
Approximating the Noise Sensitivity of a
Monotone Boolean Function
Ronitt Rubinfeld
CSAIL at MIT, Cambridge, MA, USA
Blavatnik School of Computer Science at Tel Aviv University, Israel
https://people.csail.mit.edu/ronitt/
ronitt@csail.mit.edu

Arsen Vasilyan
CSAIL at MIT, Cambridge, MA, USA
vasilyan@mit.edu

Abstract
The noise sensitivity of a Boolean function f : {0, 1}n → {0, 1} is one of its fundamental

properties. For noise parameter δ, the noise sensitivity is denoted as NSδ[f ]. This quantity is
defined as follows: First, pick x = (x1, . . . , xn) uniformly at random from {0, 1}n, then pick z by
flipping each xi independently with probability δ. NSδ[f ] is defined to equal Pr[f(x) 6= f(z)]. Much
of the existing literature on noise sensitivity explores the following two directions: (1) Showing that
functions with low noise-sensitivity are structured in certain ways. (2) Mathematically showing that
certain classes of functions have low noise sensitivity. Combined, these two research directions show
that certain classes of functions have low noise sensitivity and therefore have useful structure.

The fundamental importance of noise sensitivity, together with this wealth of structural results,
motivates the algorithmic question of approximating NSδ[f ] given an oracle access to the function f .
We show that the standard sampling approach is essentially optimal for general Boolean functions.
Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an
important subclass of Boolean functions, since many functions of interest are either monotone or can
be simply transformed into a monotone function (for example the class of unate functions consists
of all the functions that can be made monotone by reorienting some of their coordinates [21]).

Specifically, we study the algorithmic problem of approximating NSδ[f ] for monotone f , given
the promise that NSδ[f ] ≥ 1/nC for constant C, and for δ in the range 1/n ≤ δ ≤ 1/2. For such
f and δ, we give a randomized algorithm performing O

(
min(1,

√
nδ log1.5 n)

NSδ [f ] poly
(

1
ε

))
queries and

approximating NSδ[f ] to within a multiplicative factor of (1± ε). Given the same constraints on f
and δ, we also prove a lower bound of Ω

(
min(1,

√
nδ)

NSδ [f ]·nξ

)
on the query complexity of any algorithm that

approximates NSδ[f ] to within any constant factor, where ξ can be any positive constant. Thus,
our algorithm’s query complexity is close to optimal in terms of its dependence on n.

We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool
for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique
that reduces computational questions about query complexity to combinatorial questions about
the existence of “thin” functions with certain properties. The existence of such “thin” functions is
proved using the probabilistic method. These techniques also yield new lower bounds on the query
complexity of approximating other fundamental properties of Boolean functions: the total influence
and the bias.
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1 Introduction

Noise sensitivity is a property of any Boolean function f : {0, 1}n → {0, 1} defined as follows:
First, pick x = (x1, . . . , xn) uniformly at random from {0, 1}n, then pick z by flipping each
xi independently with probability δ. Here δ, the noise parameter, is a given positive constant
no greater than 1/2 (and at least 1/n in the interesting cases). With the above distributions
on x and z, the noise sensitivity of f , denoted as NSδ[f ], is defined as follows:

NSδ[f ] def= Pr[f(x) 6= f(z)] (1)

Noise sensitivity was first explicitly defined by Benjamini, Kalai and Schramm in [3], and has
been the focus of multiple papers: e.g. [3, 7, 8, 10, 12, 17, 22]. It has been applied to learning
theory [4, 7, 8, 9, 10, 11, 15], property testing [1, 2], hardness of approximation [13, 16],
hardness amplification [19], combinatorics [3, 12], distributed computing [18] and differential
privacy [7]. Multiple properties and applications of noise sensitivity are summarized in
[20] and [21]. Much of the existing literature on noise sensitivity explores the following
directions: (1) Showing that functions with low noise-sensitivity are structured in certain
ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity.
Combined, these two research directions show that certain classes of functions have low noise
sensitivity and therefore have useful structure.

The fundamental importance of noise sensitivity, together with this wealth of structural
results, motivates the algorithmic question of approximating NSδ[f ] given an oracle access
to the function f . It can be shown that standard sampling techniques require O

(
1

NSδ[f ]ε2

)
queries to get a (1 + ε)-multiplicative approximation for NSδ[f ]. In the full version of the
paper, we show that this is optimal for a wide range of parameters of the problem. Specifically,
it cannot be improved by more than a constant when ε is a sufficiently small constant, δ
satisfies 1/n ≤ δ ≤ 1/2 and NSδ[f ] satisfies Ω

( 1
2n
)
≤ NSδ[f ] ≤ O(1).

It is often the case that data possesses a known underlying structural property which
makes the computational problem significantly easier to solve. A natural first such property
to investigate is that of monotonicity, as a number of natural function families are made up
of functions that are either monotone or can be simply transformed into a monotone function
(for example the class of unate functions consists of all the functions that can be made
monotone by reorienting some of their coordinates [21]). Therefore, we focus on estimating
the noise sensitivity of monotone functions.

The approximation of the related quantity of total influence (henceforth just influence) of
a monotone Boolean function in this model was previously studied by [24, 23]1. Influence,
denoted by I[f ], is defined as n times the probability that a random edge of the Boolean cube
(x, y) is influential, which means that f(x) 6= f(y). (This latter probability is sometimes
referred to as the average sensitivity). It was shown in [24, 23] that one can approximate the
influence of a monotone function f with only Õ

( √
n

I[f ]poly(ε)

)
queries, which for constant ε

beats the standard sampling algorithm by a factor of
√
n, ignoring logarithmic factors.

1 [23] is the journal version of [24] and contains a different algorithm that yields sharper results. However,
our algorithmic techniques build on the conference version [24].
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Despite the fact that the noise sensitivity is closely connected to the influence [20, 21],
the noise sensitivity of a function can be quite different from its influence. For instance, for
the parity function of all n bits, the influence is n, but the noise sensitivity is 1

2 (1− (1− 2δ)n)
(such disparities also hold for monotone functions, see for example the discussion of influence
and noise sensitivity of the majority function in [21]). Therefore, approximating the influence
by itself does not give one a good approximation to the noise sensitivity.

