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Abstract— Relative motion estimation of one rigid body with
respect to another is a problem that has immediate applications
to formations and maneuvers involving multiple unmanned
vehicles or collision avoidance between vehicles. A finite-time
stable observer for relative attitude estimation of a rigid object
using onboard sensors on an unmanned vehicle, is developed
and presented here. This observer assumes sensor inputs from
onboard vision and inertial sensors, with the vision sensors
measuring at least three points on the object whose relative
locations with respect to a body-fixed frame on the object are
also assumed to be known. In the absence of any measurement
noise, the estimated relative attitude is shown to converge to the
actual relative pose in a finite-time stable manner. Numerical
simulations indicate that this relative attitude observer is robust
to persistent measurement errors and converges to a bounded
neighborhood of the true attitude.

1. INTRODUCTION
Estimation of relative motion between rigid body objects

in three-dimensional Euclidean space has several applications
in formations and proximity maneuvers between unmanned
aerial vehicles, spacecraft and underwater vehicles. A stable
relative attitude estimation scheme that is robust to mea-
surement noise and requires no knowledge of the dynamics
model of the vehicle being observed, is presented here. This
estimation scheme can enhance the autonomy and reliability
of teams of unmanned vehicles operating in uncertain en-
vironments without any external navigation aids like global
navigation satellite systems (GNSS). This avoids the need
for measurements from external sources, which may not be
available in indoor, underwater or cluttered environments [1],
[2], [3].

This nonlinear relative attitude estimation scheme does
not use local coordinates or quaternions to represent the
relative attitude on SO(3). It is constructed to be finite-time
stable (FTS) on the space of rigid body orientations, SO(3).
Attitude estimation and control schemes that use generalized
coordinates or quaternions for attitude representation are
usually unstable in the sense of Lyapunov, as has been shown
in prior research [4], [5], [6]. One adverse consequence of
these unstable estimation and control schemes is that they
end up taking longer to converge compared to stable schemes
with the same initial conditions and same initial transient
behavior. Attitude and pose observers and filtering schemes
on SO(3) and SE(3) have been reported in, e.g., [7], [8],
[9], [10], [11], [12], [13], [14], [15].

A sample of recent work on observer design and estima-
tion directly on the Lie groups of rigid body attitude and
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pose motion can be found in [16], [17],[18], [19], [20], [21],
[22], [23]. These estimators do not suffer from kinematic
singularities like estimators using coordinate descriptions of
attitude, and they do not suffer from the unstable unwinding
phenomenon encountered by continuous estimators using
unit quaternions. This motivates our approach using a ge-
ometric relative attitude estimation scheme to estimate the
relative attitude directly on SO(3).

A prior related work that obtained a relative motion esti-
mation scheme (for relative pose and relative velocities) was
reported in [24]. In that work, we obtained a relative motion
estimation scheme using a variational approach based on a
Lagrangian created from the estimation errors in relative pose
and relative velocities. The resulting variational estimator
was obtained by applying the Lagrange-d’Alembert principle
to the Lagrangian, thereby dissipating the energy contained
in the estimation errors and resulting in an asymptotically
stable observer for the relative motion. The same approach
was used for (absolute) attitude and pose estimation, re-
spectively, in [25], [26]. For instantaneous relative attitude
estimation of a rigid object observed by sensors onboard a
rigid vehicle in its proximity, relative position vectors of at
least three known feature points on the observed body need
to be measured [24]. However, for real-time estimation of
the relative attitude from continuous measurements of such
feature points, the accuracy of the estimate suffers due to ad-
ditive measurement noise in the feature point measurements.
Therefore, for added robustness to measurement errors in
relative positions of observed feature points, we use a finite-
time stable estimation scheme for relative attitude estimation
in this work. Like the variational attitude estimation scheme
in [24], this finite time stable relative attitude estimation
scheme also estimates both relative attitude and relative
angular velocity from vector measurements.

The rest of the paper is organized as follows. The approach
to determine the relative attitude and relative angular velocity
from the instantaneous vector measurements is posed in
Section 2. Section 3 describes the finite-time stable (FTS)
attitude estimation scheme with the main results and its
stability proof in details. Two numerical experiments imple-
mented with the proposed estimation scheme are shown in
Section 4 with experimental results. These experiments show
the performance of the relative attitude estimator with and
without measurement noise in the relative position vector
measurements of feature points. Section 5 summarizes the
contributions of this paper and lists possible future directions
in relative motion estimation.
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2. STATIC ATTITUDE DETERMINATION FROM
VECTOR MEASUREMENTS

