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Abstract—Mobility may degrade the performance of next-
generation vehicular networks operating at the millimeter-wave
spectrum: frequent loss of alignment and blockages require
repeated beam training and handover, thus incurring huge over-
head. In this paper, an adaptive and joint design of beam training,
data transmission and handover is proposed, that exploits the
mobility process of mobile users and the dynamics of blockages
to optimally trade-off throughput and power consumption. At
each time slot, the serving base station decides to perform either
beam training, data communication, or handover when blockage
is detected. The problem is cast as a partially observable Markov
decision process, and solved via an approximate dynamic pro-
gramming algorithm based on PERSEUS [2]. Numerical results
show that the PERSEUS-based policy performs near-optimally,
and achieves a 55% gain in spectral efficiency compared to a
baseline scheme with periodic beam training. Inspired by its
structure, an adaptive heuristic policy is proposed with low
computational complexity and small performance degradation.

I. INTRODUCTION

Millimeter-wave (mm-wave) is a leading candidate to sup-
port the high capacity demands of future vehicular commu-
nications [3]. However, communication at these frequencies
relies on highly directional transmissions and it is highly
susceptible to blockages and mis-alignment. These features
are exacerbated in highly mobile environments, resulting in
degraded system performance. To compensate for these ef-
fects, the key question addressed in this paper is the following:
How can we leverage the information on the system dynamics
(mobility of users and blockage dynamics) to optimize the
communication performance? How much do we gain by doing
so? To address these questions, we envision the use of adaptive
communication strategies and their formulation via partially
observable (PO) Markov decision processes (MDPs).

We consider two base stations (BSs) serving a mobile user
(MU) on both sides of a road link. At any time, the MU
is associated with one of the two BSs (the serving BS). To
enable directional data transmission (DT), the serving BS
performs beam training (BT); to compensate for blockage,
it performs handover (HO) to the other BS on the opposite
side of the road link. The goal is to design the BT/DT/HO
strategy, so as to optimally trade-off the throughput delivered
to the MU and the average power consumption of BS. We
formulate the optimization problem as a POMDP, and develop
an approximate dynamic programming algorithm based on
PERSEUS [2]. Our numerical evaluations based on a Gauss-
Markov mobility model demonstrate that the PERSEUS-based
policy performs very closely to a genie-aided upper bound
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in which the position of the MU and the blockage states are
known, and outperforms a baseline scheme with periodic beam
training by up to 55% in spectral efficiency. Motivated by
the structure of the PERSEUS-based policy, we design an
adaptive heuristic policy with low computational cost, and
show numerically that it incurs a small 10% degradation in
spectral efficiency compared to the PERSEUS-based policy.

Related Work: In the past decade, the design of beam
training schemes for mm-wave systems has been the focus
of extensive research, ranging from beam sweeping [4], es-
timation of angles of arrival (AoA) and of departure (AoD)
[5], to data-assisted schemes [6], and feedback-based schemes
[7]. Despite their simplicity, the overhead incurred by these
algorithms may ultimately offset the benefits of beamforming
in highly mobile environments [3]. In this paper, we contend
that leveraging a priori information on the vehicle’s mobility
as well as blockage dynamics may greatly improve the perfor-
mance in vehicular communications [8]. To this end, in [4], we
designed optimal beam-sweeping schemes based on a worst-
case mobility pattern. In [9], we designed adaptive strategies
for BT/DT that leverage a priori mobility information, but with
no consideration of blockage, hence no handover. In this work,
we exploit both mobility and blockage dynamics to design
adaptive communications schemes via POMDP.

