Journal of Parallel and Distributed Computing 147 (2021) 64-76

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

bl

DLHub: Simplifying publication, discovery, and use of machine
learning models in science

Zhuozhao Li *** Ryan Chard ®, Logan Ward ", Kyle Chard *><, Tyler]. Skluzacek?,
Yadu Babuji ¢, Anna Woodard ?, Steven Tuecke "¢, Ben Blaiszik "¢, Michael]. Franklin ?,
lan Foster &<

@ Department of Computer Science, University of Chicago, Chicago, IL, USA
b Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
€ Globus, University of Chicago, Chicago, IL, USA

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 9 November 2019
Received in revised form 7 July 2020
Accepted 3 August 2020

Available online 27 August 2020

Machine Learning (ML) has become a critical tool enabling new methods of analysis and driving
deeper understanding of phenomena across scientific disciplines. There is a growing need for “learning
systems” to support various phases in the ML lifecycle. While others have focused on supporting
model development, training, and inference, few have focused on the unique challenges inherent in
science, such as the need to publish and share models and to serve them on a range of available
computing resources. In this paper, we present the Data and Learning Hub for science (DLHub), a
learning system designed to support these use cases. Specifically, DLHub enables publication of models,
with descriptive metadata, persistent identifiers, and flexible access control. It packages arbitrary
models into portable servable containers, and enables low-latency, distributed serving of these models
on heterogeneous compute resources. We show that DLHub supports low-latency model inference
comparable to other model serving systems including TensorFlow Serving, SageMaker, and Clipper,
and improved performance, by up to 95%, with batching and memoization enabled. We also show
that DLHub can scale to concurrently serve models on 500 containers. Finally, we describe five case
studies that highlight the use of DLHub for scientific applications.

© 2020 Elsevier Inc. All rights reserved.

Keywords:
Learning systems
Model serving
Machine learning
DLHub

1. Introduction

Learning systems are an important new class of systems de-
signed to support the many phases of the Machine Learning (ML)
lifecycle (see Fig. 1). Various learning systems have been devel-
oped to support model development [10,24]; scalable training
across thousands of cores and GPUs [4]; model publication and
sharing [6]; and low-latency and high-throughput inference [22].

The rapid adoption of ML across science, for example to design
and discover new materials and molecules [55,56]; to detect and
make cancer diagnoses [32] and to enhance patient care [48]; to
act as surrogates for more expensive simulations [27,47]; and to
guide genome-editing capabilities [30], brings with it unique and
urgent challenges. For example, there is a need to discover, reuse,
and reproduce models published in the literature to validate
and extend cutting-edge results; publish models with descriptive

* Corresponding author at: Department of Computer Science, University of
Chicago, Chicago, IL, USA.
E-mail address: zhuozhao@uchicago.edu (Z. Li).

https://doi.org/10.1016/j.jpdc.2020.08.006
0743-7315/© 2020 Elsevier Inc. All rights reserved.

metadata and persistent identifiers for discovery and unambigu-
ous citation; and to scalably and reliably execute models on the
myriad resources available to researchers.

In this paper, we present the Data and Learning Hub for
science (DLHub) and outline initial experiences applying this
learning system to science. While many learning systems focus
on building and training ML models [1,4,29], DLHub is a unique
learning system that is designed to support the publication and
serving of ML models in science. DLHub is implemented as a
cloud-hosted service that allows researchers to deposit and share
models of various types, including TensorFlow [1], Keras [20],
PyTorch [43], and Scikit-learn [44]. It defines common metadata
schemas for describing these models and the parameters and
other inputs used to invoke them. It also implements a rich access
control model that allows users to publish their models privately,
publicly, or with a select group of other users.

DLHub offers a unique model serving infrastructure that is
capable of serving many different types of models on a range of
distributed computing resources including clouds, clusters, and
supercomputers. The serving infrastructure builds upon funcX
[15,17]—a distributed Function-as-a-Service platform developed

Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76 65

Repeat until desired accuracy

|

Serve

D Create/ Train/
Input data Update Test
Model Model

Evaluate
Model

/ MoneI

N

Publish
Model

Reuse/extend model ‘

Fig. 1. ML lifecycle, adapted from Miao et al. [36].

specifically to support remote and distributed execution of func-
tions. DLHub implements a flexible pipeline that converts
deposited models into servables—executable containers that im-
plement a standard DLHub execution interface, irrespective of the
model type, and includes the trained model, model components
(e.g., training weights, hyperparameters), and dependencies (e.g.,
system or Python packages). DLHub registers these published
functions with funcX which then allows the servables to be trans-
ferred and deployed to remote computing resources and invoked
one or more times on different input arguments. funcX elastically
provisions compute nodes (e.g., via cloud API or batch scheduler)
in response to workload requirements, deploys special funcX
worker agents in servable containers for fine-grain execution, and
then manages the secure and reliable execution of inference tasks.

In this paper, we extend our previous work [16,19] by out-
lining the new DLHub architecture that is able to serve models
on arbitrary distributed resources using funcX. This architecture
also allows researchers to use their own resources when invoking
models published in DLHub.

We evaluate the performance of DLHub by showing that it
can scale to hundreds of concurrent containers when deployed
on different resources including a supercomputer, cluster, and
Kubernetes cluster. and compare it against alternative learning
systems. We show that DLHub performs comparably with other
systems, such as TensorFlow Serving [41] and SageMaker [4],
when using a Kubernetes cluster. Finally, we show that memo-
ization and batching can significantly improve performance and
that DLHub can serve models on remote computing resources in
less than 75 ms.

The remainder of the paper is structured as follows. In Sec-
tion 2, we outline the need for, and unique requirements of,
learning systems in science. In Section 3, we survey a range of
model repository and serving systems. In Section 4, we present
the DLHub architecture and describe how it supports publication
and serving. In Section 5, we evaluate DLHub by exploring the
serving latency and scalability, performance optimizations, and
comparing it against three related systems. Finally, in Section 6,
we present case studies that highlight the benefits of DLHub in
science, and we summarize our contributions in Section 7.

2. Specialized requirements of science

Increasingly sophisticated learning systems are being devel-
oped, in particular by cloud providers, to support commercial ML
use cases. However, scientific use of ML has specialized require-
ments, including the following.

Publication, citation, and reuse: The scholarly process is built
upon a common workflow of publication, peer review, and cita-
tion. Progress is dependent on being able to locate, verify, and
extend prior research, and careers are built upon publications
and citation. As scholarly objects, ML models should be subject to
similar publication, review, and citation models. Lacking standard
methods for doing so, (a) many models associated with published

literature are not available [26]; and (b) researchers adopt a range
of ad hoc methods (from customized websites to GitHub) for
sharing ML models [2,25,59].

Reproducibility: Concerns about reproducibility are having a
profound effect on research [9]. While reproducibility initiatives
have primarily focused on making data and experimental pro-
cesses available to reproduce findings, there is a growing interest
in making computational methods available as well [13,39,50].

Unlike sharing software products, there is little guidance for
sharing ML models and their artifacts (e.g., weights,
hyper-parameters, and training/test sets). Without publishing
these artifacts, it is almost impossible to verify or build upon
published results. Thus, there is a growing need to develop stan-
dard ML model packages and metadata schema, and to provide
rich model repositories and serving platforms that can be used to
reproduce published results.

Research infrastructure: While industry and research share
common requirements for scaling inference, the execution land-
scape differs. Researchers often want to use multiple (often
heterogeneous) parallel and distributed computing resources to
develop, optimize, train, and execute models. Examples include:
laboratory computers, campus clusters, national cyberinfrastruc-
ture (e.g., XSEDE [53], Open Science Grid [46]), supercomputers,
and clouds. They often have their own resources that they would
like to use for inference. Thus, learning systems need to support
execution on different resources and enable migration between
resources.

Scalability: Large-scale parallel and distributed computing en-
vironments enable ML models to be executed at unprecedented
scale. Researchers require learning systems that simplify training
and inference on enormous scientific datasets and that can be
parallelized to exploit large computing resources.

Low latency: ML is increasingly being used in real-time sci-
entific pipelines, for example to process and respond to events
generated from sensor networks; classify and prioritize transient
events from digital sky surveys for exploration; and to perform
error detection on images obtained from X-ray light sources.
There is a need in each case for low latency, near real-time ML
inference for anomaly/error detection and for experiment steer-
ing purposes. As both the number of devices and data generation
rates continue to grow, there is also a need to be able to execute
many inference tasks in parallel, whether on centralized or “edge”
computers.

Research ecosystem: Researchers rely upon a large and grow-
ing ecosystem of research-specific software and services: for ex-
ample, Globus [18] to access and manage their data; community
and institution-specific data sources (e.g., the Materials Data Fa-
cility [11] and Materials Project [28]) as input to their ML models;
and research authentication and authorization models (e.g., using
campus or ORCID identities).