The techniques in [24, 23] also do not immediately generalize to the case of noise sensitivity.
The result in [24, 23] is based on the observation that given a descending2 path on the
Boolean cube, at most one edge in it can be influential. Thus, to check if a descending path
of any length contains an influential edge, it suffices to check the function values at the
endpoints of the path. By sampling random descending paths, [24, 23] show that one can
estimate the fraction of influential edges, which is proportional to the influence.

The most natural attempt to relate these path-based techniques with the noise sensitivity
is to view it in the context of the following process: first one samples x randomly, then one
obtains z by taking a random walk from x by going through all the indices in an arbitrary
order and deciding whether to flip each with probability δ. The intermediate values in
this process give us a natural path connecting x to z. However, this path is in general not
descending, so it can, for example, cross an even number of influential edges, and then the
function will have the same value on the two endpoints of this path. This prevents one from
immediately applying the techniques from [24, 23].

We overcome this difficulty by introducing our main conceptual contribution: the
descending-ascending view of noise sensitivity. In the process above, instead of going through
all the indices in an arbitrary order, we first go through the indices i for which xi = 1 and
only then through the ones for which xi = 0. This forms a path between x and z that has
first a descending component and then an ascending component. Although this random walk
is more amenable to an analysis using the path-based techniques of [24, 23], there are still
non-trivial sampling questions involved in the design and analysis of our algorithm.

An immediate corollary of our result is a query complexity upper bound on estimating
the gap between the noise stability of a Boolean function and one. The noise stability
of a Boolean function f depends on a parameter ρ and is denoted by Stabρ[f ] (for more
information about noise stability, see [21]). One way Stabρ[f ] can be defined is as the unique
quantity satisfying the functional relation 1

2 (1−Stab1−2δ[f ]) = NSδ[f ] for all δ. This implies
that by obtaining an approximation for NSδ[f ], one also achieves an approximation for
1− Stab1−2δ[f ].

1.1 Results
Our main algorithmic result is the following:

I Theorem 1. Let δ be a parameter satisfying:

1
n
≤ δ ≤ 1

√
n log1.5 n

Suppose, f : {0, 1}n → {0, 1} is a monotone function and NSδ[f ] ≥ 1
nC

for some constant C.
Then, there is an algorithm that outputs an approximation to NSδ[f ] to within a multi-

plicative factor of (1± ε), with success probability at least 2/3. In expectation, the algorithm
makes O

(√
nδ log1.5 n
NSδ[f ]ε3

)
queries to the function. Additionally, it runs in time polynomial in n.

2 A path is descending if each subsequent vertex in it is dominated by all the previous ones in the natural
partial order on the Boolean cube.

APPROX/RANDOM 2019
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Note that computing noise-sensitivity using standard sampling3 requires O
(

1
NSδ[f ]ε2

)
samples. Therefore, for a constant ε, we have the most dramatic improvement if δ = 1

n , in
which case, ignoring constant and logarithmic factors, our algorithm outperforms standard
sampling by a factor of

√
n.

As in [24], our algorithm requires that the noise sensitivity of the input function f is
larger than a specific threshold 1/nC . Our algorithm is not sensitive to the value of C as long
as it is a constant, and we think of 1/nC as a rough initial lower bound known in advance.

We next give lower bounds for approximating three different parameters of monotone
Boolean functions: the bias, the influence and the noise sensitivity. A priori, it is not clear
what kind of lower bounds one could hope for. Indeed, determining whether a given function
is the all-zeros function requires Ω(2n) queries in the general function setting, but only 1
query (of the all-ones input), if the function is promised to be monotone. Nevertheless, we
show that such a dramatic improvement for approximating these quantities is not possible.

For monotone functions, we are not aware of previous lower bounds on approximating
the bias or noise sensitivity. Our lower bound on approximating influence is not comparable
to the lower bounds in [24, 23], as we will elaborate shortly.

We now state our lower bound for approximating the noise sensitivity. Here and everywhere
else, to “reliably distinguish” means to distinguish with probability at least 2/3.

I Theorem 2. For all constants C1 and C2 satisfying C1 − 1 > C2 ≥ 0, for an infinite
number of values of n the following is true: For all δ satisfying 1/n ≤ δ ≤ 1/2, given a
monotone function f : {0, 1}n → {0, 1}, one needs at least Ω

(
nC2

e
√
C1 logn/2

)
queries to reliably

distinguish between the following two cases: (i) f has noise sensitivity between Ω(1/nC1+1)
and O(1/nC1) and (ii) f has noise sensitivity larger than Ω(min(1, δ

√
n)/nC2).

I Remark 3. For any positive constant ξ, we have that e
√
C1 logn/2 ≤ nξ.

I Remark 4. The range of the parameter δ can be divided into two regions of interest. In the
region 1/n ≤ δ ≤ 1/(

√
n log n), the algorithm from Theorem 1 can distinguish the two cases

above with only Õ(nC2) queries. Therefore its query complexity is optimal up to a factor
of Õ(e

√
C1 logn/2). Similarly, in the region 1/(

√
n log n) ≤ δ ≤ 1/2, the standard sampling

algorithm can distinguish the two distributions above with only Õ(nC2) queries. Therefore
in this region of interest, standard sampling is optimal up to a factor of Õ(e

√
C1 logn/2).

We define the bias of a Boolean function as B[f ] def= Pr[f(x) = 1], where x is chosen
uniformly at random from {0, 1}n. It is arguably the most basic property of a Boolean
function, so we consider the question of how quickly it can be approximated for monotone
functions. To approximate the bias up to a multiplicative factor of (1± ε) using standard
sampling, one needs O(1/(B[f ]ε2)) queries. We obtain a lower bound for this task similar to
the previous theorem:

I Theorem 5. For all constants C1 and C2 satisfying C1 − 1 > C2 ≥ 0, for an infinite
number of values of n the following is true: Given a monotone function f : {0, 1}n → {0, 1},
one needs at least Ω

(
nC2

e
√
C1 logn/2

)
queries to reliably distinguish between the following two

cases: (i) f has bias of Θ(1/nC1) (ii) f has bias larger than Ω(1/nC2).

3 Standard sampling refers to the algorithm that picks O
(

1
NSδ [f ]ε2

)
pairs x and z as in the definition of

noise sensitivity and computes the fraction of pairs for which f(x) 6= f(z).
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Finally, we prove a lower bound for approximating influence:

I Theorem 6. For all constants C1 and C2 satisfying C1 − 1 > C2 ≥ 0, for an infinite
number of values of n the following is true: Given a monotone function f : {0, 1}n → {0, 1},
one needs at least Ω

(
nC2

e
√
C1 logn/2

)
queries to reliably distinguish between the following two

cases: (i) f has influence between Ω(1/nC1) and O(n/nC1) (ii) f has influence larger than
Ω(
√
n/nC2).