Related work that applies learning techniques to mm-wave
networks includes [10]-[12], revealing a growing interest in
the design of adaptive communication policies that exploit
side information to enhance the overall network performance.
For instance, contextual information is exploited in [10] to
reduce the training overhead, and the feedback is used in [11]
to improve the beam search in the next rounds. However,
these works neglect the impact of realistic mobility and
blockage processes on the performance. In [12], the serving
BS predicts blockages using past observations, and proactively
performs handover to another BS with highly probable LOS
link. However, the MU speed is randomly selected from a
predefined set of values, and thus does not follow a realistic
mobility process. Compared to this line of works, in this paper,
we design adaptive communication strategies that leverage
statistical information on the mobility and blockage processes
in the selection of BT/DT/HO actions, with the goal to
optimize the average long-term communication performance
of the system. This approach is in contrast to strategies that
either lack a mechanism to perform handover [10], [11], or
assume a non realistic mobility pattern in their design [12].

II. SYSTEM MODEL

We consider the scenario depicted in Fig. 1, where two BSs
on both sides of a road link serve a MU moving along it.
At any time, the MU is associated with one BS, denoted as
the serving BS, which performs data transmission (DT) to the
MU using beamforming to create a directional link, along with
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Fig. 1: A cell deployment with BSs on both side of road.

beam training (BT) to maintain alignment. The communication
link between the serving BS and the MU is subject to time-
varying blockage, which causes the signal quality to drop
abruptly and DT to fail. To compensate for it, the serving BS
may perform handover (HO) to the other BS on the opposite
side of the road link, which then continues the process of BT
and DT, until either another blockage event is detected, or the
MU exits the coverage area of the two BSs. In this context,
we investigate the design of the BT/DT/HO strategy, so as
to optimize a trade-off between maximizing the throughput
delivered to the MU and minimizing the power consumption
of the BS during a transmission episode, defined as the time
interval between the two instants when the MU enters and exits
the coverage area of the two BSs. Both BSs are at a distance
D from the road segment, symmetrically with respect to the
road, and use a discrete set of narrow beams to communicate
with the MU. To this end, the road segment covered by the
two BSs, of length L=2D tan(©/2) and angular range O, is
partitioned into .S sectors of equal length A;=L/S, indexed
by s€S={1,...,S}. Each sector is then associated with one
transmission beamformer c¢(*), with angular support

(s—1)As—L/2 sAs— L/2

i) , VseS,

d,=| arctan ,arctan
and beamwidth 6,=|®|, so that the ensemble of all beams
span the entire angular region covered by the two BSs. c(*)
can be defined with a proper beam design, as done in the
numerical results in Sec. V with the algorithm of [13].

Time is discretized into time-slots of duration A¢, corre-
sponding to a beacon signal during BT or a data fragment
during DT. Let Z;€S £ SU{5} denote the sector occupied
by the MU at time k, where Z;=5 indicates that the MU exited
the coverage area of the BSs. As a result of mobility of the
MU, we model Z;, as a discrete-time Markov chain over S,
with transition probabilities Psy = P(Zg41 = §'|Zk = s).
In the numerical results, we estimate P from time-series
generated with the Gauss-Markov mobility model, in which
the position x; and speed vy of the MU evolve as

Vi = YVk—1 + (1 - 'Y),Uu + ovy 1- 'Yzf)ka (D
Tk = Th—1 + D¢Vp—1, (2)

where u, and o, are the average and standard deviation of
vg; 7y is @ memory parameter and 05~CN (0, 1), i.i.d. over k.

Within the kth time-slot of duration Ay, L symbols each of
duration A /L are transmitted by the serving BS, denoted by
the index Ij, € {1,2}. Let x;, € CL be the signal transmitted

such that E[||xx||3] = L. Assuming isotropic reception at the
MU, the received signal is expressed as

Yi = V Pehiepxy + wy, 3)

where P, is the transmit power of the serving BS; hy, €C1*Mex
is the channel vector; M, is the number of antenna elements
at each BS; ¢, €CMe=*1 with ||ck|%= 1 is the beamforming
vector; wi~CN (0,02 1) with 02 = NoW,q is additive white
Gaussian noise (AWGN), Ny is the noise power spectral
density, Wi is the signal bandwidth.

