the (7,7)-RS graph to define a caching
scheme for r > /2 yields the following achievable rate:

T 2y

R™(M) < —- 35
O (39)

where users cache an equivalent of
M = 2mn " 5% mA (36)
files and each file is split into at K5 = (2y — 1)n
packets. (]
Proof: Theorem 3 is proved in Appendix A. [ ]

When we consider the asymptotic regime as n becomes
large, we obtain the following corollary.

Corollary 1: For r > V2, when n — oo, K = O (712_‘5)
and M = 2mn—c19exp(=¢c2/8) where c1,Co are some positive
constants, let t = % € 7, the following rate is achievable:

RRS(M) < n’ + o(n?), 37)

where § = 2105, O

Corollary 1 can be proved using the value of 7 given in
Appendix A and the relation v = O (n/7). From Corollary 1,
we can see that when A is large enough, or equivalently, n
is large enough, § can be arbitrarily small. In other words,
it can be computed from (37) that RES(M) = (10.5)%1ea ™,
The throughput achieved by the proposed achievable scheme
is given as follows.

Corollary 2: Let C). be the constant link rate under the
protocol model. For 7 > /2, the per user throughput is given
by

RS Cr n—oo

T (M) = RSOD
where RES(M) and § are given by (35) or (37), is
achievable. (]
Proof: This corollary can be proved by using the same
procedure as the proof of Corollary 1. [ ]

Cr-n+o(n?), (38)

D. Comparison to Other Schemes

Due to the sub-quadratic packetization with the number of
users n, which is significantly lower than that of the hypercube
based approach proposed in Section III, the achievable rate of
the RS graph based design given by (35) and (37) for r > /2
is obviously worse than the achievable rate of the hypercube
based design given in (3) and the original design [14], when
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n increases and m and M are fixed. However, there is still a
significant gain in terms of transmission rate compared to the
conventional uncoded unicasting scheme in some parameter
regimes. In the following, we compare the transmission rates
of the uncoded scheme, R", and the RS Graph scheme,
RES where m, M and n are the same for both schemes.
By solving (36) for n we obtain

m 2A% In A
n=( M

which better defines the constraint relating n to M /m for the
this scheme based on the proposed RS graph design. For the

purposes of comparison, (39) holds for both the uncoded and
RS schemes. The transmission rate for the uncoded scheme is

. M\ (.m 2A*In A M
R —n(l—E)—@M) (1—5). (40)

Furthermore, the transmission rate of the RS scheme given
by (35) is

RBS = nf 4 o(n®)

(2%)4/\4 In10.5 o ((2%)%4 In 10.5) @1

Then we obtain’

(39)

RRS m—=M m 2A%(21In10.5—1n A)
e 2_)
R m ( M
- M 2A%(21n10.5—In A)
+0<L : (22) ) 42)
m M

This result demonstrates that for a fixed m /M and A > 10.52,

2A% In(222 . -
by using 7 = A 1n(A ) (1+ 22 4o(1))

we have®

(see Appendix A),

RS RRS
lim —— = lim
n—oo U A—oco RY

=0, (43)
which shows a significant gain in terms of transmission rate
of the RS graph approach compared to uncoded unicasting
scheme.

Remark 4: 1t can be seen that the idea of designing the
decentralized coded caching approach discussed in Section IV
can also be extended to the RS graph coded caching methods.
The major difference is that the packet sets, each of which will
be randomly and uniformly cached by users, are constructed
based on the RS graph. The delivery procedure is similar to
that in Section IV.

VI. ACHIEVABILITY WITH SPATIAL REUSE

In this section, we study the hypercube and RS graph
D2D coded caching schemes when spatial reuse is allowed.
We use clustering to divide up a caching network into many
smaller caching networks. We reduce the transmission range

"Notice that, (42) is only dependent on M, m and A and not dependent
on z. This occurs because z is a function of M, m and A and for these
derivations z is essentially substituted with z = 2A% In (2%) /InA.

