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Trajectory Generation on SE(3) for an Underactuated Vehicle with
Pointing Direction Constraints

Mani H. Dhullipalla, Reza Hamrah, Rakesh R. Warier and Amit K. Sanyal

Abstract— This paper addresses the problem of generating
a position trajectory with pointing direction constraints at
given waypoints for underactuated unmanned vehicles. The
problem is initially posed on the configuration space R> x S2
and thereafter, upon suitable modifications, is re-posed as a
problem on the Lie group SE(3). This is done by determining
a vector orthogonal to the pointing direction and using it as the
vehicle’s thrust direction. This translates to converting reduced
attitude constraints to full attitude constraints at the waypoints.
For the position trajectory, in addition to position constraints,
this modification adds acceleration constraints at the waypoints.
For real-time implementation with low computational expenses,
a linear-quadratic regulator (LQR) approach is adopted to de-
termine the position trajectory with smoothness upto the fourth
time derivative of position (snap). For the attitude trajectory,
the thrust direction extracted from the position trajectory is
used to first propagate the attitude to the subsequent waypoint
and then correct it over time to achieve the desired attitude
at this waypoint. Finally, numerical simulation results are
presented to validate the trajectory generation scheme.

I. INTRODUCTION

This paper investigates the problem of generating a trajec-
tory for an underactuated vehicle to maneuver along a given
set of waypoints while simultaneously pointing towards pre-
determined directions at those waypoints. The underactuated
vehicle is modeled as a rigid body with three fully actuated
rotational degrees of freedom (DOF) and one fully actuated
translational DOF. This actuation model includes a wide
range of unmanned vehicles like fixed-wing and rotorcraft
unmanned aerial vehicles (UAVs), unmanned underwater
vehicles (UUVs), and spacecraft. A rigid body with this type
of actuation is controllable globally over its state space as
shown in [1]-[3]. To the best of our knowledge, trajectory
generation, tracking and pointing control with simultaneous
pointing direction constraints at waypoints has not been done
and reported for underactuated multi-rotor UAVs in prior
literature.

Autonomous unmanned vehicles are of interest in appli-
cations that reduce human effort or where human piloting
is infeasible. These applications include, but are not limited
to, precision agriculture, structural inspection, surveillance,
environmental explorations, and photography. The vehicle’s
operation across a diverse class of applications necessitates
safe and reliable guidance, navigation and control schemes.
This aspect is particularly important for operations beyond
visual-line-of-sight (BVLOS). Particular to operations con-
cerning applications like surveillance [4], agriculture [5],
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drone photography or explorations it might be necessary
for the vehicle to point an imager at objects of interest
while maneuvering itself around the environment, and going
through regions of interest.

In this paper, the authors embed the problem of trajectory
generation on R3 x S? to that on SE(3), the Lie group
associated with rigid body motion. This is done by con-
structing a vector orthogonal to the pointing direction at
the waypoint and using it as a thrust vector. Trajectories
on SE(3) have been previously addressed in [6]-[8]. For the
position trajectory, a nominal thrust magnitude is assumed
to add an acceleration constraint to each waypoint. This step
ties the position trajectory with the attitude trajectory through
the thrust vector.

There are multiple ways of generating position trajectories
that satisfy the constraints of position and acceleration at the
waypoints. An integrated guidance and control scheme for
finite-time position and pointing direction tracking of a class
of underactuated vehicles is provided in [9]. However, the
pointing direction trajectories are assumed to be given. Au-
thors in [10] address problems involving constraints on thrust
magnitude and direction using interior point methods of con-
vex optimization. Authors in [11], [12] provide polynomial-
based trajectory schemes in order to address these constraints
at the waypoints. However, constrained trajectory generation
techniques in [11] demonstrate low success rate and don’t
guarantee stability even though these constraints are met for
a small number of waypoints. Any of these approaches can
be used to generate trajectories that satisfy the position and
acceleration constraints at the waypoints. In this work, we
adopt linear-quadratic regulator (LQR) approach and treat
the constraints at the waypoints to be soft. This leads to
a relaxation on satisfying the waypoint constraints exactly
but provides a stable trajectory generation technique that can
handle large numbers of position waypoints to within desir-
able tolerance. Additionally, often the imagers (or sensors)
have a field of view that can accommodate the errors in
position and pointing direction at the waypoints. Once the
position trajectory is determined, the vehicle’s translational
dynamics determines the time trajectory for the thrust vector.
Using this thrust vector direction, the attitude trajectory is
then constructed.