A. Relative Pose Measurement Model

Let O denote the observed vehicle and O be the coordinate
frame fixed to O. Let S denote the vehicle that is observing O
and S denote a coordinate frame fixed to S. Let R ∈ SO(3)
be the relative rotation matrix from frame S to frame O and
b denote the position of origin of S expressed in frame O.
The pose (transformation) of frame S to frame O is

g =

[
R b
0 1

]
∈ SE(3). (1)

The positions of a fixed set of feature points or patterns on
vehicle O are observed by optical sensors fixed to vehicle S.
Velocities of these points are not directly measured, but may
be calculated using a simple linear filter as in [27]. Assume
that there are j > 2 feature points, which are always in the
sensor field-of-view (FOV) of the sensor fixed to vehicle S,
and the positions of these points are known in frame O as pj ,
j ∈ {1, 2, . . . , j}. These points generate

( j
2

)
unique pairwise

relative position vectors, which are the vectors connecting
any two of these points.

Denote the position of the optical sensor on vehicle S and
the vector from that sensor to an observed point on vehicle
O as s, qj ∈ R3, j = 1, 2, . . . , j , respectively, both vectors
expressed in frame S. Thus, in the absence of measurement
noise

pj = R(qj + s) + b = Raj + b, j ∈ {1, 2, . . . , j}, (2)

where aj = qj + s, are positions of these points expressed
in S. In practice, the aj are obtained from proximity optical
measurements that will have additive noise; denote by amj
the measured vectors. The mean values of the vectors pj
and amj are denoted as p̄ and ām, and satisfy

ām = RT(p̄− b) + ς̄ , (3)

where p̄ = 1
j

j∑
j=1

pj , ām = 1
j

j∑
j=1

amj and ς̄ is the additive

measurement noise obtained by averaging the measurement
noise vectors for each of the aj . Consider the

( j
2

)
relative

position vectors from optical measurements, denoted as dj =
pλ − p` in frame O and the corresponding vectors in frame
S as lj = aλ− a`, for λ, ` ∈ {1, 2, . . . , j}, λ 6= `. Therefore,

dj = Rlj ⇒ D = RL, (4)

where D = [d1 · · · dβ ], L = [l1 · · · lβ ] ∈ R3×β and
β =

( j
2

)
. Note that the matrix of known relative vectors D

is assumed to be known and bounded. Denote the measured
value of matrix L in the presence of measurement noise as
Lm. Then,

Lm = RTD + L , (5)

where L ∈ R3×β is the matrix of measurement errors in
these vectors observed in frame S.

B. Relative Angular Velocities Model

The relative attitude can be calculated from the vector
measurements provided the following assumption is satisfied.

Assumption 1: There are at least two non-collinear vectors
in d1, ...dβ for attitude determination at all times. If β = 2,
d3 = d1 × d2 is chosen as the third non-collinear vector.
Denote the relative angular velocity of vehicle O expressed
in frame S by Ω, respectively. Thus, one can write the
kinematics of the rigid body as

Ṙ = RΩ× (6)

where (·)× : R3 → so(3) ⊂ R3×3 is the skew-symmetric
cross-product operator that gives the vector space isomor-
phism between R3 and so(3). To get the angular velocity Ω
with the given information lj and dj , following procedures
can be done based on (4). Neglect the noise signal and do
time derivative:

dj = Rlj (7)

⇒0 = Ṙlj +Rl̇j = RΩ×lj +Rl̇j (8)

⇒l̇j = l×j Ω (9)

Take all of the sensor measurement into consideration, then
(5) can be rewritten into the following form:

V̇ (L) = G(L)Ω (10)

V (L) and G(L) are defined as:

V (L) =


l1
l2
...
lβ

 , G(L) =


l×1
l×2
...
l×β


V (L) ∈ R3β , G(L) ∈ R3β×3 (11)

where G(L) has full row rank. From vision-based or Doppler
lidar sensors, one can measure the relative angular velocities
of the observed points in frame S based on (10).

C. Relative Angular Velocity Filtering

Considering the relative angular velocity measurement and
attitude estimation will both depend on the accuracy of vector
measurements, the vector measurements are ”pre-filtered” to
improve the estimator performance. To reduce the impact
of noise signal L from the measured Lm, a discrete-time
Butterworth filter is applied here to filter the relative position
vectors that are the column vectors of Lm. This discrete-
time Butterworth filter was implemented in [26], and is
obtained from a continuous-time second-order Butterworth
filter discretized using the Newmark-β Method. The filtered
version of matrix Lm is denoted Lf .

