
0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 1

Uncoded Placement with Linear Sub-Messages for
Private Information Retrieval from Storage

Constrained Databases
Nicholas Woolsey, Student Member, IEEE, Rong-Rong Chen, Member, IEEE, and Mingyue Ji, Member, IEEE

Abstract—We propose capacity-achieving schemes for private
information retrieval (PIR) from uncoded databases (DBs) with
both homogeneous and heterogeneous storage constraints. In the
PIR setting, a user queries a set of DBs to privately download a
message, where privacy implies that no one DB can infer which
message the user desires. In general, a PIR scheme is comprised
of storage placement and delivery designs. Previous works have
derived the capacity, or infimum download cost, of PIR with
uncoded storage placement and sufficient conditions of storage
placement to meet capacity. However, the currently proposed
storage placement designs require splitting each message into an
exponential number of sub-messages with respect to the number
of DBs. In this work, when DBs have the same storage constraint,
we propose two simple storage placement designs that satisfy
the capacity conditions. Then, for more general heterogeneous
storage constraints, we translate the storage placement design
process into a “filling problem”. We design an iterative algorithm
to solve the filling problem where, in each iteration, messages are
partitioned into sub-messages and stored at subsets of DBs. All
of our proposed storage placement designs require a number of
sub-messages per message at most equal to the number of DBs.

Index Terms—Private information retrieval (PIR), storage-
constrained databases, heterogeneous storage sizes

I. INTRODUCTION

The private information retrieval (PIR) problem was origi-
nally introduced by Chor et al. [3], [4] and the fundamental-
theoretic limits of PIR were recently characterized in [5].
In the PIR problem, a user privately downloads one of K
messages from a set of N non-colluding databases (DBs).
Privacy implies that no DB can infer which of the K messages
the user is downloading. To achieve privacy the user generates
strategic queries to the DBs such that sub-messages from
all K messages are requested. To gauge the performance
of the PIR scheme, the rate, R, is defined as the ratio
of desired bits (or size of each message), L, to the total
number of downloaded bits, D. In the traditional setting of
full storage PIR (FS-PIR), each DB has access to all K mes-
sages and the capacity, or maximum achievable rate, of PIR
is

(
1 + 1

N + 1
N2 + · · ·+ 1

NK−1

)−1
[5]. Multiple achievable

schemes have been developed which achieve FS-PIR capacity
by exploiting downloaded undesired sub-messages for coding
opportunities [5]–[7].

This paper includes and expands content from our conference papers [1],
[2].

The authors are with the Department of Electrical and Computer Engi-
neering at University of Utah, Salt Lake City, UT 84112, USA. (e-mail:
nicholas.woolsey@utah.edu, rchen@ece.utah.edu and mingyue.ji@utah.edu).

More recently, the problem of homogeneous storage con-
strained PIR (SC-PIR) was proposed such that each DB can
only store μ0KL bits where 1

N ≤ μ0 ≤ 1 [8]. Define
t = μ0N , the capacity of homogeneous SC-PIR was shown to
be

(
1 + 1

t +
1
t2 + · · ·+ 1

tK−1

)−1
for t = 1, 2. . . . , N [9], [10].

Different from FS-PIR, there is an additional design aspect to
SC-PIR which is the storage placement must be strategically
designed. For example, the original homogeneous SC-PIR
scheme met capacity [8] by using the storage placement
scheme of the classical shared link coded caching problem
[11]. One of the limitations of this scheme is the storage
placement requires that each message is split into O(expN)
sub-messages. Hence, the proposed PIR scheme of [8] can be
impractical for a large number of databases. This achievable
scheme was generalized to the decentralized storage placement
in [9]. In addition, linear coded storage placement at the
databases has been analyzed in [12] and [13]. Furthermore,
Tian et al. [14] used Shannon theoretic approach to analyze the
SC-PIR problem for the canonical case of K = 2 and N = 2
and proposed the optimal linear scheme. More interestingly,
they also showed that non-linear scheme can use less storage
than the optimal linear scheme.

The SC-PIR problem was generalized by Banawan et al. in
[15] to study the case where DBs have heterogeneous storage
requirements. In this setting, the storage capacity of the N
databases are defined by a vector1 μ ∈ R

N
+ , such that DB

n can only store up to μ[n]KL bits and 0 ≤ μ[n] ≤ 1.
Surprisingly, the authors in [15] showed that the capacity of
heterogeneous SC-PIR is the same as homogeneous SC-PIR
where t =

∑N
n=1 μ[n]. Furthermore, the authors translated

the storage placement problem into a linear program (LP).
A relaxed version of the LP demonstrated that, to achieve
capacity, sub-libraries (sub-message sets) should be stored at
t DBs (or �t� and �t� DBs for non-integer t) which was
also shown in [1] for the homogeneous case. The authors of
[15] also showed the existence of a solution to the LP for
general N . However, an explicit placement solution was only
derived for N = 3 DBs. For general N , the LP has O(expN)
variables, representing the potential sub-messages. Hence, this
scheme has high complexity for large N .

In this paper, we propose capacity-achieving SC-PIR storage
placement schemes with at most N sub-messages per mes-
sage. The schemes operate under general homogeneous and

1
R
N
+ denotes the set of non-negative real-valued vectors in N -dimensional

space

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 2

heterogeneous DB storage requirements when t is an integer.
Inspired by previous works [8], [15], we formally introduce
a design framework which utilizes previously developed FS-
PIR schemes for delivery and design new storage placement
schemes. For homogeneous SC-PIR, we abandon the idea
of using classical shared link coded caching approaches and
propose two novel combinatorial schemes. Based on the
sufficient conditions to achieve capacity in heterogeneous SC-
PIR problem, we translate the storage placement to a filling
problem (FP). Instead of deriving an explicit LP solution, we
propose an iterative algorithm which places a sub-library at t
DBs in each iteration. Finally, we propose a method to convert
a non-integer t storage placement problem into two integer
t storage placement problems that can be solved using the
proposed placement schemes for integer t.

Our main contributions in this paper are as follows:
1) We propose two capacity achieving storage placement

schemes for homogeneous SC-PIR which require at most
N sub-messages per message when t is an integer.

2) We propose a capacity achieving iterative algorithm to
solve the heterogeneous SC-PIR storage placement prob-
lem with integer t that converges in N iterations and
yields at most N sub-messages per message.

3) We develop a memory sharing design to expand general
integer t SC-PIR placement solutions to the non-integer
t scenario with general heterogeneous storage require-
ments.

The remainder of this paper is organized as follows. In
Section II, we describe the problem formulation of SC-PIR.
In Section III, we present a design architecture for SC-
PIR storage placement schemes. The homogeneous SC-PIR
storage designs are presented in Section IV. In Section V, we
use the sufficient conditions of SC-PIR capacity to translate
the heterogeneous SC-PIR storage placement problem into
an equivalent filling problem. In Section VI, we develop
an iterative solution to the filling problem and analyze its
convergence. In Section VII, we expand our designs for non-
integer t. In Section VIII we discuss this work and future
directions. Concluding remarks are given in Section IX.

Notation Convention: We use | · | to represent the cardi-
nality of a set or the length of a vector. Also [n] := 1, 2, . . . , n
and [n1 : n2] = n1, n1 + 1, . . . , n2. A bold symbol such as a
indicates a vector and a[i] denotes the i-th element of a. Rn

+

is the set of non-negative reals in n-dimensional space and Z
+

is the set of all positive integers.

II. PROBLEM FORMULATION AND RELATED WORK

There are K independent messages, W1, . . . ,WK , each of
size L bits. In particular,

H(W1, . . . ,WK) = H(W1) + · · ·+H(WK) (1)
H(W1) = · · · = H(WK) = L. (2)

The messages are collectively stored in an uncoded
fashion among N non-colluding DBs, labeled as DB1,
DB2, . . . ,DBN . The storage capacity of the DBs are defined
by a vector μ ∈ R

N
+ where, for all n ∈ [N], DB n has

the storage capacity of μ[n]KL bits and 0 < μ[n] ≤ 1.

Furthermore, for all n ∈ [N], define Zn as the storage contents
of DB n such that

∀n ∈ [N], H(Zn) ≤ μ[n]KL. (3)

Also, we define t �
∑N

n=1 μ[n] as the number of times each
bit of the messages is stored among the DBs. To design an
achievable PIR scheme we assume t ≥ 1 so that each bit of
the messages can be stored at least once across the DBs. A
user makes a request Wk and sends a query Q

[k]
n , which is

independent of the messages, to each DB n ∈ [N],

∀k ∈ [K], I(W1, . . . ,WK ;Q
[k]
1 , . . . , Q

[k]
N) = 0. (4)

Each DB n ∈ [N] sends an answer A[k]
n such that

∀k ∈ [K], ∀n ∈ [N], H(A[k]
n |Zn, Q

[k]
n) = 0. (5)

Furthermore, given the answers from all the databases, the user
must be able to recover the requested message and therefore,2

H(Wk|A[k]
1 , . . . , A[k]

n , Q
[k]
1 , . . . , Q[k]

n) = 0. (6)

The user generates queries in a manner to ensure privacy such
that no DB can infer which message the user desires, i.e. for
all n ∈ [N]

I(k;Q[k]
n , A[k]

n ,W1, . . . ,WK , Z1, . . . , ZN) = 0. (7)

Let D be the total number of downloaded bits

D =
N∑

n=1

H
(
A[k]

n

)
. (8)

Given μ, we say that a pair (D,L) is achievable if there exists
a SC-PIR scheme with rate

R � L

D
(9)

that satisfies (5)-(7). The SC-PIR capacity is defined as

C(μ) = sup{R : (D,L) is achievable}. (10)

A. Capacity of SC-PIR

Define t �
∑N

n=1 μ[n] as the cumulative storage of the DBs
normalized by KL. The following was shown in [10] for ho-
mogeneous and [15] for heterogeneous storage requirements.
The capacity of SC-PIR for integer t is

C(μ) =

(
1 +

1

t
+

1

t2
+ · · ·+ 1

tK−1

)−1

, for t ∈ [N].