Trajectory generation on the Lie group of rotations, SO(3),
for the attitude have been treated in [13]-[15]. These ap-
proaches use techniques of optimal control on the Lie group
generating finite-time and infinite-time horizon trajectories.
[16], [17] generate trajectories using splines on SO(3). In this
work, the algorithm for attitude trajectory relies on the known
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trajectory of the thrust vector. Depending on how the position
and acceleration constraints are treated, the desired attitude
at the waypoints might have to be corrected. Using the thrust
vector and its derivative, the attitude is propagated forward
in time to the next waypoint. The difference between the
desired and propagated attitudes is compensated over time by
suitably rotating about the thrust vector. We adopt a particular
choice for this compensation, and our numerical simulations
validate this algorithm for attitude trajectory generation. It
is important to emphasize that the attitude trajectory can
be determined with the availability of time trajectory for
thrust direction and does not depend on the kind of position
trajectory adopted.

This paper is organized as follows: Section II provides a
brief introduction to the terminology and establishes prelimi-
nary background necessary. The problem of trajectory gener-
ation is posed and recast in III. Further, this section presents
an algorithm for position trajectory in III-A and utilizing
quantities extracted from this, it details an algorithm for the
attitude trajectory generation in III-B. Section IV presents
numerical results to validate the algorithm discussed. Con-
cluding remarks and future related research directions are
provided in V.

II. MATHEMATICAL PRELIMINARIES

The configuration of an unmanned vehicle modeled as a
rigid body is given by its position and orientation, which
are together referred to as its pose. To define pose of a
vehicle, a coordinate frame B is attached to its body and
another coordinate frame Z is fixed in space and takes the
role of an inertial coordinate frame. Let b € R? denote the
position vector of the origin of frame B with respect to
frame Z, expressed in frame Z. Let R € SO(3) represent
the orientation, defined as the rotation matrix from frame
B to frame Z. SO(3), the special orthogonal group in three
dimensions, is the group of rotations in Euclidean space R®.
The pose of the vehicle can be represented in matrix form
as follows:

s=[5 1] eseo) 1)

where SE(3) € R**4, the special Euclidean group in three
dimensions, is the six-dimensional Lie group of rigid body
motions (translational and rotational) that is obtained as the
semi-direct product of R? with SO(3). A conceptual diagram
depicting a trajectory on SE(3) is given in Fig. 1.

The vehicle satisfies the kinematics relation

b=v, )
R =RQ*, 3

where v is the vehicle’s translational velocity expressed in
frame Z, () is the vehicle’s angular velocity expressed in
frame B and (-)* : R3 — s0(3) C R3*3 is the skew-
symmetric cross product operator that gives the vector space
isomorphism between R? and so(3), the Lie algebra of the

Inertial frame,

I:={XY,Z}

‘Body—ﬁxed frame,
B = {a1, a2, a3}

az

Fig. 1: Trajectory of a UAV between initial and final config-
urations on SE(3).

Lie group SO(3). The dynamics of the vehicle is given by:
mv =f Res — mges, “)
JQ=JQ x Q+1, 5

where m is the mass, e3 = [0 0 1]T, Res is the direction of
thrust, f is the thrust magnitude, J is the moment of inertia
and 7 is the external torque applied to the vehicle [18].

III. TRAJECTORY GENERATION

Let a set of position waypoints in R? be identified by an
index set W = {1,2,..., N}. At each of these waypoints,
position vector b; and pointing direction s;, expressed in
frame Z, are provided i.e.