Model in the loop: Scientific analyses often involve multiple
steps, such as the staging of input data for pre-processing and
normalization, extraction of pertinent features, execution of one

66 Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76

Table 1
Model repositories compared and contrasted. BYO = bring your own.

ModelHub Caffe Zoo ModelHub.ai Kipoi DLHub
Publication method BYO BYO Curated Curated BYO
Domain(s) supported General General Medical Genomics General
Datasets included Yes Yes No No Yes
Metadata type Ad hoc Ad hoc Ad hoc Structured Structured
Search capabilities SQL None Web GUI Web GUI Elasticsearch
Identifiers supported No BYO No BYO BYO
Versioning supported Yes No No Yes Yes
Export method Git Git Git/Docker Git/Docker ~ Docker

or more ML models, application of uncertainty quantification
methods, post-processing of outputs, and recording of prove-
nance. There is a growing need to expose models with simple
and secure Web interfaces for on-demand consumption such that
models can be used in cohesive, shareable, and reusable scientific
workflows.

3. Learning systems: A brief survey

We define a learning system as “a system that supports any
phase of the ML model lifecycle including the development, train-
ing, inference, sharing, publication, verification, and reuse of a ML
model”. To elucidate the current landscape, we survey a range of
existing systems, focusing on those that provide model repository
and serving capabilities. Model repositories catalog collections
of models, maintaining metadata for the purpose of discovery,
comparison, and use. Model serving platforms facilitate online
model execution.

A repository or serving platform may be provided as a hosted
service, in which case models are deployed and made available to
users via the Internet, or self-service, requiring users to operate
the system locally and manage the deployment of models across
their own infrastructure.

3.1. Model repositories

Model repositories catalog and aggregate models, often by
domain, storing trained and untrained models with associated
metadata to enable discovery and citation. Metadata may be
user-defined and/or standardized by using common publication
schemas (e.g., author, creation date, description, etc.) and ML-
specific schemas. ML-specific metadata include model-specific
metadata (e.g., algorithm, software version, network architec-
ture), development provenance (e.g., versions, contributors),
training metadata (e.g., datasets and parametrization used for
training), and performance metadata (e.g., accuracy when applied
to benchmark datasets). Model repositories may provide the
ability to associate a persistent identifier (e.g., DOI) and citation
information such that creators may receive credit for their efforts.

Table 1 summarizes four representative model repositories
plus DLHub along the following dimensions; we describe each
repository in more detail below.

e Publication and curation: Whether models can be con-
tributed by users and if any curation process is applied.

e Domain: Whether the repository is designed for a single
domain (e.g., bioinformatics) or for many domains.

e Model types: What types of ML models can be registered in
the repository (e.g., any model type, TensorFlow).

e Data integration: Whether data (e.g., training/test datasets)
and configuration (e.g., hyperparameters) can be included
with the published model.

e Model metadata: Whether the repository supports publi-
cation of model-specific metadata, model building require-
ments, and/or invocation metadata.

e Search capabilities: What search mechanisms are provided
to allow users to find and compare models.

o Model versioning: Whether the repository facilitates ver-
sioning and updates to published models.

e Export: Whether the repository allows models to be ex-
ported, and if so, in what format.

ModelHub [36] is a deep learning model lifecycle manage-
ment system focused on managing the data artifacts generated
during the deep learning lifecycle, such as parameters and logs,
and understanding the behavior of the generated models. Using
a Git-like command line interface, users initialize repositories to
capture model information and record the files created during
the creation process. Users then exchange a custom-built model
versioning repository, called DLV, through the hosted service
to enable publication and discovery. ModelHub is underpinned
by Git, inheriting versioning capabilities, support for arbitrary
datasets, scripts, features, and accommodates models regardless
of domain. A custom SQL-like query language, called DQL, allows
ModelHub users to search across repositories on characteristics
such as authors, network architecture, and hyper-parameters.

Caffe Model Zoo [14] is a community-driven effort to publish
and share Caffe [29] models. Users contribute models via Dropbox
or GitHub Gists. The Model Zoo provides a standard format for
packaging, describing, and sharing Caffe models. It also provides
tools to enable users to upload models and download trained
binaries. The Model Zoo operates a community-edited Wiki page
to describe each of the published models, aggregating informa-
tion regarding manuscripts, citation, and usage documentation
in an unstructured format. The project encourages open sharing
of models, trained weights, datasets, and code through GitHub.
The Model Zoo provides guidelines on how to contribute models
and what metadata should be included in the accompanying
readme.md file without enforcing a specific schema. Users typ-
ically include citation information, links to the project page, a
GitHub address for the model’s code, and in some cases, a link
to haystack.ai where the model can be tested.

ModelHub.ai [38] is a service to crowdsource and aggregate
deep learning models related to medical applications. Model-
Hub.ai has a Web interface that lets users review published
models, experiment with example inputs, and even test them
online using custom inputs. The service provides detailed doc-
umentation and libraries to package models into a supported
Docker format. Once packaged, users can add the model and any
associated metadata to the ModelHub GitHub repository and sub-
mit a pull-request. The contributed model is curated and added
to the catalog. The ModelHub.ai project provides both a Flask
and Python API to interact with Dockerized models, which can
be retrieved by either downloading the Docker image or cloning
the GitHub repository.

Kipoi [6] is a repository of trained models for genomics that
includes more than 2000 models of 21 different types. It pro-
vides a command line interface (CLI) for publishing and accessing
models. On publication, the CLI prompts the user for descrip-
tive metadata and generates a configuration file containing the

Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76 67

Table 2
Serving systems compared and contrasted. K8s = Kubernetes.
PennAl TensorFlow Serving Clipper SageMaker Algorithmia DLHub
Service model Hosted Self-service Self-service Hosted Hosted Hosted
Model types Limited TensorFlow Servables General General General General
Input types supported Unknown Primitives, Files Primitives Structured, Files Unknown Structured, Files
Training supported Yes No No Yes No No
Transformations No Yes No No No Yes
Invocation interface Web GUI gRPC, REST gRPC, REST gRPC, REST API, REST API, REST
Execution environment Cloud Docker, K8s, Cloud Docker, K8s Cloud, Docker Docker, K8s, Cloud Docker, K8s, Singularity, Cloud

metadata needed to discover and run the model. Users can then
publish their models by submitting a pull-request to the Kipoi
GitHub repository. Models can be listed and retrieved through the
API and then invoked locally.

3.2. Model serving

ML model serving platforms provide on-demand model infer-
ence. Existing model serving platforms vary in both their goals
and capabilities: for example, some focus on serving a specific
type of model with extremely low latency, while others prioritize
ease of use and simple inference interfaces. We have identified
the following important dimensions to capture the differences
between model serving platforms. Table 2 summarizes popular
model serving platforms plus DLHub along these dimensions.

e Service model: Whether the platform is offered as a hosted
service or requires self-service deployment.

e Model types: What languages and types are supported (e.g.,
TensorFlow, Scikit-learn, R, Python, etc.).

e Input types: The range of input types supported by the
system (e.g., structured, files, or primitive types).

e Training capabilities: Whether the system supports train-
ing.

o Transformations: Whether pre-/post-processing steps can
be deployed.

e Invocation interface: What methods of interaction with the
models are supported.

e Execution environment: Where models are deployed (e.g.,
cloud, Kubernetes, Docker).

PennAl [40] provides model serving capabilities for biomed-
ical and health data. The platform allows users to apply six ML
algorithms, including regressions, decision trees, SVMs, and ran-
dom forests to their datasets, and to perform supervised classifi-
cations. The PennAl website provides a user-friendly interface for
selecting, training, and applying algorithms to data. The platform
also exposes a controller for job launching and result tracking,
result visualization tools, and a graph database to store results.
PennAl does not support user-provided models, but does provide
an intuitive mechanism to train classification tools and simplify
the integration of ML into scientific processes.

TensorFlow Serving [41] is the most well-known model serv-
ing solution and is used extensively in production environments.
TensorFlow Serving provides high performance serving via gRPC
and REST APIs and is capable of simultaneously serving many
models, with many versions, at scale. TensorFlow Serving pro-
vides the lowest latency serving of any of the surveyed plat-
forms. It serves trained TensorFlow models using the standard
tensorflow_model_server, which is built in C++. Although
TensorFlow Serving does support a range of model types - those
that can be exported into TensorFlow servables - it is limited
in terms of its support for custom transformation codes and
does not support the creation of pipelines between servables.
TensorFlow Serving is also self-service, requiring users to deploy
and operate TensorFlow Serving on local (or cloud) infrastructure

in order to deposit models and perform inferences. TensorFlow
also provides model repository capabilities through a library of
reusable ML modules, called TensorFlow Hub.

