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Abstract—With the rapid popularity of unmanned aerial
vehicles (UAVs) such as drones, extending wireless communi-
cation coverage via UAV data relay, especially for rural areas,
becomes cost-effective. Its flexibility attracts research attention
from a variety of areas, including Internet of Things, intelligent
transportation systems, and digital agriculture. However, most
current research effort focuses on modeling small-scale data relay
systems and theoretically optimizing the system performance
via UAV trajectories, while the decision of taking advantage
of UAVs for real-life wireless communication networks requires
large-scale quantitative performance analysis results based on
practical environment information. In this paper, we propose
algorithms for generating large-scale blockage and path loss maps
via terrain-based channel modeling for cellular communication
systems with relay drones. Our analyses reveal the coverage ratios
for Tippecanoe County, Indiana, with relay drones simulated
at different heights. The area of interest is also extended to
include all ten counties in the Wabash Heartland Innovation
Network (WHIN). For both cases, a coverage ratio gain over
40% can be achieved at a drone height of 100 m, compared to
a typical pedestrian height of 1.5 m. These site-specific analyses
are important in locating poorly covered spots and quantifying
the possible improvement from UAV data relay.

Index Terms—Cellular coverage analysis, data relay, site-
specific channel modeling, unmanned aerial vehicles.

I. INTRODUCTION

The rapid development of unmanned aerial vehicle (UAV)
technologies has provided a vast array of new possibilities
for wireless communications [1]. In particular, consumer-
grade drones debuted around a decade ago and have become
increasingly sophisticated for a lower cost. These drones
have demonstrated the ability to dramatically alter several
industries [2]. Boosted by advanced technologies like energy-
efficient autonomous target tracking [3], the popularity of
drones is making it possible and cost-effective to extend
wireless communication coverage via UAV data relay, es-
pecially for rural areas where network coverage is sparse
or nonexistent [4]. The flexibility of UAV-aided wireless
communication has attracted research attention from a variety
of areas, including Internet of Things [5], intelligent trans-
portation systems [6], and digital agriculture [7]. On-demand
deployment of relay UAVs may play a key role in improving
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mobile service quality in many challenging scenarios faced by
today’s communication infrastructure. However, most current
research efforts focus on modeling small-scale data relay
systems and theoretically optimizing the system performance
via UAV trajectories [8]–[10], while the decision of deploying
UAVs in real-life wireless communication networks requires
large-scale quantitative performance analysis results based on
practical environment information.

To fill this research gap, we propose algorithms for gen-
erating large-scale blockage and path loss maps via terrain-
based channel modeling for cellular communication systems
with relay drones. Based on high-resolution LiDAR data, the
blockage maps are used to locate regions with line-of-sight
(LoS) obstruction and identify areas that may benefit from
utilizing UAV data relay. Simultaneously, the path loss maps
store path loss values calculated from terrain elevation data,
enabling us to discover regions with satisfactory coverage con-
ditions and quantify the system performance. These algorithms
were applied to Tippecanoe County, Indiana, with relay drones
simulated at different heights to obtain the overall coverage
gains of implementing UAV-aided cellular communication
systems. Furthermore, we were able to extend the area of
interest to include ten counties [11] in the Wabash Heartland
Innovation Network (WHIN), Indiana, for carrying out similar
cellular coverage analyses. A significant coverage ratio gain
of over 40% can be achieved for both cases at a drone height
of 100 m. Regions which would benefit the most were also
revealed by the resulting maps. These site-specific analyses are
important for quantifying the possible improvement from UAV
data relay and guiding the implementation of such systems.

Our work makes the following contributions: (i) it provides
quantitative analyses for UAV data relay at system level over
a large geographic area, (ii) blockage detection is computed
using publicly available LiDAR data as an effective alternative
to full propagation simulation, and (iii) the coverage ratio
gain over different path loss values is introduced to link
the benefit of UAV data relay systems to quality-of-service
metrics. The paper is organized as follows. In Section II, we
present our algorithms for generating blockage and path loss
maps. Coverage analyses based on these maps are described
in Section III. Finally, in Section IV, we conclude the paper.

II. TERRAIN-BASED CHANNEL MODELING

A. Scenario Model

Consider the scenario illustrated in Fig. 1. An agricultural
end user is operating in a region with sparse coverage. A ded-
icated UAV follows the user at a constant height above ground
hD to act as a relay between the user and remote cell towers
serving the area of interest. The communication between the
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Fig. 1. Illustration of a typical UAV data relay scenario.

