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Abstract—Accurate and fast beam-alignment is essential to
cope with the fast-varying environment in millimeter-wave com-
munications. A data-driven approach is a promising solution
to reduce the training overhead by leveraging side information
and on-the-field measurements. In this work, a two-stage tensor
completion algorithm is proposed to predict the received power
on a set of possible users’ positions, given received power
measurements on a small subset of positions. Based on these
predictions and on positional side information, a small subset
of beams is recommended to reduce the training overhead of
beam-alignment. Numerical results evaluated with the Quadriga
channel simulator demonstrate that the proposed algorithm
achieves correct alignment with high probability using small
training overhead: given power measurement on only 20% of
the possible positions when using a discrete coverage area, our
algorithm attains a probability of correct alignment of 80%, with
only 2% of trained beams, as opposed to a state-of-the-art scheme
which achieves 50% correct alignment in the same configuration.
To the best of our knowledge, this is the first work to consider the
beam recommendation problem based on measurements collected
on a small subset of positions.

Index Terms—Millimeter wave, beam-alignment, position-
aided, tensor completion, sparse learning.

I. INTRODUCTION

Millimeter wave (mmWave) and massive MIMO are the
key technologies to enable high throughput communication
in future wireless systems, with applications such as video-
streaming, automated driving, cloud computing, etc [1]-[4].
However, narrow beams are required to compensate the path
loss and severe signal propagation at the mmWave frequencies.
Narrow beam communication is especially challenging in
mobile environments, since the beam direction needs to be
continuously trained. Typically, this is achieved by sweeping
over a finite set of candidate beamforming vectors to find the
strongest beam direction [5], [6]. This process incurs huge
overhead [7] due to the potentially large set of candidate beam-
forming solutions that should be searched for in large antenna
systems, calling for efficient beam-alignment protocols [8].

Beam-alignment has been a subject of intense research in
recent years, with techniques ranging from beam-sweeping
[8], angle of arrival and of departure (AoA/AoD) estimation
[9], to data-assisted schemes [5]. In particular, beam-sweeping
schemes require to collect a set of beam measurements over
the entire beam-space. The simplest form of beam-sweeping
is exhaustive search, which scans through all possible beams
between transmitter and receiver. AoA/AoD estimation re-
duces the number of measurements by leveraging the spar-
sity of mmWave channels via compressive sensing [9]. In
data-assisted schemes, mmWave channels are related to the
environment of the user, such as its position, the geometry
of the surrounding environment (e.g., buildings, vegetation,

The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN, USA; emails: {chou59, michelus,
djlove, jvk}@purdue.edu.

This research has been funded by NSF under grant CNS-1642982.

etc.) or temporal information (e.g., traffic). Due to the dif-
ficulty to comprehensively model and accurately represent
all propagation features in the environment, and how these
affect mmWave propagation, a data-driven approach based on
machine learning may be envisioned for this task. In [5], the
authors proposed an inverse multi-path fingerprinting approach
for beam-alignment utilizing prior measurements at a given
position to provide a set of candidate beam directions at the
same position.

However, by requiring measurements to already be available
at a certain position for predictions to be made, this approach
fails to predict the channel in those positions where mea-
surements are not yet available. For this reason, this scheme
requires to collect a huge amount of channel propagation
measurements to cover the entire operational region, which
may not be practical. In many practical settings, the spatial
correlation in the channel may be exploited to provide beam
directions recommendations also in new positions, where prior
measurements are unavailable. To address this more general
problem, in this work we leverage the tensor completion
technique. This problem has been recently investigated in
many areas, such as computer vision, image in-painting,
recommendation systems, etc. [10].