Clipper [22] is a prediction serving system that focuses on low
latency serving. It deploys models as Docker containers, which
eases management complexity and allows each model to have
its own dependencies wrapped in a self-contained environment.
Clipper includes several optimizations to improve serving per-
formance including data batching and memoization. Clipper also
provides a model selection framework to improve prediction ac-
curacy. However, because Clipper needs to Dockerize the models
on the manager node, it requires privileged access, which is not
available on all execution environments (e.g., high performance
computing clusters).

SageMaker [4] is an ML serving platform provided by Amazon
Web Services that supports both the training of models and the
deployment of trained models as Docker containers for serving.
It helps users to handle large data efficiently by providing ML
algorithms that are optimized for distributed environments. Sage-
Maker APIs allow users to deploy a variety of ML models and
integrate their own algorithms. In addition, trained models can
be exported as Docker containers for local deployment.

Algorithmia [3] is an industry platform for deploying and
scaling ML models in the cloud for production use. Algorith-
mia creates a GitHub repository for each published model be-
fore containerizing it with Docker and making it available via
the Internet. Model deployments are elastically scalable and can
leverage accelerators, enabling users to tune performance. Al-
gorithmia provides users with fine-grained access control for
sharing and disseminating their contributions. While many of
Algorithmia’s capabilities overlap with DLHub, we provide addi-
tional capabilities to enrich scientific ML, such as making models
citable, reusable, and deployable on existing research computing
infrastructures.

Kubeflow [34] is a collection of open source ML services that
can be deployed to provide a fully-functional ML environment
on a Kubernetes cluster. The system simplifies the deployment of
various ML tools and services, including those to support model
training, hyper-parameter tuning, and model serving. Kubeflow
also integrates Jupyter Notebooks to provide a user-friendly in-
terface to many of these services. Model serving in Kubeflow uses
TensorFlow Serving, so we have not included it in our summary
table.

4. DLHub architecture and implementation

DLHub is a learning system that provides model publishing
and serving capabilities for scientific ML. DLHub’s model repos-
itory supports user-driven publication, citation, discovery, and
reuse of ML models from a wide range of domains. It offers rich
search capabilities to enable discovery of, and access to, published
models. DLHub automatically converts each published model into
a “servable”—an executable DLHub container that implements a
standard execution interface and comprises a complete model
package that includes the trained model, model components (e.g.,
training weights, hyperparameters), and any dependencies (e.g.,

68 Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76

[cu

J (_spk_J

REST

N

L

Catalog

Repository

Model Search

Management Service

Serving Sites
Queue Map Forwarders 2MQ EndpointA %

=>
Bl
(ool o B

funcX Service

Fig. 2. DLHub architecture. User requests, submitted via REST, SDK, or CLI (top), can result in model publication to a catalog or the dispatch of serving requests to

servables deployed on any computing resources with a funcX endpoint (right).

system or Python packages). DLHub can then “serve” the model
by deploying and invoking one or more instances of the servable
on execution site(s). DLHub provides high throughput and low-
latency model serving by dispatching tasks in parallel to the
remote execution site(s). DLHub implements a flexible inference
system, built upon the funcX distributed function as a service
platform [17], via which inference tasks can be executed on
arbitrary computing resources. The DLHub architecture, shown in
Fig. 2, comprises two core components: the Management Service
and Catalog and the distributed Inference Execution System.

4.1. Management service and catalog

DLHub’s Management Service is the user-facing interface to
DLHub. It enables users to publish models and query available
models. The Management Service includes functionality to build
models and optimize task performance.

Model repository: The primary function of the Management
Service is to support the publication and discovery of models.
DLHub defines a general model schema that is used to describe
all published models. The schema includes standard publication
metadata (e.g., creator, date, name, description) as well as ML-
specific metadata such as model type (e.g., Keras, TensorFlow)
and input and output data types. These metadata are registered
with a search catalog to enable flexible discovery.

Model discovery: DLHub’s discovery interface supports fine-
grained, access-controlled search across registered model meta-
data. It provides a rich search model, in which model metadata
can be queried using free text queries, partial matching, range
queries, faceted search, and more through both the DLHub CLI
and SDK.

Model publication: In order to provide a common model
execution interface irrespective of model type, DLHub converts
all published models into executable servables. DLHub provides
two publication pipelines for users to publish models: either
by directly uploading model components as well as descrip-
tive metadata for building the servable to the DLHub service, or
importing from a remote location and uploading minimal DLHub-
specific metadata (e.g., model type and entry point) defined in
a DLHub-specific JSON file. In both cases the servable is up-
loaded to the model repository and any user-supplied metadata
is registered alongside the servable location in the search index.

Implementation: DLHub supports several publication modes,
for example, a user can choose to (1) upload model components
directly to DLHub; (2) specify a remote location on an AWS S3
bucket or Globus endpoint; or (3) provide a GitHub location for
DLHub to clone. Irrespective of the publication mode, the Man-
agement Service accesses, transfers, or downloads the published
model components and builds a servable in a DLHub-compatible

format. DLHub first uses repo2docker [23] to build a base con-
tainer environment, incorporating all user-defined dependencies.
It then uses the base container to build a servable by adding
DLHub-specific components and interfaces. DLHub uses Amazon
Elastic Container Registry as the servable repository. The meta-
data for each published servable is indexed in a Globus Search
catalog [5]. Globus Search is built upon Elasticsearch, providing
the flexibility to accommodate diverse scientific metadata.

4.2. Model descriptions

We have developed a metadata schema to describe published
models and encode authorship, provenance, dependency, and
interface metadata. Our schema achieves two key goals: first, it
enables model developers to describe the information necessary
for others to use their model; and second, it encodes the “recipe”
for DLHub to create, deploy, and serve the model.

The schema first encodes information necessary for humans
to understand and use a model (e.g., its inputs, training config-
uration, and outputs). It must include the type of model (e.g.,
a TensorFlow model) and any configuration information that is
required (e.g., the model’s weights file).

The model description also includes metadata needed for DL-
Hub to construct the servable. Specifically, it defines the com-
putational environment, software dependencies, and associated
files necessary to create, deploy, and execute a servable. When
defining the environment and dependencies, a model developer
can list the necessary Python packages, configuration files (e.g.,
a model’s weights file or license information), or repo2docker
configuration files.

Implementation: The DLHub model description schema is
publicly accessible and builds upon prior work and standards. We
use the DataCite [49] metadata schema to describe provenance,
ownership, references to associated artifacts (e.g., code reposito-
ries, publications, and datasets), human-readable descriptions of
the model, and persistent identifiers.

DLHub provides tools to simplify the description process by
automatically extracting information from the environment (e.g.,
Python package versions) and from the model implementation.
For example, the DLHub tools can identify the types and shapes
of a Keras model’s inputs/outputs that are stored within the
HDF5 model file. The DLHub SDK reads this information from
the HDF5 file, enabling the creation of a valid model definition
in just three lines of code. The DLHub SDK provides similar tools
to help users generate DataCite-compatible metadata, define the
computational environment, and describe other types of models.

Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76 69

4.3. Inference execution system

DLHub coordinates the execution of inference tasks on remote
resources. This architecture focuses on high performance and
low latency model inference as well as flexibility in terms of
where inference tasks are executed. Specifically, DLHub allows
researchers to execute inference tasks on Kubernetes clusters,
HPC resources, or clouds using various container technologies
(e.g., Docker, Singularity or Shifter), on edge devices, or even on
their own execution resources using any of these containerization
mechanisms.

DLHub supports both synchronous and asynchronous task ex-
ecution. In asynchronous mode, the DLHub SDK returns a task
UUID that can be used subsequently to monitor the status of the
task and retrieve its result.

Implementation: DLHub’s on-demand inference is built on
the funcX distributed Function-as-a-Service platform. We briefly
describe funcX and outline how it is used by DLHub.

funcX: funcX enables the managed execution of functions—
snippets of Python code—on arbitrary remote resources. Users
can register and discover functions through a cloud-hosted ser-
vice and then execute those functions with arbitrary input pa-
rameters on arbitrary endpoints. Where an endpoint abstracts a
specific compute resource, whether a single edge device or a
supercomputer, in a manner defined by the funcX agent software.

The funcX service implements a secure task execution model
with hierarchical queues for reliability. Tasks are submitted to the
funcX Web service where they are queued for execution. A Python
Forwarder process is operated for each endpoint. The Forwarder
retrieves tasks from the cloud-hosted queues and transmits them
to the endpoint via a secure, low-latency, and reliable message
communication channel. Once delivered to the endpoint, tasks
are internally queued until they can be scheduled for execution
on the resource. Results are returned via the same channel and
deposited in a result queue until they can be retrieved by the
user. funcX uses a Redis store to implement the cloud-based
queues. Redis is an easy-to-scale, in-memory key-value store.
Each function execution request is stored in a Redis hashmap and
the task identifier is added to the endpoint’s queue. funcX uses
ZeroMQ to establish high performance communication channels
between the forwarder and endpoint.