UAV and the user is assumed to be reliably taken care of
by wireless local-area-network (WLAN) technology. This is a
typical application in digital agriculture where the relay UAV
provides extended communication links in rural areas for the
user via a cellular backhaul. It can be easily observed that
the relay UAV’s presence allows the cell tower to reach some
areas blocked at the user level. We are interested in modeling
this improvement quantitatively at a large geographic scale
for different values of hD using freely-available geographic
information such as LiDAR and terrain elevation data.

Such a data relay system can be conveniently implemented
with very low cost by attaching a custom-configured cell
phone to a modern photography drone with autonomous target
tracking functionality. Compared to enhancing coverage via
a vast amount of traditional repeaters or small cell systems,
this approach provides the flexibility to enable inexpensive on-
demand deployment of wireless communication infrastructure.
The relay UAVs can be dispatched from the mobile service
providers or set up privately on the user’s side, and dismissed
when they are no longer needed. This flexibility is the key to
satisfy the intermittent connectivity requirement over a vast
low-population area in many digital agriculture applications,
including but not limited to scheduled sensor data collection
and temporary data transmission during short-term activities
such as planting and harvesting, without the high cost of
building out traditional fixed infrastructure.

B. Simulation Scene Construction

The simulation was carried out primarily in the Universal
Transverse Mercator (UTM) coordinate system. Conversions
between UTM (x, y) and GPS (latitude, longitude) were
performed when necessary with a fixed UTM zone label 16T.
To incorporate the height dimension over a large geographic
area, the UTM system is extended with altitude, the sum of
the ground elevation and the object height. The information
needed for constructing the simulation scene includes the cell
tower antenna locations and the drone locations to inspect.
Our simulator, together with the coverage analysis algorithms,
were implemented1 using MATLAB R2019b.

1) Locating Effective Cell Towers: Cell tower GPS loca-
tions were obtained from a randomized U.S. cellular laydown
used in a National Telecommunications and Information Ad-
ministration (NTIA) analysis for Advanced Wireless Services
(AWS)-3 spectrum sharing. This dataset contains real-life cell

1Source code publicly available at: https://github.com/YaguangZhang/
CellCoverageMapperForDronesMatlabWorkspace.git

(a) For Tippecanoe County

(b) For the WHIN area
Fig. 2. The area of interest is extended to filter out ineffective cell towers.

tower locations intentionally randomized with errors at a scale
of a few kilometers for safety and privacy concerns. To reduce
the number of cell towers considered in the simulation, we
extended the area of interest by an estimated maximum cell
tower coverage radius and only considered towers within
that range, as illustrated in Fig. 2. Cell towers out of the
extended area were considered ineffective and ignored in
the corresponding simulation. For simplicity, the maximum
coverage radius RMax in kilometer was estimated as the
longest optical horizon distance from the cell tower antenna:

RMax ≈ 3.57×
(√

hT +
√
hD

)
, (1)

where hT and hD are the heights in meter for the cell tower
antenna and the drone, respectively. The antenna heights for
all cell towers were set to be a typical value of 50 m in the
simulation. For RMax, we set hD = 1.5 m, the lowest drone
height inspected, which gave us RMax ≈ 29.6 km.

2) UAV Location Grid Construction: A grid for the UAV
locations covering the area of interest was built for each sim-
ulation, as shown in Fig. 3. Its spatial resolution is determined
by the number of grid points NSamp for the longer side (width
or height) of the area of interest. We had NSamp = 100 (over
38.5 km) for Tippecanoe County and, to compensate the extra
cell towers to consider, NSamp = 50 (over 144.8 km) for the



(a) For Tippecanoe County (b) For the WHIN area
Fig. 3. The UAV locations to be inspected are sampled evenly within the
area of interest. (a) For Tippecanoe County, the grid has in total 8700 points
with a spatial resolution of around 0.4 km. (b) For the WHIN area, the grid
has in total 1249 points with a spatial resolution of around 2.9 km.

WHIN area, resulting in spacial resolutions of around 0.4 km
and 2.9 km, respectively.

C. Blockage Map Generation

Blockage maps visualize locations with no clear LoS con-
nection to any effective cell towers. Fig. 4 illustrates six as
examples. Examining the figures, we observe that the blockage
area decreases with increasing drone heights. Intuitively this
makes sense, as higher altitude drones will more likely be
operating above natural and man-made obstructions.