This gives us a new sense in which the algorithm family in [24, 23] is close to optimal, because
for a function f with influence Ω(

√
n/nC2) this algorithm makes Õ(nC2) queries to estimate

the influence up to any constant factor.
Our lower bound is incomparable to the lower bound in [24], which makes the stronger

requirement that I[f ] ≥ Ω(1), but gives a bound that is only a polylogarithmic factor smaller
than the runtime of the algorithm in [24, 23]. There are many possibilities for algorithmic
bounds that were compatible with the lower bound in [24, 23], but are eliminated with our
lower bound. For instance, prior to this work, it was conceivable that an algorithm making
as little as O(

√
n) queries could give a constant factor approximation to the influence of any

monotone input function whatsoever. Our lower bound shows that not only is this impossible,
no algorithm that makes O(nC2) queries for any constant C2 can accomplish this either.

1.2 Algorithm overview

Here, we give the algorithm in Theorem 1 together with the subroutines it uses. Additionally,
we give an informal overview of the proof of correctness and the analysis of running time
and query complexity, which are presented in more detail in Section 3.

First of all, recall that NSδ[f ] = Pr[f(x) 6= f(z)] by Equation 1. Using a standard pairing
argument, we argue that NSδ[f ] = 2 · Pr[f(x) = 1 ∧ f(z) = 0]. In other words, we can focus
only on the case when the value of the function flips from one to zero.

We introduce the descending-ascending view of noise sensitivity (described more formally
in Subsection 3.1), which, roughly speaking, views the noise process as decomposed into
a first phase that operates only on the locations in x that are 1, and a second phase that
operates only on the locations in x that are set to 0. Formally, we define the noise process D
in Algorithm 1.

This process gives us a path from x to z that can be decomposed into two segments,
such that the first part, P1, descends in the hypercube, and the second part P2 ascends in
the hypercube.

Algorithm 1 Process D.

1. Pick x uniformly at random from {0, 1}n. Let S0 be the set of indexes i for which xi = 0,
and conversely let S1 be the rest of indexes.

2. Phase 1: go through all the indexes in S1 in a random order, and flip each with
probability δ. Form the descending path P1 from all the intermediate results. Call the
endpoint y.

3. Phase 2: start at y, and flip each index in S0 with probability δ. As before, all the
intermediate results form an ascending path P2, which ends in z.

4. Output P1, P2, x, y and z.

APPROX/RANDOM 2019
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Since f is monotone, for f(x) = 1 and f(z) = 0 to be the case, it is necessary, though not
sufficient, that f(x) = 1 and f(y) = 0, which happens whenever P1 hits an influential edge.
Therefore we break the task of estimating the probability of f(x) 6= f(z) into computing the
product of:

The probability that P1 hits an influential edge, specifically, the probability that f(x) = 1
and f(y) = 0, which we refer to as pA.
The probability that P2 does not hit any influential edge, given that P1 hits an influential
edge: specifically, the probability that given f(x) = 1 and f(y) = 0, it is the case that
f(z) = 0. We refer to this probability as pB .

The above informal definitions of pA and pB ignore some technical complications. Specifically,
the impact of certain “bad events” is considered in our analysis. We redefine pA and pB
precisely in Subsection 3.2.1.

To define those bad events, we use the following two values, which we reference in our
algorithms: t1 and t2. Informally, t1 and t2 have the following meaning. A typical vertex x of
the hypercube has Hamming weight L(x) between n/2− t1 and n/2 + t1. A typical Phase 1
path from process D will have length at most t2. To achieve this, we assign t1

def= η1
√
n log n

and t2
def= nδ(1 + 3η2 log n), where η1 and η2 are certain constants.

We also define M to be the set of edges e = (v1, v2), for which both L(v1) and L(v2) are
between and n/2− t1 and n/2 + t1. Most of the edges in the hypercube are in M , which is
used by our algorithm and the run-time analysis.

Our analysis requires that only δ ≤ 1/(
√
n log1.5 n) as in the statement of Theorem

1, however the utility of the ascending-descending view can be most clearly motivated
when δ ≤ 1/(

√
n log2 n). Specifically, given that δ ≤ 1/(

√
n log2 n), it is the case that t2

will be shorter than O(
√
n/ log n). Therefore, typically, the path P1 is also shorter than

O(
√
n/ log n). Similar short descending paths on the hypercube have been studied before: In

[24], paths of such lengths were used to estimate the number of influential edges by analyzing
the probability that a path would hit such an edge. One useful insight given by [24] is that
the probability of hitting almost every single influential edge is roughly the same.

However, the results in [24] cannot be immediately applied to analyze P1, because (i)
P1 does not have a fixed length, but rather its lengths form a probability distribution, (ii)
this probability distribution also depends on the starting point x of P1. We build upon the
techniques in [24] to overcome these difficulties, and prove that again, roughly speaking,
for almost every single influential edge, the probability that P1 hits it depends very little
on the location of the edge, and our proof also computes this probability. This allows us
to prove that pA ≈ δI[f ]/2. Then, using the algorithm in [24] to estimate I[f ], we thereby
estimate pA.

Regarding pB, we estimate it by approximately sampling paths P1 and P2 that would
arise from process D, conditioned on that P1 hits an influential edge. To that end, we first
sample an influential edge e that P1 hits. Since P1 hits almost every single influential edge
with roughly the same probability, we do it by sampling e approximately uniformly from
among influential edges. For the latter task, we build upon the result in [24] as follows: As
we have already mentioned, the algorithm in [24] samples descending paths of a fixed length
to estimate the influence. For those paths that start at an x for which f(x) = 1 and end at a
z for which f(z) = 0, we add a binary search step in order to locate the influential edge e
that was hit by the path.

Thus, we have the following algorithm A (see Algorithm 2), which takes oracle access to
a function f and an approximation parameter ε as input. In the case of success, it outputs
an influential edge that is roughly uniformly distributed.
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Algorithm 2 Algorithm A (given oracle access to a monotone function f : {0, 1}n → {0, 1} and a
parameter ε).