Endpoints: A funcX endpoint is a logical representation of
a computational resource. The corresponding funcX agent de-
ployed on that resource implements an API that allows the funcX
service to dispatch functions for execution. The agent handles
authentication and authorization, provisioning of nodes on the
compute resource, transfer of function containers, staging of data,
and monitoring and management. Administrators or users can
deploy an endpoint agent and register an endpoint for themselves
and/or others, providing descriptive (e.g., name, description) and
execution (e.g., container technology, scheduler) metadata. Each
endpoint is assigned a unique identifier for subsequent use.

The funcX agent uses Parsl [7,8] to dynamically acquire com-
pute nodes, deploy servable containers, and execute functions on
those deployed containers. Parsl implements a modular execution
model that supports various common cluster and supercomputer
schedulers as well as common cloud computing providers. In
each case, it uses platform-specific mechanisms to request nodes,
deploy pilot job software, dispatch tasks to workers, monitor
progress, and report on results. On a Kubernetes cluster, for
example, the endpoint creates a Kubernetes Deployment con-
sisting of n pods for each servable that is to be executed, a
number configurable in the Management Service. The funcX agent
then deploys worker engines in each servable container which
connect back to retrieve execution requests. The funcX agent
dispatches requests to the appropriate containers, load balancing
them automatically across the available pods.

DLHub and funcX: When a user publishes a model to DLHub,
we create and register a function with funcX and associate it with
the DLHub servable container. This allows funcX to deploy the
servable on-demand to perform DLHub invocations. When a user
invokes a servable using DLHub the request is routed to a DLHub-
operated funcX endpoint. The funcX agent will then deploy the
servable and, once the servable is ready, deliver the request
for execution. The funcX agent is responsible for deploying and
managing servables, monitoring incoming requests from DLHub
(via the funcX service), and then executing waiting tasks. The
funcX agent can be deployed in Docker environments, Kubernetes
clusters, HPC resources via Singularity or Shifter, or locally via any
of these containerization mechanisms.

4.4. Security

DLHub implements a comprehensive security model to ensure
that all operations are performed by authenticated and autho-
rized users. DLHub’s security model allows users to authenti-
cate using one of hundreds of supported identity providers (e.g.,
campus, ORCID, Google). When authenticating, the Management
Service first validates the user’s identity, and then retrieves short-
term access tokens that allow it to obtain profile information
about the user, to access/download data on their behalf, and
to compute inference tasks on their behalf. These capabilities
allow DLHub to precomplete publication metadata using profile
information and also to transfer model components and inputs
from arbitrary locations.

DLHub relies on container technology to provide secure exe-
cution sandboxes for inference isolation, ensuring inference tasks
cannot interfere with other tasks and can only access data and
computing resources within the specified context.

DLHub stores hashes of published models to ensure the in-
tegrity of models executed both within our serving infrastruc-
tures and when deployed locally. However, this approach does
not protect users against downloading models published mali-
ciously. In this case, users must determine the safety of the model
by trusting the author or manually inspecting the servable code
before execution. Importantly, DLHub exposes the publisher’s
authenticated identity (in most cases an institution identity) and
thus makes it possible to verify the author. We are actively
exploring methods to further validate published servables. We
intend to encourage users to follow the Findable, Accessible,
Interoperable, and Reusable (FAIR) principles [35] when they
publish their models to DLHub. We also aim to investigate de-
veloping a community-driven governance system in which users
can review and recommend servables.

Implementation: DLHub uses Globus Auth [54] for authen-
tication and authorization. Globus Auth is a flexible identity
and access management service that is designed to broker au-
thentication and authorization decisions between users, identity
providers, resource servers, and clients. The DLHub Management
Service is registered as a Globus Auth resource server with an
associated scope for programmatic invocation. funcX, and funcX
endpoints, are also registered as independent Globus Auth re-
source servers, enabling secure routing of inference tasks to
compute endpoints.

4.5. DLHub interfaces

DLHub offers a REST API, a Python Software Development
Kit (SDK), and a Command Line Interface (CLI) for publishing,
managing, and invoking models.

The DLHub Python SDK supports programmatic construction
of JSON documents that specify publication and model-specific
metadata that complies with DLHub schemas. The SDK can then

70 Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76

37 ms 2ms

>

<1 ms

Service —_— Forwarder

18 ms
-+

15 ms 2ms

>
<1ms
Worker

Endpoint -+

Fig. 3. Latency breakdown for no-op DLHub servable on Cooley cluster.

be used to publish the model by uploading the JSON metadata
documents. The SDK also supports programmatic interactions
with DLHub to discover, update, and invoke published models.

The DLHub CLI provides an intuitive Git-like user interface
to interact with DLHub. It provides commands for initializing
a DLHub servable in a local directory, publishing the servable
to DLHub, creating metadata using the SDK, and invoking the
published servable with input data.

5. Evaluation

To evaluate DLHub we conducted experiments to explore
its serving performance, the impacts of memoization and data
batching, and scalability on different compute resources. We also
compared its serving performance against TensorFlow Serving,
Clipper, and SageMaker.

5.1. Experimental setup

Platforms. We deployed funcX endpoints on three different
clusters: Theta [52], Cooley [21], and PetrelKube [45] at Argonne
National Laboratory. Theta is a supercomputer with 4392 nodes,
each containing a 64-core Intel Xeon Phi “Knights Landing" (KNL)
processor, 16 GB MCDRAM, 192 GB of DDR4 RAM, and intercon-
nected with high speed InfiniBand. Cooley is a cluster designed
for data analysis. It has 126 computing nodes, each equipped
with 12 CPU cores, one NVIDIA Tesla K80 dual-GPU, 384 GB RAM
per node and InfiniBand interconnect. PetrelKube is a 14-node
Kubernetes cluster, each containing two E5-2670 CPUs, 128GB
RAM, and 40GbE network interconnect.

Servables. We use six servables in our evaluation.

The first is a baseline “no-op” task that returns “hello world”
when invoked.

The second is Google’s 22-layer Inception-v3 [51] model
(“Inception”). Inception is trained on a large academic dataset
for image recognition and classifies images into 1000 categories.
Inception takes an image as input and outputs the five most likely
categories.

The third is a multi-layer convolutional neural network trained
on CIFAR-10 [33] (“CIFAR-10"). This common benchmark prob-
lem for image recognition takes a 32 x 32 pixel RGB image as
input and classifies it in 10 categories.

The final three servables are part of a workflow used to pre-
dict the stability of a material given its elemental composition
(e.g., NaCl). The model is split into three servables: parsing a
string with pymatgen [42] to extract the elemental composi-
tion (“matminer_util”’), computing features from the element
fractions by using Matminer [57] (“matminer_featurize”), and
executing a scikit-learn random forest model to predict stability
(“matminer_model”). The model was trained with the features
of Ward et al. [55] and data from the Open Quantum Materials
Database [31].

We create both Singularity and Docker containers for all these
six servables to be served on Theta (Singularity), Cooley (Singu-
larity), and Kubernetes (Docker).

5.2. Experiments

To remove bias we disable DLHub memoization mechanisms
and restrict data batch size to one in the following experiments,
except where otherwise noted.

5.2.1. Latency

We study the latency imposed by each component in DL-
Hub. To do so, we deployed the “no-op” servable to a warmed
container on the Cooley cluster, and instrumented each system
component to record start and finish times. Fig. 3 shows the
breakdown of total execution time at the funcX web service,
forwarder, endpoint, and worker, in addition to network trans-
port times. We see that of the total 72 ms round-trip time, the
“no-op” function spends a combined 54 ms across all system
components, and 18 ms traversing the network. We observe that
the overhead for executing the function on the worker is just
2 ms. A majority of the system latency is due to queuing and
authorization calls at the web service (37 ms total), and when
dispatching the servable request from the endpoint to the worker
(15 ms total). This implies that the DLHub inference execution
system incurs minimal latencies.

I Without-mem
I With-mem

[Without-mem
With-mem

8 Without-mem T
5 With-mem - 0.6]
pe)
| Q
£4 E
< 3 2 0.4 ‘
= =)
[)
3 21 k]
(=18 2
51 £]
} iy ©
ol i M B s e 0.0
Y & . : ;
O’OQ & ‘2—'\9 c&\ & & RO N
s R < . & N N R &
& () S 2 & & &
N ‘_(Q & & N &
NSRS ,5&.@ ¥
&

(a) Caching on Theta.