By exploiting the low-rank of mmWave MIMO channels
[1], [2], [9], we construct a data model on a subset of positions
as a tensor and formulate the tensor completion problem to
estimate the channel on those positions and beam directions
where measurements are missing. To capture the channel
spatial correlation, we introduce a smooth constraint that
induces similarity among adjacent positions and beams. We
propose a two-stage tensor completion algorithm composed of
two smooth matrix completions [10] and a greedy selection
algorithm to recommend a subset of candidate beams. We
show numerically that our proposed beam recommendation
algorithm can provide accurate beam candidates with small
training overhead. Numerical evaluations demonstrate that
our proposed method achieves 80% probability of correct
alignment with only 2% of trained beams, given power mea-
surements on only 20% of discrete random users’ positions, as
opposed to the state-of-the-art inverse-fingerprinting algorithm
[5], which attains a probability of correct alignment of 50%.

The rest of this paper is organized as follows. In Sec. II,
we present the system model and architecture; in Sec. III, we
propose the recommendation algorithm with two-stage tensor
completion. The numerical result are presented in Sec. IV,
followed by concluding remarks in Sec. V.

II. SYSTEM MODEL

In this section, we describe the channel model and the
beamforming codebook of our communication system. Then,
we introduce the position-aided beam-alignment protocol and
explain the goal of this work. Later, we depict the data
collection and the data tensor.
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Fig. 1: The network layout of the scenario.

A. Channel Model

We consider a scenario with a base station (BS), servicing an
area with GPS coordinates {(gz, gy) : Xo < gz < Xend, Yo <
gy < Yenq}, as in Fig. 1. The geometric channel model [2]
is assumed for the uplink SIMO channel between the BS and
the user (UE) at GPS coordinate g = (g5, g,) and is given by

L
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where ar(ﬂf, qﬁf) (see (1)) is the normalized receive steering
vector of the fth path; 9? and qﬁ% are its elevation and azimuth
angles; of is the complex channel gain; L is the number of
paths; and N, is the number of receive antennas.

In order to develop our data-driven approach, we aim to
leverage the channel correlation with respect to some features
of the environment where the UE is operating. Here, we
consider the correlation between the channel and the UE
position. To the best of our knowledge, the modeling of the
propagation channel can only be achieved by real channel
measurements or by simulation in ray-tracing software, which
requires accurate modeling of the propagation environment,
such as position of buildings, scatterers, etc. In practice, our
algorithm is applicable to a fully data-driven approach based
on actual channel measurements. For evaluation purposes,
in the numerical results in Sec. IV, we will generate these
measurements with Quadriga [11].

B. Beam Codebook and Received Signal Model

We consider a uniform planar array (UPA) [2], [5] at the
BS with N, and N, antennas and \/2 antenna spacing along
the x and y directions (a total of N, = NN, antennas), and
a receive beamforming codebook
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of size |W|= CypCy; a(f,¢) is the array response vector
representing a beam pointing in the elevation angle 6§ €
[-7/2,7/2) and the azimuth angle ¢ € [—7/2,7/2),
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Fig. 2: Position-aided beam alignment protocol.

with Q=7 sinfsin ¢, Q,=nsinf cos ¢. To construct W, 0;
and ¢; are uniformly quantized in [—7 /2, 7/2) with resolution
7/Cy and w/Cy as
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We index the beamforming vectors in W as
I={(j7):i=1,---,Cp,j=1,---,Cy}.

We consider an uplink beam training scheme, in which the
UE at GPS coordinate g = (g5, g,) transmits a known unit-
norm training sequence vector s € CV*! and the BS processes
the received signal with the beamforming vector w; ;, yielding
the received signal vector

g _ H
Vi = thm-hgs + v,

where v ~ CN(0,021) is the received noise vector; P; is
the transmit power. The received power with the (i,j)-th
beamformer can be estimated as

e = |s"ys = |V Pw/h® + 5,

where ¥ = sf’v is zero-mean complex Gaussian noise with
variance o2. These received powers are stored in a database
explained in Sec. II-D, and then used in our completion
framework to predict the received power in other positions

and beams.

C. Position-Aided Beam-Alignment

The idea of this approach is to provide a set of candidate
beams at a given UE position. Since the overhead of the con-
ventional beam-sweeping approach is unacceptable (it scales
with |W)| and is typically very large), our objective is to design
a learning algorithm that provides a small subset S C W of
candidate beams for training, which is likely to contain the
best beam (the one with highest received power).