(11)
Moreover, assuming storage at the DBs is uncoded, the capac-
ity for non-integer t is

C(μ) =
(
(�t� − t)C−1

�t� + (t− �t�)C−1
�t�

)−1

, for t /∈ Z
+

(12)
where 1 < t < N and C−1

�t� and C−1
�t� are the inverse of SC-PIR

capacity with cumulative storage of �t� and �t�.

2In this work, we explore zero-error PIR schemes.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 3

III. SC-PIR GENERAL DESIGN ARCHITECTURE

In this section, we introduce the General Design Architec-
ture (GDA) for SC-PIR which is used throughout this paper.
While similar ideas have been previously developed for the
design of several SC-PIR schemes [8], [15], an explicit formu-
lation of the GDA for SC-PIR, as described below, will help
facilitate a streamlined design framework from an arbitrary
FS-PIR design to a derived SC-PIR design. In the GDA, we
split the SC-PIR problem into placement and delivery phases.
In the placement phase, the storage contents of the DBs is
defined. Then, in the delivery phase, FS-PIR schemes are
used to privately download sub-messages of the user requested
message. The achievable rate of this approach is established.

Definition 1: The General Design Architecture (GDA)

is the method used to create an SC-PIR scheme with the
following placement and delivery phases. It applies to both
homogeneous and heterogeneous storage constraints.
• Placement: First, define a fractional placement vector
α = (α[1], α[2], · · · , α[F]) where 0 < α[f] ≤ 1 for any
f ∈ [F] and

∑F
f=1 α[f] = 1. Given α, each message

Wk from the library is split into F non-overlapping sub-
messages Wk,1, · · ·Wk,F such that Wk =

⋃F
f=1 Wk,f

where the length of each sub-message Wk,f is α[f]L.
This leads to a set of F sub-libraries {M1, · · · ,MF }
where each sub-library Mf =

⋃K
k=1 Wk,f includes a

fraction α[f] from every file Wk in the library. We then
place each of these sub-libraries into a sub-group of
databases. The resulting placement scheme is specified
by F sub-groups of databases N1 . . .NF , where each
sub-group Nf consists of all the databases that store
sub-library Mf . Note that, depending on its storage
constraint, for each n ∈ [N], DB n can store mul-
tiple sub-libraries and its storage is given by Zn =⋃
{f∈[F] : n∈Nf}

Mf . Furthermore, since DB n should not

be assigned more sub-libraries then its storage constraint
μ[n] allows, the placement scheme must satisfy∑

{f∈[F] : n∈Nf}
α[f] ≤ μ[n]. (13)

• Delivery: Given that a user requests file Wθ, θ ∈ [K],
then, for each f ∈ [F], the user privately downloads sub-
message Wθ,f from the sub-group of DBs Nf using a
query defined by any given FS-PIR scheme. ♦

In Appendix A, we prove that the GDA is private. The rate
of an SC-PIR scheme defined by the GDA is given in the
following proposition.

Proposition 1: The rate of a SC-PIR scheme defined by the
GDA is

R =

(
α[1]

R1
+

α[2]

R2
+ · · ·+ α[F]

RF

)−1

, (14)

where Rf is the rate of the FS-PIR scheme used to privately
download the requested sub-message Wθ,f from the sub-group
of DBs Nf . �

Proof: We count the number of downloaded bits. For all
f ∈ [F], Rf =

αfL
Df

where Df is the number of downloaded
bits necessary to privately download Wθ,f of size αfL bits

from the databases in Nf . Therefore, the total number of bits
required to privately download the entirety of Wθ is

D = D1 +D2 + · · ·+DF = L

(
α[1]

R1
+

α[2]

R2
+ · · ·+ α[F]

RF

)
.

Since R = L
D , we obtain (14).

The placement phase of the GDA requires that each message
is split into F sub-messages. Then, in the delivery phase, the
employed FS-PIR scheme may require the sub-messages to be
split further. The amount of further splitting is defined by the
specific FS-PIR scheme (see [5]–[7]). If the FS-PIR scheme to
privately download Wθ,f requires the sub-messages {Wk,f :
k ∈ [K]} to be further split into Sf sub-messages, then the
total number of sub-messages per message, S, resulting from
the GDA is

S =
F∑

f=1

Sf . (15)

Remark 1: This work focuses the design of the placement
phase and reducing F , the resulting number of sub-messages
per message from the placement phase. Then for delivery, the
topic of reducing the sub-messages of FS-PIR has been studied
in other works [6], [7]. Our presented SC-PIR designs use FS-
PIR schemes found in [5]–[7] for delivery.

IV. CAPACITY-ACHIEVING HOMOGENEOUS SC-PIR
PLACEMENT SCHEMES

In this section, we present our new capacity achieving
designs, termed Homogeneous Placement 1 (HoP1) and Ho-
mogeneous Placement 2 (HoP2). In the homogeneous setting,
we assume all DBs have the same storage capacity such that
μ0 = μ[1] = · · · = μ[N] and t = μ0N . The state-of-the-
art capacity-achieving homogeneous SC-PIR scheme requires
F =

(
N
t

)
sub-messages per message for placement [8] as it

uses a placement design from coded caching [11]. Surpris-
ingly, in this work we show that coded caching placement is
not necessary to achieve SC-PIR capacity, and we significantly
reduce the number of sub-messages with our new designs.
The use of HoP1 and HoP2 require F = N

t and F = N sub-
messages per message, respectively. HoP1 has a fewer number
of sub-messages but requires that t ∈ [N] and N

t ∈ Z
+, while

HoP2 operates for any t ∈ [N]. Our results are summarized
in the following theorem.

Theorem 1: Assume that t ∈ Z
+ and all DBs have the same

storage capacity. Using the GDA with either HoP1 or HoP2
for placement and a capacity achieving FS-PIR scheme for
delivery, the following rate is achievable

R =

(
1 +

1

t
+

1

t2
+ · · ·+ 1

tK−1

)−1

, (16)

which achieves the capacity of SC-PIR. �
We prove Theorem 1 by presenting HoP1 and HoP2 and

deriving their rate in Sections IV-A through IV-D. Next, we
start with a motivating example and then present our new
placement designs.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 4

A. A Homogeneous SC-PIR Example

In this section, we provide an example of a SC-PIR scheme
using HoP1. Consider N = 4 DBs labeled as DB1 through
DB4 and each DB has the storage capacity to store μ0 = 1

2
of the message library containing K = 3 messages, denoted
by A, B and C. Moreover, t = μ0N = 2.

Placement: We split each message into F = 2 disjoint,
equal-size sub-messages such that A = {A1, A2}, B =
{B1, B2}, and C = {C1, C2}. Then, we define two sub-
libraries M1 = {A1, B1, C1} and M2 = {A2, B2, C2}. The
sub-library M1 is stored at DB1 and DB2 and sub-library M2

is stored at DB3 and DB4. This corresponds to sub-groups of
databases N1 = {1, 2} and N2 = {3, 4}. The storage at each
database is given by

Z1 = Z2 = M1 = {A1, B1, C1}, (17)
Z3 = Z4 = M2 = {A2, B2, C2}. (18)

Each DB stores exactly half the library and meets its storage
capacity.

Delivery: Assuming the user requests message A, we use
the FS-PIR scheme of [5] twice: first, to privately download
A1 from DB1 and DB2 and second, to privately download
A2 from DB3 and DB4. To execute the scheme of [5], each
sub-message from the placement is further split into 8 disjoint,
equal-size sub-messages. For example, A1 = {A1

1 . . . A
8
1} and

B2 = {B1
2 . . . B

8
2} and the other sub-messages are labeled

similarly. The queries to the DBs defined by the FS-PIR
scheme of [5] are shown in Table I.

TABLE I
STORAGE CONSTRAINED PIR, N = 4, K = 3, μ0 = 1

2

DB1 DB2 DB3 DB4
A5

1 B8
1 C6

1 A1
1 B3

1 C1
1 A5

2 B7
2 C4

2 A2
2 B6

2 C2
2

A6
1 +B3

1 A3
1 +B8

1 A1
2 +B6

2 A7
2 +B7

2

A7
1 + C1

1 A8
1 + C6

1 A6
2 + C2

2 A8
2 + C4

2

B6
1 + C5

1 B7
1 + C3

1 B3
2 + C6

2 B8
2 + C7

2

A2
1+B7

1+C3
1 A4

1+B6
1+C5

1 A3
2+B8

2+C7
2 A4

2+B3
2+C6

2

The query to each database maintains privacy since the
query is symmetric such that for each sub-message of A that
is requested, a sub-message from B and C are also requested.
All coded pairs of sub-messages from the 3 messages are
requested an equal number of times. Ultimately, the user can
decode all sub-messages of message A, because downloaded
sub-messages of B and C can be used for decoding (see
Table I). We refer the reader to [5] for more details on delivery.
In total, there are 28 downloaded sub-messages of size L

16
bits which are either coded or uncoded. Therefore, the total
number of downloaded bits is D = 28L

16 = 7L
4 and the rate is

R = L
D = 16

28 = 4
7 , which achieves capacity defined in (11).

B. General SC-PIR Scheme when N
t ∈ Z

+

Definition 2: Homogeneous Placement 1 (HoP1) Assume
a homogeneous storage constraint of μ0 = t

N = μ[1] =
· · · = μ[N]. For the case when both t and N

t are positive
integers, we propose HoP1 following the GDA described in
Section III. For HoP1, we choose F = N

t and a uniform

fractional placement vector α =
[

t
N , . . . , t

N

]
. The sub-

libraries M1, . . . ,MF are defined according to the GDA.
We place each sub-library Mf in t consecutive databases.
This leads to non-overlapping sub-groups of DBs N1, . . . ,NF ,
where Nf = {(f − 1)t + 1, · · · , ft} for each f ∈ [F]. Note
that in HoP1, each DB belongs to only one sub-group of DBs,
storing exactly one sub-library, and hence meeting the storage
constraint of μ0 = t

N .
Achievable Rate: By using HoP1 with the GDA, SC-PIR

capacity is achieved by using a capacity-achieving FS-PIR
scheme for delivery. In this case, for all f ∈ [F], the rate
to download Wθ,f from the DBs of Nf is

Rf =

(
1 +

1

|Nf | +
1

|Nf |2 + · · ·+ 1

|Nf |K−1

)−1

=

(
1 +

1

t
+

1

t2
+ · · ·+ 1

tK−1

)−1

(19)

where |Nf | = t is the number of DBs in sub-group Nf .
By (14) of Proposition 1, the rate of the SC-PIR scheme is
simply R = Rf which is the capacity of SC-PIR with uncoded
storage.