(b) Caching on Cooley.

e@ 4—._I_‘
Completion time (s)
o I o o o
() Lyl i i @
\)0.
|
"

wfﬂ‘

< “ N
N i & R N a2 2
& K & & 3 & P N &
> < @ Al g 2 <&
& & & o) & & &
& & & & N

$,é&\ W~ N 6"@

& &

(c) Caching on PetrelKube.

Fig. 4. Performance impact of memoization on Theta, Cooley, and PetrelKube. Bars and error bars show mean and standard deviation.

Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76 71

Batch size

(b) Batching on Cooley.

No-op @ 2.0q No-op
Inception ‘77,' Inception
CIFAR-10 D 1.5 CIFAR-10
Matminer-util > Matminer-util
Matminer-featurize < 1.0 Matminer-featurize
Matminer-model g ' Matminer-model

“E’ 0.5

£

0.0q
102 103 100 10! 102 103

Batch size

(c) Batching on PetrelKube.

Fig. 5. Time per request versus batch size on Theta, Cooley, and PetrelKube.

6,
o No-op = 0.6
T Inception L+
) CIFAR-10 3
S 4 X X 9}
o Matminer-util 2 0.4
7} . - .
= Matminer-featurize o
@ Matminer-model o
o 2 g
m o 021
£ £
= F

(05 0.0

100 10! T1b? 103 109 1

Batch size
(a) Batching on Theta.

6000 N
— 0-op —
2 Inception j:’ 2004
o

CIFAR-10 £
€ £
E= 40001 Matminer-util 5 1501
5 Matminer-featurize 5
= Matminer-model % 1007
3 2000+ a
: £ 5o
o o
0
10° 101 102 103 10° 10!

Number of containers

(a) Scaling on Theta.

Number of containers

(b) Scaling on Cooley.

No-op 12504 No-op
Inception U Inception
CIFAR-10 o 1000} CIFAR-10
Matminer-util S 7504 Matminer-util
Matminer-featurize 5 Matminer-featurize
Matminer-model 2 5001 Matminer-model

°

E 250

o

0_
162 103 16° 10! 102 103

Number of containers

(c) Scaling on PetrelKube.

Fig. 6. Scalability performance.

5.2.2. Memoization

DLHub implements memoization [37], at the funcX endpoint,
to cache the inputs and outputs for each request and return
the cached output for a new request if its inputs are in the
cache. While memoization is not necessarily applicable to all ML
models, we have found it useful in cases with repeated execution
of deterministic models with the same arguments (e.g., content
recommendation). To investigate the effect of memoization on
serving performance we submitted requests with the same in-
puts, with memoization enabled and disabled. Fig. 4 shows the
total completion time of requests. We observe that memoiza-
tion reduces total completion time by 10%-95%, as it removes
the time to compute the inference. The total completion time
with memoization enabled for different servables are relatively
consistent (around 0.2-0.4s, primarily due to network latencies
and system overheads). The performance improvements differ
between models due to the variance of computation time and
input size.

5.2.3. Batching

DLHub supports batching of requests to improve overall
throughput by amortizing system overheads and network laten-
cies over many requests. To study how performance varies with
batch size we deployed funcX endpoints on Theta, Cooley and
PetrelKube and limited the number of deployed containers of
each servable to one. We then sent a batch of invocations to each
servable and increased the batch size (i.e., the number of invoca-
tions in a single query) from 1 to 1024. Fig. 5 shows the time per
request versus the batch size. The time per request is computed
as the total completion time of a batch divided by the batch size.
We observe that all servables follow a similar trend: as the batch
size increases, the time per request decreases. This is because
batching amortizes system overheads and network latencies over
many requests. The benefit of batching starts to diminish as the
batch size becomes large. This is because the computation on each
servable begins to dominate the total completion time. Similarly,
the computation using Theta KNL nodes is relatively slow, causing

the computation time to account for a greater percentage of the
total completion time. The result is that batching is less beneficial
on Theta than on other platforms. In future work, we intend
to develop servable profiles and to explore adaptive batching
algorithms that can intelligently distribute serving requests to
reduce latency.

5.2.4. Scalability

We evaluate the scalability of DLHub by sending inference
requests to connected funcX endpoints. We report only the scal-
ability of the endpoints as the other components are hosted
on AWS services, which are known to be highly scalable. We
deployed funcX endpoints on Argonne’s Theta, Cooley, and Pe-
trelKkube computers with varying numbers of containers for each
of the six servables. We set 64 and 12 containers per node on
Theta and Cooley, respectively. On PetrelKube, Kubernetes will
automatically manage the container deployment to nodes. We
performed 1000 requests of each servable to the endpoints di-
rectly and measured the completion time of all requests. Fig. 6
shows the results on different platforms.

Our results show that the endpoint can easily deploy hundreds
of containers for each servable. However, we also see that scala-
bility is dependent on the servable itself. For example, when serv-
ing Matminer-featurize requests, throughput increases rapidly up
to ~32 containers, after which more containers have diminish-
ing benefits and throughput is saturated, because task dispatch
latencies dominate execution time. As expected, servables that
execute for shorter periods of time (e.g., Matminer-model) show
less benefit as additional containers are used, and vice versa.

5.2.5. Serving comparison

We used CIFAR-10 and Inception to compare the serving per-
formance of TensorFlow Serving, SageMaker, Clipper, and DLHub
when hosted on the PetrelKube Kubernetes cluster For Tensor-
Flow Serving, we export the trained models and use the standard
tensorflow_model_server. For SageMaker, we use the Sage-
Maker service to create the models before exporting the model

72 Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76

250 _I_ 3 DLHub
3 SageMaker-Flask
@ sageMaker-TFServing-gRPC
£ [SageMaker-TFServing-REST
) [TFServing-gRPC
E 150 A [TFServing-REST
g [cdlipper-without-caching
F 100 4 3 dlipper-with-caching
243
50 H
55
0

Inception

CIFAR-10

Fig. 7. Performance of different serving systems on the Inception and CIFAR-10 problems.

as a Docker container and deploy it as a Pod on PetrelKube. For
Clipper, we use its Kubernetes container manager to deploy it
on PetrelKube and register the CIFAR-10 and Inception models.
For DLHub we use a funcX endpoint deployed on PetrelKube. To
standardize our measurements we remove network overheads by
submitting tasks directly to each platform and report the average
time from 100 requests for each model and platform.
TensorFlow Serving provides two model serving APIs: REST
and gRPC. SageMaker also supports serving TensorFlow models
through TensorFlow Serving or its native Flask framework. In
our experiments, we explore all possible APIs and frameworks,
i.e., TFServing-REST, TFServing-gRPC, SageMaker-TFServing-REST,
SageMaker-TFServing-gRPC, SageMaker-Flask. In addition, as Clip-
per supports caching, we evaluate it with and without caching.
Fig. 7 shows the invocation times of CIFAR-10 and Inception
using each serving system. We see that the servables invoked
through the TensorFlow Serving framework (i.e., TFServing-gRPC,
TFServing-REST and SageMaker-TFServing) outperform those us-
ing other serving systems (SageMaker-Flask and DLHub). This is
because the core tensorflow_model_server, implemented in C++,
outperforms Python-based systems. gRPC leads to slightly better
performance than REST due to the overhead of the HTTP protocol.
Clipper performs similarly to other systems when caching is en-
abled. The clipper caching model maintains a cache at the query
frontend (on a PetrelKube pod) and therefore performance is not
significantly better than other systems as it requires that the re-
quest be transmitted to the query frontend. DLHub’s performance
is comparable to the other Python-based serving infrastructures.

6. Case studies

To illustrate the value of DLHub we briefly outline five case
studies that exemplify early adoption of the system.

6.1. Publication of cancer research models

The Cancer Distributed Learning Environment (CANDLE)
project [58] leverages leadership scale computing resources to
address problems relevant to cancer research at different biolog-
ical scales, specifically problems at the molecular, cellular, and
population scales. CANDLE uses DLHub to securely share and
serve a set of deep learning models and benchmarks using cellular
level data to predict drug response based on molecular features
of tumor cells and drug descriptors. As the models are still in
development, they require substantial testing and verification by
a subset of selected users prior to their general release. DLHub
supports this use case by providing model sharing and discovery

with fine grain access control. Thus, only permitted users can
discover and invoke the models through the platform. Once
models are determined suitable for general release, the access
control on the model can be updated within DLHub to make them
publicly available.

6.2. Enriching materials datasets

The Materials Data Facility [11,12] (MDF) is a set of data
services developed to enable data publication and data discovery
in the materials science community. MDF allows researchers to
distribute their data, which may be large or heterogeneous, and
rapidly find, retrieve, and combine the contents of datasets in-
dexed from across the community. MDF leverages several models
published in DLHub to add value to datasets as they are ingested.
When a new dataset is registered with MDF, automated work-
flows [5] are applied to trigger the invocation of relevant models
to analyze the dataset and generate additional metadata. MDF
extracts and associates fine-grained type information with each
dataset which are closely aligned with the applicable input types
described for each DLHub model.