In Fig. 2, we introduce a flow diagram for the position-
aided beam-alignment. In step 1, the UE initiates the uplink
mmWave transmission request accompanied with its GPS
coordinate g = (g, gy) to the BS using sub-6GHz control
channels. The position information is available via a suite
of sensors such as GPS or LIDAR [5], [12]. In step 2,



the BS forwards the UE’s GPS coordinate g to the cloud,
which then processes the learning algorithm and provides the
recommended beam set S. In step 3, the UE transmits a
sequence of |S| known signals, and the BS receives these
signals with the codewords in the recommended beam set
S. Then, the BS selects the best beam (ranked by received
power) among the recommended beams. In step 4, the BS uses
the selected receive beamforming vector for the subsequent
mmWave uplink data transmission. Due to the reciprocity
of the wireless channel, the BS can also utilize these beam
directions for downlink transmissions.

D. Data Model

Data is an essential element for the machine learning
approach. Here, we describe how we store information in
the database. We discretize the service area of the BS with
resolution A, and define the position labels p = (p,py) as
the function of GPS coordinate g,

s (- [155] 1o12])

where |z] denotes the nearest integer to x; the x-axis label
ps: € {1,---,L,} where L, = [X"%:X“_‘, and the y-

axis label p, € {1,---,L,} where L, = %:YO . The
BS measures the received power based on a fixed transmit
power P,. We define the received power with beam w; ; at
position p as +(P®-:7) — r&  During the data collection,
the BS might collect multiple measurements for the same
beamforming vector and position. For beam w; ; and po-

sition p, we define r,(cp’i’j) as the k-th measured received

power and NSf’i’j ) as the number of measurements collected
so far on that position and beam index. We extract the

average power information by computing the sample mean
(P,i,5) -

—(p,i,j) _ 1 Noy (p,i,5)

r = NE Dot TR . Once the BS performs a

new measurement for position p and beam w; ;, we can update

the average received power in an online fashion as

AP N]; Liwi) ¢ L (i),
where N = NP9 11 followed by NP7 « NPHI) 41,
Then, the database records the average received power along
with the side information, including the UE’s position p =
(pz, py), and the indices of the beamforming codeword w; ;,
as in TABLE L.

TABLE I: Database form

Pe Dy 0 J 7(@:1.5)
1 1 1 4 52
1 2 4 5 6.1

We represent the extracted data as a 4-th order tensor

7P py,6d)

T(pmapyuivj) = { 0

where U is the set of observed combinations of positions
and beams stored in the database and the unobserved entries
(Pz, Py, 1,7) ¢ U are set to zero. It is impractical to collect

(pzmpya 273) S \117
otherwise, )

the information with all combinations of positions and beam-
directions into the database due to the limited sampling
resources. For this reason, some positions possibly have no
representation in the database. Even in the observed positions,
there might be only a limited number of beams’ information
recorded. Therefore, the tensor 7 may be highly incomplete.

III. TENSOR COMPLETION AND BEAM RECOMMENDATION

Our goal is to recommend a set S of N, candidate beams
for the UE to train based on its position. If the UE is in a
position p represented in the database, and with all beam
measurements available, 7(P=Py:% ),V(i, 7). then this task can
be easily accomplished by recommending the Ny, beams with
highest average received power in the given position.

Otherwise, we design an algorithm based on tensor com-
pletion that employs the knowledge at neighboring positions
to support the beam recommendation for the UE. Note that
successful completion is highly dependent on the sampling set.
If measurements are missing on a certain row or column of an
incomplete matrix, then no reconstruction is possible on that
row or column, if we only rely on a low-rank approximation
[10]. A similar issue also exists in the tensor case: if no
measurements are available on a certain index in a given
dimension, no elements corresponding to this index can be
predicted by only relying on low rank structure. In our prob-
lem, the database contains measurements related to a subset
of beams on few observed positions. The data tensor might
be so incomplete that we cannot guarantee that every index
of each dimension is measured at least once. Therefore, the
low-rank tensor completion often fails to provide predictions
on unobserved positions.