C. A Homogeneous SC-PIR Example when N
t /∈ Z

+

In the following, we present a SC-PIR example using HoP2
which allows N

t /∈ Z
+ and requires F = N number of

sub-messages per message for the placement phase. Consider
N = 5 DBs, labeled DB1 through DB5, each with the
storage capacity to store a μ0 = 3

5 fraction of the K = 2
message library containing messages A and B. Moreover,
t = μ0N = 3.

Placement: Messages A and B are split into F = 5
disjoint, equal-size sub-messages labeled as {A1, . . . , A5} and
{B1, . . . , B5}, respectively. Then, for each f ∈ [F], define the
sub-library Mf = {Af , Bf}. A “cyclic” placement is used
such that sub-libraries M1, M2, M3, M4 and M5 are placed
into sub-groups of DBs according to N1 = {4, 5, 1}, N2 =
{5, 1, 2}, N3 = {1, 2, 3}, N4 = {2, 3, 4} and N5 = {3, 4, 5},
respectively. As a result, the storage at DB n is3

Zn =
⋃

f∈{[0:2] ⊕N n}
Mf . (20)

For instance, DB2 stores sub-libraries in Z2 =
{M2,M3,M4} and DB5 stores sub-libraries in
Z5 = {M5,M1,M2}.

TABLE II
STORAGE CONSTRAINED PIR, N = 5, K = 2, μ = 3

5

DB1 DB2 DB3 DB4 DB5
(1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 1) (5, 1, 2)

A3
1 B2

1 A3
2 B2

2 A1
3 B3

3 A2
4 B3

4 A2
5 B1

5

A1
2 +B2

2 A3
3 +B3

3 A3
4 +B3

4 A1
5 +B1

5 A2
1 +B2

1

A2
3 +B3

3 A1
4 +B3

4 A3
5 +B1

5 A1
1 +B2

1 A2
2 +B2

2

3To generally apply the cyclic placement approach, we impose the following
notation: a ⊕N b = (a + b − 1 mod N) + 1 and [a1 : a2] ⊕N b =
{a′ ⊕N b : a′ ∈ [a1 : a2]}.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 5

Delivery: The delivery phase repeats the FS-PIR scheme of
[7] 5 times. To execute the scheme of [7], each sub-message
from the placement is further split into 3 disjoint, equal-size
sub-messages. For example, A1 = {A1

1 . . . A
3
1} and B2 =

{B1
2 . . . B

3
2}. The queries of a user that privately downloads

message A are shown in Table II. The top row of the table
contains database labels and the 3-tuple below each database
label defines the subscripts of the sub-messages that are locally
available to that database. The remaining three rows of the
table show the queries of the user.

For instance, to obtain sub-messages of A1, {Aj
1, j ∈ [3]},

the user applies the FS-PIR scheme to DB1, DB4, and DB5.
The user obtains A3

1 from DB1 and can decode A1
1 from DB4’s

transmission of A1
1 + B2

1 because the user receives B2
1 from

DB1. Similarly, the user decodes A2
1 from DB5’s transmission

of A2
1+B2

1 . These transmissions are highlighted in red in Table
II. To ensure privacy, the queries are symmetric and no sub-
message is requested more than once from any one database.
The user downloads 20 sub-messages of size L

15 bits therefore
D = 20 · L

15 = 4L
3 and R = 3

4 which meets capacity defined
in (11).

D. A General SC-PIR Scheme for arbitrary t ∈ [N]

Definition 3: Homogeneous Placement 2 (HoP2) Assume
a homogeneous storage constraint of μ0 = t

N = μ[1] =
· · · = μ[N]. For the case when t is an integer, but N

t
can be a non-integer, we propose HoP2 following the GDA
described in Section III. For HoP2, we choose F = N and
a uniform fractional placement vector α =

[
1
N , . . . , 1

N

]
. The

sub-libraries M1, . . . ,MF are defined according to the GDA.
We place each sub-library in t DBs in a “cyclic” fashion. This
leads to overlapping sub-groups of DBs N1, . . . ,NF , where
Nf = [−(t − 1) : 0] ⊕N f for each f ∈ [F]. Note that in
HoP2, each DB belongs to exactly t sub-group of DBs, storing
t sub-libraries, and hence meeting the storage constraint of
t · 1

N = μ0. ♦
Achievable Rate: By using HoP2 with the GDA, SC-PIR

capacity is achieved by using a capacity-achieving FS-PIR
scheme for delivery. Similar to HoP1, every sub-library is
stored at t DBs and based on FS-PIR capacity, a requested
sub-message, Wθ,f , can be downloaded with rate Rf =(
1 + 1

t +
1
t2 + · · ·+ 1

tK−1

)−1
. Therefore, the overall SC-PIR

rate is R = Rf .

E. Comparison to the State-of-the-Art

The state-of-the-art homogeneous SC-PIR design proposed
in [8] achieves the capacity defined in (11) for integer t. The
placement strategy of [8] is to place a sub-library at every
unique set of t DBs similar to the achievable coded caching
scheme of [11]. In other words, the placement requires each
message to be split into F =

(
N
t

)
sub-messages, making it

impractical for a large number of DBs. Moreover, the state-
of-the-art SC-PIR design uses the FS-PIR scheme of [5] for
delivery which requires each sub-message be further split
into tK sub-messages. The total number of sub-messages per
message is then S =

(
N
t

)
tK . Since the sub-messages are

equal-size, the minimum message size is L =
(
N
t

)
tK bits

where each sub-message would be 1 bit.
We have demonstrated the coded caching placement is un-

necessary, since our placement designs require each message
is split into at most F = N sub-messages. Using the FS-
PIR scheme of [5] for delivery and HoP2 for placement,
there are S = NtK sub-messages per message. Furthermore,
[6] derives the minimum message size of FS-PIR to achieve
capacity.4 Using this FS-PIR scheme yields S =

(
N
t

)
(t − 1)

with the state-of-the-art SC-PIR placement and S = N(t− 1)
with HoP2. In either case, by using HoP2 we observe an
exponential reduction in sub-messages compared to the state-
of-the-art SC-PIR scheme. The use of HoP1 or HoP2 in
conjunction with the FS-PIR scheme of [6] allows for a
quadratic number of sub-messages.

V. TRANSLATING HETEROGENEOUS SC-PIR TO A
FILLING PROBLEM

When t ∈ Z
+, capacity can be achieved for SC-PIR with

general heterogeneous requirements by placing sub-libraries at
sub-groups of exactly t DBs. In this way, the placement design
translates to an equivalent filling problem (FP). While we have
developed FP solutions to the homogeneous case, it becomes
more challenging to solve the FP for the heterogeneous setting.
Intuitively, one way to solve the FP is to iteratively define
sub-libraries and place each of them at t DBs. However,
we will show that this method is impractical as it can get
“stuck” and reach a point where there are less than t “unfilled”
DBs, at which point the capacity cannot be achieved. This
motivates us to look for a set of conditions to help avoid
such “invalid” placement and guide the design of an iterative
placement algorithm. In the remainder of this section, we start
by stating sufficient conditions to achieve heterogeneous SC-
PIR capacity. Then, we present an example of an FP solution
to achieve capacity in an equivalent heterogeneous SC-PIR
storage placement problem. Next, we formally define the FP
and define a set of feasible conditions which guarantees a FP
solution.

A. Sufficient Conditions to Achieve Capacity for SC-PIR

We first provide sufficient conditions for a storage place-
ment scheme to achieve the SC-PIR capacity in Lemma 1.
These conditions were first presented in [1, Theorem 4] for
the homogeneous case and then in [15, Lemmas 3,4] for the
more general heterogeneous case. For completeness, we also
provide a different proof to Lemma 1 that is shorter than the
one given in [15].

Lemma 1: For a network with general heterogeneous storage
requirements, consider the GDA with a capacity achieving
FS-PIR scheme for delivery. The resulting SC-PIR scheme
is capacity-achieving if the storage placement satisfies one of
the following two conditions:
(a) t ∈ Z

+ and ∀f ∈ [F], the sub-library Mf is stored at t
DBs, |Nf | = t,

4The FS-PIR scheme of [6] uses an asymmetric design such that the
possible queries result in varying rates. However, the expected rate meets
FS-PIR capacity.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 6

(b) t /∈ Z
+ and ∀f ∈ [F], the sub-library Mf is stored at

�t� or �t� DBs, |Nf | ∈ {�t�, �t�} such that∑
{f∈[F]:|Nf |=�t�}

α[f] = �t� − t, (21)

∑
{f∈[F]:|Nf |=�t�}

α[f] = t− �t�. (22)

Proof: From [5], the rate of a capacity achieving FS-PIR
scheme to privately download one of K messages from x DBs
is RFS(x) =

(
1 + 1

x + · · ·+ 1
xK−1

)−1
. For t ∈ Z

+, it follows
from Proposition 1 that the rate of the SC-PIR scheme is

R =

(
α[1]

RFS(t)
+ · · ·+ α[F]

RFS(t)

)−1

= RFS(t)

=

(
1 +

1

t
+ · · ·+ 1

tK−1

)−1

(23)

which is the capacity of SC-PIR defined in (11). For t /∈ Z
+,

it follows from Proposition 1 that

R=
(1

RFS(�t�)
∑

f :|Nf |=�t�
α[f] +

1

RFS(�t�)
∑

f :|Nf |=�t�
α[f]

)−1

=
(�t� − t

RFS(�t�) +
t− �t�
RFS(�t�)

)−1

. (24)

Moreover, R−1 = (�t� − t)R−1
FS (�t�) + (t − �t�)R−1

FS (�t�)
is a linear interpolation of the points

(�t�, R−1
FS (�t�)

)
and(�t�, R−1

FS (�t�)
)

which was shown to meet the capacity of SC-
PIR with uncoded storage defined in (12).