To determine blocked links, the Indiana 5-feet-resolution
raster LiDAR dataset [12] was utilized in locating obstructions.
At a given position, everything below the LiDAR z value
(relative to the sea level) was assumed to be an obstruction. To
improve accuracy, rather than computing blockage only along
the direct path, we incorporated clearance tests for the first
Fresnel zone. The first Fresnel zone provides a 3-dimensional
(3D) ellipsoid surrounding the direct path; obstacles present
in this zone will negatively influence the communication link.
The radius of the first Fresnel zone RF (P ) at any point P in
between the endpoints of the link is given by:

RF (P ) =

√
λd1d2
d1 + d2

, d1, d2 � λ, (2)

where d1 is the distance of P from one end, d2 is the
distance of P from the other end, and λ is the wavelength
of the transmitted signal. In the simulation, we set the signal
carrier frequency fC = 1.9 GHz to mimic a 4G LTE system
operating in the Personal Communications Service band. For
the purposes of computing blockage, a threshold of 60%
clearance in the first Fresnel zone was set, the minimum value
required for reliable wireless communication links [13].

To make large-scale analyses feasible, the clearance test
was conducted via a 2-dimensional (2D) vertical plane, which
contained the path connecting the cell tower antenna and the
drone and intersected the first Fresnel zone in an ellipse, as il-
lustrated in Fig. 5. Generating the blockage map then required
constructing, for each effective cell tower antenna with each
drone location in its RMax range, a 2D obstacle profile based
on the LiDAR data. For example, Fig. 5 illustrates the link

(a) Tippecanoe, hD = 1.5 m (b) WHIN, hD = 1.5 m

(c) Tippecanoe, hD = 10 m (d) WHIN, hD = 10 m

(e) Tippecanoe, hD = 100 m (f) WHIN, hD = 100 m
Fig. 4. Example blockage maps for Tippecanoe County and the WHIN area,
with different drone heights. The blocked region shrinks dramatically as we
increase the drone height from 1.5 m to 100 m.

between an effective cell tower (indicated by the cross mark)
in WHIN and a nearby drone location to inspect (indicated
by the solid circle). The top view also shows in dark grey
the LiDAR data tiles, covering the whole Indiana State. The
obstacle profile is generated by extracting a 2D vertical profile
of LiDAR z values along the link of interest via bilinear
interpolation. If the effective cell tower is located out of
Indiana, profile samples may be out of the LiDAR dataset. For
these locations, we fall back to the United States Geological
Survey (USGS) 1/3rd arc-second terrain elevation data for the
vertical profile values. The number of profile samples is set
to be the minimum integer bigger than or equal to 10 that
guarantees a spatial resolution smaller than or equal to 50 m.
An obstacle LiDAR profile with this relatively large resolution
may miss small-scale obstructions such as single trees, but



Fig. 5. Illustration showing the LoS path clearance test. An obstacle profile
between the effective cell tower and the drone location is generated primarily
from interpolating locally cached LiDAR and terrain elevation data for
Indiana, as shown in the top view. Then, the 60% clearance test for the first
Fresnel zone is carried out in the front view. In this example, the LiDAR
sample for the rightmost tree indicates the LoS link is disrupted.

is necessary to limit the time required for simulations over
such large geographic areas to a reasonable amount. Both the
LiDAR data and the elevation data are cached locally for the
whole Indiana State to further boost the simulation speed.

Once the profile has been extracted, the direct LoS path
can be determined by the 3D coordinates UTM (x, y) and
altitude of the cell tower antenna and the drone position. If
any of the obstacle LiDAR profile values are on or higher than
the direct path, the LoS link is considered blocked. Otherwise,
we will carry out the 60% clearance test for the first Fresnel
zone demonstrated in Fig. 5. For each obstacle LiDAR profile
point, we locate the corresponding P by intersecting the direct
path with its perpendicular line which goes through that profile
point. The LoS link is blocked if the distance from the profile
point to the direct path is smaller than or equal to 0.6RF (P ).
If the direct paths between the inspected drone location and
all the effective cell towers are blocked, that location will
be marked as “blocked” in the corresponding blockage map.
This procedure helps improve the speed of the simulator by
reducing the number of Fresnel zone calculations.