To address this challenge, in addition to the low-rank
approximation, we enforce a smoothness constraints across
adjacent entries on a given dimension. This constraint captures
realistic spatial correlations across adjacent positions arising in
mmWave channels: similarity between neighboring beams at
a given position; and similarity between neighboring positions
on a given beam direction. In Sec. III-A, we propose a two-
stage tensor completion implemented by dividing the tensor
completion into two smooth matrix completions (SMCs), con-
sidered in Sec. III-B. Finally, we propose a greedy algorithm
to provide the recommended beams based on the predicted
received power in Sec. III-C.

A. Two-stage Tensor Completion

Given the data tensor 7 in (5) and the set of observed
combinations of positions and beams ¥, we aim to recover the
incomplete tensor 7. Since the tensor 7 is highly incomplete,
we might only have limited number of beams’ information on
few observed positions, causing the low-rank completion to
fail. To address this challenge, we propose a two-stage tensor
completion, each based on SMC.

In the first stage, for each observed position (z,,y,) such
that (z,,¥,,%,j) € ¥ for some (i,5), we do the SMC
on the beam matrix to predict the received power on the
unobserved beams, by exploiting the low-rank property that
the received powers of beams in a given position tend to
concentrate in few beam clusters due to the limited scattering
of mmWave channels. The smoothness between neighboring
beams depends on the beamwidth of the receive beamforming
and the angular spread of the channel [13]. To this end,



let B(*o%) = T(x,,y,,::) be the (possibly incomplete)
matrix of received powers along beam directions, for the given
position (%o, Yo); let © = {(i,7) : (2o, Yo,4,j) € U} be the
set of observed beams in position (x,,¥,). Then, the SMC
can be expressed as

SMCq (B ¥*))=arg min||X |+ (|Dc, X7+ XDE, |I7)
S.t. XQ = Bgmyo) (6)

and is considered in Sec. III-B. The first term of the objective
function is the nuclear norm of X, || X[, = Z?irf(m’n) T,
where o; is the i-th largest singular value of X. The second
term of the objective function is a penalty term which induces
smoothness across entries in each row and column of X. The
matrix D, € R(m=1xm jg the smoothness matrix, capturing
the differences between neighboring entries of a matrix:

1 -1 --- 0 0

D, — : 1 -1 0 . )
o ..
o o --- 1 -1

(m—1)xm

Thus, || XDZ|2 and |D,,X]||% quantify the row and column
smoothness of matrix X, respectively. In our optimization, we
consider smoothness on rows and columns simultaneously, as
opposed to LTVNN [14], which considers them separately.

After the first stage completion by SMC, we obtain the data
tensor 7' completed on the observed positions and update ¥’
by setting all predicted terms as observed. In the second stage,
the SMC is implemented on the position matrix for each beam,
by leveraging the fact that the received power tends to vary
smoothly between neighboring positions on a given beam. For
a given beam, the smoothness between neighboring positions
is related to the position resolution Ag. Specifically, in each
beam (i,, jo) such that (pg, py, @0, jo) €Y’ for some (pg,py),
let Giodo) =T7(:,: i,, j,) be the (possibly incomplete) matrix
of received powers on different positions, along the given beam
indexed by (i, Jo); let Q@ = {(pz,py) : (P, Py: to, o) € ¥'}
be the set of observed positions along the beam (,, j,). Then,
the SMC can be expressed as

SMCq(G"7))= arg min||X |l +~(| Dz, X|[}+|XDE, [I%)

s.t. Xg = GUode) (8)

and is considered in Sec. III-B. After the second stage comple-
tion by SMC, we get the completed tensor 7, which predicts
the received power of all unknown positions/beams, and is
used in Sec. III-C to recommend the set of training beams at
a given UE position p. The two-stage tensor completion algo-
rithm is shown in Algorithm 1. Next, we discuss the solutions
of the SMC problems (6) and (8), solved by Algorithm 2.

