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Introduction
To reduce their risk of being consumed, prey possess traits 

to thwart predators, including morphological structures such 
as spines or hard shells as well as chemical defenses (Hay 
2009, Weissburg et al. 2014). Producing predator defenses 
often incurs costs, such as reductions in growth or fecundity 
(Relyea 2002), and in habitats where predation risk is low, 
prey defenses may be reduced or absent (Smee and Weissburg 
2008, Hay 2009, Large and Smee 2013). Prey may also mini-
mize predator avoidance costs by using induced or plastic de-
fenses that only develop when predation risk is high (Harvell 
1990). These types of inducible defenses are appropriate when 
defense production is costly, predator presence is temporally 
variable, and prey can reliably detect and react to predators to 
minimize their risk of being consumed (Cronin 2001). Induc-
ible defenses in response to predation risk are effective and 
are well known from many different taxa including tadpoles 
(Relyea 2002, Schoeppner and Relyea 2009), snails (Freeman 
and Hamer 2009, Large and Smee 2013), corals (Gochfeld 
2004), and bivalves (Leonard et al. 1999, Nakaoka 2000, 
Scherer et al. 2016). 

Eastern oysters (Crassostrea virginica) are commercially and 
ecologically important sessile bivalves that are preyed upon 
by a variety of crustacean and gastropod predators (Menzel 
and Nichy 1958, Grabowski 2012). Because they are vulner-
able and immobile, oysters can defend against predation by 
changing their morphology to strengthen their shells. Oysters 
strengthen their shells in response to both crustacean (Newell 
et al. 2007) and gastropod predators (Lord and Whitlatch 
2012), which can reduce their likelihood of being consumed 
(Robinson et al. 2014). Oysters respond to chemical exudates 
from injured con— and hetero—specifics as well as predator 
exudates by building thicker shells and altering the composi-
tion of shells (Scherer et al. 2016). Bivalves, including oysters, 
may increase the addition of calcium carbonate to make shells 
larger, add protein to their shells to increase its strength, or 
both (Currey and Taylor 1974, Frieder et al. 2016, Scherer et 
al. 2018).

The purpose of this study was to investigate morphological 
changes of post—metamorphic oysters in flow—through tanks 
located within an oyster hatchery/nursery to evaluate the po-

tential for creating predator—resistant oysters for use in aqua-
culture and restoration. Oyster hatcheries may spawn oysters, 
and in a subsequent nursery setting, grow oysters individually 
as seed which are commonly reared off—bottom and used in 
the half shell market. Alternatively, oysters may be spawned 
and then allowed to settle onto hard substrates (e.g., shells, 
crushed concrete) in the hatchery, and grown in clusters and/
or groups. This technique is called spat—on—shell and is 
often used in oyster reef restoration as it more closely mim-
ics natural conditions and promotes greater reef building. To 
date, previous studies examining oyster responses to predation 
risk were performed using spat—on—shell, but responses of 
seed oysters have not been investigated. Because seed oysters 
are single and do not have a large, hard substrate to grow on, 
their growth rate and response to predators may be different 
than spat—on—shell oysters. Moreover, seed oysters are used in 
nearshore aquaculture and are prone to predation from preda-
tors which recruit into cages, and there is commercial interest 
in having seed oysters produce thicker, cup—shaped shells that 
increases their value on the half—shell market. However, most 
studies on predator—induced defenses of oysters are labora-
tory based using small, closed systems that can concentrate 
predator cues and only stimulate small numbers of oysters. 
We therefore sought to compare responses of both spat—on—
shell and oyster seed to predation risk cues in a flow—through 
nursery system to determine if the rearing technique could be 
replicated at other oyster nurseries on an industrial scale. 

Materials and Methods
Oysters were cultured as spat—on—shell or single seed at the 

Auburn University Shellfish Laboratory (AUSL) on Dauphin 
Island, AL starting in late May 2019. Both types of oysters 
were raised from the same brood stock and housed together 
in 4 flow—through holding tanks measuring 2.4 m x 0.9 m 
(length x width) and held in a water depth of 0.4 m. Spat—on—
shell oysters were ~1.0 mm and seed oysters ~2.5 mm when 
the experiment began. There was immense variation in the 
number of spat per shell which we elected to maintain during 
the experiment to mimic natural settlement and normal reef 
restoration practices (~5 – 40 spat/shell). Seed oysters were 
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grown as individuals. Water flow rates in the holding tanks 
averaged 36.9 L/min. Spat—on—shell oysters were suspended 
above the tank bottom in 7 plastic cages 64 x 23 x 14 cm (140 
spat covered shells/cage), and seed oysters were housed in 
the same tanks within 2 Vexar mesh bags 24 cm x 35 cm x 2 
cm (100 seeds/bag) suspended above the bottom to prevent 
sediment buildup from suffocating oysters. Structural and 
morphological differences between spat—on—shell and single 
seed oysters require that different suspension methods are 
used during rearing, and the containers as well as the sub-
sequent oyster densities followed typical nursery procedures 
(Matthiessen 2001, pers. comm., AUSL hatchery manager 
Scott Rikard). Half of the oysters were exposed to predator 
exudates by holding 4 adult blue crabs, Callinectes sapidus, in 
2 of the flow—through tanks (8 crabs total) while the remain-
ing 2 tanks did not have crabs and served as a control. Crabs 
were held in 2 partitioned cages 64 x 23 x 14 cm to prevent 
crabs from consuming the experimental oysters or each other 
while control tanks had empty crab cages. Each crab was 
fed one adult oyster daily (~5.0 cm in length) to maximize 
predation risk cues, causing experimental oysters to receive 
exudates from both crabs and injured oysters as they were be-
ing consumed. Crabs were replaced at least every other week.