In this paper, we model the channel as a single LOS path
with binary blockage state b,(j)e{(), 1} [14],

hy, = /Meb\™ hydisc (1) 7, 4)

where b(l)—l if the LOS path of BS i is unobstructed, b(l)
0therw1se dix(Yr)€ €CMex is the BS array response vector W1th
| dex (1) ||2=1; ¥p=sin(¢y)= (x1,—L/2)/dy is the spatial
angle corresponding to the AoD (computed with respect to the
perpendicular to the array) ¢, €[—©/2, ©/2] in slot k; the term
hxg~CN(0,03) is the complex channel gain of the LOS com-
ponent, i.i.d. over slots, with 07 =1/¢(dy); ¢(dx)=[4mdy]? /N2
denotes the distance-dependent path loss, as a function of the
MU-BS distance dp=d(¢)=D+/1+tan(¢y)? (see Fig. 1);
Ac=c/ fc is the wavelength at carrier frequency f..

Letting Gix(c, ) = Miy|dix (1) c|? be the beamforming
gain of the serving BS and O, = /d;, (/)" c be its phase,
the signal received at the MU in slot k£ can be expressed as

Vi = VPeb" by /G ek, br) x4 + Wi, (5)

We use the sectored-antenna model, i.e., G(c®),4.)/d(dr)?
is constant within the main-lobe ¢pc®,, so that, letting

rs 7%0;‘1 - the average SNR when ¢ €9, b( W= (align-
ment and no- blockage) can be shown to be

SNRy = ' Py, (6)

This result is in line with the intuition that larger distances are
achievable via smaller beamwidths, as also observed in [15].
If ¢ Py or b;f"):O (mis-alignment or blockage), SNRy =
pI' Py, where pe(0,1) is the side- to main-lobe gain ratio,
which is numerically found from the gain pattern.

Finally, the blockage state b,(C is modeled as a Markov chain
with transition probabilities

P 2P0, =V b =b), vo,0' € {0,1}. (D)
The processes {b,(;),k > 0},4 € {1,2} evolve independently
of each other, with Markov dynamics (7). The independence
assumption is motivated by the fact that the two BSs are on
opposite sides of the road segment, hence they experience
different types of obstructions between the MU and the BS.
We now introduce the BT and DT operations.

BT phase: At the start of a BT phase, the BS selects a set of
sectors SgT over which it will send the beacons x;, for BT,
and a target SNR, SNRpt. The beacon transmission is done
sequentially, using one slot for each sector in the set Spr.
Therefore, the duration of the BT phase is Tt = |Spr|+1,
which includes the last slot for feedback signaling from the
MU to the BS. Let i€{0,...,TgT — 2} be the ith timeslot

during the BT phase, and 3; € S‘BT be the sector covered



by the BS. At the MU, the received signal yj; is processed
using a matched filter to generate the output

A |XkH+iyk+i|2
NoWiot|Ixx+ill3

23, = C(Xketis Yiti) (8)
Upon collecting the sequence {2z, V§ € S‘BT}, the MU
generates the feedback signal as
Y, = g* & argmax,-e 25, MaXzc-s 23 > 1NBT, )
0, maxg g . 2s < 1BT-

In other words, if all the matched filter outputs are below a
threshold np7, the feedback ) is reported, indicating that no
beam is deemed sufficient to carry data transmission, either
due to blockage (b,(f) = 0), or mis-alignment (7, ¢ S’BT).
Otherwise, the ID of the strongest beam s* is reported.

DT phase: At the start of the DT phase, the BS selects a
sector § € § over which it performs DT for Tpr — 1 slots,
along with a target average SNR at the receiver SNRpr and a
target transmission rate Rpr; an additional slot is used for the
feedback signal from the MU to the BS, as described below, so
that the overall duration of the DT phase is TpT. We assume
that a fixed fraction x € (0,1) out of L symbols in each slot
is used for channel estimation. Then, under alignment (s = §
and by = 1), and assuming that channel estimation errors are
negligible compared to the noise level (which can be achieved
with a sufficiently long pilot sequence «L), from the signal
model (5), we find that outage occurs if