(bl,sl) S R3 x S2 Vie W.

Let ; be the time taken from the start to reach the it"
waypoint. Therefore the set of waypoints are arranged in the
increasing order of time, i.e, if ¢ > j then t; > ¢; Vi,j € W.
As stated here, the problem of trajectory generation is on
R3 x S2, however it can be posed as a problem of trajectory
generation on SE(3) by defining and utilizing a vector
orthogonal to s;.

Assume that the sensor does not have to point vertically
at any waypoint i.e. s; # tes Vi € W. Using this, define a
unit vector g; as

ez — (eXs;)s;
q; = T T

les — (eg si)sill
such that ¢; | s;. The two orthonormal vectors s; and ¢; at
the i*" waypoint describe the desired attitude R;

Ri=[sixq s . (7

(6)
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The waypoints are now characterized by the desired pose g;
given by

gi = [lgi ﬂ € SE(3) Vie W. (8)

The objective of this paper is to provide a framework to
generate a trajectory in SE(3) that addresses these pose
constraints.

A. Position Trajectory

To generate a position trajectory, a linear-quadratic reg-
ulator (LQR) approach is presented where the constraints
at the waypoints are considered to be soft. The system is
described by the state z(¢) which is the concatenation of
position, velocity, acceleration, jerk and snap of the vehicle
at time ¢ i.e.

o) = o) 0) 50) B0 @l ©)
Using position and four of its derivatives in the state vector
x(t) ensures that the control torque evaluated using (5) is
atleast C* continuous. Because the direction of thrust at the
desired waypoints is pre-determined by the attitude R;, the
output y(t) is constructed so that the desired output y; at the
waypoints is given by

Here a; is the acceleration of the vehicle at the waypoint
given by

a; = —qi — ges (10)
m
assuming a nominal thrust magnitude f € R where ¢; is
given by (6).
The objective function for the position trajectory that is to
be minimized is then given by

N
J= Z(y(ti) - yi)TS(y(ti) — i)

tN 1
+ / 5{a;TQac +uT Ru}dt, (11)
to
subject to the constraint equations
& =Ax + Bu, (12)
y =Clu, (13)
where
012x3  T12x12 012x3
A= B= :
|:03><3 O3><12:| [ngg]
C— I3xs 03x3 03x3 Osxe
03x3 0O3x3 Isx3 Osxe

I, %, is the identity matrix of dimension n, t; is the starting
time and the control input u = b(®)(¢) is the fifth derivative

of position vector called crackle. The augmented objective
function J’ is
N

T =" (yts) — ) "S(y(ti) — i)

i=1
Nolp LT T .

+ {51’ Qw+§u Ru+ A\ (Az + Bu — &) }dt,
t

° (14)

where A € RS is the Lagrange multiplier or co-state that
incorporates the constraint (12) to the objective in (11). Let
the Hamiltonian H be defined as

1 1
H= ixTQx + §uTRu + AT (Az + Bu),

then the conditions for optimality expressed using H are
. OH

Ao 9 —Qz — AT), (16)
Ox
0= _ Ryt BT, (17)
ou
_1a(yt) — yi) LS (y(t:) — vi) 5 _
0 _2 ax(tz) =+ /\(tz ) - )‘(tz )a (18)

where ¢ is the time instant ¢; when approached from times
t > 1; and t; is the time instant ¢; when approached from
times ¢ < t;. These conditions can also be found in [19],
[20]. Expressing the co-state as A(t) = P(t)xz(t) + n(t), the
governing equations for minimizing J' are

P=-PA-ATP_Q+PBR'BTP, (19
= (—A+PBR BT, (20)
i=(A-—BR'BTP)x — BR"'BTy, 1)
u=—R'BY(Pz +1), (22)
with boundary conditions Vi € W \ { N} being
P(t;) = P(t]) + C'SC,
n(t;) =n(t) — CTSy,. (23)