1. Assign w = ε
3100η1

√
n

logn

2. Pick x uniformly at random from {0, 1}n.
3. Perform a descending walk P1 downwards in the hypercube starting at x. Stop at a

vertex y either after w steps, or if you hit the all-zeros vertex. Query the value of f only
at the endpoints x and y of this path.

4. If f(x) = f(y) output FAIL.
5. If f(x) 6= f(y) perform a binary search on the path P1 and find an influential edge einf .
6. If einf ∈M return einf . Otherwise output FAIL.

Finally, once we have obtained a roughly uniformly random influential edge e, we sample
a path P1 from among those that hit it. An obvious way to try to quickly sample such a
path is to perform two random walks of lengths w1 and w2 in opposite directions from the
endpoints of the edge, and then concatenate them into one path. However, to do this, one
needs to somehow sample the lengths w1 and w2. This problem is not trivial, since longer
descending paths are more likely to hit an influential edge, which biases the distribution of
the path lengths towards longer ones.

To generate w1 and w2 according to the proper distribution, we first sample a path P1
hitting any edge at the same layer4 Λe as e. We accomplish this by designing an algorithm
that uses rejection sampling. The algorithm samples short descending paths from some
conveniently chosen distribution, until it gets a path hitting the desired layer.

We now describe the algorithm in more detail. Recall that we use L(x) to denote the
Hamming weight (which we also call the level) of x, which equals the number of indices i on
which xi = 1, and we use the symbol Λe to denote the whole layer of edges that have the
same endpoint levels as e. The algorithm W described in Algorithm 3 takes an influential
edge e as an input and samples the lengths w1 and w2.

Algorithm 3 Algorithm W (given an edge e def= (v1, v2) so v2 � v1).

1. Pick an integer l uniformly at random among the integers in [L(v1), L(v1) + t2 − 1]. Pick
a vertex x randomly at level l.

2. As in phase 1 of the noise sensitivity process, traverse in random order through the indices
of x and for each index that equals to one, flip it with probability δ. The intermediate
results form a path P1, and we call its endpoint y.

3. If P1 does not intersect Λe go to step 1.
4. Otherwise, output w1 = L(x)− L(v1) and w2 = L(v2)− L(y).

Recall that t2 has a technical role and is defined to be equal nδ(1 + 3η2 log n), where
η2 is a certain constant. t2 is chosen to be long enough that it is longer than most paths
P1, but short enough to make the sampling in W efficient. Since the algorithm involves
short descending paths, we analyze this algorithm building upon the techniques we used to
approximate pA.

4 We say that edges e1 and e2 are on the same layer if and only if their endpoints have the same Hamming
weights. We denote the layer an edge e belongs to as Λe.

APPROX/RANDOM 2019
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After obtaining a random path going through the same layer as e, we show how to
transform it, using the symmetries of the hypercube, into a a random path P1 going through
e itself. Additionally, given the endpoint of P1, we sample the path P2 just as in the
process D.

Formally, the algorithm B (see Algorithm 4) takes an influential edge e and returns a
descending path P1 that goes through e and an adjacent ascending path P2, together with
the endpoints of these paths.

Algorithm 4 Algorithm B (given an influential edge e def= (v1, v2) so v2 � v1).

1. Use W(e) to sample w1 and w2.
2. Perform an ascending random walk of length w1 starting at v1 and call its endpoint x.

Similarly, perform a descending random walk starting at v2 of length w2, call its endpoint
y.

3. Define P1 as the descending path that results between x and y by concatenating the two
paths from above, oriented appropriately, and edge e.

4. Define P2 just as in phase 2 of our process starting at y. Consider in random order all
the zero indices y has in common with x and flip each with probability δ.

5. Return P1 ,P2, x, y and z.

We then use sampling to estimate which fraction of the paths P2 continuing these P1
paths does not hit an influential edge. This allows us to estimate pB , which, combined with
our estimate for pA, gives us an approximation for NSδ[f ].

Formally, we put all the previously defined subroutines together into the randomized
Algorithm 5 that takes oracle access to a function f together with an approximation parameter
ε and outputs an approximation to NSδ[f ]:

Algorithm 5 Algorithm for estimating noise sensitivity. (given oracle access to a monotone
function f : {0, 1}n → {0, 1}, and a parameter ε).

1. Using the algorithm from [24] as described in Theorem 14, compute an approximation to
the influence of f to within a multiplicative factor of (1± ε/33). This gives us Ĩ.

2. Compute p̃A := δĨ/2.
3. Initialize α := 0 and β := 0. Repeat the following until α = 768 ln 200

ε2 .
Use algorithm A from Lemma 20 repeatedly to successfully sample an edge e.
From Lemma 25 use the algorithm B, giving it e as input, and sample P1, P2, x, y
and z.
If it is the case that f(x) = 1 and f(z) = 0, then α := α+ 1.
β := β + 1.

4. Set p̃B = α
β .

5. Return 2p̃Ap̃B .

1.3 Lower bound techniques
We use the same technique to lower bound the query complexity of approximating any of
the following three quantities: the noise sensitivity, influence and bias.
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For concreteness, let us first focus on approximating the bias. Recall that one can
distinguish the case where the bias is 0 from the bias being 1/2n using a single query.
Nevertheless, we show that for the most part, no algorithm for estimating the bias can do
much better than the random sampling approach.

We construct two probability distributions DB
1 and DB

2 that are relatively hard to
distinguish but have drastically different biases. To create them, we fix some threshold l0
and then construct a special monotone function FB , which has the following two properties:
(1) It has a high bias. (2) It equals to one on only a relatively small fraction of points on the
level l0. We refer to functions satisfying (2) as “thin” functions. We will explain later how to
obtain such a function FB . We pick a function from DB

2 by taking FB , randomly permuting
the indices of its input, and finally “truncating” it by setting it to one on all values of x,
which have Hamming weight greater than l0.

We form DB
1 even more simply. We take the all-zeros function and truncate it at the same

threshold l0. The threshold l0 is chosen in a way that this function in DB
1 has a sufficiently

small bias. Thus DB
1 consists of only a single function.

The purpose of truncation is to prevent a distinguisher from gaining information by
accessing the values of the function on the high-level vertices of the hypercube. Indeed, if
there was no truncation, one could tell whether they have access to the all-zeros function by
simply querying it on the all-ones input. Since FB is monotone, if it equals to one on at
least one input, then it has to equal one on the all-ones input.