Wiot logy (1 + |y *€(dk)SNRpT) < Rpr, (10)
(note that E[|hy|*¢(dy)] = 1) yielding the outage probability

_ R
Pour(Ror, SNRpr) = 1 —exp { — SNRp1(2 ™ — 1)},

In this paper, we design Rpr based on the notion of
e—outage capacity, i.e., Rpr is the largest rate such that
]P’OUT(RDT,SNRDT) < ¢, for a target outage probability
e < 1. Setting Poyt = ¢, this can be expressed as

Rpor=C(SNRp1)=Wiot log, (1-SNRpr In(1 —€)), (11)
so that the average throughput is

T (¢,SNRpr) 2 (1 — £)(1 — €)C(SNRpr),  (12)

where (1 — k) takes into account the overhead due to chan-
nel estimation. Subsequently, we select € to maximize 7,
i.e., given SNRpr, € is chosen as the unique fixed point
of d7(¢,SNRpt)/de = 0. We denote the corresponding
throughput maximized over € as 7*(SNRpr).

We envision a mechanism in which the pilot signal trans-
mitted in the second last slot of the DT phase (the most recent)
is used to generate the binary feedback signal Ye{s, 0},
transmitted by the MU back to the BS in the last slot of the
DT phase. Similarly to the BT feedback,

" {S <% 2 Sra) > 07 g
0, C(inTDszaYkﬂTDsz) < npr,

(p)

k+TpT

the corresponding signal y,(fngDT _o received on the second last

slot of the DT phase, so that Y=3 denotes beam-alignment,

based on the pilot signal x _o (of duration xL) and on

whereas Y'=() denotes loss of alignment due to either mobility
of the MU or blockage. For both BT and DT, the feedback
distribution is computed in closed-form in [1].

ITII. POMDP FORMULATION

We now formulate the problem of jointly optimizing the BT,
DT and HO strategy as a POMDP, defined next.

States: the state is denoted as wug é(Zk,Ik,b,(cl),b(;)) eu
taking values from the set i = (S x {1,2} x {0,1}%), where
Zy € S is the sector occupied by the MU, Iy € {1,2} is the
index of the serving BS, and b,(;) € {0,1} for ¢ € {1,2} is
the blockage state. We add the absorbing state s to denote the
fact that the MU exited the coverage area of the two BSs, so
that the overall state space is U = U U {5}.

Actions: the serving BS can perform either BT, DT or HO
actions. However, differently from standard POMDPs in which
each action takes one slot, in this paper we generalize the
model to actions taking multiple slots, as explained next.

Under action HO, the other BS becomes the serving one
for the successive time-slots, until HO is chosen again. Its
duration is denoted as T30, modeling the delay to coordinate
the transfer of the data traffic between the two BSs.

Under action BT, the serving BS chooses the set Spr of
sectors to scan and the target SNR SNRgT. The duration of
the BT action is Tpr=|Spr|+1: |SpT| slots for scanning the
set of sectors S’, and one slot for the feedback from the MU
to the serving BS.

Under action DT, the serving BS selects the sector §
covered, the duration Tpp > 2, and the target SNR SNRpt
of the data communication session. The transmission power is
then determined via (6), and the transmission rate is given
by (11) to achieve e-outage capacity, so that the resulting
expected throughput (in case of LOS and correct alignment) is
T*(SNRpr). The duration of the data communication session
Tpr includes the second last slot to generate the feedback
signal, which is fed back to the BS in the last slot.

We denote the action as the 4-tuple a=(c, S., SNR., T¢.),
where c€{HO,BT,DT} is the action class. For HO, we set
SHO:@ and SNRyo=0. We denote the action space as A.
Observations: upon selecting action Ax€A of duration T
in slot k and executing it in state uiz€l, the BS observes
Y, from the set Y = SU{@}U{5}. The observation signal
Y, =s denotes that the MU exited the coverage area of the
two BSs, hence the episode terminates; otherwise, Y, denotes
the feedback signal after the action is completed, as described
earlier for the BT and DT actions in (9) and (13) (we set Y, =0
under the HO action).