B. Smooth Matrix Completion (SMC)

The smooth matrix completion exploits both the low rank
and the smoothness of the data. Given the incomplete matrix
MeR™*™ with M;;, ¥(i, 7)€, the SMC problem to predict
the unobserved entries M,;, V(4, j)¢< is expressed as

min [ X]| +(|Dp X% + | XDy [[7) st Xo = Mo, (9)

where v is a regularization parameter. We use the alternating
direction method of multipliers (ADMM) [15] to efficiently
solve (9). With ADMM, we reformulate the problem as

A
in [|X|l«+y(|Dn Y| F+HIYDEZ) + Y — X%
g [ X -+ Y EHIYDT ) + 51Y X[ (o
st. Yo=Mg, X=Y,
where A > 0 is a small fixed parameter. We introduce
the Lagrangian multiplier Z associated with the constraint
X =Y. The augmented Lagrange function of (10) is
L(X.Y.Z) =|X|. + (D Y% + [ YD)
A 1D
+tr(ZT(Y - X)) + Iy - X|%.

The ADMM algorithm is implemented by minimizing itera-
tively L(X,Y,Z) over X and Y, and then update Z as

Xt+1 = arg m)énL(X7Yt7 Zt)7
Yt+1 = arg InYi'IlL(XH_l,Y, Zt), s.t. Yo = Mg;
Ziv1 =2+ B(Yip1 — Xig1);

where [ is a step-size. To optimize X, we minimize
L(X,Y,Z) with fixed Y; and Z;, yielding

12)

A 1 2

X4y = 'X*fHX—Y sz.

i1 = angmgnl X, + 5| X = (¥, + 520)||
In [10], it is shown that this problem is strictly convex and its
solution is given by the singular value thresholding, X, ; =
D, /A (Yt + %Zt) , where D is the soft-thresholding operator.
For a matrix A with singular value decomposition (SVD)
A = UXVH where ¥ = diag(oy,...0,), this is defined as
D,(A) =UD,(E)VH, D, () = diag({max{o; — 7,0}}).
The minimization of L(X,Y,Z) over Y with fixed X;;

and Z; can be formulated as

Yip1 =argmin v(| D Y7 + YDy %)

A
+0(Z{ (Y = Xpen)) + ZIY = X7 (1D
s.t. Yo = Mq.

To solve this problem, we restrict its optimization to the unob-
served set Q = {(4,7) : (i,4) ¢ 2}, and force Y;; = M;; for
(i,7) € Q. By computing the derivative of (13) with respect
to Y;; for (i,7) €  and setting it to zero, we obtain the
equation tr ({UG}TY) — % = 0, where

U(i’j) :D%Dmem(i)en(‘j)T + em(l)en(])TDZ:Dn

A
+ %em (D)en(5)"

The vector e,, (%) is an mx 1 vector with the i-th element equal
to 1 and all other elements equal to 0. We force Y = Mg as

in (13), yielding the set of |Q| linear equations, V(i,7) € {2,

i AXj — Zi; i

> ULy, = ]27 Lo ) UM, (14)
(p,9)€R (p,q)EQ

There are Q| unknowns (Y,q, (p,q) € Q) and [Q| linear
equations, so the matrix Y can be derived by solving (14).
Then, we update the Lagrangian multiplier Z with fixed X1
and Y11 as in (12). The algorithm updates X, Y, and Z iter-



atively until a stop criterion is satisfied. With the convergence
of ADMM [16], the iteration approaches the feasibility ||X; —
Y:||7— 0, thus we set the stop condition as | X; — Y||r<e.
It follows that ||Zt+1 — ZtHF: 5”Yt+1 — Xt—&-l”FH 0,
which guarantees the convergence of Z. The computational
complexity of SMC is dominated by the SVD to perform the
soft-thresholding operation in each iteration, which is O(mn?)
for m > n [17]. The update of Y requires a matrix inversion
per iteration, whose computational complexity is O(|Q2]?).