B. A Heterogeneous SC-PIR Example

We use the Heterogeneous Placement Algorithm (HePA)
presented later in Section VI to iteratively fill the DB storage
where each iteration fills some contents of t DBs. Let N = 8
and the storage constraints of the DBs are

μ = [0.9, 0.65, 0.4, 0.3, 0.25, 0.2, 0.2, 0.1]. (25)

For example, by this notation, DB3 has a storage capacity of
4
10KL bits. By summing the elements of μ, we obtain t = 3.
By Lemma 1, using the GDA, capacity can be achieved if each
sub-library, Mf , is stored at exactly t = 3 DBs. This translates
to a “filling problem” (FP) where our goal is to iteratively fill
the storage of the DBs and in each iteration we fill some
storage in exactly t = 3 DBs. In the first iteration, we define
a sub-library, M1, which contains μ[1]L = 1

10L arbitrary bits
from each of the K messages and assign M1 to the DB subset
N1 = {1, 2, 8}. Notice that M1 contains μ[8]KL bits and
there is no remaining storage at DB8 after this iteration. Later
in V-D, we will show that this iteration is moving towards a
solution. Next, we aim to fill the storage contents of DB7 and
let M2 contain 1

5L arbitrarily unpicked bits (i.e., bits are not
in M1) from each of the K messages. Then, M2 is stored
at the DB subset N2 = {1, 2, 7}. In general, Nf includes the
DB with the least remaining non-zero storage and the t − 1
DBs with the most remaining storage. In each iteration, we
aim to fill the DB with the least remaining non-zero storage.
However, sometimes an iteration only yields a partial fill in

order to converge towards a solution. For example, in the 5-th
iteration, DB2 has the smallest remaining non-zero storage and
is only partially filled. The design of each iteration is discussed
in more detail in Section VI. This process is continued until
the storage of all DBs are filled.

The resulting storage placement of the HePA is shown in
Fig. 1. There are F = 7 sub-libraries and each is stored at
exactly 3 DBs. A vector α ∈ R

F
+ defines the fraction of the

library that is stored (or filled) in each iteration. For example,
α[1] = 0.1 and α[2] = 0.2 correspond to the first two iterations
described above. All elements of α are shown in the table
of Fig. 1. The corresponding DBs that store a sub-library in
iteration f are highlighted by red arrows in the table. By
using a capacity achieving FS-PIR scheme for delivery, the
placement achieves SC-PIR capacity. This is because the HePA
is designed to place a sub-library at a sub-group of t DBs in
each iteration and satisfy the sufficient conditions of Lemma
1 to achieve SC-PIR capacity.

The HePA has the advantage of linear complexity. We will
show in Section VI-B that the HePA always converges in
N iterations and requires at most F = N sub-messages per
message when t is an integer. The complexity is significantly
reduced from the placement strategy of the state-of-the-art
placement of [15], which aims to solve a linear program (LP)
with

(
N
t

)
variables representing the size of the sub-libraries at

all possible sets of t DBs.
Fig. 1 contains two additional parameters, t′ and e, which

are discussed in greater detail later in Section VI-B. Moreover,
t′ is the sum of the cumulative remaining storage of all DBs
and e is the number of DBs that each has a remaining storage
that is equal to t′KL

t bits. These parameters are significant
when deriving the convergence of the HePA.

C. The Filling Problem

Definition 4: (m, τ)-Filling Problem (FP) Assume B is a
basis containing the set of all {0, 1}-vectors of length N , each
of which contains exactly τ 1s. Given a vector m ∈ R

N
+ ,

representing a storage vector of N DBs, find a set of non-
negative scalars {αb ∈ R+ : b ∈ B} such that∑

b∈B
αbb = m. (26)

♦
For the heterogeneous SC-PIR problem with t ∈ Z

+, the
capacity achieving storage placement solution is equivalent to
the (μ, t)-FP.

D. Existence of the (m, τ)-FP Solution

To design an iterative algorithm to solve the general FP, we
aim to find a set of necessary and sufficient conditions that
ensures each iteration allows a valid FP solution based on the
remaining storage. In other words, since each iteration will
yield a new FP, we are interested in conditions that show a
solution to the (m, τ)-FP exists. This will guide the algorithm
design such that we avoid “invalid” placements that would
prevent convergence. For example, consider an SC-PIR system
with μ = [0.7, 0.7, 0.6] and t = 2. If in the first iteration, we

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 7

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8

1 0.1 0.9 0.65 0.4 0.3 0.25 0.2 0.2 0.1 3.0 0

2 0.2 0.8 0.55 0.4 0.3 0.25 0.2 0.2 0 2.7 0

3 0.2 0.6 0.35 0.4 0.3 0.25 0.2 0 2.1 0

4 0.2 0.4 0.35 0.2 0.3 0.25 0 1.5 0

5 0.1 0.2 0.15 0 0.3 0.25 0.9 0

6 0.05 0.2 0.05 0.2 0.15 0.6 1

7 0.15 0.15 0 0.15 0.15 0.45 3

- - 0 0 0 0 -

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

μ[n]

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8

M1M1M1

M2

M3

M4

M6

M7

M2

M4

M5

M6

M3

M4

M5

M6

M7

M5

M7

M3 M2

Fig. 1. A solution to the filling problem using the Heterogeneous Placement Algorithm (HePA) when t = 3 and μ =
[0.9, 0.65, 0.4, 0.3, 0.25, 0.2, 0.2, 0.1]. (left) A bar graph depicting the storage requirements of the DBs and the storage placement
solution. (right) A table representing the remaining storage of the DBs for each iteration. The red arrows highlight which DBs are assigned
a sub-message subset in each iteration. Note that the sub-libraries Mf have different sizes α[f] and each sub-library Mf is placed into
a sub-group of t = 3 DBs in Nf . Here, we have N1 = {1, 2, 8}, N2 = {1, 2, 7}, N3 = {1, 3, 6}, N4 = {1, 2, 3}, N5 = {2, 4, 5},
N6 = {1, 2, 4}, N7 = {1, 4, 5}.

place 0.4 of the message library at DB1 and DB3 then the
remaining storage at the DBs is m = [0.3, 0.7, 0.2]. However,
an (m, t)-FP solution does not exist since m[1] + m[3] <
m[2]. It is impossible to fill the remaining storage two DBs
at a time and completely fill DB2. Our goal is to design an
algorithm that never reaches a situation like this. The algorithm
will execute an iteration only if a FP solution exists after that
iteration. This requires knowledge of necessary and sufficient
conditions for a (m, τ)-FP solution to exist.

Theorem 2: Given m ∈ R
N
+ and τ ∈ Z

+ an (m, τ)-FP
solution exists if and only if

m[n] ≤
∑N

i=1 m[i]

τ
, ∀n ∈ [N]. (27)

�
The proof of Theorem 2 is given in Appendix B.
Remark 2: First, we note that Theorem 2 guarantees the ex-

istence of a (μ, t)-FP solution for any general SC-PIR storage
requirement μ with integer t because μ[n] ≤ 1 =

∑N
i=1 μ[i]

t for
all n ∈ [N] and thus (27) is met. This establishes the existence
of a heterogeneous capacity achieving SC-PIR scheme using
a different approach from that of the previously known proof
in [15, Lemma 5]. Second, while Theorem 2 itself does not
provide an explicit algorithm to solve the storage placement
problem for SC-PIR, it provides the theoretical basis needed
to develop such an algorithm, e.g., the HePA in Section VI.
Condition (27) is critical to ensure that each iteration of
the HePA algorithm permits a new FP solution under the
updated storage constraints. Third, condition (27) is also used
to develop a storage sharing solution for t /∈ Z

+, as described
in Section VII and Appendix D.

VI. HETEROGENEOUS PLACEMENT ALGORITHM

In this section, we present the Heterogeneous Placement
Algorithm (HePA) that achieves SC-PIR capacity for DBs
with general heterogeneous storage requirements and integer t.
Moreover, we will prove that HePA always converges, requires

at most N iterations, and each message is split into at most
N sub-messages. The results are summarized in the following
theorem.

Theorem 3: Assume that t ∈ Z
+ and DBs have general

heterogeneous storage requirements. By using the GDA with
HePA for placement and a capacity achieving FS-PIR scheme
for delivery, the following rate is achievable

R =

(
1 +

1

t
+

1

t2
+ · · ·+ 1

tK−1

)−1

(28)

which achieves the capacity of SC-PIR. �
Theorem 3 is proved in the following sections by present-

ing the scheme and proving its correctness and convergence
characteristics.

A. Heterogeneous Placement Algorithm to Achieve SC-PIR
Capacity

Heterogeneous Placement Algorithm (HePA). The HePA
works under a heterogeneous storage constraint. As opposed
to the homogeneous designs HoP1 and HoP2 where α,
{M1, · · · ,MF }, and {N1, · · · ,NF } are all specified at once,
due to the heterogeneous storage, HePA adopts an iterative
procedure to find these sequentially in at most N iterations.
In each iteration f , HePA aims to fill the storage of the DB
with the smallest remaining (non-zero) storage. Specifically,
it determines α[f],Mf , and then places Mf at the t DBs in
Nf that includes the DB with the smallest remaining storage
and the t − 1 DBs with the largest remaining storage. After
at most N iterations, all {M1, · · · ,MF } and {N1, · · · ,NF }
are specified and the heterogeneous storage constraint is met
at each DB.