6.3. Quality control for SEM images

DLHub is used by researchers studying the neuroanatomical
structure of brains with a scanning electron microscope (SEM).
Scientists produce films of thin brain slices and use the SEM to
obtain images of the slices. A key limitation is the lack of built-in
quality control mechanisms, and thus it is difficult to determine if
the collected image is of suitable quality to be used in subsequent
stitching and segmentation processes. These scientists use a set of
models published in DLHub to automatically identify low quality
images. Specifically they use five different focus detection models,
and apply an ensemble methodology to determine if the image is
of suitable quality.

6.4. X-ray tomography with generative adversarial networks

X-ray computed tomography is a common imaging modality
used at synchrotrons to understand the structure of materials. To
avoid damaging samples, low-dose imaging with short exposure
times are often used. Unfortunately, low-dose imaging can result
in noisy measurements and low quality images. TomoGAN applies
a Generative Adversarial Network (GAN) approach to improve
the quality of 3D tomography images by reducing noise and
eliminating artifacts. TomoGAN, a TensorFlow model, was easily
published in DLHub by ingesting the SavedModel directory and

Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76 73

] 0.6 0.4
c 0.75 0.15-
© 0.34 0.4
5 0.50+ 47 i
_-§ 0.2+ 0.10 0.2
B~ 0.25 0.2+ 0.05
A 0.1 L
0. 1 0.00 T T 0.0—=5 T — 0.00 T T 0.0o T
8.25 0.50 0.51.01.5 1 2 3 15.0 17.5 25 50
Invocation time (s)
Formation
enthapy CANDLE MDF TomoGAN SEM

Fig. 8. Distribution (computed by the number of occurrences divided by the total number of invocations) of invocation times for 100 invocations, for each of the

five use cases with DLHub.

generating a DLHub model description. The published TomoGAN
model can be used by tomography researchers to process images
uploaded via HTTPS. The resulting, denoised images are returned
in a matter of minutes. The elastic scalability of DLHub allows
researchers to trivially parallelize evaluation of each tomography
frame. We are working with researchers to make the published
model part of their research workflow.

6.5. Predicting formation enthalpy

DLHub makes it easy to link models plus pre- and post-
processing transformations in pipelines to simplify the user expe-
rience. For example, a pipeline for predicting formation enthalpy
from a material composition (e.g., SiO;) can be organized into
three steps: (1) conversion of material composition text into a
Python object; (2) creation of a set of features, via matminer [57],
using the Python object as input; and (3) prediction of formation
enthalpy using the matminer features as input. Once the pipeline
is defined, the end user sees a simplified interface that allows
them to input a material composition and receive a formation
enthalpy. This and other more complex pipelines are defined as
a series of modularized DLHub servables. Defining these steps
as a pipeline allows data to be automatically passed between
each servable, enabling execution to be performed server-side,
drastically lowering both the latency and user burden to analyze
inputs.

6.6. Evaluation

We have evaluated the invocation time and scalability of DL-
Hub for each use case on PetrelKube. Fig. 8 shows the distribution
of invocation time for each use case, where x axis shows the
invocation time and y axis shows the distribution of invocation

100007 -
E Formation TomoGAN
] MDF SEM
—_ 1 CANDLE
2 10007
(0] 3]
£
-+ 4
S 1005
=]
i)]
Q]
§ 1
o 0§
1— T T T T T
8 16 32 64 128 256

Number of containers

Fig. 9. Completion times for 1000 concurrent invocations versus varying number
of workers, for each of the five use cases with DLHub.

time (computed by the number of occurrences divided by the
total number of invocations). We see that each servable can be
rapidly used with short execution times and that the distributions
of the invocation times for all use cases except SEM are within
a three-second range and relatively stable. The SEM use case ex-
hibits a wider distribution than the other use cases due to variable
network performance when downloading the input image to the
container.

Fig. 9 shows the scalability of each use case. We measured the
completion times for 1000 concurrent invocations versus varying
number of workers, for each of the five use cases with DLHub.
We see that DLHub can scale each servable to more than 200
containers and that throughput is significantly increased in each
case. We note that the benefit of scaling Formation and CANDLE
use cases begins to diminish when using more than 200 contain-
ers. This is primarily because the constant system overheads (e.g.,
network and task dispatching latencies) start to dominate the
completion times of Formation and CANDLE, as DLHub continues
to scale. MDF presents a flatter trend than the other use cases due
to the input data being downloaded from a single source and our
experiments saturating the network connection.

6.7. Discussion

We briefly discuss the lessons learned by using DLHub in these
five use cases. Prior to using DLHub, these use cases required a
substantial amount of human effort to manually manage model
versions, publish and share models with others, deploy complex
software environments on distributed computing resources, and
reliably deploy models for real-time inferences at scale.

DLHub provides several benefits: First, DLHub manages differ-
ent versions of the same model, removing challenges associated
with tracking model versions and using incorrect versions. A key
side effect of this is that researchers are able to deploy new
versions of their models and compare the performance to any of
the previously published versions. Second, DLHub’s on-demand
inference system abstracts the complexity of deploying models at
different computing resources and enables researchers to easily
deploy their models at scale, without requiring expert knowl-
edge of batch submission interfaces and computing architectures.
Finally, the containerization of models allows researchers to se-
curely share models with others, removing the burden of porting
models and environments to other locations.

7. Conclusion

The broad adoption of ML in science has necessitates the
development of new learning systems to meet the unique re-
quirements of science use cases. We have described one such
learning system, DLHub, that is designed to address inefficiencies
in two important phases of the ML lifecycle, namely the publi-
cation and serving of ML models plus associated data. DLHub’s

74 Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76

flexible publication and sharing capabilities enable researchers to
deposit and describe models using a common metadata schema
to enable discovery. It also enables association of a persistent
identifier for citation of published models. DLHub’s scalable and
low-latency model serving infrastructure enables the remote exe-
cution of containerized models on arbitrary computing resources.
We showed that DLHub performs comparably with other serving
platforms on Kubernetes clusters, while also enabling execu-
tion on clouds and clusters. We also showed that its memoiza-
tion and batching optimizations can significantly improve serving
performance.

CRediT authorship contribution statement

Zhuozhao Li: Conceptualization, Methodology, Software, Data
curation. Ryan Chard: Conceptualization, Methodology, Software,
Data curation. Logan Ward: Conceptualization, Methodology, Soft-
ware, Data curation. Kyle Chard: Funding acquisition, Project ad-
ministration, Supervision, Writing - review & editing, Resources,
Conceptualization. Tyler J. Skluzacek: Conceptualization, Method-
ology, Software, Data curation. Yadu Babuji: Conceptualization,
Methodology, Software, Data curation. Anna Woodard: Concep-
tualization, Methodology, Software, Data curation. Steven Tuecke:
Project administration, Supervision, Writing - review & edit-
ing. Ben Blaiszik: Funding acquisition, Project administration,
Supervision, Writing - review & editing, Resources, Conceptu-
alization. Michael J. Franklin: Supervision, Writing - review &
editing, Resources. Ian Foster: Funding acquisition, Project ad-
ministration, Supervision, Writing - review & editing, Resources,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported in part by Laboratory Directed Re-
search and Development (LDRD) funding from Argonne National
Laboratory and the RAMSES project, both from the U.S. Depart-
ment of Energy under Contract DE-AC02-06CH11357, the De-
fense Advanced Research Projects Agency under Grant Num-
ber HR00111820006, and NSF under Grant Numbers 1550588,
1931298, and 2004894. We thank Amazon Web Services for re-
search credits and Argonne’s Leadership Computing Facility and
Joint Laboratory for System Evaluation for computing resources.

References

[1] M. Abadi, P. Barham,]. Chen, Z. Chen, A. Davis,]. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al., TensorFlow: A system for large-scale
machine learning, in: OSDI, Vol. 16, 2016, pp. 265-283.

[2] A. Agrawal, A. Choudhary, An online tool for predicting fatigue strength
of steel alloys based on ensemble data mining, Int.]. Fatigue 113 (2018)
389-400.

[3] Algorithmia, 2019, https://algorithmia.com/. Accessed September 4, 2020.

[4] Amazon SageMaker, 2020, https://docs.aws.amazon.com/sagemaker/latest/
dg/whatis.html. Accessed September 4, 2020.

[5] R. Ananthakrishnan, B. Blaiszik, K. Chard, R. Chard, B. McCollam,]. Pruyne,
S. Rosen, S. Tuecke, I. Foster, Globus platform services for data publication,
in: Practice and Experience on Advanced Research Computing, ACM, 2018,
pp. 14:1-14:7.