8Note that the RS graph based approach cannot perform worse than the
uncoded unicasting by the construction. The reason we need the condition
that A > 10.52 is due to the fact that the 7 obtained from [28], [29] and
used in (35) is a sufficient condition and may not be necessary.
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to be 7 < /2 in order to have localized D2D communica-
tion such that multiple clusters can communicate without
interference. In our analysis, we demonstrate that clustering
with the newly proposed D2D designs has the advantage of
significant reduction in packetization. Furthermore, we find
a throughput-packetization trade-off when using clustering
based on the reuse factor K and link rates, C,., for spatial
reuse, and C 5, with no spatial reuse. Surprisingly, for the
RS graph design, in some cases, we find that there is no
trade-off and throughput and packetization are strictly better
for reasonable choices of parameters K, C,, and C 5 and
when n is arbitrarily large. Furthermore, the transmission rate
of the hypercube and RS graph D2D schemes are dependent
on the number of users in each cluster, different from the
scheme of [14] which is independent. Therefore, in contrast
to the spatial reuse analysis of [14] where there is potentially
no order gain in throughput as n — oo by using spatial reuse,
in the newly proposed schemes, spatial reuse achieves a higher
throughput gain for some parameters.

Different from to the regime where r > V2, in this case,
we also need to design a non-trivial transmission policy to
schedule concurrent active D2D transmissions. Similar to the
scheduling schemes in [14], the proposed policy is based on
dividing the network into clusters of equal size g. users. Users
are allowed to receive messages only from users in the same
cluster.? Therefore, each cluster is treated as a smaller network
compared to the entire network. Assuming that g.M > m,'°
the total cache size of each cluster is sufficient to store the
entire file library. Under this assumption, the cache placement
and delivery schemes introduced in Sections III-A and V-C
can be applied to each cluster. Hence, it can been seen that
the transmission rate of each cluster is given by either

c te m M
R?W)‘t_m(l‘ﬂv

(44)

for the hypercube scheme where ¢. = geM/m, or

T 2y o —00
RE(M) = ———="=" g2 + 0(g?),

_g 2,}/_1 ¢ (45)

for the RS graph scheme where ¢, 2 geM/m, g. = A* and T,
~v and § are given in Theorem 3. As mentioned in Remark 1,
a straightforward achievable transmission policy consists of
grouping the set of clusters into K spatial reuse sets such that
the clusters of the same reuse set do not interfere and can
be activated simultaneously.'! In each active cluster, a single
transmitter is active per time-slot and it is received by all users
in the cluster, as in classical time-frequency reuse schemes
with reuse factor K that are currently used in cellular networks
[41, Ch. 17]. An example of a reuse set is shown in Fig. 1.
In particular, we can pick IC = ([\/ﬁ(l + A)] + 1)2 [37].

Note that this condition can be relaxed by using the similar communication
scheme base on ITLinQ [40].

107f the condition g.M > m is not satisfied, we can choose a larger
transmission range such that this condition is feasible.

""Note that the interference management in this paper is based on protocol
model. However, similar scheme can be designed for AWGN or fading channel
model based on the condition that treating interference as noise is optimal
(ITLinQ [40]).
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A. Clustering With the Hypercube Caching Approach

The achievable throughput of the hypercube approach with
clustering is given by the following theorem.

Theorem 4: Let m,g., M be the library size, number of
users in each cluster and the cache size per user, respectively.

For r < /2, t. = QCTM > 2, and % t. € Z*, the following
per user throughput 7"¢(M) is achievable:
C, M t.—1
The(p)y = L= ¢ 46
o (M) Km—-M ¢t (46)
with the requirement of at most K!¢ = (t. — 1) (%)t
packetizations. 0
Proof: By using (2), we can obtain
C 1 C, M te—1
Tr(M) = —+ = < (47)

T KR(M) Km-M t.

where RI(M) is given by (44). Noting that the packetization

of the hypercube scheme without clustering is (¢ — 1) (T—A’/’[)t

in the worst case and replacing ¢ by t., we get K¢ = (t. —

m\le

1) (1)~ ]
The multiplicative gap of T and T° throughput is given

by

The C 1 C, nt.—1
Ghe — Z¢ r —_r rx - 48
T Tghc C\/iICG}}%C CﬂICgC t—1 ( )

Remark 5: The throughput has increased by using the clus-
tering scheme compared to the scheme for r > V2 if G]%C > 1
or in other words

Cr e t—1

C\/§ K n tC — 1.
This relationship can be further simplified if g.M > m and
clustering will improve the throughput if C./K > C 5. This
provides a similar result to that was shown in [14]. The exact
relationship between link rate, C., and transmission range, r,
depends on the physical channel model and wireless network
design. However, C, may not decrease as r decreases and
clustering has the potential to increase throughput.