Algorithm 1 Two-stage Tensor Completion

Input: incomplete data tensor 7 and the observed set ¥
Output: T
1: for (20,90, —,—) € ¥ do
B(@o%e) = T(24,%0,:,:)
Q = {(i,)|(o, Yo i, ) € T}
T (Zo, Yo, :) = SMCq(B(e:v0))
Update the observed set ¥’
end for
: for (—,—,i0,70) € ¥’ do
G liojo) — T'(:, 100, Jo)
Q = {(pm»py”(pmapyviovjo) € \I]/}
10: T(:500,50) = SMCq(G o))
11: end for

R A A S o

Algorithm 2 Smooth Matrix Completion (SMC)

Input: incomplete data matrix M and observed set ()
Output: M

1: Initialization X; =Y, =M, Z; =0, ¢, = ©

2: while ¢; > € do
3 X1 =Dip (Y + 5Zy)
4 Y11 =Ygq + Mg (Yg obtained by solving (14))
S0 Ziy1 =2+ (Y1 — Xiga)
6
7
8

etr1 = | Xep1 = Yeullms t =t +1
: epd while
M «— XQ + Mq

C. Recommendation Algorithm

With the completed tensor 7' we have the estimated re-
ceived powers of all beams at UE position (p,,py). Suppose
the number of beams to be trained is V., the construction of
the recommended beam set is a beam subset selection problem.
It can be directly fulfilled by selecting the Ny beams with
largest predicted received power from the completed tensor 7
using Algorithm 3.

Algorithm 3 Beam Subset Selection

Input: completed tensor 'f' beam number Ny, beam code-
book W with indices Z, UE position (pg, py)
Output: recommended beam subset Sy,
1: Initialization Sy <
2: forn =1: Ny do .
3: (1*7]*) = argmax(i,j)ef\sn,l T(pm7py7z7])
4 Sp — Spo1 U (1%, 5%)
5: end for

IV. NUMERICAL RESULTS

Here, we evaluate the misalignment probability and the
spectral efficiency of our proposed beam recommendation
algorithm (TC) with the channel generated by Quadriga [11].

A. Experiment Setting

We consider an uplink SIMO scenario, with an UPA having
N, = N, = 16 antennas along the 2 and y directions (as in
(1)) at the BS, and isotropic antenna at the UE. The scenario
mmMAGIC_UMi_NLOS is selected, with carrier frequency
fo = 58.68 GHz. The UPA codebook size is |W|= 256
with (Cy,Cy) = (16,16). The network layout is depicted
in Fig. 1, containing one BS at (0,0, 10) serving the UE in
the area A = {(g,9y) : 10 < g, < 60,-25 < g, < 25}
with height as 1.5 m. Considering 51 x 51 = 1261 refer-
ence GPS coordinates uniformly located in the service area
A, we collect the SIMO channel for each reference GPS
coordinate in A as the ground truth data. The position labels
of A are derived as in (4) with the resolution A; = 5m,
where the length are L, = 11 and L, = 11. The data
tensor can be expressed by 7 € RE=*LyxCoxCo  where
(Lgy, Ly, Cy,Cy) = (11,11,16,16). The observed position
ratio Ko, = Cop/(LszLy) is varied, where C,, denotes the
number of observed positions. Regarding the observed set of
data tensor, we make the two following assumptions for the
experiment setting. Assusmption 1: The observed positions
are randomly chosen. For the observed position p’, the mea-
surements of the reference GPS coordinates corresponding to
position p’, {g = (92, 9y) : P(8) = ', g € A}, are observed.
Assusmption 2: For each observed GPS coordinate g, only
the measurements of the top 10% beams (ranked by received
power) are stored in the database. With these two assumptions,
the data tensor in (5) is incomplete in both positions’ and
beams’ dimensions.