As this kinematics equation (10) indicates, the relative
velocities of at least three points are needed to determine the
observed vehicle’s angular velocity uniquely at each instant.
The rigid body velocities are obtained using the pseudo-
inverse of G(Lf ), denoted G#(Lf ). Taking the measurement
noise and filtering process into consideration and replacing
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Lm with the filtered matrix Lf , the pre-filtered relative
angular velocity Ωf is obtained as:

V (L̇f ) = G(Lf )Ωf ⇒ Ωm = G#(Lf )V (L̇f ) (12)

where G#(Lf ) = (GT (Lf )G(Lf ))−1GT (Lf ).

3. REAL-TIME RELATIVE ATTITUDE
ESTIMATION

This section presents the real-time relative attitude esti-
mation scheme. Denote the estimated relative attitude and
its kinematics as

Ṙ = RΩ×, (13)

where Ω ∈ R3 is the relative angular velocity of the observed
rigid body represented in the frame S.

A. Basic Definitions For Relative Attitude Estimation

Let (R̂, Ω̂) ∈ SO(3)×R3 be the estimates of the relative
attitude and angular velocity provided by the estimation
scheme, with the following kinematics,

˙̂
R = R̂Ω̂×. (14)

Ω̂ = Ωf − R̂Tω, (15)

where ω ∈ R3 is the error in estimating the angular velocity.
Note that if the expression (15) is implemented with Ωm

instead of its filtered version Ωf , then the measurement
noise in Ωm, which comes from the measurement noise in
Lm, would not be filtered out. For this purpose, we use the
discrete Butterworth filter given in [26] to filter out the noise
in Lm, and use the filtered quantities Lf and L̇f to create a
filtered version of Ωm, denoted as Ωf .

One can define the trace inner product on Rn1×n2 as

〈A1, A2〉 := trace(AT
1A2). (16)

Any square matrix A ∈ Rn×n can be written as sum of
unique symmetric and skew-symmetric matrices, that is,

A = sym(A) + skew(A), (17)

where the symmetric and skew-symmetric components are
defined as,

sym(A) =
1

2
(A+AT), skew(A) =

1

2
(A−AT). (18)

Additionally, following properties hold. Let A1 ∈ Rn×n is
a symmetric matrix and A2 ∈ Rn×n is a skew symmetric
matrix, then,

〈A1, A2〉 =0. (19)

In other words, symmetric and skew matrices are orthogonal
under the trace inner product. For all a1, a2 ∈ R3,〈

a×1 , a
×
2

〉
=− 2a1 · a2 (20)

With these definitions, we proceed to lay out the attitude
estimation problem.

B. Potential Function For Attitude Determination

The purpose is to obtain an estimate of the relative
attitude denoted by R̂ ∈ SO(3) from β known inertial
vectors d1, . . . , dβ and corresponding pre-filtered vectors
lf1 , . . . , l

f
β . The static attitude estimation can be formulated

as an optimization problem as follows,

MinimizeR̂ U =
1

2

β∑
i

wi(di − R̂lfi )T(di − R̂lfi ), (21)

where wi > 0 are weight factors. the rotational potential
function (Wahba’s cost function [28]) is expressed as

U(R̂, Lf , D) =
1

2
〈D − R̂Lf , (D − R̂Lf )W 〉, (22)

where W = diag(wj) ∈ Rn×n is a positive diagonal matrix
of weight factors for the measured lfj . The potential function
can be generalized such that W is a symmetric positive
semi-definite matrix satisfying some special conditions. The
structure of the generalized potential function in the absence
of measurement errors, is detailed in the following lemma.

Lemma 1: Define Q = RR̂T as the relative attitude
estimation error. Let D ∈ R3×β be as defined in Section 2
with rank(D) = 3. Let the gain matrix W of the generalized
Wahba potential function be given by,

W = DT(DDT)−1
K
(
DDT)−1

D, (23)

where K = diag([k1, k2, k3]) and k1 > k2 > k3 ≥ 1. Then,
in the absence of measurement errors,

U =
1

2

〈
D − R̂Lf , (D − R̂Lf )W

〉
= 〈K, I −Q〉 , (24)

which is a Morse function on SO(3) whose critical points
are given by the set,

C = {I, diag([−1,−1, 1]), diag([1,−1,−1]),

diag([−1, 1,−1])}. (25)

In addition, U has a global minimum at Q = I .
The proof of this lemma is given in [25], and is omitted

here for brevity. The following four lemmas are used in the
following section to prove the main result on finite time
stable relative attitude estimation.