Remark 6: Clustering reduces the number of file partitions
as also shown in [14]. For a cluster with g. users, the ratio of
the number of packetizations with and without clustering

Khe t—1 (m)%(n*gc)

Kbe  \t.—1)\M '
As the cluster size g, becomes smaller, an exponential decrease
in the number of file partitions is observed. Therefore, even

when clustering does not increase throughput, spatial reuse
still introduces a throughput-packetization trade-off.

(49)

(50)

B. Clustering With the RS Graph Caching Approach

In this section we first discuss the impact of clustering on
packetization and throughput with the RS graph coded caching
approach. We then consider two ways of reducing g. based on
the construction in [28], [29] and study their specific impact on
throughput and cache size requirement. The RS graph scheme
achieves the following throughput:

Theorem 5: Let m,g., M be the library size, number of
users in each cluster and the cache size per user, respectively.
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For 7 < v/2, go = A%, where A is any positive integer such
1

that z > 2A, and M = 2mge 22" "4 let ¢, = % c 7+,
the per user throughput is given by:
Crgec2y—1
TRS(M) = == 51
R = T (51)

with the requirement of K} = (2y — 1)g. packetizations.[]
We have the following corollary for the asymptotic regime.
Corollary 3: For r < V2, when ge — 00, Kf‘s =
O(g?%), tc > 2, and M = ng{q&exp(*cz/g), where

c1,co are some positive constants, let {. = % /N
the throughput is given by:
C C
S [ r o5
T (M) = 525" + o0 (,Cgc), (52)
_ 2In10.5
where § = ===, O

Since the proofs of Theorem 5 and Corollary 3 are similar
to that of Theorem 4 by using Theorem 3 and Corollary 1,
the proofs are omitted due to space limitation. From Theo-
rems 3 and 5, we find the multiplicative reduction in packeti-
zation from clustering with the RS scheme is

KRS n2
=0 (%)

To understand the impact of clustering on rate and thrgugh-
put, we need to find a cluster size such that g. = (A’)* . Let
the number of users in the caching network be n = AZ. In the
following, we explore two methods to determine g. which are
letting A’ = A, 2’ <zor A/ <A, 2/ ==z

1) NN =A 2/ <z Letn =A% and g. = A*', where
z' < z. From (37) and (45), the multiplicative gap between
the transmission rate of RXS(M) and RRS(M) is given by

RES(M) g2 + o(gd)
RRS(M) — n® + o(nd)
= A2 4, (Aa(z/—z))

—10.52¢-%) 4 ¢ (10.52@’*2)) .

(33)

RS _
GR _—

(54)

From (54), we can observe that by clustering the D2D network,
the transmission rate (traffic load) can be reduced significantly.
For example, if z — 2’ = 2, e.g., the network is partitioned
into A? clusters, G = 10.57% < 107*. Nevertheless,
due to the spatial reuse gain, by using Corollary 2 and 3,
the multiplicative gap between T.25(M) and TRS(M) is given
by

GRS _ (M) 9’ +o(%9’)
T TRS(M)  Crn=d+o0(Chn?)
@ Cp 1

@ —10.52( Z>+o(10 52— 2)), (55)

Cr K
where (a) is obtained by repeating the same procedure as (54).
Surprisingly, clustering appears to increase throughput even
when the benefit of reduced transmission range and spatial
reuse is limited (i.e. CCTK is small). For example, if z—z" = 2,

then from (55),

C,
cf/c

GRS

(56)
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As clustering is performed when A’ = A and 2’ < z,
the required cache capacity M increases. For this clustering
scheme, from Theorems 3 and 5, the cache capacity M (g.)
satisfies

- 2A411n A

Jdc

TS TN -1
M(ge) = 2mge "% =2mn~ 227 ma T
n~ 2A%mmA

e (52).

Note that by using (57), to achieve the promised throughput,

(57)

it needs M (g.) > M (n)exp (Z{Ti/) For example, if z—2" =

2, it requires M (n/A?) = M(n)eA%l.

Remark 7: For a realizable RS design where 2z = w(A%),
MTSI) = o(1), the effects of local caching gain and
increased cache size are insigniﬁcant.12 In other words,

_1=M)/m 1. The factor of 10.5% in the gain of through-
1—M(n)eAt /m
put of (56) 1s a direct consequence of the decrease in rate from

clustering in (54). The reduction in the rate is a consequence
of the reduced cluster size and increased multicasting gain.