The proof has two main lemmas: The first one is computational and says that if FB is
“thin” then DB

1 and DB
2 are hard to reliably distinguish. To prove the first lemma, we show

that one could transform any adaptive algorithm for distinguishing DB
1 from DB

2 into an
algorithm that is just as effective, is non-adaptive and queries points only on the layer l0.

To show this, we observe that, because of truncation, distinguishing a function in DB
2

from a function in DB
1 is in a certain sense equivalent to finding a point with level at most

l0 on which the given function evaluates to one. We argue that for this setting, adaptivity
does not help. Additionally, if x � y and both of them have levels at most l0 then, since
f is monotone, f(x) = 1 implies that f(y) = 1 (but not necessarily the other way around).
Therefore, for finding a point on which the function evaluates to one, it is never more useful
to query x instead of y.

Once we prove that no algorithm can do better than a non-adaptive algorithm that only
queries points on the level l0, we use a simple union bound to show that any such algorithm
cannot be very effective for distinguishing our distributions.

Finally, to construct FB , we need to show that there exist functions that are “thin” and
simultaneously have a high bias. This is a purely combinatorial question and is proven in our
second main lemma. We build upon Talagrand random functions that were first introduced
in [25]. In [17] it was shown that they are very sensitive to noise, which was applied for
property testing lower bounds [2]. A Talagrand random DNF consists of 2

√
n clauses of√

n indices chosen randomly with replacement. We modify this construction by picking the
indices without replacement and generalize it by picking 2

√
n/nC2 clauses, where C2 is a

non-negative constant. We show that these functions are “thin”, so they are appropriate for
our lower bound technique.

“Thinness” allows us to conclude that DB
1 and DB

2 are hard to distinguish from each other.
We then prove that they have drastically different biases. We do the latter by employing the
probabilistic method and showing that in expectation our random function has a large enough
bias. We handle influence and noise sensitivity analogously, specifically by showing that that
as we pick fewer clauses, the expected influence and noise sensitivity decrease proportionally.
We prove this by dividing the points, where one of these random functions equals to one,
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into two regions: (i) the region where only one clause is true and (ii) a region where more
than one clause is true. Roughly speaking, we show that the contribution from the points in
(i) is sufficient to obtain a good lower bound on the influence and noise sensitivity.

1.4 Possibilities of improvement?
In [23] (which is the journal version of [24]), it was shown that using the chain decomposition
of the hypercube, one can improve the run-time of the algorithm to O

( √
n

ε2I[f ]

)
and also

improve the required lower bound on I[f ] to be I[f ] ≥ exp(−c1ε
2n+ c2 log(n/ε)) for some

constant c1 and c2 (it was I[f ] ≥ 1/nC for any constant C in [24]). Additionally, the
algorithm itself was considerably simplified.

A hope is that techniques based on the chain decomposition could help improve the
algorithm in Theorem 1. However, it is not clear how to generalize our approach to use these
techniques, since the ascending-descending view is a natural way to express noise sensitivity
in terms of random walks, and it is not obvious whether one can replace these walks with
chains of the hypercube.

2 Preliminaries

2.1 Definitions

2.1.1 Fundamental definitions and lemmas pertaining to the hypercube
I Definition 7. We refer to the poset over {0, 1}n as the n-dimensional hypercube,
viewing the domain as vertices of a graph, in which two vertices are connected by an edge
if and only if the corresponding elements of {0, 1}n differ in precisely one index. For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in {0, 1}n, we say that x � y if and only if for all i in
[n] it is the case that xi ≤ yi.

I Definition 8. The level of a vertex x on the hypercube is the hamming weight of x, or
in other words number of 1-s in x. We denote it by L(x).

We define the set of edges that are in the same “layer” of the hypercube as a given edge:

I Definition 9. For an arbitrary edge e suppose e = (v1, v2) and v2 � v1. We denote Λe to
be the set of all edges e′ = (v′1, v′2), so that L(v1) = L(v′1) and L(v2) = L(v′2).

The size of Λe is L(v1)
(

n
L(v1)

)
. The concept of Λe will be useful because we will deal with

paths that are symmetric with respect to change of coordinates, and these have an equal
probability of hitting any edge in Λe.

As we view the hypercube as a graph, we will often refer to paths on it. By referring to a
path P we will, depending on the context, refer to its set of vertices or edges.

I Definition 10. We call a path descending if for every pair of consecutive vertices vi and
vi+1, it is the case that vi+1 ≺ vi. Conversely, if the opposite holds and vi ≺ vi+1, we call a
path ascending. We consider an empty path to be vacuously both ascending and descending.
We define the length of a path to be the number of edges in it, and denote it by |P |. We say
we take a descending random walk of length w starting at x, if we pick a uniformly
random descending path of length w starting at x.

Descending random walks over the hyper-cube were used in an essential way in [24] and
were central for the recent advances in monotonicity testing algorithms [5, 6, 14].
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I Lemma 11 (Hypercube Continuity Lemma). Suppose n is a sufficiently large positive
integer, C1 is a constant and we are given l1 and l2 satisfying n

2 −
√
C1n log(n) ≤ l1 ≤ l2 ≤

n
2 +

√
C1n log(n). If we denote C2

def= 1
10
√
C1

, then for any ξ satisfying 0 ≤ ξ ≤ 1, if it is the

case that l2− l1 ≤ C2ξ
√

n
log(n) , then, for large enough n, it is the case that 1−ξ ≤ (nl1)

(nl2) ≤ 1+ξ

Proof. See the full version of the paper. J

2.1.2 Fundamental definitions pertaining to Boolean functions
I Definition 12. Let δ be a parameter and let x be selected uniformly at random from {0, 1}n.
Let z ∈ {0, 1}n be defined as follows:

zi =
{
xi with probability 1− δ
1− xi with probability δ

We denote this distribution of x and z by Tδ. Then we define the noise sensitivity of
f as NSδ[f ] def= Pr(x,z)∈RTδ [f(x) 6= f(z)].

I Observation 13. For every pair of vertices a and b, the probability that for a pair x, z
drawn from Tδ, it is the case that (x, z) = (a, b), is equal to the probability that (x, z) = (b, a).

