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Local Algorithms for Sparse Spanning Graphs

Reut Levi * Dana Ron | Ronitt Rubinfeld *

Abstract

We initiate the study of the problem of designing sublinear-time (local) algorithms
that, given an edge (u,v) in a connected graph G = (V, E), decide whether (u,v)
belongs to a sparse spanning graph G’ = (V, E’) of G. Namely, G’ should be connected
and |E’| should be upper bounded by (1 + €)|V| for a given parameter ¢ > 0. To
this end the algorithms may query the incidence relation of the graph G, and we seek
algorithms whose query complexity and running time (per given edge (u,v)) is as small
as possible. Such an algorithm may be randomized but (for a fixed choice of its random
coins) its decision on different edges in the graph should be consistent with the same
spanning graph G’ and independent of the order of queries.

We first show that for general (bounded-degree) graphs, the query complexity of
any such algorithm must be Q(m) This lower bound holds for graphs that have
high expansion. We then turn to design and analyze algorithms both for graphs with
high expansion (obtaining a result that roughly matches the lower bound) and for
graphs that are (strongly) non-expanding (obtaining results in which the complexity
does not depend on |V]). The complexity of the problem for graphs that do not fall
into these two categories is left as an open question.
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1 Introduction

When dealing with large graphs, it is often important to work with a sparse subgraph that
maintains essential properties, such as connectivity, bounded diameter and other distance
metric properties, of the original input graph. Can one provide fast random access to such a
sparsified approximation of the original input graph? In this work, we consider the property
of connectivity: Given a connected graph G = (V, E), find a sparse subgraph of G’ that
spans G. This task can be accomplished by constructing a spanning tree in linear time.
However, it can be crucial to quickly determine whether a particular edge e belongs to such
a subgraph G’, where by “quickly” we mean in time much faster than constructing all of G'.
The hope is that by inspecting only some small local neighborhood of e, one can answer in
such a way that maintains consistency with the same G’ on queries to all edges. We focus
on such algorithms, which are of use when we do not need to know the answer for every
edge at any single point in time, or if there are several independent processes that want to
determine the answer for edges of their choice, possibly in parallel.

If we insist that G" have the minimum number of edges sufficient for spanning GG, namely,
that G’ be a spanning tree, then it is easy to see that the task cannot be performed in
general without inspecting almost all of G. Interestingly, this is in contrast to the seemingly
related problem of estimating the weight of a minimum spanning tree in sublinear-time,

which can be performed with complexity that does not depend on n % [V| [CRT05] (see
further discussion in Subsection 1.3.4). To verify this observe that if G consists of a single
path, then the algorithm must answer positively on all edges, while if G' consists of a cycle,
then the algorithm must answer negatively on one edge. However, the two cases cannot be
distinguished without inspecting a linear number of edges. If on the other hand we allow
the algorithm some more slackness, and rather than requiring that G’ be a tree, require that
it be relatively sparse, i.e., contains at most (1 + €)n edges, then the algorithm may answer
positively on all cycle edges, so distinguishing between these two cases is no longer necessary.

We thus consider the above relaxed version of the problem and also allow the algorithm
a small failure probability (for a precise formal definition, see Section 2). Our first finding
(Theorem 1) is that even when allowing this relaxation, for general (bounded-degree) graphs,
the algorithm must inspect 2(y/n) edges in G in order to decide for a given e whether it
belongs to the sparse spanning graph G’ defined by the algorithm. We then turn to design
several algorithms and analyze their performance for various families of graphs. The formal
statements of our results can be found in Theorems 2, 3, 4, 5, 6 and 10 as well as Corollaries 8
and 9. Here we provide a high-level description of our algorithms and the types of graphs
they give meaningful results for.



