
Discrete Finite-time Stable Position Tracking Control of Unmanned
Vehicles

Reza Hamrah, Amit K. Sanyal1, Sasi Prabhakaran Viswanathan2

Abstract— This paper presents a finite-time stable (FTS) po-
sition tracking control scheme in discrete time for an unmanned
vehicle. The control scheme guarantees discrete-time stability
of the feedback system in finite time. This scheme is developed
in discrete time as it is more convenient for onboard computer
implementation and guarantees stability irrespective of sam-
pling period. Finite-time stability analysis of the discrete-time
tracking control is carried out using discrete Lyapunov analysis.
This tracking control scheme ensures stable convergence of
position tracking errors to the desired trajectory in finite time.
The advantages of finite-time stabilization in discrete time
over finite-time stabilization of a sampled continuous tracking
control system is addressed in this paper by a numerical
comparison. This comparison is performed using numerical
simulations on continuous and discrete FTS tracking control
schemes applied to an unmanned vehicle model.

I. INTRODUCTION

This paper investigates the problem of autonomous posi-
tion trajectory tracking of an unmanned vehicle. In various
applications where remote piloting is difficult or impossible,
autonomous operations of unmanned vehicles can play an
important role. Applications of unmanned aerial vehicles
such as security, inspection of civilian infrastructure, agri-
culture and aquaculture, space and underwater exploration,
wildlife tracking, package delivery and remote sensing can
all benefit from reliable autonomous operations. Stable and
robust autonomous guidance and control is considered a
critical part of reliable operations of unmanned vehicles,
particularly for operations that require safety and reliability
in presence of external disturbances like wind. Absence of
nonlinear stability and robustness in these situations can lead
to failure and crash of even remotely piloted vehicles. This
work presents a systematic treatment of discrete finite-time
stable control for tracking position trajectories of unmanned
vehicles, as a good solution to this problem.

Finite-time stable control has the advantage of providing a
guarantee on the time it takes for the system to converge to a
desired state, beside being more robust to bounded temporary
and persistent disturbances than asymptotic stability. More-
over, low-level persistent disturbances are better rejected by a
finite-time stable system in comparison to an asymptotically
stable system, because the ultimate bound on the state is of
higher order than the bound on the disturbance [1]. In partic-
ular, continuous finite-time stable (FTS) control schemes are
effective in applications where there are bounded disturbance
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inputs due to unmodeled dynamics [2]. Early research on
continuous finite-time stable (FTS) control systems can be
found in [3]–[5]. An almost global finite time stabilization of
rigid body attitude motion to a desired attitude in finite time
is studied in [2], [6]. Same authors designed a finite-time
stable control scheme for simple mechanical systems repre-
sented in generalized coordinates, as reported in [1]. A FTS
integrated guidance and feedback tracking control scheme
for position and attitude tracking of rigid bodies has been
reported in [7]–[9], which ensures finite-time stability of the
overall tracking scheme in continuous time. The continuous
equation of motion were discretized in the form of Lie Group
Variational Integrator (LGVI) and the continuous time con-
trol scheme was sampled for computer implementation, by
applying the discrete Lagrange-d’Alembert principle. Prior
related research on LGVI discretization includes [10]–[16].

However, implementing a sampled continuous-time stable
tracking control scheme does not guarantee the discrete-
time stability of the resulting control. This has been demon-
strated convincingly for the case of nonlinear observer design
for attitude dynamics, in [15]–[17]. A discrete-time stable
feedback tracking control scheme was developed in [18], in
which discrete-time control laws obtained ensure asymptotic
discrete-time stability of pose tracking control of underac-
tuated vehicles on SE(3). Note that, like the continuous
time FTS control scheme in [1]- [4], [6]- [9], the discrete-
time FTS control scheme proposed here maintains finite time
stable convergence to the desired equilibrium or trajectory,
but it does so in discrete time. In addition, discrete-time FTS
control scheme enables onborad computer implementation
with a variety of discrete-time input data frequencies. This
forms the motivation of this paper: to design a finite-time
stable position tracking control scheme in discrete time.
To the best of our knowledge, a finite-time stable position
tracking control scheme in discrete time as proposed in
this paper has not been reported in prior literature. In this
paper, a discrete-time Lyapunov analysis for FTS position
tracking control leads to the discrete time control law. The
Lyapunov function designed is quadratic in a vector-valued
function that is in terms of translational motion (position
and velocity) tracking errors. This vector-valued function
is constructed such that when its value is the zero vector,
the translational tracking errors converge to zero in finite
time. A discrete-time control force vector is then designed,
that ensures that this vector converges to the zero vector
in finite time, and therefore the position trajectory tracking
errors converge to zero in a finite-time interval. Then, the
stability and performance of the proposed discrete time FTS
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scheme is numerically compared with that of a continuous
FTS scheme, and the results are discussed.