Therefore, Pr[f(x) = 0 ∧ f(z) = 1] = Pr[f(x) = 1 ∧ f(z) = 0]. Hence:

NSδ[f ] = 2 · Pr[f(x) = 1 ∧ f(z) = 0]

2.1.3 Influence estimation
To estimate the influence, standard sampling would require O

(
n

I[f ]ε2

)
samples. However,

from [24] we have:

I Theorem 14. There is an algorithm that approximates I[f ] to within a multiplicative factor
of (1± ε) for a monotone f : {0, 1}n → {0, 1}. The algorithm requires that I[f ] ≥ 1/nC′ for
a constant C ′ that is given to the algorithm. It outputs a good approximation with probability
at least 0.99 and in expectation requires O

(√
n log(n/ε)
I[f ]ε3

)
queries. Additionally, it runs in time

polynomial in n.

2.1.4 Bounds for the error parameter and the influence
The following observation allows us to assume that without loss of generality ε is not too
small. A similar technique was also used in [24].

I Observation 15. When ε < O(
√
nδ log1.5(n)) there is a simple algorithm that accomplishes

the desired query complexity of O
(√

nδ log1.5(n)
NSδ[f ]ε3

)
. Namely, this can be done by the standard

sampling algorithm that requires only O
(

1
NSδ[f ]ε2

)
samples. Thus, since we can handle the

case when ε < O(
√
nδ log1.5(n)), we focus on the case when ε ≥ H

√
nδ log1.5(n) ≥ H log1.5 n√

n
,

for any constant H.
Additionally, throughout the paper whenever we need it, we will without loss of generality

assume that ε is smaller than a sufficiently small positive constant.

We will also need a known lower bound on influence:
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I Observation 16. For any function f : {0, 1}n → {0, 1} and δ ≤ 1/2 it is the case that
NSδ[f ] ≤ δI[f ]. Therefore it is the case that I[f ] ≥ 1

nC
.

A very similar statement is proved in [17] and for completeness we prove it in the full version
of the paper.

3 An improved algorithm for small values of the noise parameter

In this section we give a more in-depth motivation for the analysis of our algorithm, together
with the statements of the main lemmas. For all proofs, the reader is referred to the
full version.

3.1 Descending-ascending framework
The descending-ascending process

It will be useful to view noise sensitivity in the context of the noise process D (see Algorithm 1
for the definition). By inspection, x and z are distributed identically in D as in Tδ. Therefore
from Observation 13:

NSδ[f ] = 2 · Pr
D

[f(x) = 1 ∧ f(z) = 0]

I Observation 17. Since the function is monotone, if f(x) = 1 and f(z) = 0, then it has to
be that f(y) = 0.

3.2 Review of algorithm
Roughly speaking, our algorithm will break the task of estimating NSδ[f ] into estimating the
probabilities5 PrD[f(x) = 1 ∧ f(y) = 0] and PrD[f(z) = 0|f(x) = 1 ∧ f(y) = 0]. To estimate
the former, in Lemma 23 we will advantage of the fact that δ is small, so the path P1 is
typically short, and hence the same types of techniques can be applied as in the analysis of
the influence estimation algorithm.

The situation here is different from that of influence estimation because (i) the length
of the path is random (ii) this probability distribution of lengths depends on the starting
vertex. However, we will prove there exists a value, call it p1, so that most influential edges
are hit with probability close to p1. It depends on δ and I[f ], and we can estimate it quite
efficiently by estimating I[f ].

In order to estimate PrD[f(z) = 0|f(x) = 1 ∧ f(y) = 0] we will approximate the
distribution D conditioned on f(x) = 1 ∧ f(y) = 0. To that end, we will first sample
an influential edge e that P1 goes through, and then among all the downwards paths
going through e we will sample P1 itself. The algorithm that samples an influential edge
approximately uniformly is inspired by the algorithm that estimates influence.

3.2.1 Defining bad events and technical notation
In this section, we give the parameters that we use to determine the lengths of our walks, as
well as the “middle” of the hypercube. Additionally, in this section we define some notation
we use.

5 In the precise analysis there will be some bad events to take care of. For the sake of simplicity, we do
not talk about them right now.
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Define the following values:

t1
def= η1

√
n log n t2

def= nδ(1 + 3η2 log n)

Here η1 and η2 are large enough constants. Taking η1 =
√
C + 4 and η2 = C + 2 is sufficient

for our purposes (recall that we were promised that NSδ[f ] ≥ 1/nC for a constant C).
Informally, t1 and t2 have the following intuitive meaning. A typical vertex x of the

hypercube has L(x) between n/2− t1 and n/2 + t1. A typical Phase 1 path from process D
will have length at most t2.

We define the “middle edges” M as the following set of edges:

M
def= {e = (v1, v2) : n2 − t1 ≤ L(v2) ≤ L(v1) ≤ n

2 + t1}

Denote by M the rest of the edges.
We define two bad events in context of D, such that when neither of these events happen,

we can show that the output has certain properties. The first one happens roughly when P1
(from x to y, as defined by Process D) is much longer than it should be in expectation, and
the second one happens when P1 crosses one of the edges that are too far from the middle of
the hypercube, which could happen because P1 is long or because of a starting point that is
far from the middle. More specifically:

E1 happens when both of the following hold (i) P1 crosses an edge e ∈ EI and (ii)
denoting e = (v1, v2), so that v2 � v1, it is the case that L(x)− L(v1) ≥ t2.
E2 happens when P1 contains an edge in EI ∩M .

While defining E1 we want two things from it. First of all, we want its probability to be
upper-bounded easily. Secondly, we want it not to complicate the sampling of paths in
Lemma 24. There exists a tension between these two requirements, and as a result the
definition of E1 is somewhat convoluted.