The HePA is outlined in Algorithm 1. Lines 5 through 18
define the f -th iteration, which we summarize as follows with
reference to specific lines of Algorithm 1. By line 5, let N ′

be the number of DBs with non-zero remaining storage and
m ∈ R

N
+ be the remaining storage of each DB normalized by

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 8

KL after the first f − 1 iterations. Line 6 defines t′ as the
cumulative remaining storage of the DB network

t′ =
N∑

n=1

m[n]. (29)

By line 7, we introduce a length N vector � as a permutation
of [N] to order the DBs according to their remaining storage
from largest to smallest. In other words, given N ′ and �, we
have

m[�[1]] ≥ m[�[2]] ≥ · · · ≥ m[�[N ′]] > 0, (30)
m[�[N ′ + 1]] = m[�[N ′ + 2]] = · · · = m[�[N]] = 0. (31)

Then, by line 8, define the DB sub-group Nf that includes
the DB with the smallest remaining (non-zero) storage and
the t− 1 DBs with the largest remaining storage

Nf = {�[1], · · · , �[t− 1], �[N ′]} . (32)

We need to define a sub-library, Mf , of size α[f]KL bits to
be stored at the DBs of Nf . Ideally, to completely fill DB
�[N ′], we should set α[f] = m[�[N ′]]. However, to ensure
that m meets the conditions of (27) after the f -th iteration
(i.e. after m is updated in lines 16-18), we do the following.
When N ′ ≥ t+ 1, from line 10, we let

α[f] = min

(
t′

t
−m[�[t]], m[�[N ′]]

)
. (33)

When N ′ = t, the t DBs with non-zero remaining storage
make up Nf . In this case, all of the remaining storage of these
t DBs are equal (can be shown using Theorem 2), and by line
12, we let α[f] = m[�[1]]. In line 14, we define a sub-library,
Mf , containing α[f]L unstored bits from each message. In
line 15, we store Mf at the DBs of Nf . Then, in lines 16-18,
we adjust m accordingly to reflect the remaining storage at
each DB after the f -th iteration.

The HePA always converges to yield a SC-PIR capacity-
achieving placement and requires at most N iterations to con-
verge. Note that, the iterations of the HePA only operate when
N ′ ≥ t, because it will never reach a point where N ′ < t,
unless N ′ = 0 and all DBs have been completely filled.
In Appendix C, we demonstrate each iteration of the HePA
fills a non-zero amount of storage and after each iteration the
remaining storage satisfies the conditions of (27) such that a
(m, t)-FP solution exists. Convergence is characterized in the
following section.

Achievable Rate: For integer t, the HePA meets the sufficient
conditions of Lemma 1. Therefore, by using the HePA for
placement with the GDA, SC-PIR capacity is achieved by
using a capacity-achieving FS-PIR scheme for delivery.

B. Convergence

Surprisingly, we find that the HePA requires at most N
iterations to produce a capacity-achieving SC-PIR placement
for DBs with heterogeneous storage requirements. Moreover,
the number of iterations is equal to the number of sub-
messages per message, F , required for the storage placement.
The convergence of the HePA is summarized in the following
lemma.

Algorithm 1 Heterogeneous Placement Algorithm (HePA)
Input: μ, t, L and W1, . . . ,WK

1: m ← μ
2: f ← 0
3: while m > 0 do

4: f ← f + 1
5: N ′ ← number of non-zero elements in m
6: t′ ← ∑N

n=1 m[n]
7: � ← indices that would sort m from largest to smallest
8: Nf ← {�[1], . . . , �[t− 1], �[N ′]}
9: if N ′ ≥ t+ 1 then

10: α[f] ← min
(

t′
t −m[�[t]],m[�[N ′]]

)
� ensures

(27) is met after the f -th iteration
11: else

12: α[f] ← m[�[1]]
13: end if

14: Mf ← α[f]L unstored bits from each message {Wk :
k ∈ [K]}

15: Store Mf at the DBs of Nf

16: for n ∈ Nf do

17: m[n] ← m[n]− α[f]
18: end for

19: end while

20: F ← f

Lemma 2: The HePA always converges and requires at most
N iterations to converge.

Proof: We label the outcome of each iteration of the HePA
as either a complete fill (CF) or partial fill (PF) defined below.

Definition 5: A complete fill (CF) refers to an iteration where
the remaining storage at the DB with the smallest remaining
non-zero storage is completely filled. ♦

Definition 6: A partial fill (PF) refers to an iteration where
the remaining storage at the DB with the smallest remaining
non-zero storage is not completely filled. ♦

To obtain an upper bound on the number of iterations to
fill the DBs, we count the maximum number of possible
PFs and CFs. First, since HePA guarantees the existence of
a (m, t)-FP solution at each iteration, it follows from (27)
that the maximum possible remaining storage at any DB at
that iteration is t′

t . Our proof involves a variable, e, which
counts the number of DBs whose remaining storage equals
the maximum value of t′

t , defined as

e =
N∑

n=1

�

(
m[n] =

t′

t

)
(34)

where � (·) is the indicator function. In the following, for ease
of notation, let m̃ be the ordered remaining storage at the DBs
from largest to smallest such that

m̃[n] = m[�[n]], ∀n ∈ [N]. (35)

The following claim discusses the sufficient condition which
guarantees a CF for a given iteration.

Claim 1: If a given iteration satisfies e = t−1 and N ′ ≥ t+
1, then this iteration must be a CF, and N ′ will be reduced by
at least 1 after that iteration.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 9

Proof: Using e = t− 1 and (29), we obtain

(t− 1)
t′

t
+ m̃[t] + · · ·+ m̃[N ′] = t′, (36)

which follows that m̃[N ′] ≤ t′
t − m̃[t]. By (33), during this

iteration, α[f]KL bits are stored at DB �[N ′] where α[f] =
m̃[N ′]. This completes the proof of Claim 1.

Claim 2: If a given iteration satisfies e ≤ t−1 and N ′ ≥ t+
1, then e will not decrease after that iteration. Moreover, if the
iteration is a PF then e will be increased by at least 1 after
that iteration.

Proof: The e DBs with remaining storage equal to t′
t are

included in the set of t − 1 DBs with the largest remaining
storage since m̃[n] ≤ t′

t for all n ∈ [N] based on the
conditions of (27). Therefore, after an iteration, the remaining
storage of these e DBs are reduced by α[f] and their remaining
storage becomes t′

t − α[f]. Furthermore, let t′′ be the sum
of storage after this iteration. Then, t′′ = t′ − tα[f] and
t′′
t = t′

t −α[f]. Hence, whether the iteration is a PF or CF, e
is not decreasing from one iteration to the next.

Next, if the iteration is a PF, then by (33), we obtain
m̃[N ′] > t′

t −m̃[t]. Therefore, α[f] = t′
t −m̃[t]. Furthermore,

t′′
t = m̃[t]. As the remaining storage at DB �[t] remains
m̃[t] = t′′

t and this DB is not included in the e DBs with
t′
t remaining storage,5 e is increased by at least 1 after this

iteration. This completes the proof of Claim 2.
By Claims 1 and 2, we can conclude that at most t− 1 PFs

and N − t CFs are possible during the execution of the HePA
as N ′ is decreased from N to t. Then when N ′ = t, there are
t DBs with equal remaining storage and the special case of
the HePA which fills the remaining storage of these DBs. As
a result, at most (t− 1) + (N − t) + 1 = N iterations of the
HePA are necessary to completely fill the DBs.

Remark 3: It can also be shown that if N ′ ≥ 2t then an
iteration of the HePA will result in a CF. In other words, the
first N − 2t+ 1 iterations are guaranteed to be a CF.

Remark 4: If m̃[N ′] = t′
t − m̃[t], where m̃ is defined in

(35), then an iteration of HePA will result in a CF and e will
increase by at least 1. Moreover, if there are multiple DBs with
remaining storage equal to m̃[t], then e will increase by more
than 1 if the iteration is a PF. These special cases demonstrate
that sometimes a number of iterations strictly less than N may
be sufficient to fill the DBs as seen in the example of Section
V-B.

C. Comparison to the State-of-the-Art

The state-of-the-art heterogeneous SC-PIR design proposed
in [15] achieves the capacity defined in (11) for integer t.
However, the placement strategy involves solving a linear
program (LP) with

(
N
t

)
variables representing the size of the

sub-libraries placed at all possible sets of t DBs. Solving
such a LP is generally infeasible for large N . Moreover, the
placement solution will have F =

(
N
t

)
sub-messages per

message. Although the solution may yield some sub-messages
with zero-size, there is no guarantee on the maximum number

5This is because that if this DB is included the e DBs with t′
t

remaining
storage, then e ≥ t.

of non-zero sub-messages, except that it will be less than or
equal to

(
N
t

)
. Alternatively, for general heterogenous storage

requirements with integer t, the HePA produces a capacity-
achieving storage solution with at most N sub-messages
per message, F ≤ N . Also, the HePA is feasible for a
large number of DBs as only N iterations are required for
convergence.

VII. A CAPACITY ACHIEVING PLACEMENT DESIGN FOR
NON-INTEGER t

In previous sections, we assumed that t is an integer and
sub-libraries are always stored at t nodes. In practice, t
may not be an integer. In this section, we aim to find a
capacity achieving solution to the general heterogeneous SC-
PIR problem with a non-integer t. The main challenge is
to design a storage sharing scheme that satisfies (27) which
guarantees the existence of a FP solution. The key idea is to
split the storage placement problem into two storage placement
sub-problems with integer t. In the following, we first provide
a motivating example and then derive the sufficient conditions
to meet SC-PIR capacity. A general scheme that meets the
sufficient conditions is presented at the end of this section.

A. An Example for t /∈ Z
+

Let N = 5 with storage requirements defined by

μ =

[
1,

3

5
,

2

5
,

1

5
,

1

5

]
(37)

and t = 12
5 . The HePA cannot operate on these requirements

since t is not an integer. Instead we have to satisfy the
conditions (21) and (22) of Lemma 1. In other words, for each
DB we split the storage into two parts. We define μ(2) and μ(3)

as the set of storage requirements allotted for the
(
μ(2), 2

)
and(

μ(3), 3
)

FPs, respectively, such that μ(2) + μ(3) = μ.
From (21) and (22) of Lemma 1, the elements of μ(2) must

sum to �t�(�t� − t) = 6
5 and the elements of μ(3) must sum

to �t�(t − �t�) = 6
5 . A naive approach is to simply split the

storage of each DB in half:

μ(2) = μ(3) =
1

2
μ =

[
1

2
,

3

10
,

1

5
,

1

10
,

1

10

]
. (38)

While (21) and (22) are met, there is an issue with this
approach since a

(
μ(3), 3

)
-FP solution does not exist. This

is the case since μ(1)[1] = 1
2 > 1

3

∑5
n=1 μ

(3)[n] = 2
5 and

condition (27) of Theorem 2 is not met.
We can use an alternative approach to define the storage

sharing in order to meet Theorem 2 by enforcing μ(2)[1] ≥ 3
5 .