[6] Z. Avsec, R. Kreuzhuber,]. Israeli, N. Xu,]. Cheng, A. Shrikumar, A. Banerjee,
D.S. Kim, L. Urban, A. Kundaje, O. Stegle,]. Gagneur, Kipoi: Accelerating the
community exchange and reuse of predictive models for genomics, 2018,
http://dx.doi.org/10.1101/375345, bioRxiv.

[7] Y. Babuji, K. Chard, I. Foster, D.S. Katz, M. Wilde, A. Woodard, J. Wozniak,
Parsl: Scalable parallel scripting in Python, in: 10th International Workshop
on Science Gateways, 2018.

[8] Y. Babuji, A. Woodard, Z. Li, D.S. Katz, B. Clifford, R. Kumar, L. Lacinski,
R. Chard, J.M. Wozniak, I. Foster, M. Wilde, K. Chard, Parsl: Pervasive
parallel programming in python, in: Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing, in:
HPDC '19, ACM, New York, NY, USA, 2019, pp. 25-36, http://dx.doi.org/10.
1145/3307681.3325400.

[9] M. Baker, 1,500 scientists lift the lid on reproducibility, Nature 533 (2016)
452-454, http://dx.doi.org/10.1038/533452a.

[10] P. Balaprakash, A. Tiwari, S.M. Wild, L. Carrington, P.D. Hovland, Auto-
MOMML: Automatic multi-objective modeling with machine learning, in:
International Conference on High Performance Computing, Springer, 2016,
pp. 219-239.

[11] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, I. Foster, The
materials data facility: Data services to advance materials science research,
JOM 68 (8) (2016) 2045-2052.

[12] B. Blaiszik, L. Ward, M. Schwarting, J. Gaff, R. Chard, D. Pike, K. Chard, L.
Foster, A data ecosystem to support machine learning in materials science,
MRS Commun. 9 (4) (2019) 1125-1133.

[13] A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M.B. Jones, K. Kowalik,
S. Kulasekaran, B. Ludscher, B.D. Mecum,]. Nabrzyski, V. Stodden, L].
Taylor, M.J. Turk, K. Turner, Computing environments for reproducibility:
Capturing the “Whole Tale”, Future Gener. Comput. Syst. (2018).

[14] Caffe model zoo, 2020, http://caffe.berkeleyvision.org/model_zoo.html.
Accessed September 4, 2020.

[15] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Foster,
K. Chard, FuncX: A federated function serving fabric for science, in:
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, in: HPDC '20, ACM, 2020, http://dx.
doi.org/10.1145/3369583.3392683.

[16] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard, S. Tuecke, B.
Blaiszik, M.J. Franklin, I. Foster, Dlhub: Model and data serving for science,
in: IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2019, pp. 283-292, http://dx.doi.org/10.1109/IPDPS.2019.00038.

[17] R. Chard, TJ. Skluzacek, Z. Li, Y. Babuji, A. Woodard, B. Blaiszik, S. Tuecke,
L. Foster, K. Chard, Serverless supercomputing: High performance function
as a service for science, 2019, arXiv:1908.04907.

[18] K. Chard, S. Tuecke, I. Foster, Globus: Recent enhancements and future
plans, in: XSEDE16 Conference on Diversity, Big Data, and Science at Scale,
ACM, 2016, p. 27.

[19] R. Chard, L. Ward, Z. Li, Y. Babuji, A. Woodard, S. Tuecke, K. Chard, B.
Blaiszik, 1. Foster, Publishing and serving machine learning models with
dlhub, in: Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (Learning), in: PEARC '19, ACM, New
York, NY, USA, 2019, pp. 73:1-73:7, http://dx.doi.org/10.1145/3332186.
3332246.

[20] F. Chollet, Deep Learning with Python, Manning Publications, 2017.

[21] Cooley, 2020, https://www.alcf.anl.gov/resources-expertise/analytics-
visualization. Accessed September 4, 2020.

[22] D. Crankshaw, X. Wang, G. Zhou, M. Franklin, J.E. Gonzalez, 1. Stoica,
Clipper: A low-latency online prediction serving system, in: 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017, pp. 613-627.

[23] J. Forde, T. Head, C. Holdgraf, Y. Panda, G. Nalvarete, B. Ragan-Kelley,
E. Sundell, Reproducible research environments with repo2docker, in:
Reproducibility in Machine Learning Workshop, 2018.

[24] Google cloud AutoML, 2020, https://cloud.google.com/automl/. Accessed
September 4, 2020.

[25] E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J.
Carrete, N. Mingo, A. Tropsha, S. Curtarolo, AFLOW-ML: A restful API
for machine-learning predictions of materials properties, Comput. Mater.
Sci. 152 (2018) 134-145, http://dx.doi.org/10.1016/j.commatsci.2018.03.
075, arXiv:1711.10744.

[26] O.E. Gundersen, S. Kjensmo, State of the art: Reproducibility in artificial
intelligence, in: 30th AAAI Conf. on Artificial Intelligence, 2017, pp.
1644-1651.

[27] A.Z. Guo, E. Sevgen, H. Sidky,].K. Whitmer,]J.A. Hubbell, J.J. de Pablo,
Adaptive enhanced sampling by force-biasing using neural networks, J.
Chem. Phys. 148 (13) (2018) 134108.

[28] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia,
D. Gunter, D. Skinner, G. Ceder, et al., The materials project: A materials
genome approach to accelerating materials innovation, APL Mater. 1 (1)
(2013) 011002.

[29] Y. Jia, E. Shelhamer,]J. Donahue, S. Karayev,]J. Long, R. Girshick, S.
Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature
embedding, in: 22nd ACM Intl. Conf. on Multimedia, 2014, pp. 675-678.

[30] H.K. Kim, S. Min, M. Song, S. Jung, J.W. Choi, Y. Kim, S. Lee, S. Yoon, H.H.
Kim, Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity,
Nature Biotechnol. 36 (3) (2018) 239.

(31]

(32]

[33]
[34]
[35]
[36]
[37]

(38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76 75

S. Kirklin, J.E. Saal, B. Meredig, A. Thompson,].W. Doak, M. Aykol, S. Riihl, C.
Wolverton, The open quantum materials database (OQMD): Assessing the
accuracy of DFT formation energies, npj Comput. Mater. 1 (2015) 15010,
http://dx.doi.org/10.1038/npjcompumats.2015.10.

K. Kourou, T.P. Exarchos, K.P. Exarchos, M.V. Karamouzis, D.I. Fotiadis,
Machine learning applications in cancer prognosis and prediction, Comput.
Struct. Biotechnol. J. 13 (2015) 8-17, http://dx.doi.org/10.1016/j.csbj.2014.
11.005.

A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Tech.
rep., Citeseer, 2009.

Kubeflow, 2020, https://www.kubeflow.org/. Accessed September 4, 2020.
R. Madduri, K. Chard, M. D'Arcy, S.C. Jung, A. Rodriguez, D. Sulakhe, E.
Deutsch, C. Funk, B. Heavner, M. Richards, et al., Reproducible big data
science: a case study in continuous fairness, PLoS One 14 (4) (2019).

H. Miao, A. Li, L.S. Davis, A. Deshpande, Towards unified data and lifecycle
management for deep learning, in: 33rd Intl Conf. on Data Engineering,
IEEE, 2017, pp. 571-582.

D. Michie, ‘Memo’ functions and machine learning, Nature 218 (5136)
(1968) 19.

Modelhub, 2020, http://modelhub.ai/. Accessed September 4, 2020.

A. Morin, J. Urban, P. Adams, I. Foster, A. Sali, D. Baker, P. Sliz, Shining
light into black boxes, Science 336 (6078) (2012) 159-160.

R.S. Olson, M. Sipper, W. La Cava, S. Tartarone, S. Vitale, W. Fu, P. Orze-
chowski, RJ. Urbanowicz, J.H. Holmes, J.H. Moore, A system for accessible
artificial intelligence, in: Genetic Programming Theory and Practice XV,
Springer, 2018, pp. 121-134.

C. Olston, N. Fiedel, K. Gorovoy,]J. Harmsen, L. Lao, F. Li, V. Rajashekhar,
S. Ramesh,]. Soyke, Tensorflow-Serving: Flexible, high-performance ML
serving, 2017, arXiv preprint arXiv:1712.06139.

S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D.
Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Python materials genomics
(pymatgen): A robust, open-source Python library for materials analysis,
Comput. Mater. Sci. 68 (2013) 314-319.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch,
in: NIPS 2017 Autodiff Workshop: The Future of Gradient-Based Machine
Learning Software and Techniques, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12 (Oct) (2011) 2825-2830.
Petrelkube, 2020, https://press3.mcs.anl.gov/jlse/projects/petrelkube-jlse-
kubernetes- testbed- pi-rick-wagner-dsl/. Accessed September 4, 2020.