We will approximate the noise sensitivity as the product of the following two quantities:

pA
def= Pr

D
[f(x) = 1 ∧ f(y) = 0 ∧ E1 ∧ E2]

pB
def= Pr

D
[f(z) = 0|f(x) = 1 ∧ f(y) = 0 ∧ E1 ∧ E2]

Ignoring the bad events, PA is the probability that P1 hits an influential edge, and PB is the
probability that given that P1 hits an influential edge P2 does not hit an influential edge.
From Observation (17), if and only if these two things happen, it is the case that f(x) = 1
and f(z) = 0. From this fact and the laws of conditional probabilities we have:

Pr
D

[f(x) = 1∧f(z) = 0∧E1∧E2] = Pr
D

[f(x) = 1∧f(y) = 0∧f(z) = 0∧E1∧E2] = pApB (2)

We can consider for every individual edge e in M ∩ EI the probabilities:

pe
def= Pr

D
[e ∈ P1 ∧ E1 ∧ E2]

qe
def= Pr

D
[f(x) = 1 ∧ f(z) = 0|e ∈ P1 ∧ E1 ∧ E2] = Pr

D
[f(z) = 0|e ∈ P1 ∧ E1 ∧ E2]

The last equality is true because e ∈ P1 already implies f(x) = 1. Informally and ignoring
the bad events again, pe is the probability that f(x) = 1 and f(y) = 0 because P1 hits e
and not some other influential edge. Similarly, qe is the probability f(x) = 1 and f(z) = 0
given that P1 hits specifically e.
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Since f is monotone, P1 can hit at most one influential edge. Therefore, the events of
P1 hitting different influential edges are disjoint. Using this, Equation (2) and the laws of
conditional probabilities we can write:

pA =
∑

e∈EI∩M
pe (3)

Furthermore, the events that P1 hits a given influential edge and then P2 does not hit any
are also disjoint for different influential edges. Therefore, analogous to the previous equation
we can write:

pApB = Pr
D

[(f(x) = 1) ∧ (f(z) = 0) ∧ E1 ∧ E2] =
∑

e∈EI∩M
peqe (4)

3.2.2 Bad events can be “ignored”
In the following, we will need to consider probability distributions in which bad events do
not happen. For the most part, conditioning on the fact that bad events do not happen
changes little in the calculations. In this subsection, we present two relatively simple lemmas
that allow us to formalize these claims.

The following observation suggests that almost all influential edges are in M .

I Observation 18. It is the case that:(
1− ε

310

)
|EI | ≤ |M ∩ EI | ≤ |EI |

Proof. This is the case, because:

|M ∩ EI | ≤ |M | ≤ 2nn · 2 exp(−2η2
1 log(n)) =

2n−1 · 4/n2η2
1−1 ≤ 2n−1I[f ]/n = |EI |/n ≤

ε

310 |EI | (5)

The second inequality is the Hoeffding bound, then we used Observations 16 and 15. J

We now assert that ignoring these bad events does not distort our estimate for NSδ[f ].

I Lemma 19. It is the case that:

pApB ≤
1
2NSδ[f ] ≤

(
1 + ε

5

)
pApB

Proof. See the full version of the paper. J

3.3 Main lemmas
Having rigorously defined our technical language, now we can state our main algorithmic
lemmas, together with their motivation and our approach to proving them. We refer the
reader to the full version of the paper for the proofs of these lemmas, the proof of the
Theorem 1 using these lemmas, as well as the derivation of the lower bounds in Theorems 5,
6 and 2.

The first two lemmas allow the estimation of the probability that a certain descending
random walk hits an influential edge. As we mentioned in the introduction, except for the
binary search step, the algorithm in Lemma 20 is similar to the algorithm in [24]. In principle,
we could have carried out much of the analysis of the algorithm in Lemma 20 by referencing
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an equation in [24]. However, for subsequent lemmas, including Lemma 23, we build on
the application of the Hypercube Continuity Lemma to the analysis of random walks on
the hypercube. In the full version of the paper, we give a full analysis of the algorithm in
Lemma 20, in order to demonstrate how the Hypercube Continuity Lemma (Lemma 11) can
be used to analyze random walks on the hypercube, before handling the more complicated
subsequent lemmas, including Lemma 23.

I Lemma 20. There exists an algorithm A (see Algorithm 2) that samples edges from M∩EI
so that for every two edges e1 and e2 in M ∩ EI :(

1− ε

70

)
Pr
e∈RA

[e = e2] ≤ Pr
e∈RA

[e = e1] ≤
(

1 + ε

70

)
Pr
e∈RA

[e = e2]

The probability that the algorithm succeeds is at least 1
O(
√
n log1.5 n/I[f ]ε) . If it succeeds, the

algorithm makes O(log n) queries, and if it fails, it makes only O(1) queries. In either case,
it runs in time polynomial in n.

I Remark 21. Through the standard repetition technique, the probability of error can be
decreased to an arbitrarily small constant, at the cost of O(

√
n log1.5 n
I[f ]ε ) queries. Then, the

run-time still stays polynomial in n, since I[f ] ≥ 1/nC .
I Remark 22. The distribution A outputs is point-wise close to the uniform distribution over
M ∩ EI . We will also obtain such approximations to other distributions in further lemmas.
Note that this requirement is stronger than closeness in L1 norm.

The following lemma, roughly speaking, shows that just as in previous lemma, the
probability that P1 in D hits an influential edge e does not depend on where exactly e is,
as long as it is in M ∩ EI . The techniques we use are similar to the ones in the previous
lemma and it follows the same outline. However here we encounter additional difficulties
for two reasons: first of all, the length of P1 is not fixed, but it is drawn from a probability
distribution. Secondly, this probability distribution depends on the starting point of P1.

I Lemma 23. For any edge e ∈M ∩ EI it is the case that:(
1− ε

310

) δ

2n ≤ pe ≤
(

1 + ε

310

) δ

2n

While we will use Lemma 23 in order to estimate pA, the next two lemmas are for
estimating pB. To that end, we will need to sample from a distribution of descending and
ascending paths going through a given edge. Informally, the requirement on the distribution
is that it should be close to the conditional distribution of such paths P1 that would arise
from process D, conditioned on going through e and satisfying Ē1 and Ē2.

A first approach to sampling such P1 would be to take random walks in opposite directions
from the endpoints of the edge e and then concatenate them together. This is in fact what
we do. However, difficulty comes from determining the appropriate lengths of the walks for
the following reason. If P1 is longer, it is more likely to hit the influential edge e. This biases
the distribution of the descending paths hitting e towards the longer descending paths. In
order to accommodate for this fact we used the following two-step approach:
1. Sample only the levels of the starting and ending points of the path P1. This is equivalent

to sampling the length of the segment of P1 before the edge e and after it. This requires
careful use of rejection sampling together with the techniques we used to prove Lemmas
20 and 23. Roughly speaking, we use the fact that P1 is distributed symmetrically with
respect to the change of indices in order to reduce a question about the edge e to a
question about the layer Λe. Then, we use the Lemma 11 to answer questions about
random walks hitting a given layer. This is handled in Lemma 24.
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2. Sample a path P1 that has the given starting and ending levels and passes through an
influential edge e. This part is relatively straightforward. We prove that all the paths
satisfying these criteria are equally likely. We sample one of them randomly by performing
two random walks in opposite directions starting at the endpoints of e. This all is handled
in Lemma 25.