Lemma 2: Let K be as defined in Lemma 1. Then, in the
absence of the measurement errors, the time derivative of
U along the trajectories satisfying the kinematic equations
(13)-(14), is given by:

d

dt
U =

d

dt
〈K, I −Q〉 = sK(Q) ·

(
R̂Ω̃
)

(26)

=
d

dt
trace(K − LTR̂) = −sΓ(R̂) · Ω̃, (27)

where

Ω̃ = Ωf − Ω̂, sΓ(R̂) = vex(ΓTR̂− R̂TΓ). (28)
Proof: Since Q = RR̂T, we obtain from eqs. (13)-(14):

Q̇ =
d

dt
Q = ṘR̂T +R

˙̂
R

T
= RΩ×R̂T −RΩ̂×R̂T

= RR̂T(R̂(Ωf − Ω̂)
)×

= Q(R̂Ω̃)×
(29)
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where Ω̃ = Ωf − Ω̂. Substituting W as given by (23) in (24)
and defining

Γ = DW (Lf )T, (30)

we see that in the absence of measurement noise, Lm =
Lf = L = RTD and

Γ̇ = DWL̇T = DWLTΩ× = ΓΩ×. (31)

From eq. (29), we obtain

d

dt
〈K, I −Q〉 = 〈K,−Q(R̂Ω̃)×〉.

From eq. (31), we get

d

dt
trace(K − ΓTR̂) = trace(Ω×ΓTR̂− ΓTR̂Ω̂×).

As in the proof of Lemma 1, (19) and (20) are utilized to
obtain,

d

dt
〈K, I −Q〉 = −1

2
trace

(
(KQ−QTK)(R̂Ω̃)×

)
= vex(KQ−QTK) · (R̂Ω̃) (32)

and

d

dt
trace(K − ΓTR̂) = −vex(ΓTR̂− R̂TΓ) · Ω̃. (33)

As (32) is identical to (26) and (33) is identical to (27), we
conclude the result.

Lemma 3: Let K be as defined in Lemma 1 and sK(Q) =
vex(KQ − QTK). Let S ⊂ SO(3) be a closed subset
containing the identity in its interior, defined by

S =
{
Q ∈ SO(3) : Qii ≥ 0 and QijQji ≤ 0

∀i, j ∈ {1, 2, 3}, i 6= j
}
. (34)

Then for Q ∈ S , we have

sK(Q)T sK(Q) ≥ trace(K −KQ). (35)
Proof: The proof of this result is given in [29], and is

omitted here for brevity.
Lemma 4: Let sΓ(R̂) and sK(Q) be as defined earlier.

Then following holds:

sΓ(R̂)TsΓ(R̂) = sK(Q)TsK(Q) (36)
Proof: From the definition of L, it can be seen that

L = KR. Now sΓ(R̂) and sK(Q) can be rewritten as,

sΓ(R̂) = vex(RTKR̂− R̂TKR) =: vex(A1), (37)

sK(Q) = vex(KRR̂T − R̂RTK) := vex(A2), (38)

where A1, A2 are used to represent the skew symmetric
matrices inside the vex(.) operator. From Eq.(20), it is clear
that Eq.(36) is equivalent to the following expression,

tr(A1A1) = tr(A2A2). (39)

Now, simplifying using the properties of the trace inner
product, it is straightforward to see that (39), and therefore
(36), holds true. The steps are omitted for conciseness.

C. Main Result

Here the main result of this article is described: a finite-
time stable rigid body relative attitude observer. For the
relative attitude estimation, Assumption 1 is required for the
following theorem.

Theorem 3.1: Consider the relative attitude kinematics (6)
and the relative angular velocity measurements given by (15)
in the absence of measurement noise (L = 0). Let p ∈ (1, 2)
and let kp > 0 be a scalar observer gain. Let Assumption 1 be
satisfied. Hence, with the relative angular velocity measured
using (12), the following observer is finite-time stable for the
relative attitude of the observed rigid body:

ω =
kpR̂sΓ(R̂)

{sΓ(R̂)T sΓ(R̂)}1−1/p
(40)

Ω̂ = Ωf − R̂Tω (41)
˙̂
R = R̂Ω̂× (42)

Proof: Consider the potential function U in Lemma 1,
Section 3 as the Lyapunov candidate:

V = U(R̂, Lf , D) = 〈K, I −Q〉 (43)

Take the time derivative of this Lyapunov candidate, using
(27) and (28) defined in Lemma 2 :

V̇ = −sΓ(R̂)Ω̃ = −sΓ(R̂)R̂Tω (44)

Substituting the designed estimation law (40), it can be
shown that:

V̇ = − kpR̂
T R̂sΓ(R̂)T sΓ(R̂)

{sΓ(R̂)T sΓ(R̂)}1−1/p
= −kp{sΓ(R̂)T sΓ(R̂)}1/p

(45)