Transition, Observation probabilities: Let P(u/,y|u,a) =
P(Ukir=1', Yr=y|Ur=u, Ax,=a) be the probability of mov-
ing from state u€l to state u’'€l{ and observing y€) under
action a€.A of duration 7. Note that these probabilities are a
function of the duration 1" of the selected action a, and can be
computed in closed-form based on the feedback distribution
and state transition probabilities (see [1]).

Costs and Rewards: for every state action pair (u, a), we let
r(u,a) and e(u, a) be the expected number of bits transmitted
from the BS to the MU and the expected energy cost, respec-
tively. Under the HO and BT actions, we have that r(u,a) = 0
(since no bits are transmitted under these actions). On the other
hand, under the DT action a=(DT, {§}, SNR, Tpr) (of dura-
tion Tpr, SNR SNR, over sector 5), the expected throughput




in the tth communication slot is 7*(SNR), provided that there

is correct alignment and no blockage (Zj+:=35 and b;ﬂ?tzl);
otherwise, outage occurs and the expected throughput is zero.
Hence, the total expected traffic delivered over the entire

communication session is

r((s,1,b1,b2), (DT, {3}, SNR, Tpr)) (14)
ToTr—2

=T*(SNR) Y P(Zi1=3,b"),=1|Zx=5,b\"=br).
t=0

The energy cost under action a with SNR SNR is expressed
from (6) as (note that SNR=0 and e(u, a)=0 under HO)

e(u,a) = %SNR(T —1). (15)
Note that the last slot is reserved to the feedback transmission,
which incurs no energy cost for the BS. We opt for a
Lagrangian formulation to trade-off cost e(u,a) and reward
r(u,a), and we define L(u,a)=r(u,a)—Ae(u,a) for A\>0.
Policy and Belief updates: Since the agent cannot directly
observe the system state ug, we introduce the notion of belief
B € B, i.e., the probability distribution over system states,
given the information collected so far at the BS. Given f, the
serving BS selects an action a according to a policy a = (),
part of our design in Sec. IV; then, upon executing the action a
and receiving the feedback signal y, the BS updates the belief
for the next decision interval according to Bayes’ rule as

Zueu ]P)(u/a y|ua a)ﬂ(u)
Zueu Zu”el] P(U’N’ y|u’ a)ﬂ(u) ’

where P(u’, y|u, a) is the conditional joint state transition and
observation probability [1].

Bl(ul) = ]P)(u/ | yvaaﬁ) =

IV. OPTIMIZATION PROBLEM

Our goal is to determine a policy 7 (i.e., a map from beliefs
to actions) that maximizes a trade-off between throughput and
average power, V™2T™ - \P7, starting from a given initial
belief Sy = (B at time 0. Using Little’s Theorem [16], these
metrics can be expressed as

Tﬂ' A Rtot(ﬂO) pﬂ' A tot(ﬂo) Vads A ‘/tot(ﬁo)
Dtot (ﬁo) Dtot (ﬁo) Dtot (60) ’

where Dy, (/35) is the expected episode duration, function of
the mobility process but independent of policy T,

(16)

(REa(9). Bl (B2 [ S0, 0). i, )] =]

t=0
are the total expected number of bits transmitted and the total
expected energy cost during an episode,' and

[Zﬁ (ug, at)

Then, the optimization problem starting from the initial belief
Bo = B is expressed as

‘7tgt (ﬂ):RC—ot (ﬂ) /\EZEc

foed

max V™ (Bs)= max Vioe (65)-

o
Dtot (ﬂo )

INote that the convergence of these series is guaranteed by the presence
of the absorbing state 3, i.e., the MU exits the coverage area at some point.