I Lemma 24. There is an algorithm W (see Algorithm 3) that takes as input an edge
e = (v1, v2) in M ∩ EI , so that v2 � v1, and samples two non-negative numbers w1 and w2,
so that for any two non-negative w′1 and w′2:(

1− ε

70

)
Pr
W(e)

[(w1 = w′1) ∧ (w2 = w′2)]

≤ Pr
D

[(L(x)− L(v1) = w′1) ∧ (L(v2)− L(y) = w′2)|(e ∈ P1) ∧ E1 ∧ E2]

≤
(

1 + ε

70

)
Pr
W(e)

[(w1 = w′1) ∧ (w2 = w′2)] (6)

The algorithm requires no queries to f and runs in time polynomial in n.

I Lemma 25. There exists an algorithm B (see Algorithm 4) with the following properties.
It takes as input an edge e = (v1, v2) in M ∩ EI , so that v2 � v1 and outputs paths P1 and
P2 together with hypercube vertices x, y and z. It is the case that x is the starting vertex of
P1, y is both the starting vertex of P2 and the last vertex of P1, and z is the last vertex of
P2. Additionally, P1 is descending and P2 is ascending. Furthermore, for any pair of paths
P ′1 and P ′2 we have:∣∣ Pr

B(e)
[(P1 = P ′1) ∧ (P2 = P ′2)]− Pr

D
[(P1 = P ′1) ∧ (P2 = P ′2)|(e ∈ P1) ∧ E1 ∧ E2]

∣∣
≤ ε

70 Pr
B(e)

[(P1 = P ′1) ∧ (P2 = P ′2)] (7)

It requires no queries to the function and takes computation time polynomial in n to draw
one sample.

In the full version of this paper, we analyze the query complexity and the run-time of
the Algorithm 5, thus proving Theorem 1. This is shown to be a relatively straightforward
application of the four main technical lemmas we presented and discussed in this section.

References
1 Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. In

Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages
21–30. IEEE, 2012.

2 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
1021–1032. ACM, 2016.

3 Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of Boolean functions and
applications to percolation. Publications Mathématiques de l’Institut des Hautes Études
Scientifiques, 90(1):5–43, 1999.

4 Eric Blais, Ryan O’Donnell, and Karl Wimmer. Polynomial regression under arbitrary product
distributions. Machine learning, 80(2-3):273–294, 2010.

5 Deeparnab Chakrabarty and Comandur Seshadhri. An o(n) Monotonicity Tester for Boolean
Functions over the Hypercube. SIAM Journal on Computing, 45(2):461–472, 2016.



R. Rubinfeld and A. Vasilyan 52:17

6 Xi Chen, Rocco A Servedio, and Li-Yang Tan. New algorithms and lower bounds for mono-
tonicity testing. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 286–295. IEEE, 2014.

7 Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K Lee. Submodular functions
are noise stable. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1586–1592. Society for Industrial and Applied Mathematics, 2012.

8 Ilias Diakonikolas, Prasad Raghavendra, Rocco A. Servedio, and Li-Yang Tan. Average
Sensitivity and Noise Sensitivity of Polynomial Threshold Functions. SIAM J. Comput.,
43(1):231–253, 2014. doi:10.1137/110855223.

9 Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio. Agnostically
learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, 2008.

10 Daniel M. Kane. The Gaussian Surface Area and Noise Sensitivity of Degree-d Polyno-
mial Threshold Functions. Computational Complexity, 20(2):389–412, 2011. doi:10.1007/
s00037-011-0012-6.

11 Daniel M. Kane. The average sensitivity of an intersection of half spaces. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
437–440, 2014. doi:10.1145/2591796.2591798.

12 Nathan Keller and Guy Kindler. Quantitative relation between noise sensitivity and influences.
Combinatorica, 33(1):45–71, 2013.

13 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing, 37(1):319–357,
2007.

14 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric
type theorems. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 52–58. IEEE, 2015.

15 Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersections and thresholds
of halfspaces. Journal of Computer and System Sciences, 68(4):808–840, 2004.

16 Rajsekar Manokaran, Joseph Seffi Naor, Prasad Raghavendra, and Roy Schwartz. SDP gaps
and UGC hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 11–20. ACM, 2008.

17 Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone functions. Random
Structures & Algorithms, 23(3):333–350, 2003.

18 Elchanan Mossel and Ryan O’Donnell. Coin flipping from a cosmic source: On error correction
of truly random bits. Random Structures & Algorithms, 26(4):418–436, 2005.

19 Ryan O’Donnell. Hardness amplification within NP. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 751–760. ACM, 2002.

20 Ryan O’Donnell. Computational applications of noise sensitivity. PhD thesis, Massachusetts
Institute of Technology, 2003.

21 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
22 Yuval Peres. Noise stability of weighted majority. arXiv preprint, 2004. arXiv:math/0412377.
23 Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri Weinstein. Approx-

imating the Influence of Monotone Boolean Functions in O(
√
n) Query Complexity. TOCT,

4(4):11:1–11:12, 2012. doi:10.1145/2382559.2382562.
24 Dana Ron, Ronitt Rubinfeld, Muli Safra, and Omri Weinstein. Approximating the Influence of

Monotone Boolean Functions in O(
√
n) Query Complexity. In Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques, pages 664–675. Springer, 2011.
25 Michel Talagrand. How Much Are Increasing Sets Positively Correlated? Combinatorica,

16(2):243–258, 1996.

APPROX/RANDOM 2019

https://doi.org/10.1137/110855223
https://doi.org/10.1007/s00037-011-0012-6
https://doi.org/10.1007/s00037-011-0012-6
https://doi.org/10.1145/2591796.2591798
http://arxiv.org/abs/math/0412377
https://doi.org/10.1145/2382559.2382562

	Introduction
	Results
	Algorithm overview
	Lower bound techniques
	Possibilities of improvement?

	Preliminaries
	Definitions
	Fundamental definitions and lemmas pertaining to the hypercube
	Fundamental definitions pertaining to Boolean functions
	Influence estimation
	Bounds for the error parameter and the influence


	An improved algorithm for small values of the noise parameter
	Descending-ascending framework
	Review of algorithm
	Defining bad events and technical notation
	Bad events can be ``ignored''

	Main lemmas