From the results of Lemma 3 and Lemma 4, one obtains:

V̇ = −kp{sΓ(R̂)TsΓ(R̂)}1/p (46)

= −kp{sK(Q)TsK(Q)}1/p (47)

≤ −kp 〈K, I −Q〉1/p (48)

≤ −kpV1/p (49)

According to [30], this proves the finite-time stability of
the relative attitude estimation scheme. It means the relative
attitude estimation error matrix Q will converge stably to
the identity I in finite time. Further, when Q = I after this
finite period of time, R̂ = R and sΓ(R̂) = 0. Therefore
the relative angular velocity estimation error ω = 0 and the
relative attitude motion state estimates converge to the true
states after this finite period of time.

4. NUMERICAL SIMULATIONS

This section provides numerical simulation results for
this relative attitude estimation scheme for two cases: one
without any measurement noise, and the other with mea-
surement noise in the relative position measurements Lm

of feature points observed on the object O. The numerical
simulation method is that of sampling the relative attitude
estimator described in Section 3 with a constant time step
size. The attitude estimation is numerically implemented on
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Fig. 1. Relative angular velocity profile between the two simulated vehicles.

MATLAB, using a geometric integration scheme. Unlike
commonly used numerical integration methods like Runge-
Kutta, geometric integration schemes preserve the geometry
of the state space without any projection, parameterization.

Let h = tk+1 − tk be the time step size. The following
discretzed equations are used for the attitude estimation
scheme, which is a first order geometric integrator.

R̂i+1 = R̂iexp(Ω̂×
i h) (50)

Ω̂i = Ωfi − R̂
T
i ωi (51)

Ω̃i = Ωfi − Ω̂i = R̂Ti ωi (52)

ωi =
kpR̂isΓ(R̂i)

{sΓ(R̂i)T sΓ(R̂i)}1−1/p
(53)

With this attitude estimation scheme, two simulations are
shown here with the same initial condition, the same time-
changing attitude and the same estimator gains: kp = 3 and
p = 1.1. The initial condition is given as follows:

R0 = exp(π([1; 0; 0]T )×) (54)

Ω0 = [1 0.5 0]T rad/s (55)

The initial estimated states are as follows:

R̂0 = I (56)

Ω̂0 = [0 0 1]T rad/s (57)

The known position vectors of feature points on the observed
vehicle O in frame O are given by:

d1 = [1 0 0]T (58)

d2 = [0 1 0]T (59)

d3 = [0 0 1]T (60)

d4 = [
√

6/6
√

6/3
√

6/6]T (61)

The true relative angular velocity profile for both simulations
is shown in 1.
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Fig. 2. Attitude error profile of the two simulated vehicles without noise
signal L .
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Fig. 3. Attitude error profile of the two simulated vehicles with noise
signal L .

The first simulation is for noise-free vector measurements,
and the corresponding relative attitude estimation error is
shown in Fig. 2. This result verifies that the estimated relative
attitude converges to the true relative attitude in the case
of perfect (noise-free) measurements of relative positions of
feature points on the observed object.

The second simulation comes with additive noise in the
measurement signal L , which is given by a normal dis-
tributed random signal. Note again that the second-order
discrete Butterworth filter is applied here to Lm to reduce
the impact of the noise signal L and obtain the filtered
Lf . A similar method has been employed in our prior work
[26]. Parameters of the Buttterworth pre-filter are chosen as
µ = 0.414 and ωn = 80π.

As can be noticed from both sets of simulation results,
the estimated relative attitude converges to a bounded neigh-
borhood of the corresponding true relative attitude, where
the size of this neighborhood depends on the level of
measurement noise. When there is no measurement noise
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(ideal situation), the estimated relative attitude converges
to the true relative attitude within a finite amount of time.
These simulation results through this numerical experiment
demonstrate the finite-time stability and robustness properties
of the proposed estimation scheme.

5. CONCLUSION

This article proposes a relative attitude estimation scheme
for an object observed by sensors onboard a vehicle in prox-
imity. The relative attitude of the observed object is estimated
from measurements of feature points on this object over time.
For robustness to measurement errors, this estimation scheme
is designed to be finite-time stable (FTS) and the measured
relative position vectors of feature points on the object are
pre-filtered using a discrete Butterworth filter. The stability
of this relative attitude observer is theoretically proven by
a Lyapunov analysis, and numerically demonstrated through
a numerical simulation. Its robustness to measurement noise
is also shown through a numerical simulation. Continuing
work along this direction seeks to develop FTS relative
motion estimation schemes and implement them in hardware
experiments involving multiple UAVs operating in close
formation.
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