Our formulation allows to make predictions for unknown
beams/positions by exploiting spatial correlation. On the other
hand, the previous work [5] for mmWave beam alignment uses
the prior knowledge already available at a given position, but
does not allow to make predictions if measurements are not
available. For comparison, we consider the type B fingerprint-
ing method [5] by providing the recommended beam set based
on the closest position having available prior knowledge, if the
prior measurements of UE position are not given.

B. Performance of Proposed Beam-alignment Algorithm

We evaluate the power loss probability P, (Sp) versus
the percentage of trained beams (|Sp|/|W|) under different
observed position ratio K,,. The noise impact is ignored. To
measure the beam alignment accuracy for the recommended
set Sp, we define the metric as the power loss probability
Po(Sp) =1 — Py(Sp), where Ps(Sp) is the probability that
the best beam is included in the set Sp at position p,

Py(S,) = [P(

We average the power loss probability over the channels at
the GPS coordinates corresponding to unobserved positions. In
Fig. 3, P,;(Sp) decreases when the database contains more ob-
served positions with fixed number of trained beams. The type-
B fingerprinting method [5] requires at least 13% of the beams
to be trained to attain Pp;(Sp) = 20%. With K, increasing

max r®H7) = max T(pJ/’j/))' (15)
(i,1)€Sp (11.5)€T
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Fig. 3: Power loss probability versus the percentage of trained beams.

from 20% to 40%, P,;(Sp) only very slightly improves. For
our proposed method (TC), to attain P, (Sp) = 20%, we
require only 2% trained beams when K,, = 20%. With
more trained beams or higher K,,, P (Sp) of TC decreases
significantly.

C. Spectral Efficiency

We evaluate the average spectral efficiency versus the aver-
age transmit power. We first define the transmission rate as

R = Blogy(1 + nP;|w'h]?) (16)

where B = 1.76 GHz is the bandwidth [5], [11]; P; is the
transmit power; w is the selected beamforming vector; h is
the SIMO channel; 7 £ % is the SNR scaling factor,
where A = ¢/ f. is the wavelength (c is the speed of light),
Ny = —174 dBm/Hz is the noise power spectral density, d
is the distance, and ( = 1 is the antenna efficiency. The
microslot duration ds = 10 us is the time for one transmission.
The frame time T'frqme = 5 ms is fixed. The training time
iS Tirain = N X dg. The fraction of time used for data
transmission iS feomm = W Then, the average
throughput is R =R X feomm.

In Fig. 4, the trend of spectral efficiency (R/B) is monotone
increasing. We compare our proposed scheme (TC) with the
type-B fingerprinting method [5] and the exhaustive search
which trains all |WW| beams in the training phase. TC is better
than exhaustive search. The spectral efficiency of TC with
(Kop, Niv) = (40%,10) is around twice as much as the
spectral efficiency of exhaustive search. It is due to feomm =
0.5 for exhaustive search, but f.omm of TC is close to 1
because of the small T},4;,. The spectral efficiency of TC at
(Kop, Niv) = (20%, 5) outperforms the type B fingerprinting
method at (K, NVy,.) = (40%, 10) by 0.7 bit/s/Hz since our
method provides more accurate beam prediction with even
fewer known positions and fewer trained beams. If we increase
K,, or Ny, the improvement of TC is minor since P,,;(S) is
fairly low (< 10%) in this region.

V. CONCLUSION

In this paper, we propose a learning-based beam rec-
ommendation algorithm to reduce the training overhead for
the position-aided beam alignment protocol. We consider a
scenario where the UE is located in an arbitrary position
in which prior measurements may not be available in the
database. We propose a two-stage tensor completion to predict
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Fig. 4: Spectral efficiency (R/B) versus the average transmit power (P).

the received power, and then provide the set of recommended
beams by ranking the predicted power of beams. The two-stage
tensor completion exploits both the low-rank and smooth-
ness of the data. The numerical results demonstrate that the
proposed beam recommendation algorithm does improve the
performance of beam-alignment over the state-of-the-art, by
reducing the beam-training overhead.
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