Then, we find

μ(3)[1] + μ(2)[1] = μ[1] = 1 and μ(3)[1] ≤ 1− 3

5
=

2

5
.

(39)

To ensure that there are no issues with the storage sharing of
the other DBs, we enforce

μ(2)[n] ≥ μ[n]− �t�(t− �t�)
�t� = μ[n]− 2

5
, for n = 1, 2, 3, 4, 5

(40)

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 10

such that μ(3)[n] = μ[n] − μ(2)[n] ≤ 2
5 which ensures that

μ(3) has a FP solution. Similarly, we enforce

μ(3)[n] ≥ μ[n]− �t�(�t� − t)

�t� = μ[n]− 3

5
, for n = 1, 2, 3, 4, 5

(41)
so that μ(2) has a FP solution. Using this approach we can
define the data sharing scheme by

μ(2) =

[
3

5
,

1

5
, 0, 0, 0

]
+

[
0,

2

15
,

2

15
,

1

15
,

1

15

]
=

[
3

5
,

1

3
,

2

15
,

1

15
,

1

15

]
(42)

μ(3) =

[
2

5
, 0, 0, 0, 0

]
+

[
0,

4

15
,

4

15
,

2

15
,

2

15

]
=

[
2

5
,

4

15
,

4

15
,

2

15
,

2

15

]
. (43)

Specifically, on the RHS of the first equation of (42) and (43),
the first term ensures Theorem 2 is met. In our general scheme,
we label these terms as m1 and m2, respectively. Then, the
second term is defined such that both of the resulting vectors
sum to 6

5 and (21) and (22) are met which are also defined on
our general scheme. At this point, the HePA can be used to
define the placement of the equivalent

(
μ(2), 2

)
and

(
μ(3), 3

)
FPs.

B. Storage Sharing Sufficient Conditions

Define μ(�t�),μ(�t�) ∈ R
N
+ such that μ(�t�) + μ(�t�) = μ,

N∑
i=1

μ(�t�)[i] = �t�(�t� − t), (44)

N∑
i=1

μ(�t�)[i] = �t�(t− �t�), (45)

and the condition (27) for μ(�t�)[n] and μ(�t�)[n] is given by

μ(�t�)[n] ≤
∑N

i=1 μ
(�t�)[i]

�t� = �t� − t, (46)

μ(�t�)[n] ≤
∑N

i=1 μ
(�t�)[i]

�t� = t− �t� (47)

for all n ∈ [N]. We find that (44) and (45) satisfy (21) and (22)
to achieve heterogeneous SC-PIR capacity. Moreover, (46) and
(47) guarantee that a solution exists to both the (μ(�t�), �t�)-
FP and (μ(�t�), �t�)-FP. Then, split each message Wk into
two disjoint sub-messages, W (�t�)

k of size (�t� − t)L bits and
W

(�t�)
k of size (�t� − t)L bits which are used to for each FP.

These two FPs can then be solved by the HePA.

C. A Storage Sharing Solution

Given μ, the following process will yield a μ(�t�) and μ(�t�)

which meet the above conditions. Define m1,m2 ∈ R
N
+ such

that

m1[n] =
[
μ[n]− (t− �t�)

]+
, (48)

m2[n] =
[
μ[n]− (�t� − t)

]+
(49)

∀n ∈ [N], where [·]+ returns the input if the input is non-
negative, or returns 0 otherwise. Let

r =
�t�(�t� − t)−∑N

n=1 m1[n]

t−∑N
n=1 m1[n]−

∑N
n=1 m2[n]

, (50)

μ(�t�) = m1 + (μ−m1 −m2) · r, (51)

μ(�t�) = m2 + (μ−m1 −m2) · (1− r). (52)

The correctness of this scheme for t /∈ Z
+ is proved in

Appendix D. Note that, the initial memory allocation of m1

and m2 are required to have a FP solution. Then, there are
many design choices to define the remaining memory sharing
and the proposed solution is not unique. Here, we provide one
approach which is to split the remaining memory of each DB
with constant fraction r.

VIII. DISCUSSION

Surprisingly, from homogeneous to heterogeneous SC-PIR,
there is no loss in rate as shown in [15] and no increase
in the number of sub-messages as shown here. The total
number of sub-messages is the product of the number of
sub-messages necessary for the storage and delivery phases.
By using the FS-PIR scheme of [6] for delivery and any of
our proposed placement designs, the total number of sub-
messages per message is at most S = N × (t − 1) < N2.
Amazingly, this implies that SC-PIR, with either homogeneous
or heterogeneous DB storage requirements, may be practical
for a large number of DBs, N . Furthermore, the number
of sub-messages is constant with respect to the number of
messages, K.

Another important aspect is the required message size in
terms of the number of bits using the HePA for the general
heterogeneous SC-PIR problem. The sub-messages have dif-
ferent sizes and α[f]L must be an integer for all f ∈ [F].
In general, the minimum size of L based on the HePA is still
O(N2). However, it appears to be a function of all the distinct
values of μ.

It is possible to use the HePA on a set of homogeneous
storage requirements. It is interesting to observe how the result
compares to HoP1 and HoP2. It can be shown that the HePA
will completely fill t DBs with each iteration until the number
of remaining DBs is N ′ ≤ 2t − 1. This pattern reflects the
storage placement of HoP1 for N

t ∈ Z
+. In fact if N

t ∈ Z
+,

then the HePA will yield the same storage placement as HoP1.
Otherwise, once N ′ ≤ 2t−1, the HePA will place sub-libraries
at the remaining DBs in a cyclic manner mimicking HoP2.

There are several interesting directions for future work.
First, it remains an open problem to determine the minimum
message size L for a given set of storage requirements. It
was shown in [6] that the minimum L of an FS-PIR problem
can be reduced significantly from NK−1 in [7] to N − 1.
The new FS-PIR scheme [6] and proof techniques therein
may be useful to derive the minimum L for the homogeneous
and heterogeneous SC-PIR problems. Second, another work
[9] has considered random placement among databases where
a database stores a bit of a given message with probability
μ0. Interestingly, this placement method was also used in

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 11

[16] for the coded caching problem. It will be meaningful to
examine alternative random placement strategies for the SC-
PIR problem where messages are split into a finite number of
sub-messages.

IX. CONCLUSION

In this work, we proposed capacity-achieving storage place-
ment designs for SC-PIR with both homogeneous and hetero-
geneous storage requirements. The storage placement designs
were developed from scratch and require only a linear number
of sub-messages per message. Moreover, we provided nec-
essary and sufficient conditions to achieve SC-PIR capacity.
We translated the general heterogeneous SC-PIR placement
problem into a filling problem (FP). Then, we proposed an
iterative algorithm that solves the FP in at most N iterations.
With the appropriate choice of FS-PIR delivery scheme, our
designs require at most a number of sub-messages per message
that is quadratic relative to the number of DBs. Compared
to the state-of-the-art SC-PIR designs we demonstrate an
exponential reduction in required message size. Finally, we
showed that while our design was first proposed for the case
of integer t, it can be extended to the case of non-integer t
by splitting the SC-PIR placement problem for the latter case
into two equivalent problems of integer t.

APPENDIX A
PRIVACY OF GENERAL DESIGN ARCHITECTURE

We show the condition of (7) holds when using the GDA.
Let

Q[k]
n = Q

[k]
n,1, . . . , Q

[k]
n,F and A[k]

n = A
[k]
n,1, . . . , A

[k]
n,F (53)

where Q
[k]
n,f and A

[k]
n,f are the query to and response from DB

n when the user is privately downloading the sub-message
Wk,f of the requested message, Wk.6 Furthermore, let

Zn = Zn,1, . . . , Zn,F (54)

where Zn,f is the storage contents of DB n which intersects
the sub-library Mf = W1,f , . . . ,WK,f . Finally, let

Vn,f = Q
[k]
n,f , A

[k]
n,f ,W1,f , . . . ,WK,f , Z1,f , . . . , ZN,f . (55)

The LHS of (7) can be re-written as

I
(
k;Q[k]

n , A[k]
n ,W1, . . . ,WK , Z1, . . . , ZN

)
= I (k;Vn,1, . . . , Vn,F)

=
F∑

f=1

I (k;Vn,f |Vn,1, . . . , Vn,f−1) . (56)

By showing each term of (56) is 0, we can prove the condition
of (7) holds. The first term

I (k;Vn,1) (57)

= I
(
k;Q

[k]
n,1, A

[k]
n,1,W1,1, . . . ,WK,1, Z1,1, . . . , ZN,1

)
6Note that, it is possible that the realization of Q[k]

n,f and A
[k]
n,f are empty

because DB n does not have Wk,f locally stored.

equals 0 because we assume the FS-PIR scheme used in
private. Next, we find

I (k;Vn,f |Vn,1, . . . , Vn,f−1)
(a)
= H (Vn,f |Vn,1, . . . , Vn,f−1)

−H (Vn,f |k, Vn,1, . . . , Vn,f−1) (58)
(b)
= H (Vn,f |Vn,1, . . . , Vn,f−1)−H (Vn,1, . . . , Vn,f |k)

+H (Vn,1, . . . , Vn,f−1|k) (59)
(c)
= H (Vn,f |Vn,1, . . . , Vn,f−1)−H (Vn,1, . . . , Vn,f)

+H (Vn,1, . . . , Vn,f−1) (60)
(d)
= 0 (61)

where (a), (b) and (d) hold from rules of information theory.
Moreover, (c) holds because the FS-PIR scheme for generates
queries such that the distribution of the query, answers, mes-
sages and storage contents are independent of the label of the
desired message, k.

APPENDIX B
PROOF OF THEOREM 2, EXISTENCE OF FP SOLUTION

Proof: The proof is split into two claims.
Claim 3: If a (m, τ)-FP exists then m[n] ≤

∑N
i=1 m[i]

τ for
all n ∈ [N].