2) N <A 2=z Letn =A% and g. = (A')?, where
A" < A. From Corollary 1 and (44), the multiplicative gap
between the transmission rate of RES(M) and RRS(M) is
given by

ans _ BEWM) g2 +olgl)
B RRS(M) ~ nd + o(n?)
In 10 5 2111 10 5
(A) ok (A7) TR
= amEs ol ympps | S 1ol 69

From (58), we see that by clustering the D2D network,
the transmission rate is almost unchanged. It follows from
Corollary 2 and 3 that the multiplicative gap between 7.5 (M)
and TRS(M) is given by

C, & C, &
ns TG0 Fat +o(Fe)
T TRS(M)  Crn=d+o0(Cmnd)

&1l ( i 1) (59)
Cr /3 K Cr K

From (59), we can see that similar to [14], there is no
fundamental cumulative gain by using both spatial reuse
and coded multicasting.  Therefore, depending on C,
(5 and K, clustering either improves throughput or intro-
duces a throughput-packetization trade-off. Note that, these
parameters are not captured by the protocol model and may
depend on the operating frequency and appropriate channel
model of the underlying wireless network physical layer [16].

VII. CONCLUSION

In this work, we study D2D coded caching network designs
which require with less packetization compared to the state-
of-the-art coded D2D caching schemes in [14]. We approach
this problem by proposing new combinatorial caching designs

1
2From Appendix A, M (n) = 2mn~ 2A%ImA = 2m exp (fﬁ> where
n = AZ. Thus if z = w(A%), then 2% = o(1).
m
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and exploiting random caching and spatial reuse to intro-
duce throughput-packetization trade-offs. We propose two new
network design approaches, which are hypercube approach
and Ruzsa-Szeméredi (RS) graph approach. In particular,
the hypercube approach is unique compared to other D2D
designs because, in some cases, it does not require extra
packetization beyond the placement phase. The hypercube
approach requires exponentially less packetization as com-
pared to coded caching scheme in [14] and yields nearly
the same per user throughput for a large number of users.
The RS Graph approach was expanded from a previously
studied shared-link network design [29] and modified for D2D
networks. It requires only subquadratic packetization in terms
of the number of users and achieves a near constant per user
throughput. In addition, we demonstrate how the hypercube
scheme can be expanded to design decentralized networks
and discovered a clear trade-off between transmission rate
and packetization. Finally, we explore our new schemes with
network clustering to utilize spatial reuse and increase per user
throughput and also decrease the packetization, a property that
is unique to D2D caching networks.

APPENDIX A
PROOF OF THEOREM 3

To prove Theorem 3, we first introduce the following
construction of RS Graph from [28], [29].

Definition 11: (Graph Construction) A graph, G(V, &),
is defined such that ¥V = [A]* where A € Z*, 2 is even,
and z > 2A. Let u = E, ,[||x — y||3], where z and y are
sampled uniformly from V. For a pair of vertices, u,v € V,
(u,v) € &€ if and only if | |ju — v||3 — u| < 2. O

Given this construction, the graph consists of 7 = n/ edge
disjoint induced matchings and misses at most n* edges such
that f = 1+ 218285 4 (1), and k = 2 — 58— + o(1).
Furthermore, given a vertex, x € V), the degree of z, defined
as d, is bounded by

d=lyeV:(z,y) €& > n(l - 2n_72A411nA). (60)

The degree of any vertex defines the number of packets that a

. 1b 1
user does not cache. Therefore, if % >1—— =2n 2ATmaA,

where dj, is the lower bound of d, then the g?aph construction
can be used as a cache placement scheme. Hence, we can
pick M = 2mn7m. Since d > dp = n (1 — %) =
n —t, we have t € Z*. By the construction of the proposed
scheme described in Section V-C, each file is partitioned into
n(2y — 1) packets, and each contains F/K bits. Moreover,
for each disjoint matching in the constructed RS graph, there
are 2+ transmissions, and each has size ﬁ bits. Since the
number of disjoint matching is 7, there are 2+-7 transmissions.

F 1 T 2y
My=2y.7-——  —=— . 61
RM) =27 n(2y—1) F n2y-1 1)
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