D. Path Loss Map Generation
The path loss maps are generated similarly to the blockage

maps. However, instead of blockage indicators, they store at
each drone location the best (minimum) available path loss
for the links between all the effective cell towers and that
drone location, as plotted in Fig. 6. In these maps, we can
observe a clear decreasing trend for the path loss values as
hD is increased from 1.5 m to 100 m.

To estimate the median basic transmission loss using terrain
elevation data, we utilized the NTIA C++ implementation [14]
of the extended Hata (eHata) model [15]. The eHata model
extends the applicability of the Hata empirical formula for
the Okumura curves to 1500 MHz≤ fC ≤3000 MHz with a
transmitter-to-receiver (TX-to-RX) distance d between 1 km
and 100 km. For d < 1 km, we computed the convex
combination of the eHata result PLeHata and the free-space
path loss PLFSPL via:

PLnear =
d

1 km
×PLeHata + (1− d

1 km
)×PLFSPL, (3)

(a) Tippecanoe, hD = 1.5 m (b) WHIN, hD = 1.5 m

(c) Tippecanoe, hD = 10 m (d) WHIN, hD = 10 m

(e) Tippecanoe, hD = 100 m (f) WHIN, hD = 100 m
Fig. 6. Example path loss maps for Tippecanoe County and the WHIN area,
with different drone heights. The region with path loss predictions lower than
a specific value expands as we increase the drone height from 1.5 m to 100 m,
implying improved communication conditions with relay UAVs.

where PLnear is the path loss for locations near the TX. The
eHata model is designed for the case when the TX’s altitude
is larger than the RX’s, so we assumed reciprocity and treated
the higher one of the cell tower antenna and the drone to be
the TX. The NTIA implementation also takes into account
a set of site-specific adjustments based on terrain type and
terrain elevation profiles. For simplicity, a fixed National Land
Cover Database environment code of 82 (cultivated crops) was
chosen in our simulator. The elevation profiles were generated
in the same manner as the obstacle LiDAR profiles.

One advantage of considering path loss via channel mod-
eling for large-scale coverage analyses is that the results are
equipment-independent. With the huge range of devices at both



the cell tower and the user sides, it is practically difficult to
collect the specifications for all the equipment involved over
a large geographic area. Being the unavoidable major signal
degradation contributor, path loss provides a fair coverage
analysis without that information. However, the path loss val-
ues do not directly translate to a link quality indicator such as
data rate; therefore it is necessary to compute link budgets with
typical parameter values to form a connection between the
path loss maps in the cellular coverage scenario and system-
level key performance indicators. According to [16], for the
downlink of a 4G LTE Frequency Division Duplex system, a
user terminal typically has a noise figure of NFU = 9 dB.
With a bandwidth B = 10 MHz, the minimum detectable
signal strength MDDL ≈ −95 dBm is given by:

MDDL = 10× log10

(
kT

1mW

)
+NFU + 10× log10B, (4)

where k is the Boltzmann’s constant and T = 290 K is the
device temperature. Taking into account the typical cell tower
antenna power PT = 64 dBm, we have the maximum allowed
path loss for the downlink PLDL ≈ 177 dB via:

PLDL = PT +GT +GU −MDDL, (5)

where GT = 18 dBi and GU = 0 dBi are the typical
maximum antenna gains for the cell tower and the user
terminal. Similarly, we can get the maximum allowed path
loss for the uplink PLUL ≈ 140 dB, with the user terminal
TX power PU = 23 dBm and the noise figure for the cell tower
NFT = 5 dB. Note that the 140 dB PLUL effectively sets the
maximum coverage area for cellular communications. Thus,
for the path loss maps, we set a threshold of PLMax = 150 dB
as the maximum allowed path loss value and discard any
results above that. If the drone location does not have a
lower or equal path loss value for any links originating from
all the considered cell towers, the corresponding grid cell is
considered out of service and will not be colored on the map,
as shown in Fig. 6. Examining the figure, we observe a very
poor coverage on the west side of WHIN. It is also worth
noting that 140 dB of PLUL is the typical worst uplink path
loss for detecting the signal, which will not support good data
connection links.