1.1 Our results
1.1.1 Expanders

The first algorithm we provide, the Centers’ Algorithm (which is discussed further in Sub-
section 1.2), gives meaningful results for graphs in which the neighborhoods of almost all the
vertices in the graph expands in a similar rate. In particular, for graphs with high expansion
we get query and running time complexity nearly O(n'/?). Since our lower bound applies for
graphs with high expansion we obtain that for these graphs, our algorithm is nearly optimal
in terms of the complexity in n. More specifically, if the expansion of small sets (of size
roughly O(n'/?)) is Q(d), where d is the maximum degree in the graph, then the complexity
of the algorithm is n'/?*0(/1eed)  In general, we obtain a sublinear complexity for graphs
with expansion (of small sets) that is at least d'/2+1/1esm,

1.1.2 Anti-expanders (hyperfinite graphs) and slowly expanding graphs

A graph is p-hyperfinite for a function p : R, — R, if its vertices can be partitioned into
subsets of size at most p(€) that are connected and such that the number of edges between
the subsets is at most en. For the family of hyperfinite graphs we provide an algorithm, the
Kruskal-based algorithm, which has success probability 1 and time and query complexity
O(d’'9)). In particular, the complexity of the algorithm does not depend on n. (where we
assume that p(e) is known).

SUBFAMILIES OF HYPERFINITE GRAPHS. For the subfamily of hyperfinite graphs known as
graphs with subexponential-growth, we can estimate the diameter of the sets in the partition
and hence replace p(e) with such an estimate. This reduces the complexity of the algorithm
when the diameter is significantly smaller than p(e), and removes the assumption that p(e)
is known. For the subfamily of graphs with an excluded minor (e.g., planar graphs) we
can obtain a quasi-polynomial dependence on d and 1/e by using a partition oracle for such
graphs [LR13a], and the same technique gives polynomial dependence on these parameter
for bounded-treewidth graphs (applying [EHNO11]).

GRAPHS WITH SLOW GROWTH RATE. If we do not require that the algorithm work for every
e but rather for some fixed constant ¢, then the Kruskal-based algorithm gives sublinear
complexity under a weaker condition than that defining (p-)hyperfinite graphs (in which the
desired partition should exist for every €). Roughly speaking, the sizes of the neighborhoods
of vertices should have bounded growth rate, where the rate may be exponential but the
base of the exponent should be bounded (for details, see Theorem 6).

GRAPHS WITH AN EXCLUDED MINOR - THE WEIGHTED CASE. We also provide a lo-
cal minimum weight spanning graph algorithm, the Boruvka based algorithm, for weighted
graphs with an excluded fixed minor. The minimum weight spanning graph problem is a
generalization of the sparse spanning graph problem for the weighted case. The requirement
is that the weight of the graph G’ is upper bounded by (1 + €) times the minimum weight



of a spanning tree. The time and query complexity of the algorithm are quasi-polynomial
in 1/¢, d and W, where W is the maximum weight of an edge. We use ideas from [LR13a],
but the algorithm differs from the abovementioned partition-oracle based algorithm for the
unweighted case.

1.2 QOur algorithms

On a high-level, underlying each of our algorithms is the existence of a (global) partition of
the graph vertices where edges within parts are dealt with differently than edges between
parts, either explicitly by the algorithm, or in the analysis. The algorithms differ in the way
the partitions are defined, where in particular, the number of parts in the partition may
be relatively small or relatively large, and the subgraphs they induce may be connected or
unconnected. The algorithms also differ in the way the spanning graph edges are chosen,
and in particular whether only some of the edges between parts are selected or possibly all.
While one of our algorithms works in a manner that is oblivious of the partition (and the
partition is used only in the analysis), the other algorithms need to determine in a local
manner whether the end points of the given edge belong to the same part or not, as a first
step in deciding whether the edge belongs to the sparse spanning graph.

CENTERS’ ALGORITHM. This algorithm is based on the following idea. Suppose we can
partition the graph vertices into y/en disjoint parts where each part is connected. If we now
take a spanning tree over each part and select one edge between every two parts that have
an edge between them, then we obtain a connected subgraph with at most (1 + €)n edges.
The partition is defined based on \/en special center vertices, which are selected uniformly
at random. Each vertex is assigned to the closest center (breaking ties according to a fixed
order over the centers), unless it is further than some threshold & from all centers, in which
case it is a singleton in the partition. This definition ensures the connectivity of each part.