It is well known that the optimal value function uniquely
satisfies Bellman’s optimality equation [2] V*=H[V*], where
we have defined the operator V=H[V] as

/
= mae 3w [ (1, @)+ 3" PO, gl )V (Bly, a, ),
ueU y,u’

VB € B, and the maximizer is the optimal policy 7*(f). The
optimal value function V* can be arbitrarily well approxi-
mated via the value iteration algorithm V,,1=H[V,,], where
Vo(B8)=0, V3. Moreover, V,, is a piece-wise linear and concave
function [2], so that it can be expressed by a finite set of
hyperplanes Q,, = {a, ;}27, of cardinality A,,, such that

Va(B) = max B a, (17)

where fB-a=), f(u)a(u) denotes inner product. Each
hyperplane «€Q,, is associated with an action a,€A,
so that the maximizing hyperplane o* in (17) defines
the policy m,(8)=aq~. It has been shown that Q,
grows doubly exponentially with the number of iterations,
Api1=|Qn11|=|A|PI" [17]. For this reason, computing op-
timal policies for POMDPs is an intractable problem for any
reasonably sized task. This calls for approximate solution
techniques, e.g., PERSEUS [2], which we introduce next.

A. Point-based Value Iteration (PBVI) for POMDPs

PERSEUS [2] is an approximate PBVI algorithm for
POMDPs. The key idea is to define an approximate backup
operator H[-] (in place of H|[-]), restricted to a discrete subset
of belief points in B, chosen as representative of the entire
belief space B; in other words, for a given value function 178
at stage n, PERSEUS builds a value function Vn+1 H [Vn]
that improves the value of all belief points 3 € B, without
regard for the belief points outside of this discrete set, 8 ¢ B.
The goal of the algorithm is to provide a |B|-dimensional
set of hyperplanes o € Q and associated actions a,. Given
such set, the value function at any other belief point 3 € B
is then approximated via (17) as V(8) = f - a*, where
o = argmax,ecg f - a, which defines an approximately
optimal policy 7(83) = aq».

The approximate backup operation of PERSEUS is given
by Algorithm 1, which takes as input a set of hyperplanes Q,,
and the corresponding actions, and outputs a new set Q11
along with their corresponding actions. To do so: in line 3, a
belief point is chosen randomly from Biemp; in lines 4-5, the
hyperplane associated with each action a € A is computed; in
particular, line 4 computes the hyperplane associated with the
future value function V,,(B(y, a, )), for each possible obser-
vation y resulting in the belief update B(y, a, 8); line 5 instead
performs the backup operation to determine the new one-step
lookahead hyperplane associated with each action; line 6 deter-
mines the optimal action that maximizes the value function for
the current belief, yielding overall the value iteration update
Vay1(B) = maxq By yia,8[L£(U, a) + Vi (B(Y, a, £))]; in lines
7-10, the new hyperplane and the associated action is added
to the set Q, 1, but only if it yields an improvement in the
value function V,41(8) > V,(8); otherwise, the previous
hyperplane is used; finally, lines 11-12 update the set of un-
improved beliefs based on the newly added hyperplane; only
the belief points that have not been improved are part of
the next iterations of the algorithm. Overall, the algorithm



Algorithm 1: function PERSEUS

input : B, On, {al,a € Qn}
1 In}t: Yn-l—l(ﬁ): Y VB € B; Btemp = B Qn-}-l—@
Vo (B)+ max,eo, B-c, maximizer ag, Vg € B;

2 while Btcmp 75 ? do // Unimproved beliefs
3 Sample 8 from Biemp; For each action a, solve

4 oy , = argmaxaecg, B(y,a, 8) - @, Yy € Y and

5 & (u) = L(u, a)—i—zﬁ_’y P(4, y|u, a)a;’a(ﬁ), Y

6 Solve Vn+1(6) = maxge4 3 - & and maximizing

action a* and hyperplane & = &,
7 | if Vor1(B) > Viu(B) then
8 Qni1 + Qui1U{a}; att =a* // aad & to

On+1 and define action associated to &;

a*’

// & improves value

9 else // keep previous hyperplane ag
10 | &= ag; Qui1 + Qui Ufaghs alt! =afl s

1 Vn+1(5) — max{ﬁ n+1( )}Nﬁ € B;

// unimproved beliefs

12 Btcmpk{ﬂegtcmp Vn+l(ﬂ)<‘~/n(ﬂ~)}’

1
return On+1, {a™ Vo € Qpiq}
hyperplanes and associated actions

—
w

// new

guarantees monotonic improvements of the value function in
the set B, and continues until all beliefs have been improved
and Biemp is empty. Algorithm 1 is then executed iteratively,
until convergence of the value function to a fixed point.