We prove Claim 3 by induction. Let B be the basis that
includes all possible {0, 1}-vectors of length N with exactly τ
1s. Define an order to the basis B such that B = {b1, b2, . . .}.
If a (m, τ)-FP solution exists then m =

∑|B|
j=1 α[j]bj for

some α ∈ R
|B|
+ . Define m(k) =

∑k
j=1 α[j]bj . Notice that

m(1) = α[1]b1 and

max
n

m(1)[n] = α[1] =

∑N
i=1 m[i]

τ
. (62)

Now, since m(k+1) = m(k) + α[k + 1]bk+1 and assuming
maxn m

(k)[n] ≤
∑N

i=1 m(k)[i]

τ , we find

max
n

m(k+1)[n] ≤ α[k + 1] + max
n

m(k)[n]

≤ α[k + 1] +

∑N
i=1 m

(k)[i]

τ

=
τα[k + 1] +

∑N
i=1 m

(k)[i]

τ

=

∑N
i=1 m

(k+1)[i]

τ
. (63)

Therefore, by summing every term, α[j]bj , we find m[n] ≤
∑N

i=1 m[i]

τ for all n ∈ [N]. This completes the proof of Claim
3.

Claim 4: If m[n] ≤
∑N

i=1 m[i]

τ for all n ∈ [N] then a (m, τ)-
FP solution exists.

The proof of Claim 4 is as follows. Assume m sums to
some positive number a ∈ R+. Then, the set representing all
possibilities for m is

La =
{
m′ ∈ R

N :
N∑
i=1

m′[i] = a,

0 ≤ m′[n] ≤ a

τ
, ∀n ∈ [N]

}
. (64)

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 12

La is defined by the intersection of 2N half-spaces and 1 plane
and therefore La is convex. Moreover, La is bounded and
closed. Therefore, La is defined by all convex combinations
of its corner points. We aim to show that the corner of points of
La include and only include a constant multiple of all possible
{0, 1}-vectors with exactly τ 1s.

A point m′ ∈ La is a corner point if and only if m′

sums to a and is a unique point that intersects a subset of the
planes m′[n] = 0 and m′[n] = a

τ for n ∈ [N]. We consider
the intersection of all subsets of these planes. Specifically,
consider the intersection of the planes m′[n] = 0 for n ∈ E
and m′[n] = a

τ for n ∈ S where E ,S ⊆ [N] and E ∩ S = ∅.
First, notice that for any pair E ,S such that |E| = N − τ and
|S| = τ , a unique point is defined

m′[n] =

{
a/τ, n ∈ S
0 n /∈ S

(65)

that sums to a and is in La. In other words, any point m′ is a
corner point of La if is has exactly τ non-zero elements and
these elements are equal to a

τ . We have left to show that these
are the only corner points.

Next, notice that if |S| > τ , then
∑N

i=1 m
′[i] > a and

m′ /∈ La is not a corner point. Similarly, if |E| > N − τ ,
then

∑N
i=1 m

′[i] < a and m′ /∈ La is not a corner point.
Furthermore, if |S| < τ , |E| < N − τ and |S ∪ E| = N − 1,
then all but one element of m′ is defined, but by assuming
m′ ∈ La sums to a, the element can be solved for and we
end up with one of the previously defined corner points with
exactly τ non-zero elements. Finally, consider the case where
|S| < τ , |E| < N − τ and |S ∪ E| ≤ N − 2, then at least two
elements of m′ are undefined and the system does not have a
unique solution, therefore, it does not yield a corner point.

Hence, the corner points of La exactly include a constant
multiple of all possible {0, 1}-vectors with exactly τ 1s, or
the basis for the FP. Since any point m ∈ La is a convex
combination of these corner points, there exists a (m, τ)-FP
solution. This holds for all a ≥ 0. This completes the proof
of Claim 4 and also Theorem 2.

APPENDIX C
CORRECTNESS OF THE HETEROGENEOUS PLACEMENT

ALGORITHM

We demonstrate the HePA always converges towards a
solution by first showing that each iteration yields a storage
vector that has a FP solution such that it satisfies conditions
(27) of Theorem 2. We show this by induction. First, from
Remark 2, we know that a (μ, t)-FP solution exists for general
storage requirements μ with integer t. This means that (27) is
satisfied at the beginning of the first iteration f = 1. Next, we
will show that, if a (m, t)-FP solution exists at the beginning
the f -th iteration (at line 5 of Algorithm 1), then a FP solution
exists after the f -th iteration (at line 18 of Algorithm 1). For
ease of notation, let m̃ denote the ordered remaining storage
at the DBs from largest to smallest such that

m̃[n] = m[�[n]], for n ∈ [N]. (66)

Throughout the following we assume the remaining storage
before the f -th iteration, m, satisfies (27) and equivalently m̃
satisfies (27).

Let m′ be the remaining storage at the DBs after the f -th
iteration

m′ = m̃− α[f] · [1, . . . , 1︸ ︷︷ ︸
t−1

, 0, . . . , 0︸ ︷︷ ︸
N ′−t

, 1, 0, . . . , 0︸ ︷︷ ︸
N−N ′

]. (67)

Note that, the elements of m′ are not necessarily in order.
After the f -th iteration, the largest remaining storage at any
DB is either m′[1] = m̃[1] − α[f] or m′[t] = m̃[t]. Using
(27) and (67), we find

m′[1] = m̃[1]− α[f] ≤
∑N

i=1 m̃[i]

t
− α[f] =

∑N
i=1 m

′[i]
t

.

(68)

Also, by (33), α[f] ≤
∑N

i=1 m[i]

t − m[t], then using (67), we
find

m′[t] = m[t] ≤
∑N

i=1 m̃[i]

t
− α[f] =

∑N
i=1 m

′[i]
t

. (69)

Furthermore, for all n ∈ [N ′], α[f] ≤ m̃[N ′] ≤ m̃[n] and
m′[n] ≥ m̃[n] − α[f] ≥ 0. Finally, m′[n] = m̃[n] = 0 for
all n ∈ [N ′ + 1 : N]. Since 0 ≤ m′[n] ≤

∑N
i=1 m′[i]

t for all
n ∈ [N] and the conditions of (27) are met, by Theorem 2, a
(m′, t)-FP solution exists.

Next, we show that in the f -th iteration we always have
α[f] > 0, and thus a non-zero sub-library is placed at the DBs
of Nf . Since a (m, t)-FP solution exists at the beginning the
f -th iteration, i.e., (27) is met, we must have m̃[t] ≤ t′

t . This,
combined with m̃[N ′] > 0 and (33), ensure that α[f] ≥ 0.
Moreover, α[f] = 0 if and only if

m̃[t] =
t′

t
=

∑N
i=1 m̃[i]

t
. (70)

However, in this case we find for all n ∈ [t] that m̃[n] =
m̃[t] = t′

t since∑N
i=1 m̃[i]

t
≥ m̃[n] ≥ m̃[t] =

∑N
i=1 m̃[i]

t
. (71)

This means that N ′ = t and (33) is not used to define α[f].
Instead, we set α[f] = m̃[1] > 0 when N ′ = t.

APPENDIX D
CORRECTNESS OF NON-INTEGER t SCHEME

In this section, when t is not an integer, we will show that
μ(�t�) and μ(�t�) as defined by (51) and (52), respectively, are
non-negative vectors which satisfy the conditions of (44)-(47).
In the following, we show (44) is satisfied.

N∑
n=1

μ(�t�)[n] =
N∑

n=1

m1[n] + r
(
t−

N∑
n=1

m1[n]−
N∑

n=1

m2[n]
)

=

N∑
n=1

m1[n] + �t�(�t� − t)−
N∑

n=1

m1[n]

= �t�(�t� − t). (72)

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 13

In the following, we show (45) is satisfied.
N∑

n=1

μ(�t�)[n]

=
N∑

n=1

m2[n] + (1− r)
(
t−

N∑
n=1

m1[n]−
N∑

n=1

m2[n]
)

=

N∑
n=1

m2[n] + t−
N∑

n=1

m1[n]−
N∑

n=1

m2[n]

− �t�(�t� − t) +
N∑

n=1

m1[n]

= t− �t�(�t� − t) = �t�(t− �t�). (73)

Next, we use the following lemmas which are proven in the
latter part of Appendix D.

Lemma 3: Given the vectors m1 and m2 defined in (48)
and (49), respectively, we have

m1[n] +m2[n] ≤ μ[n], ∀n ∈ [N] (74)

and m1[n] +m2[n] = μ[n], if and only if μ[n] ∈ {0, 1}.7 �
Lemma 4: Given r defined in (50), we have 0 ≤ r < 1. �
Given Lemmas 3 and 4, since m1[n] ≥ 0 and m2[n] ≥ 0

for all n ∈ [N], then μ(�t�) and μ(�t�) have only non-negative
elements. Moreover, 8

μ(�t�)[n] < m1[n] + (μ[n]−m1[n]−m2[n])

= μ[n]−
[
μ[n]− (�t� − t)

]+
≤ �t� − t (75)

for all n ∈ [N]. Hence, (46) is satisfied. Similarly,

μ(�t�)[n] ≤ m2[n] + (μ[n]−m1[n]−m2[n])

= μ[n]−
[
μ[n]− (t− �t�)

]+
≤ t− �t� (76)

for all n ∈ [N] and (47) is satisfied. This completes the proof
of correctness. The rest of this Appendix D is devoted to
proving Lemmas 3 and 4.

A. Proof of Lemma 3

We first prove (74). In the following, according to the value
of μ[n], we have four cases.

1) If μ[n] ≤ t − �t� and μ[n] ≤ �t� − t, then m1[n] =
m2[n] = 0 and

m1[n] +m2[n] = 0 ≤ μ[n]. (77)

2) If μ[n] > t − �t� and μ[n] ≤ �t� − t, then m1[n] =
μ[n]− (t− �t�), m2[n] = 0, and

m1[n] +m2[n] = μ[n]− (t− �t�) < μ[n]. (78)

3) If μ[n] ≤ t − �t� and μ[n] > �t� − t, then m1[n] = 0,
m2[n] = μ[n]− (�t� − t) and

m1[n] +m2[n] = μ[n]− (�t� − t) < μ[n]. (79)

7Note that, when μ[n] ∈ {0, 1} for all n ∈ [N], t is an integer, which is
not the scenario of interest in this section.