Ati = N, P(ty) = CTSC and n(ty) = —CTSyy. The
equations (19), (20) are solved backward in time starting at
tny and updating the boundary conditions at every ¢;, ¢ < IV
as expressed in (23). Solving these equations determines the
state vector x(t) for all ¢ € [to, tn]. The state vector provides
acceleration a(t) of the vehicle at every instant ¢ € [to, tn].
This implies that the thrust direction ¢(t) can be determined
as follows:

g(t) = 9% +af(t) '

lges +a(t)]|

In order to track the obtained position trajectory, the
desired attitude trajectory has to be generated such that the
direction of R(t)es, the third column vector of the rotation
matrix R(t), agrees with the thrust direction given in (24),
and the direction of R(¢;)es aligns with the desired pointing
direction s;. This is done in the following subsection.

(24)
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B. Attitude Trajectory

The position trajectory obtained in III-A provides the
thrust direction ¢(t), in (24), at every instant ¢. Since the
constraints at the waypoints are soft, the desired thrust
direction ¢; in (6) could be different from ¢(¢;) Vi € W.
Therefore the desired attitudes R; and pointing directions s;
at the waypoints stated in (7) have to be corrected.

1) Corrected desired attitude RS: Let RS be the corrected
attitude such that

RS = [s¢ x q(t;) s¢ q(t:)],

where s{ is the corrected pointing direction. The corrected
pointing direction s¢ L ¢(t;) is then given by

o Si~ (s¥q(t))a(t:) .
S fIsi = (sTa(t)a(t) |

Note that as ¢(t;) = ¢;, RS — R;.

(25)

(26)

2) Attitude trajectory R(t): The direction of thrust is
known from the position trajectory, so the attitude trajectory
R(t) has to be generated such that

R(t)es = q(t) ¥Vt € [to, tN], 27

and R(t;) = RS. Let the angular velocity §2(¢) of the vehicle,
expressed in the body frame B, be of the form

Q(t) = R(1) T (q(t) x 4(t) + alt)q(t)),

where a(t) € R. This choice of (t) is such that §(t) =
R(t)Q(t) x q(t). The derivative ¢(t) is arrived at by differ-
entiating the expression for ¢(t) in (24)

a(t) — (a(t)Tq(t)q(t)
lges + a(t)|| '

As a consequence, the thrust direction constraint expressed
in (27) is satisfied V¢ € [to,tn]. It remains to determine an
appropriate function «(t) such that R(t;) = RS. The choice
for «(t) is addressed piecewise.

The algorithm between two waypoints at time instances
t;—1 and t; is as follows:

q(t) =

 Propagate the attitude R(¢;—1) forward in time to the
instant ¢; using the kinematics relation

R = RO*,

where (t) is such that a(t) = 0 Vt € [t;_1,t;]. Let
this attitude be RY.

o Determine the difference between the propagated atti-
tude RY and the corrected desired attitude RS using the
relation

O; = logsos) (R{TRY), 28)

where O); is the exponential coordinate characterized by
principal angle and principal axis. The logarithmic map
loggos)(+) is defined in [21].

o Since Rfes = RYe3 = ¢(t;) and the relation between
RS and R is rotation about the third body axis eg, the
exponential coordinate O; is of the form

91’ = (AGZ)es,

where A#; is the principal angle of rotation. In other
words, the attitude R? has to be rotated by an angle
Ab; about its z—axis, Rles.

o This implies that the rotation in plane over the time
(t; — t;—1) should accumulate to Af;. Therefore the
function «/(t) is chosen such that

t;

ti—1

(29)

(30)

o To avoid discontinuities in control torque that might
arise while combining this scheme with attitude tracking
controls used in [1], [18], [22], [23], it is desirable to
ensure that Q(t;) = Q(t;"). Because ¢(t) is continuous
and differentiable, the choice for «(t) is such that

d d

%a(t”t; = @a(t)‘tj'
Note: The algorithm described above provides steps to arrive
at a function «/(t) defined piecewise. It can also be extended
to find «(t) globally i.e. V¢ € [to, tn].