This paper is organized as follows. Section II outlines
the general formulation of the problem for a rigid body
on SE(3), as well as providing the position kinematics and
dynamics model of the vehicle. Section III deals with the
discrete-time Lyapunov framework and a two-step systematic
method to obtain discrete-time position tracking control law
for FTS position tracking control. A continuous FTS position
tracking scheme is presented in Section IV, which is the
scheme first proposed in [9]. Numerical simulation results
based on a Lie group variational integration scheme and
the finite-time control laws obtained in discrete time, are
presented in V. This section also presents a comparison of the
stability performance between the discrete and continuous
FTS schemes, and discussion of these results. The concluding
section VI provides a summary of results presented, and
mentions related research directions to be pursued in the near
future.

II. PROBLEM FORMULATION

A. Coordinate Frame Definition

The configuration of an unmanned vehicle modeled as a
rigid body is given by its pose, which is the combination
of its position and orientation. Let b ∈ R3 denote the
position vector of the origin of the body frame B with
respect to the inertial frame I represented in frame I. Let
R ∈ SO(3) denote the orientation (attitude), defined as the
rotation matrix from frame B to frame I. Then, the pose of
the vehicle can be expressed in matrix form as

g =

[
R b
0 1

]
∈ SE(3), (1)

where SE(3) is the six-dimensional Lie group of rigid body
motions (translational and rotational) that is obtained as the
semi-direct product of R3 with SO(3) [19], [20]. A smooth
position trajectory that is continuous and twice differentiable
(i.e., bd(t) = C2(R,R3)), where bd(t) gives the desired
position trajectory on R3 will be created. Such a time
trajectory for the position through given waypoints could be
generated using one of several techniques.

B. Position and velocity tracking errors expressed in inertial
frame

In this paper, the vehicle is assumed to have mass m. The
tracking errors for translational motion are expressed with
respect to the inertial frame as b̃ := b− bd and ṽ := v − vd,
which are position and velocity tracking errors, respectively.
Therefore, in inertial frame I, the position and translational
velocity error dynamics are expressed as{

˙̃
b = ṽ = v − vd
m ˙̃v = m g e3 − ϕ− vd

, (2)

where ϕ is the control force vector acting on the body,
expressed in inertial frame. The magnitude of this vector is
the control input f , which is designed as a feedback control
law, and e3 = [0 0 1]T is the third standard basis of R3.

III. DISCRETE-TIME STABLE POSITION TRACKING
CONTROL ON R3

Consider tracking a known position trajectory bd(t), with
corresponding velocity vd(t) = ḃd, in a time interval
[t0, tf ] ∈ R+ separated into N equal-length subintervals
[tk, tk+1] for k = 0, 1, ..., N , with tN = tf and tk+1− tk =
∆t where ∆t is the time step size. Define the position
tracking error in discrete time as

b̃k = b̃(tk) = bk − bdk. (3)

Therefore, one can express the discrete-time position and
translational velocity error dynamics as b̃k+1 − b̃k = ṽk∆t

ṽk+1 = vk + ∆t g e3 −
∆t

m
ϕk − vdk+1

, (4)

which is obtained by substituting vk+1 = ṽk+1 +vdk+1 in the
discretized equations of translational motion in the form of
Lie Group Variational Integrator (LGVI) presented in [11],
[18].

Now define the discrete-time Lyapunov function quadratic
in position tracking error as

V (b̃k) = Vk =
1

2
b̃TkP b̃k, (5)

where P = PT ∈ R3×3 is a positive definite control gain
matrix. The total time difference of this discrete Lyapunov
function in the time interval [tk, tk+1] for k = 0, 1, ..., N is
then obtained as

∆Vk = Vk+1 − Vk =
1

2
b̃Tk+1P b̃k+1 −

1

2
b̃TkP b̃k (6)

=
1

2
(b̃k+1 − b̃k+1)TP (b̃k + b̃k+1).