To generate B, we employ the Stochastic simulation and
exploratory action (SSEA) algorithm [17]. After initializing
By, at iteration n, SSEA iteratively performs a one step
forward simulation with each action in the action set, thus
producing new beliefs {3,,Va € A}; hence, it computes the
L1 distance between each new belief point 3, and its closest
neighbor in 5,,, and adds the belief point 3.~ farthest away
from B,,, so as to provide a wider coverage of the belief space.
This expansion is performed multiple times to obtain 5.

After returning the set of hyperplanes 9,, 1 and the associ-
ated actions {a"™!, Vo € Q,,11}, the (approximately) optimal
action when operating under the belief S can be computed as

* ( B) _ an-i—l

a*

where o = arg max (- a.
a€Qni1

In Fig. 2, we plot a time-series of the evolution of state
variables for a portion of an episode executed under the
PERSEUS-based policy (Algorithm 1). The parameters used
are listed in Table 1. Initially, the MU is known to be i 1n sector
Zo=1, with LOS conditions for both BSs (b\"”=b{=1).
We show a time-series for the sector index Zj, 1ndex of
the serving BS I, its blockage state b,(f’“), the action class
ce{DT,BT,HO}, the BT feedback Ygr as defined in (9),
and the DT feedback Ypr as defined in (13). The action space
for the DT time is set as Tpre{10,20,40} and the power
levels are set as Pgr, PphT€{0,10,20,30,40} (dBm). It can
be observed in the figure that at 0.238s, 0.246s and 0.287s,
NACKSs are received after executing the DT action. After each
one of these NACKs, the policy executes the BT action. If
the BT feedback YgT#0, then DT is performed; otherwise,
blockage is detected and the HO action is executed. Next, we
will present a heuristic policy that mimics this behavior.

—
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Fig. 2: Execution of policy 7*.

B. Heuristic Policy

Note that Algorithm 1 incurs a huge computational cost es-
pecially for POMDP with large state and action spaces (hence
large number of representative belief points). To remedy this,
we propose a finite state machine based heuristic policy (FSM-
HEU) that will be shown numerically to achieve near-optimal
performance. The key idea of FSM-HEU is that it selects the
BT/DT/HO actions based solely on the last action executed
and its observation signal, but not on the belief [;. The
behavior of this scheme can thus be described as a finite-state
machine, depicted in Fig. 3 and described next.

If the last action executed was a BT action, and the feedback
signal is Y = 5 (see (9)), then the BS detects the strongest
beam 3; hence the next action selected is DT over sector $§
(the strongest detected), of fixed duration 7pT. On the other
hand, if the feedback signal is Y = (), the BS detects blockage

and performs handover to the non-serving BS (action HO).
Y =3

(FSM-HEU)

y = ( (FSM-HEU)
Fig. 3: Finite state machine based on the observation signal Y. Black lines
represent transitions under both FSM-HEU and baseline; blue and red lines
represent transitions under FSM-HEU and baseline only, respectively.

If the last action executed was DT on sector 5, and the
feedback signal is ACK (Y'=3, see (13)), then the BS infers
that the signal is still sufﬁ01ently strong to continue DT on
the same sector, and the same action is selected; otherwise
(NACK received, Y =()), the BS detects a loss of alignment,
hence the BT action with exhaustive search is selected.

Finally, if the last action executed was HO, then the new
serving BS executes BT via exhaustive search to locate the
MU. This procedure continues until the episode terminates.