3D

3) Choice for a(t): There are numerous choices for «(t)
satisfying the conditions (30), (31). In this work, «(t) is
chosen to be a fourth order polynomial

at) = ci(t —ti_1)?(t — t;)? (32)

having double roots at the waypoints ¢t = t;_1,¢;. This
ensures C? continuity in the angular velocity (¢) and mini-
mizes the number of coefficients that need to be determined.
The choice also makes it convenient to evaluate the integral

ti
AG; = / a(t)dt

ti—1

Ci

= = (ti —ti1)°,
it ti)

(33)
and thus the coefficient c;.

Using the attitude dynamics in (5), the torque 7 can be
evaluated.
Remark: It is necessary to note that the position and attitude
trajectories, as described in III-A and III-B respectively,
can be used in unison with trajectory tracking algorithms
on SE(3) such as [9], [22]. For online implementation,
the user generates, a priori, a trajectory through first few
waypoints with pointing direction constraints. This trajectory
can be tracked in real-time using [9], [22]. Simultaneously, if
subsequent set of waypoints are available then the algorithm
described in this work generates a C* continuous trajectory
addressing pointing direction constraints for further tracking.

IV. NUMERICAL RESULTS

This section presents numerical simulation results for an
unmanned aerial vehicle of mass m = 4.34 kg and moment
of inertia J

0.820 0 0
J=1| 0 00845 0 |kgm?
0 0  0.1377
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The vehicle starts from rest at origin i.e. by = O3x1 and its
initial state is considered to be x(tp) = 015x1. The vehicle’s
initial attitude, without loss of generality, aligns with the
inertial frame Z, therefore the initial pose is

0 1
g(to) = |: 30><1 3£<3:| )

where starting time ¢y = 0 s. Four waypoints are specified.
The waypoints b; are obtained from the expressions:

1+ 2 i,

)COS* 1+2, . Tt
2 20

b; =[4( 5 )sm%

6(

0.6t;] (34)
where t; = 4i Vi € W = {1, 2, 3,4}. The pointing directions
at these waypoints are

Sp —b;

—Vie W,
1S5p = bi|

(35)

S; —

where a sphere, centered at Sp = (—5,0,4) m as shown in
Fig. 2(a), is considered to be the object of interest. Using (6)
the thrust direction g; at the waypoints is determined. Fig.
2(a) shows the trajectory maneuvering around the waypoints
and pointing towards the object of interest. Pointing direction
shown in Fig. 2(b) demonstrates the trajectory on S? passing
through the desired pointing directions at the waypoints that
are displayed using markers. The thrust direction is shown
in Fig. 2(c). The thrust and torque magnitudes based on the
dynamics model given by equations (4)-(5), are depicted in
Fig. 2(d), (e) respectively. These magnitudes are reasonable
considering the vehicle’s inertial parameters and typical
actuator capabilities onboard such a vehicle.

V. CONCLUSIONS AND FUTURE WORK

A trajectory generation scheme with pointing direction
constraints is formulated for autonomous operations of an
underactuated vehicle, a rigid body with one actuated trans-
lational degree of freedom and three actuated rotational
degrees of freedom, that can model UAVs, UUVs and space-
craft. The scheme embeds the trajectory generation problem
from R3 xS? onto SE(3). This step ties the position trajectory
with the attitude trajectory through the thrust vector that is
orthogonal to the pointing direction. This modification adds
acceleration constraints to the waypoints and the scheme
uses an LQR approach to generate a position trajectory of
appropriate smoothness. The attitude trajectory is generated
using the time trajectory of thrust direction obtained as
a result of the position trajectory. This is done by first
propagating forward in time to the next waypoint in order to
determine the difference between the propagated and desired
attitudes. The difference amounts to planar rotation about
the thrust vector. This difference is corrected over the path
to attain the desired attitude. Numerical simulation results
demonstrate the validity of the scheme. Future work would
explore stable feedback tracking schemes on the Lie group
SO(3) to generate and track the attitude trajectory.
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