The following result is a basic result on finite-time stability
and convergence for discrete-time systems, and to the best
of our knowledge, it has not been reported in past research
publications.

Lemma 3.1: Consider a discrete-time system with a cor-
responding positive definite Lyapunov function V : Rl → R
and let Vk = V (yk). Let α and ε be a constant in the open
interval ]0, 1[, let V0 > 0 be the finite initial value of the
Lyapunov function along an output trajectory yk, and let
γk := γ(V 1−α

k ) where γ : R+ → R+ is a class-K function
of V 1−α

k that satisfies
γk
γ0
≥ 1− ε for V 1−α

k ∈ ]V 1−α
0 − χ, V 1−α

0 [ (7)

for some finite positive constant χ < V 1−α
0 . Then, if Vk

satisfies the relation

Vk+1 − Vk = −γkV αk , (8)

the system is Lyapunov stable and yk converges to y = 0
for k > N , for some N ∈ N.

Proof: Note that eq. (8) is a sufficient condition for
(Lyapunov) stability of the system, as it ensures that the
difference Vk+1 − Vk along trajectories of the discrete-time
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system is negative definite, with the right-hand side of the
equality being zero if and only if Vk = 0, given the definition
of γk. This equation can be expressed as:

Vk+1 = Vk − γkV αk = Vk

(
1− γk

V 1−α
k

)
. (9)

Consider an arbitrary trajectory yk ∈ Rl of the discrete-time
system. Let the initial value of the Lyapunov function along
this trajectory be

V0 = c0
(
γ0
) 1

1−α , where c0 > 0. (10)

Note that for any finite positive value of V0, there exists an
unique positive scalar c0 that satisfies (10). Substituting this
value for V0 in expression (8), we obtain:

V1 − c0
(
γ0
) 1

1−α = −γ0cα0
(
γ0
) α

1−α = −cα0
(
γ0
) 1

1−α

⇒ V1 = (c0 − cα0 )
(
γ0
) 1

1−α .
(11)

Defining
c1 := c0 − cα0 ,

equation (11) can be expressed as

V1 = c1
(
γ0
) 1

1−α .

Substituting this value for V1 in (8), one obtains a similar
expression for V2:

V2 = c2
(
γ0
) 1

1−α , where c2 := c1 − a1cα1 , and a1 :=
γ1
γ0
.

(12)
Continuing in this manner, we get the following expression
for Vk+1 along with a recursive relation for the ck involving
the ak:

Vk+1 = ck+1

(
γ0
) 1

1−α for k ≥ 1, where

ck+1 := ck − akcαk and ak :=
γk
γ0
.

(13)

If Vk is in the range given by (7), then according to eq. (13)
and the inequality in (7), we have

ck+1 ≤ ck − (1− ε)cαk
= εcαk − (1− c1−αk )cαk .

(14)

As Vk+1 := V (yk+1) is positive definite, ck+1 cannot be
negative according to eq. (13). From the right side of the
inequality (14), we see that

ck+1 ≤ 0 ⇔ ε ≤ 1− c1−αk ⇔ c1−αk ≤ 1− ε. (15)

Let k = N be the smallest integer for which the inequality
in (15) is satisfied as an equality, i.e., cN = (1 − ε)

1
1−α .

Therefore cN+1 = 0. Consequently, using eq. (13) again, we
conclude that cj = 0 and Vj = 0 for j > N . As a result,
yj converges to zero for j > N , and we have finite-time
stability.

A constructive method to obtain FTS position tracking
control scheme in discrete time is provided here, which has
two steps. In the first step, we develop a discrete vector-
valued function of the position and velocity tracking errors
that ensures that when this function converges to zero, the

errors converge to zero as well. The following statement
presents the first step of the mentioned method.

Lemma 3.2: Let l(b̃k, ṽk) be as

l(b̃k, ṽk) = ṽk∆t+
β(b̃k+1 + b̃k)

(b̃TkP b̃k)1−1/p
, (16)

for the dynamics given in (4), where β > 0, p ∈]1, 2[ and
ṽk = (b̃k+1 − b̃k)/∆t, and let

b̃k+1 = B(b̃k)b̃k, where

B(b̃k) =
(b̃TkP b̃k)1−1/p − β
(b̃TkP b̃k)1−1/p + β

.
(17)

Then l(b̃k, ṽk) ensures that the tracking errors (b̃k, ṽk) con-
verge to zero in finite time when l(b̃k, ṽk) = 0.