8It can be shown for a, b ∈ R that a − [a − b]+ ≤ b by considering the
cases of a ≤ b and a > b.

4) If μ[n] > t− �t� and μ[n] > �t� − t, then

m1[n] +m2[n]
(a)
= 2μ[n]− 1

(b)
≤ μ[n], (80)

where (a) is because (t− �t�) + (�t� − t) = 1 and (b) is
because μ[n] ≤ 1.

By observing cases 1 through 4, m1[n] + m2[n] = μ[n]
if μ[n] = 0, as shown in case 1, or if μ[n] = 1 as shown
in case 4, and otherwise m1[n] + m2[n] < μ[n]. Therefore,
m1[n] + m2[n] = μ[n] if and only if μ[n] ∈ {0, 1}. This
completes the proof of Lemma 3.

B. Proof of Lemma 4

First, we show that the denominator of (50) is strictly
positive. By Lemma 3, m1[n]+m2[n] ≤ μ[n] for all n ∈ [N],
therefore

t−
N∑

n=1

m1[n]−
N∑

n=1

m2[n]

=
N∑

n=1

(μ[n]−m1[n]−m2[n]) ≥ 0. (81)

Furthermore, equality holds in (81) if and only if μ[n] =
m1[n] + m2[n] for all n ∈ [N]. By Lemma 3, we obtain
μ[n] ∈ {0, 1} for all n ∈ [N], which means that in this case
t is an integer (violating our assumption of non-integer t).
Hence, we conclude that the denominator of (50) is strictly
positive.

Next, the numerator of (50) is strictly less than the denom-
inator of (50), which is shown as follows. First, we can see
that

μ[n]
(
�t� − t

) (a)
≤ μ[n]−

[
μ[n]− (�t� − t)

]+
= μ[n]−m2[n],

(82)

where (a) is because μ[n] ≤ 1 and �t� − t < 1. Hence, we
obtain

�t�(�t� − t) < t(�t� − t) =
N∑

n=1

μ[n](�t� − t)

≤
N∑

n=1

(μ[n]−m2[n]) = t−
N∑

n=1

m2[n] (83)

which implies the numerator of (50) is strictly less than the
denominator of (50).

Finally, we need to show that the numerator of (50) is non-
negative. Let v ∈ Z

+ be the number of storage requirements
which are greater than or equal to t− �t�,

v =
N∑

n=1

� (μ[n] ≥ t− �t�) . (84)

Given (84), we establish two upper bounds on
∑N

n=1 m1[n].
The first is given by

N∑
n=1

m1[n] ≤ v(�t� − t). (85)

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 14

This holds because for any n such that μ[n] ≥ t − �t�, we
have

m1[n] = μ[n]− (t− �t�) ≤ 1− (t− �t�) = �t� − t (86)

and there are v such n’s. For any other n such that μ[n] <
t− �t�, we have m1[n] = 0, which does not contribute to the
summation of (85). The second upper bound is given by

N∑
n=1

m1[n] ≤ t− v(t− �t�). (87)

This holds because the cumulative storage of these v DBs is
v(t−�t�)+∑N

n=1 m1[n] and cannot exceed t. It can be shown
that when v < t, (85) is a tighter bound, and when v > t, (87)
is a tighter bound.9 Then by finding the integer v in each
region which gives the largest upper bound, we find

N∑
n=1

m1[n] ≤ �t�(�t� − t), for v < t, (88)

N∑
n=1

m1[n] ≤ t− �t�(t− �t�), for v > t. (89)

Since �t�(�t�−t) = t−�t�(t−�t�), for general v, we conclude
that

∑N
n=1 m1[n] ≤ �t�(�t� − t) and the numerator of (50) is

non-negative. Therefore, we have shown that 0 ≤ r < 1 and
this completes the proof of Lemma 4.

ACKNOWLEDGMENT

Work supported through the National Science Foundation
grants CCF-1817154 and SpecEES-1824558 and the Idaho
National Laboratory (INL) Laboratory Directed Research and
Development (LDRD) Program under DOE Idaho Operations
Office Contract DE-AC07-05ID14517.

REFERENCES

[1] N. Woolsey, R. Chen, and M. Ji, “A new design of private information
retrieval for storage constrained databases,” in 2019 IEEE International
Symposium on Information Theory (ISIT), July 2019, pp. 1052–1056.

[2] N. Woolsey, R. Chen, and M. Ji, “An optimal iterative placement
algorithm for pir from heterogeneous storage-constrained databases,”
in GLOBECOM 2019-2019 IEEE Global Communications Conference.
IEEE, 2019, pp. 1–6.

[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on. IEEE, 1995, pp. 41–50.

[4] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[5] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–
4088, 2017.

[6] Chao Tian, Hua Sun, and Jun Chen, “Capacity-achieving private
information retrieval codes with optimal message size and upload cost,”
IEEE Transactions on Information Theory, vol. 65, no. 11, pp. 7613–
7627, 2019.

[7] H. Sun and S. A. Jafar, “Optimal download cost of private information
retrieval for arbitrary message length,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 12, no. 12, pp. 2920–2932, 2017.

[8] R. Tandon, M. Abdul-Wahid, F. Almoualem, and D. Kumar, “PIR from
storage constrained databases-coded caching meets PIR,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1–7.

9Note that, v is an integer and t is assumed to be a non-integer, therefore
the case of v = t is not considered.

[9] Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus, “The capacity
of private information retrieval from decentralized uncoded caching
databases,” arXiv preprint arXiv:1811.11160, 2018.

[10] M. A. Attia, D. Kumar, and R. Tandon, “The capacity of private
information retrieval from uncoded storage constrained databases,” arXiv
preprint arXiv:1805.04104, 2018.

[11] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Information Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856–
2867, 2014.

[12] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1945–1956, March 2018.

[13] K. Banawan, B. Arasli, and S. Ulukus, “Improved storage for efficient
private information retrieval,” arXiv preprint arXiv:1908.11366, 2019.

[14] C. Tian, H. Sun, and J. Chen, “A shannon-theoretic approach to the
storage-retrieval tradeoff in pir systems,” in 2018 IEEE International
Symposium on Information Theory (ISIT), June 2018, pp. 1904–1908.

[15] K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus, “The capacity
of private information retrieval from heterogeneous uncoded caching
databases,” IEEE Transactions on Information Theory, 2020.

[16] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching
attains order-optimal memory-rate tradeoff,” Networking, IEEE/ACM
Transactions on, vol. 23, no. 4, pp. 1029–1040, Aug 2015.

Nicholas Woolsey (S’17) is a Ph.D. student in the
Department of Electrical and Computer Engineering
at University of Utah. His research interests include
combinatoric designs and algorithms for resource
allocation, coding and efficient communications in
distributed computing, private and caching networks.
From 2014 to 2017, he was an Electrical Engineer
at Northrop Grumman Corporation (NGC), Ogden,
UT developing test and evaluation methods, modern-
ization solutions and signal processing algorithms
for the sustainment of aging aircraft and ground

communication systems. While at NGC, he received the “Outside the Box”
Grant to investigate the design of a modern receiver that interfaces aging
technology and the 2016 Brent Scowcroft Team Award for performing excep-
tional systems engineering work. He received a B.S. degree in Biomedical
Engineering from University of Connecticut in 2012 and M.Eng. degree in
Bioengineering from University of Maryland, College Park in 2015 with a
focus on signal processing, imaging and optics.

Rong-Rong Chen received the B.S. degree in Ap-
plied Mathematics from Tsinghua University, P.R.
China in 1993, and the M.S. degree in Mathematics
and the Ph.D. degree in Electrical and Computer En-
gineering from the University of Illinois at Urbana-
Champaign in 1995, and 2003, respectively. She
was an Assistant Professor at the University of
Utah from 2003-2011 and has been an Associate
Professor from 2011 to present. Her main research
interests are in the area of communication systems
and networks, with current emphasis on distributed

computing, machine learning, caching networks, statistical signal processing,
image reconstructions, and channel coding. She was the recipient of the M. E.
Van Valkenburg Graduate Research Award for excellence in doctoral research
in the ECE department at the University of Illinois at Urbana-Champaign
in 2003. She was a recipient of the prestigious National Science Foundation
Faculty Early Career Development (CAREER) award in 2006. She was rated
among the Top 15% Instructors of College of Engineering at University of
Utah in 2018 and 2017. She has served as an associate editor for IEEE
Transactions on Signal Processing and as a guest editor of IEEE Journal on
Selected Topics in Signal Processing. She has served on the technical program
committees of leading international conferences in wireless communication
and networks.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3010988, IEEE
Transactions on Communications

JOURNAL OF IEEE TRANSACTIONS ON COMMUNICATIONS 15

Mingyue Ji (S’09-M’15) received the B.E. in Com-
munication Engineering from Beijing University of
Posts and Telecommunications (China), in 2006,
the M.Sc. degrees in Electrical Engineering from
Royal Institute of Technology (Sweden) and from
University of California, Santa Cruz, in 2008 and
2010, respectively, and the PhD from the Ming Hsieh
Department of Electrical Engineering at University
of Southern California in 2015. He subsequently was
a Staff II System Design Scientist with Broadcom
Corporation (Broadcom Limited) in 2015-2016. He

is now an Assistant Professor of Electrical and Computer Engineering
Department and an Adjunct Assistant Professor of School of Computing
at the University of Utah. He received the IEEE Communications Society
Leonard G. Abraham Prize for the best IEEE JSAC paper in 2019, the best
paper award in IEEE ICC 2015 conference, the best student paper award in
IEEE European Wireless 2010 Conference and USC Annenberg Fellowship
from 2010 to 2014. He is interested the broad area of information theory,
coding theory, concentration of measure and statistics with the applications
of caching networks, wireless communications, distributed computing and
storage, security and privacy and (statistical) signal processing.

Authorized licensed use limited to: The University of Utah. Downloaded on September 30,2020 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