After 4 weeks of predator cue exposure, both spat—on—
shell and seed oyster shell size (mm), shell strength (N), and 
shell weight (g) were measured (number of individuals = 84 
spat—on—shell and 40 seed oysters for each treatment). We 
assessed the effect of predator cue exposure on shell morphol-
ogy by measuring shell size, shell weight, and shell crushing 
force (sensu Robinson et al. 2014, Scherer et al. 2016). At this 
size, oysters are roughly round, and shell length was measured 
to the nearest 0.01 mm using digital calipers from the umbo 
to the outer shell edge. For spat—on—shell, care was taken to 
only measure individuals which were not crowded by cohorts 
to reduce any confounding effects on 
growth from space limitation, although 
this was not a large concern during such 
early life stages. We then quantified the 
force needed to break each oyster shell 
using a penetrometer (Kistler force sensor 
9203 and a Kistler charge amplifier 5995). 
A small blunt probe was placed centrally 
to be equidistant from the shell edges and 
perpendicular to shell surface. Gentle 
and consist pressure was applied until the 
shell cracked, and the maximum force 
(N) needed to break the shell recorded, a 
standard proxy for shell hardness (Robin-
son et al. 2014). Because larger individuals 
will naturally have a stronger shell as a 
byproduct of their size, we divided shell 
crushing force by shell length to produce a 
size—standardized metric of shell strength 
(i.e., standardized crushing force). After 
oysters were crushed using the penetrom-

eter, shell weight from each crushed oyster was recorded by 
separating the shell pieces from any attached soft tissue and 
drying at 70°C for 72 hours before weighing. For spat—on—
shell, only the top valves were measured because the bottom 
valves were bonded to the underlying hard substrate and 
because crushing force was applied to the top valves (sensu 
Robinson et al. 2014). For seed oysters, the entire shell was 
measured once the tissue was removed. 

We examined the effects predator cue exposure (present 
vs absent) and oyster culture method (spat—on—shell vs single 
seed) have on standardized shell crushing force and shell 
diameter by running 2 separate mixed—effects generalized 
linear models with a Gamma distribution (GLM; R package: 
lme4). Cue exposure treatment and culture method were 
treated as fixed effects with an interaction term while oyster 
holding container nested in tank were treated as random 
effects to control for nonindependence of oysters within the 
same container (Bolker et al. 2009). Tukey’s multiple com-
parison test was used to determine pairwise differences in 
shell morphology (R package: lsmeans). Two separate mixed—
effects GLMs were run for spat—on—shell and single seed 
oysters to examine the effect of predator cue exposure on 
shell weight because different proportions of the shell were 
measured for these growing methods. This prevented direct 
statistical comparisons between spat—on—shell and single 
seed oyster weight. Here, statistical models had cue exposure 
treatment as a fixed effect and holding container nested in 
tank as random effects. All statistical analyses were conduct-
ed using R v3.5.1 (R Development Core Team, 2018; http://
www.R—project.org/).

Results and Discussion
Both spat—on—shell and seed oysters substantially changed 

their morphology in response to blue crab exudates (seed 
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FIGURE 1. Oysters (Crassasteroa virginica) grown in a flow-through aquaculture nursery for  
4 weeks.  A. With blue crab (Callinectes sapidus) exudates. B. Controls without predator cues.
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oysters pictured in Figure 1). Consistent with previous studies 
(Robinson et al. 2014, Scherer et al. 2016), oysters in blue 
crab treatments produced shells that required significantly 
more force to break, regardless if they were raised as spat—
on—shell or as seed (Figure 2A; estimate = 0.19, t = 4.20, p < 
0.001). Oyster culture method also had a strong effect on the 
standardized crushing force of shells which was on average 2x 
greater for seed oysters than spat—on—shell (estimate = 0.31, t 
= 7.54, p < 0.001). Interestingly, predator cues seemed to have 
a stronger influence on seed oysters as their standardized 
crushing force increased 71% when exposed to cues versus 
a 41% increase for spat—on—shell, although there was not a 
significant interaction between cue exposure treatment and 
oyster culture method on standardized crushing force (esti-
mate = 0.04, t = 0.59, p = 0.557).