Proof: One can rewrite (17) as

b̃k+1 = b̃k
(b̃TkP b̃k)1−1/p − β
(b̃TkP b̃k)1−1/p + β

. (18)

Hence, it can be simplified to

b̃k+1 − b̃k = − β(b̃k+1 + b̃k)

(b̃TkP b̃k)1−1/p
. (19)

Note that this can be re-expressed as

− β(b̃k+1 + b̃k)

(b̃TkP b̃k)1−1/p
= ṽk∆t, (20)

which holds when l(b̃k, ṽk) = 0.
Consider the discrete-time Lyapunov function Vk defined

by (5). The difference between the values of this function
at successive discrete instants is given by (6). From (19),
substituting b̃k+1 − b̃k into (6), one gets

Vk+1 − Vk = −β
2

(b̃k+1 + b̃k)TP (b̃k+1 + b̃k)

(b̃TkP b̃k)1−1/p
. (21)

Note that b̃k+1 + b̃k =
(
1 + B(b̃k)

)
b̃k, and the right side of

expression (21) is zero if only if

b̃k+1 = −b̃k,

which is possible if and only if B(b̃k) = −1 according to
(17). From the expression for B(b̃k) in (17), one can see that
B(b̃k) = −1 if and only if b̃k = 0. Therefore, we conclude
that

Vk+1 − Vk = 0 ⇔ b̃k = 0.

Now substituting (18) into (21) and noting that b̃TkP b̃k =
2Vk, one obtains

Vk+1 − Vk = −γk(Vk)1/p, (22)

where

γk = 4β
21−1/p(Vk)2−2/p(
(2Vk)1−1/p + β

)2 . (23)
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Clearly, γk as given by eq. (23) is a class-K function of Vk.
From eqs. (22) and (23), one can see that Vk is monotonously
decreasing if γk > 0 and

0 < γk <
4β

21−1/p
for 0 < 2Vk <∞.

Therefore γk would lead to finite-time stability of tracking
control system. Also from (23), one obtains the ratio:

ak :=
γk
γ0

=
(Vk)2−2/p

(V0)2−2/p

(
(2V0)1−1/p + β

)2(
(2Vk)1−1/p + β

)2 . (24)

This ratio in eq. (24) is bounded below by a positive number
in the interval ]0, 1[ for non-zero Vk and V0. This guarantees
the existence of ε ∈ ]0, 1[ and 0 < χ < (V0)1−1/p that
satisfy the condition (7) in the statement of Lemma 3.1 for
Vk. Therefore, (22) guarantees that Vk converges to zero for
k > N for some finite N ∈ N, and this ensures the finite-
time stable convergence of tracking errors to zero.

In the second step of finding the FTS position tracking
scheme in discrete time, one can creates a control force for
the error dynamics given in (4) that ensures the convergence
of the function l(b̃k, ṽk) derived in the first step to zero in
finite time. This will, in turn, ensure that (b̃k, ṽk) converges
to (0, 0) in finite time. In order to fulfill this objective, a
positive definite Lyapunov function in terms of the obtained
vector-valued l(b̃k, ṽk) is constructed as

V(b̃k, ṽk) =
1

2
l(b̃k, ṽk)Tl(b̃k, ṽk), (25)

which can be used to obtain the FTS tracking control scheme
in discrete time. The following statement provides the main
result on finite-time position tracking control scheme.

Theorem 3.1: Consider the translational kinematics and
dynamics given in (4) with discrete-time force control vector
given by

ϕk =
m

∆t

(
vk + ∆t g e3 − ṽk+1 − ṽdk+1

)
. (26)

Then it stabilizes the translational error dynamics

ṽk+1 = F(b̃k, b̃k+1, ṽk, lk) = (27)

1

∆t

[
(1 +

κ

(lTk lk)1−1/p
)(1 +

β

(b̃Tk+1P b̃k+1)1−1/p
)

]−1

·

{(
1− κ

(lTk lk)1−1/p

)
ṽk∆t

− 2β

(b̃Tk+1P b̃k+1)1−1/p

(
1 +

κ

(lTk lk)1−1/p

)
b̃k+1

+
β(b̃k+1 + b̃k)

(b̃TkP b̃k)1−1/p

(
1− κ

(lTk lk)1−1/p

)}
in finite time, where κ > 0, p and β are as in Lemma 3.2.