To study its performance, note that the underlying sys-
tem state Uy and action Ay form a Markov chain. Letting
P(a’|y,a) be the probability of generating the new action d’,
given previous action a and observation y, as given by the
finite-state machine of Fig. 3, the value fuction V' (u, a),Vu, a
is obtained by solving the following system of linear equations

V(u,a)=L(u,a)+ Z P, ylu, a)P(a’|y, a)V (v

y,u’,a’

a'),Yu,a.

V. NUMERICAL RESULTS

In this section, we perform a numerical evaluation of the
various algorithms proposed in this paper, with simulation
parameters listed in Table 1.The blockage transition probabil-
ities given in the table correspond to steady state blockage



Parameter Symbol | Value
Number of BS antennas M« 128

Angular BS coverage © 90°

Slot duration Ay 100us
Distance of road to BS D 20m
Bandwidth Whot 100MHz
Carrier frequency fe 30GHz
Noise psd Ny —163dBm/Hz
Fraction of DT slot for channel-
estimation/hypothesis-testing K 0.01

HO delay THo 1 slot

LOS to blockage transition prob. Pi0 1.25 x 10~4
Blockage to LOS transition prob. Po1 5x 1074
MU average speed Lo 30m/s

MU speed standard deviation ov 10

MU mobility memory parameter ¥ 0.2

TABLE 1: Simulation parameters.
probabilities wg):wg):O.Q and average blockage duration
of 0.2ms. Using the throughput metric defined in (16), the
average spectral efficiency is computed as T /W, [bps/Hz].
We compare the performance of the proposed policies to a
baseline scheme which performs periodic BT, unless blockage
is detected (in which case it executes HO, see Fig. 3).

In Fig. 4, we depict the average spectral efficiency against
the average power consumption. For the FSM-HEU and
baseline policies, we set TpT=10, and Pgr=Ppt is varied
from OdBm to 40dBm. The upper-bound shown in the figure
is obtained by a genie-aided policy that always executes
DT with perfect knowledge of the state (s,I,b1,be) and
hence its throughput performance can be upper bounded
by (1-7 7 2)T*(SNRpr), ie. it is 7*(SNRpr) unless
there is no LOS under both BSs (with steady-state proba-
bility Wg)ﬁg)) whereas its power consumption is given as
(1 —wg)wg))PDT. Note that this upper-bound is not attainable
since it is found by assuming perfect knowledge of the state
and ignoring the inefficiencies due to the time required to
perform handover and transmit feedback. The PERSEUS-
based policy 7* yields the best performance with negligible
performance gap with respect to the upper-bound. It shows
a performance gain of up to 11% and 55% compared to
FSM-HEU and baseline, respectively. However, the baseline
policy yields up to 50% degraded performance compared
to FSM-HEU: in fact, the baseline scheme neglects the DT
feedback and instead performs periodic BT, thus incurring
significant overhead. We observe that the curves corresponding
to analysis and the one based on simulation (based on the
Gauss-Markov mobility model and beam design via [13])
closely match, thereby showing that the model introduced in
the paper provides good abstraction of more realistic settings.

VI. CONCLUSIONS

In this paper, we have investigated the design of beam-
training/data-transmission/handover strategies for mm-wave
vehicular networks. The mobility and blockage dynamics have
been leveraged to obtain the approximately optimal policy via
a POMDP formulation and its solution via a point-based value
iteration (PBVI) algorithm based on PERSEUS [2]. Inspired
by it, we have proposed a heuristic policy, which provides low
computational alternatives to PBVI and exhibits performance
comparable to the optimal policy obtained via PBVI. Our
numerical results demonstrate the importance of an adaptive
design to tackle the highly dynamic environments caused by
mobility and blockages in vehicular networks.
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Fig. 4: Average spectral efficiency versus average power consumption: ana-
lytical curves based on the sectored antenna and mobility model (continuous
lines) and simulation using analog beamforming and Gauss-Markov mobility
(markers).
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