Oyster sizes and shell weights showed a different type of 
response. Seed oysters exposed to predator cues were 35% 
smaller than unexposed individuals (Figure 1), while spat—
on—shell oysters grew 10% larger when exposed to predator 
cues (Figure 2B; cue exposure treatment estimate = —0.04, t = 
—7.45, p < 0.001; culture method estimate = —0.02, t = —5.15, 
p < 0.001; interaction term estimate = 0.04, t = 7.64, p < 

0.001). Similarly, spat—on—shell oysters also grew 35% heavier 
after rearing in the presence of predator cues (Figure 3A; esti-
mate = 6.50, t = 2.82, p = 0.005) while seed oysters were 58% 
lighter when exposed to predator cues (Figure 3B; estimate 
= —4.38, t = —4.81, p < 0.001). These drastic differences in 
growth patterns are partially responsible for why the stan-
dardized crushing force of oysters was much greater for seed 
oysters exposed to predator cues than their spat—on—shell 
counterparts. However, even the raw unstandardized crush-
ing force of cue—exposed oysters was 66% greater for seed 
oysters than spat—on—shell (unpublished data). Interestingly, 
seed oysters achieved greater shell strength despite being 23% 
smaller than oysters cultured as spat—on—shell.

We attribute these findings to growth differences related to 
the amount of substrate used for settlement. Spat—on—shell, 
already being attached to a shell, are protected on one side. 
Much of their initial growth is lateral, and thus both their 
diameter and weight increase as they grow. Spat—on—shell 
oysters tended to grow broader and heavier in response to 
predator treatments, accounting for their significant increases 
in these characteristics. In contrast, seed oysters exposed to 
crab cues produced smaller shells that were lighter than those 
grown in control tanks, although their shell hardness signifi-
cantly increased. Seed oysters settle onto tiny shell fragments 
that are only suitable for a single oyster to settle upon. Thus, 
from the outset, these oysters are vulnerable from predation 
on both sides and must invest more in shell growth to protect 
themselves than their spat—on—shell counterparts. With-
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FIGURE 2. Mean (± se) of shell characteristics of oysters (Crassasteroa 
virginica) cultured as spat-on-shell (n = 168 total) or single seed (n = 80 
total) and exposed to either blue crab (Callinectes sapidus) predator cues 
or a control of no cues.  A. Standardized crushing force (N/mm).  B. Shell 
diameter (mm).  Spat-on-shell oysters, n = 84 per treatment cue; single 
seed oysters, n = 40 per cue treatment. Letters denote significant differ-
ences (Tukey’s multiple comparison test, p < 0.05). N = Newtons of force.

FIGURE 3. Mean (± se) shell dry weight (g) of oysters (Crassasteroa vir-
ginica) exposed to either blue crab (Callinectes sapidus) predator cues 
or a control of no cues. A. Cultured as spat-on-shell (n = 168 total). B. 
Cultured as single seed (n = 80 total). Spat-on-shell, n = 84 per treatment 
cue; single seed, n = 40 per cue treatment. Asterisks denote significant 
differences determined by mixed-effects GLMs, p < 0.05.
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out predator cues, seed oysters had sharp, thin edges, but in 
predator cue treatments, seed oysters resembled marbles that 
were rounded, which may be an active response to predators 
or a consequence of shell growth changes. Regardless, we 
hypothesize that the rounder edges make shells more resistant 
to crushing predators and less susceptible to breaking off, but 
additional studies are needed to verify this claim.

Organisms may add calcium carbonate to their shells in 
response to predation risk, which can be added quickly to 
reach a size refuge and is energetically less expensive than 
adding organic tissue (Currey and Taylor 1974, Currey and 
Hughes 1982). In contrast, adding organic tissue increases 
shell strength, but is costlier for growth and fecundity (Frie-
der et al. 2016, Scherer et al. 2018). Oysters react to low risk 
levels by adding calcium carbonate and increasing in size and 
weight, without increasing in shell strength, but at higher risk 
levels, also add protein to their shells to increase strength 
(Scherer et al. 2018). Differences in shell responses to predator 
cues between spat—on—shell and seed oysters may therefore 
be a consequence of different perceptions of predation risk 
as spat—on—shell exhibited characteristics of a low to moder-

ate threat. Although both oyster cultures were in the same 
tanks and occupied the same spaces, spat—on—shell creates 
a matrix of overlapping shells that may reduce local water 
flow and could subsequently reduce predator cue detection 
in comparison to single seed oysters. Alternatively, growth 
of oysters attached to substrate they can build upon is likely 
very different than growing without such a substrate. Further 
research is necessary to determine the cause behind the differ-
ent responses of the two culture methods. 

Overall, these findings demonstrate predator cues can be 
used to induce oysters to grow stronger shells in an aquacul-
ture setting, and that regardless of culturing method, oysters 
will respond to predation risk by growing stronger shells. 
Additionally, these results show that culture method has a 
significant effect on oyster growth and can also govern the 
response of oysters to predator cues. While further research is 
required to evaluate the benefits of shell induction as well as 
rearing oysters using different culture methods, our prelimi-
nary results are promising for aquaculture and restoration 
efforts and may reduce predation risk in natural settings.
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