Proof: Consider the Lyapunov function (25) quadratic
in l(b̃k, ṽk) as constructed in (16). Therefore, the time
difference of this discrete-time Lyapunov function can be
evaluated as follows:

Vk+1 − Vk =
1

2
(lk+1 + lk)T(lk+1 − lk). (28)

Similar to the definition for b̃k+1 in Lemma 3.2, one can
consider

lk+1 = L(b̃k, ṽk) lk, (29)

where

L(b̃k, ṽk) =
(lTk lk)1−1/p − κ
(lTk lk)1−1/p + κ

, (30)

Substituting (30) in (29) gives

(lk+1 − lk) = − κ

(lTk lk)1−1/p
(lk+1 + lk). (31)

Then according to lemma 3.2, one can prove similarly that

Vk+1 − Vk = −λkV1/p
k , (32)

where

λk = 4κ
21−1/p(Vk)2−2/p(
(2Vk)1−1/p + κ

)2 (33)

is a class-K function of Vk. Also, from (32) and (33), one
can see that

0 < λk <
4κ

21−1/p
for 0 < 2Vk <∞.

Therefore, λk would lead to finite-time stability of tracking
control system.

Now, by substituting l(b̃k, ṽk) given in (16) into (31), one
can obtain

(ṽk+1 − ṽk)∆t+ β
[ (b̃k+2 + b̃k+1)

(b̃Tk+1P b̃k+1)1−1/p
− (b̃k+1 + b̃k)

(b̃TkP b̃k)1−1/p

]
(34)

= − κ

(lTk lk)1−1/p

{
(ṽk+1 + ṽk)∆t

+ β
[ (b̃k+2 + b̃k+1)

(b̃Tk+1P b̃k+1)1−1/p
+

(b̃k+1 + b̃k)

(b̃TkP b̃k)1−1/p

]}
.

Noting that (b̃k+2− b̃k+1)/∆t = ṽk+1, one can solve above
expression for ṽk+1 and obtain (27), which is the discrete-
time translational error dynamics equation.

Then, noting that ṽk+1 = vk+1− vdk+1, one can substitute
(27) in (4) and obtain the discrete-time control force vector
which guarantees the finite-time stability of the tracking
control as (26).

IV. FINITE-TIME CONTINUOUS STABLE POSITION
TRACKING CONTROL ON R3

A FTS position tracking control scheme in continuous
time has been reported in [9]. In this scheme, the continuous
equations of error dynamics are given by (2), where ϕ ∈ R3

is the feedback control obtained in continuous time and
presented as equation (17) in that paper. Then, the obtained
continuous control law is sampled within a time interval
[t0, tf ] and with a time step size ∆t.

The following section presents numerical results obtained
by implementing this paper’s proposed FTS scheme in dis-
crete time compared to the results of the a sampled finite-
time continuous scheme.
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V. SIMULATION RESULTS

This section presents numerical simulation results for
the FTS position tracking control scheme in discrete time.
Also, the performance of the proposed FTS tracking control
scheme in discrete time is compared to that of the sampled
continuous time FTS tracking scheme presented in section
IV. The numerical simulation is performed for an UAV
quadcopter assumed to have a mass m = 4 kg, for different
time periods of T = 5, 10, and 30s, with different time step
sizes ∆t = 0.01, 0.05, and 0.1s, using discrete-time FTS
control law obtained in (26), and the sampled continuous-
time control law given in [9]. The helical desired trajectory
and the initial conditions are given as follows for both
schemes

bdk = bd(tk) =
[
0.4 sinπtk 0.6 cosπtk 0.4 tk

]T
,

b0 =
[
1 0 0

]T
, v0 =

[
0 0 0

]T
.