R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery,
K. Blackburn, T. Wenaus, F. Wiirthwein, et al., The open science grid, in:
Journal of Physics: Conference Series, Vol. 78, IOP Publishing, 2007, 012057.
S. Rasp, M.S. Pritchard, P. Gentine, Deep learning to represent subgrid
processes in climate models, Proc. Natl. Acad. Sci. 115 (39) (2018)
9684-9689.

G. Simon, C.D. DiNardo, K. Takahashi, T. Cascone, C. Powers, R. Stevens,
J. Allen, M.B. Antonoff, D. Gomez, P. Keane, et al, Applying artificial
intelligence to address the knowledge gaps in cancer care, Oncol. 24 (6)
(2019) 772-782.

J. Starr, A. Gastl, Iscitedby: A metadata scheme for datacite, D-Lib Mag. 17
(1/2) (2011).

V. Stodden, M. McNutt, D.H. Bailey, E. Deelman, Y. Gil, B. Hanson, M.A.
Heroux, J.P. loannidis, M. Taufer, Enhancing reproducibility for computa-
tional methods, Science 354 (6317) (2016) 1240-1241, http://dx.doi.org/
10.1126/science.aah6168.

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, Z. Wojna, Rethinking the in-
ception architecture for computer vision, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2818-2826.

Theta, 2020, https://www.alcf.anl.gov/theta. Accessed September 4, 2020.
J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V.
Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, et al., XSEDE: Accelerating
scientific discovery, Comput. Sci. Eng. 16 (5) (2014) 62-74.

S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam, S.
Rosen, 1. Foster, Globus Auth: A research identity and access management
platform, in: 12th Intl Conf. on E-Science, 2016, pp. 203-212, http://dx.
doi.org/10.1109/eScience.2016.7870901.

L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose
machine learning framework for predicting properties of inorganic ma-
terials, npj Comput. Mater. 2 (2016) 16028, http://dx.doi.org/10.1038/
npjcompumats.2016.28, arXiv:1606.09551.

L. Ward, B. Blaiszik, I. Foster, R.S. Assary, B. Narayanan, L. Curtiss, Machine
learning prediction of accurate atomization energies of organic molecules
from low-fidelity quantum chemical calculations, 2019, arXiv preprint
arXiv:1906.03233.

[57]

L. Ward, A. Dunn, A. Faghaninia, N.E. Zimmermann, S. Bajaj, Q. Wang, J.
Montoya,]J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Astad, K.A. Persson,
G. Jeffrey, Snyder, I. Foster, A. Jain, Matminer: An open source toolkit for
materials data mining, Comput. Mater. Sci. 152 (2018) 60-69.

[58] J.M. Wozniak, R. Jain, P. Balaprakash,]. Ozik, N. Collier,]J. Bauer, F.

[59]

Xia, T. Brettin, R. Stevens, J. Mohd-Yusof, C.G. Cardona, B. Van Essen,
M. Baughman, CANDLE/Supervisor: A workflow framework for machine
learning applied to cancer research, in: Computational Approaches for
Cancer Workshop, 2017.

Q. Zhang, D. Chang, X. Zhai, W. Lu, OCPMDM: Online computation platform
for materials data mining, Chemometr. Intell. Lab. Syst. 177 (November
2017) (2018) 26-34, http://dx.doi.org/10.1016/j.chemolab.2018.04.004.

Zhuozhao Li is a Postdoctoral Scholar at University
of Chicago. He received the B.S. degree in Optical
Engineering from Zhejiang University, China in 2010,
and the M.S. degree in Electrical Engineering from
University of Southern California in 2012. He obtained
his Ph.D. in Computer Science at University of Virginia.
His research interests span the broad areas of Dis-
tributed Systems, Cloud Computing and Data-intensive
Computing, with the emphasis on developing working
prototypes for real-world large-scale scientific prob-
lems and designing the foundation methodologies to

optimize system performance for efficient computing.

Ryan Chard is an Assistant Computation Scientist
at Argonne National Laboratory. He joined Argonne
in 2016 where he was awarded a Maria Goeppert
Mayer Fellowship. His research focuses on the de-
velopment of cyberinfrastructure to enable scientific
research. He is particularly interested in automation
platforms and programming models that simplify de-
ploying scientific applications at scale. His research
interests include high performance computing, dis-
tributed systems, automation, scientific computing, and
cloud computing.

Logan Ward is an assistant computational scientist in
the Data Science and Learning Division at Argonne
National Laboratory. He earned his Ph.D. in 2017 from
Northwestern University in Materials Science and En-
gineering, where he studied the application of machine
learning to the design of materials. His research focus
on the development of software and infrastructure
that simplify the use of machine learning and other
data-driven techniques in science.

Kyle Chard is a Research Assistant Professor in the
Department of Computer Science at the University of
Chicago and Argonne National Laboratory. He received
his Ph.D. in Computer Science from Victoria University
of Wellington in 2011. He co-leads the Globus Labs
research group which focuses on a broad range of
research problems in data-intensive computing and
research data management. He currently leads projects
related to parallel programming in Python, scientific
reproducibility, and elastic and costaware use of cloud
infrastructure.

Tyler J. Skluzacek is a Ph.D. Candidate in Computer
Science at the University of Chicago. In his research
he strives to formalize generalized methods for index-
ing large-scale, heterogeneous scientific repositories.
His work lies at1 the nexus of cloud computing, file
forensics, and search.

76 Z. Li, R. Chard, L. Ward et al. / Journal of Parallel and Distributed Computing 147 (2021) 64-76

Yadu Babuji is a Senior Software Engineer at the
University of Chicago. He does systems research at the
Globus Labs with a focus on helping scientists scale
their computations on massive distributed systems. He
is the primary developer and technical lead for the
Parsl project.

Anna Woodard is a Postdoctoral Scholar in the Com-
puter Science department and the Department of
Medicine at the University of Chicago, with a joint
appointment at Argonne National Laboratory. She re-
ceived her B.S. in physics with honors from Florida
State University in 2008 and her Ph.D. in physics from
the University of Notre Dame in 2018. Her research
interests include scientific computing, distributed com-
puting, parallel programming, cancer genomics, and
biomedical informatics.

Steven Tuecke is Globus co-founder and former Deputy
Director at The University of Chicago’s Computation In-
stitute (CI) and Argonne National Laboratory. His focus
was on the development of sustainable, cloud-based,
software-as-a-service data management solutions to
accelerate research. Prior to CI, Steven was co-founder,
CEO and CTO of Univa Corporation from 2004 to 2008,
providing open-source and proprietary software for
the high-performance computing and cloud computing
markets. Before that, he spent 14 years at Argonne
as research staff. Tuecke graduated summa cum laude
with a B.A. in mathematics and computer science from St. Olaf College.

Ben Blaiszik is a researcher at the University of Chicago
and Argonne National Laboratory. He received his B.S.
in Physics and Mathematics from Elmhurst University,
and Ph.D. in Theoretical and Applied Mechanics 2010
from the University of Illinois at Urbana-Champaign.
His current research spans development of software
and data services to automate data collection and
metadata extraction, and to simplify data publication
and discovery for scientific data. He also works to
apply machine learning to solve domain problems in
materials science, chemistry, drug discovery, and more.

Michael J. Franklin is the inaugural holder of the Liew
Family Chair of Computer Science and Chairman of
the Computer Science Department at the University of
Chicago. An authority on databases, data analytics, data
management and distributed systems, he also serves
as senior advisor to the Provost on Computation and
Data Science, and was founding Director of UChicago’s
Center for Data and Computing. At Chicago he is co-
leading a joint effort between Computer Science and
the Department of Statistics to establish educational
and research programs in Data Science. He is an ACM
Fellow and two-time winner of the ACM SIGMOD Test of Time Award. He
currently serves as a Board Member of the Computing Research Association and
on the Advisory Committees for the NSF CISE Directorate and the newly formed
NSF CloudBank initiative.

Ian Foster is Senior Scientist and Distinguished Fellow,
and also director of the Data Science and Learning Di-
vision, at Argonne National Laboratory, and the Arthur
Holly Compton Distinguished Service Professor of Com-
puter Science at the University of Chicago. lan received
a B.Sc. degree from the University of Canterbury, New
Zealand, and a Ph.D. from Imperial College, United
Kingdom, both in computer science. His research deals
with distributed, parallel, and data-intensive comput-
ing technologies, and innovative applications of those
technologies to scientific problems in such domains as
materials science, climate change, and biomedicine. Foster is a fellow of the
AAAS, ACM, BCS, and IEEE, and an Office of Science Distinguished Scientists
Fellow.