III. COVERAGE ANALYSES

Both the blockage and path loss maps in Fig. 4 and
Fig. 6 have visually demonstrated promising cellular coverage
improvement via data relay UAVs. Furthermore, we can easily
obtain quantified results in terms of coverage area improve-
ment from these maps. Fig. 7 presents the LoS coverage ratio,
the ratio of the size for the clear region on the blockage map
to the total size of the area of interest, at different UAV heights
for Tippecanoe County and WHIN. For Tippecanoe County,
a dramatic coverage gain over 90% − 40% = 50% can be
obtained by deploying UAV at hD = 10 m, compared to a
typical user terminal height of 1.5 m. For WHIN, that gain
boosts to over 60%. Increasing the relay UAV beyond 10 m
will further improve the LoS coverage, but with only an extra
gain of around 10% for both cases.
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Fig. 7. Clear LoS coverage ratio based on blockage maps. A dramatic LoS
coverage improvement can be achieved for both Tippecanoe County (over
50% gain) and WHIN (over 60% gain) by taking advantage of relay UAVs
at a height of 10 m, compared to a typical pedestrian height of 1.5 m.
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Fig. 8. Empirical CDFs for the path loss maps. With a given maximum
allowed path loss value, we can find in these plots the corresponding coverage
ratios for the UAV heights inspected.

Fig. 8 summarizes the path loss maps for all the UAV
heights inspected with the empirical cumulative distribution
functions (CDFs) of the path loss values stored in these maps.
Because each path loss value represents a grid cell of a
constant size on the corresponding map, the ratio of the path
loss values small than or equal to a maximum allowed path
loss PLMax is the same as the coverage ratio for PLMax

in terms of area. That is, given PLMax, we can directly use
the empirical CDF values read from Fig. 8 as coverage ratios.
For example, with PLMax = PLUL = 140 dB, we can get
the coverage ratio for Tippecanoe County is around 75% at
hD = 1.5 m and around 95% at hD = 100 m, yielding an
improvement of (0.95− 0.75) /0.75 ≈ 27%. Similarly, with
PLMax = 140 dB, we have for WHIN a coverage ratio of
around 28% at hD = 1.5 m and around 80% at hD = 100 m,
yielding a remarkable 186% improvement. The general rising
trend of the curves with increasing hD supports the use of
relay UAVs. To better demonstrate these improvements, the
coverage ratio gains relative to the hD = 1.5 m case are
plotted in Fig. 9. For Tippecanoe County, as we increase hD
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Fig. 9. Coverage ratio gain relative to the hD = 1.5 m case.

from 10 m to 100 m, the coverage gain at PLMax = 140 dB
increases from 5% to 20%, while the whole region from
130 dB to 140 dB gets a significant boost with the highest
gain of around 50% at 133.5 dB. This implies a moderate im-
provement for the worst acceptable coverage with a dramatic
larger area getting better service. On the other hand, the WHIN
area enjoys a significant boost between 130 dB and 140 dB,
particularly at the high end with a gain from 19% to 51% as
hD increases, indicating a large area with no cellular service
will get covered with relay UAVs.

We have focused on extending LTE cellular coverage for
digital agriculture applications. However, the same methodol-
ogy can be applied to other systems such as future millimeter-
wave systems, where the blockage maps will play a more
important role because of the high sensitivity of millimeter
waves to blockage [17]. With more and more digital terrain
data becoming available, our coverage analysis tool will be
able to quantify the benefit of utilizing relay UAVs for more
areas of interest. The biggest challenge for such a tool is
to speed up the computation to cope with the large geo-
graphic area considered. The bottleneck of our algorithms
is the LiDAR/elevation terrain profile generation because of
the huge amount of data involved. Besides the techniques
already mentioned, we also applied the following tricks to
speed up the simulation: reprocess local data for indexes to
enable faster search and data fetch; issue concurrent HTTP
requests (up to 100 simultaneous threads via Python with
MATLAB’s two-way integration feature) for data not cached
locally; reuse terrain profiles for different heights; use parallel
computing and preassign tasks to workers to avoid frequent
worker initialization. On a 36-core cluster with 216 GB RAM,
the simulation for Tippecanoe County took two days and that

for WHIN took less than a week.

IV. CONCLUSION

In this paper, we present algorithms to generate blockage
maps and path loss maps via channel modeling for large-scale
cellular coverage analyses on UAV data relay. Both visual
and quantitative results are provided for Tippecanoe County
and the ten counties in WHIN. According to these results,
a significant coverage gain over 40% at a UAV height of
100 m is expected for both cases. These analyses are crucial
in guiding the implementation of UAV data relay systems.
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