The gains are selected and tuned after trial and error for FTS
discrete-time tracking scheme as follows:

P = 4 I3×3, β = 0.01, κ = 0.009,

and for FTS sampled continuous scheme as follows:

Pr = 5 I3×3, κt = 0.8,

which provide desirable and similar transient response char-
acteristics of both tracking control schemes when ∆t = 0.01.
The results of the numerical simulation for position and
velocity tracking response of the discrete-time control law
obtained in (26) for ∆t = 0.01 and tf = 5s is shown in
Fig.1. These subplots show that the position and translational
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Fig. 1: Translational motion errors and force control for
discrete-time FTS tracking control scheme for ∆t = 0.01
and tf = 5s.
velocity tracking errors converge to zero, and therefore the

discrete-time control scheme proposed here is able to track
the desired position trajectory in finite time. The time plots
of the force control input fk = ||ϕk|| shows that the total
magnitude of the thrust force does not exceed 46 N, which is
within the capabilities of the modeled UAV. Other simulation
results are presented in Fig. 2 to Fig. 4 in order to compare
the performance of the discrete-time FTS tracking scheme
with a sampled continuous FTS tracking scheme for different
values of time step sizes.

Comparing the results of these two schemes as shown
in the plots, one can conclude that control force obtained
by sampling the FTS continuous control input does not
guarantee the stability of the position tracking when the time
step size changes. The results of this comparison are given
in Table I. In Table I, ∆Vmax is denoted as the maximum
positive value of the time difference Vk+1 − Vk as:

∆Vmax = max
[
(Vk+1 − Vk) > 0

]
. (35)

This parameter is defined to confirm whether the Lyapunov
function Vk increases in value at certain time instants, and
whether that increase is significant or is just an artifact of
machine (float) precision. For a finite-time stable system
one expects the value of Vk+1 − Vk to be negative until
it converges to zero in finite time, which ensures stability of
the system in finite time. On the contrary, for the sampled
continuous FTS tracking scheme, one can see a significant
increase in the value of Vk as time step size increases,
whereas ∆Vmax has a negligible value (to machine preci-
sion) when the discrete-time FTS tracking control scheme is
implemented.

Tracking Control Scheme ∆t(s) tf (s) ∆Vmax

Discrete-time FTS
0.01 5 3.5716× 10−38

0.05 10 2.5277× 10−38

0.1 30 1.9007× 10−39

Sampled Continuous FTS
0.01 5 5.6687× 10−6

0.05 10 0.0013
0.1 30 0.0136

TABLE I: Stability performance of discrete-time FTS vs.
sampled continuous-time FTS tracking control scheme on
R3.

0 1 2 3 4 5

t (s)

-1

-0.5

0

0.5

1

b̃
(m

)

b̃x b̃y b̃z

(a) Position tracking error

0 1 2 3 4 5

t (s)

-1.5

-1

-0.5

0

0.5

1

ṽ
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ṽx ṽy ṽz

(b) Velocity tracking error

Fig. 2: Translational motion errors for sampled FTS contin-
uous tracking control scheme for ∆t = 0.01 and tf = 5s.
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Fig. 3: Translational errors for FTS discrete-time tracking
control scheme for ∆t = 0.05 and tf = 10s.
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ṽx ṽy ṽz
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Fig. 4: Translational errors for FTS sampled continuous
tracking control scheme for ∆t = 0.05 and tf = 10s.

VI. CONCLUSION

A discrete finite-time stable position tracking control
scheme for unmanned vehicles is presented here. This
scheme is based on using a Lyapunov framework for finite-
time stabilization of a position tracking control that results
in discrete-time error dynamics in terms of translational
motion tracking errors. A two-step method is presented to
construct a Lyapunov function quadratic in a vector-valued
function that is in terms of translational motion tracking
errors. When this vector-valued function vanishes, it ensures
the convergence of the tracking errors to zero in finite time.
Then, a discrete-time control force vector is obtained to
guarantee that this vector converges to the zero vector in
finite time, and therefore the system states converge to the
desired trajectory in a finite time interval. The stability of the
proposed scheme is also compared with that of a sampled
continuous FTS scheme, and numerical results show that a
discrete-time FTS position tracking control scheme is more
reliable for onboard computer implementation when we need
to work with a variety of input data frequencies. Future work
will look at a discrete-time FTS pose tracking control scheme
for underactuated vehicles on SE(3), and comparison of
this discrete-time stable tracking control scheme with other
sampled continuous time tracking control schemes.
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