Given an edge (x,y), the algorithm finds the centers to which x and y are assigned (or
determines that they are singletons). If x and y are assigned to the same center, then the
algorithm determines whether the edge between them belongs to the BFS-tree rooted at the
center. If they belong to different centers, then the algorithm determines whether (z,y) is
the single edge allowed to connect the parts corresponding to the two centers (according to a
prespecified rule).! If one of them is a singleton, then (z,y) is taken to the spanning graph.

From the above description one can see that there is a certain tension between the
complexity of the algorithm and the number of edges in the spanning graph G’. On one
hand, the threshold k& should be such that with high probability (over the choice of the
centers) almost all vertices have a center at distance at most k& from them. Thus we need a
lower bound (of roughly y/7/€) on the size of the distance-k neighborhood of (most) vertices.
On the other hand, we also need an upper bound on the size of such neighborhoods so that
we can efficiently determine which edges are selected between parts. Hence, this algorithm

'In fact, it may be the case that for two parts that have edges between them, none of the edges is taken,
thus making the argument that the subgraph G’ is connected a bit more subtle.



works for graphs in which the sizes of the aforementioned local neighborhoods do not vary
by too much and its complexity (in terms of the dependence on n) is O(y/n). In particular
this property holds for good expander graphs. We note that the graphs used in our lower
bound construction have this property, so for such graphs we get a roughly tight result.

KRUSKAL BASED ALGORITHM. This algorithm is based on the well known algorithm of
Kruskal [Kru56] for finding a minimum weight spanning tree in a weighted graph. We use
the order over the edges that is defined by the ids of their endpoints as (distinct) “weights”.
This ensures that there is a unique “minimum weight” spanning tree. Here the algorithm
simply decides whether to include an edge in the spanning graph G if it does not find evidence
in the distance-k neighborhood of the edge that it is the highest ranking (maximum weight)
edge on some cycle.

BORUVKA BASED ALGORITHM. This algorithm is based on the “Binary Bortivka” algo-
rithm [PROS| for finding a minimum-weight spanning tree. Recall that Boruvka’s algorithm
begins by first going over each vertex in the graph and adding the lightest edge adjacent
to that vertex. Then the algorithm continues joining the formed clusters in a like manner
until a tree spanning all vertices is completed. We aim to locally simulate the execution of
Boruvka’s algorithm to a point that on one hand all the clusters are relatively small and on
the other hand the number of edges outside the clusters is small. The size of the clusters
directly affect the complexity of the algorithm and thus our main challenge is in maintaining
these clusters small. To this end we use two different techniques. The first technique is to
control the growth of the clusters at each iteration by using a certain random orientation on
the edges of the graph. This controls the size of the clusters to some extent. In order to deal
with clusters that exceeded the required bound (since the the local simulation is recursive
even small deviations can have large impact on the complexity), after each iteration we sep-
arate large clusters into smaller ones (here we use the fact that the graph excludes a fixed
minor in order to obtain a small separator to each cluster).

1.3 Related work
1.3.1 Local algorithms for other graph problems

The model of local computation algorithms as used in this work, was defined by Rubinfeld
et al. [RTVX11] (see also [ARVX12]). Such algorithms for maximal independent set, hyper-
graph coloring, k-CNF and maximum matching are given in [RTVX11, ARVX12, MRVX12,
MV13]. This model generalizes other models that have been studied in various contexts,
including locally decodable codes (e.g., [MSV99]), local decompression [DLRR13], and lo-
cal filters/reconstructors [ACCL08, SS10, Bra08, KPS08, JR11, CS06]. Local computation
algorithms that give approximate solutions for various optimization problems on graphs, in-
cluding vertex cover, maximal matching, and other packing and covering problems, can also
be derived from sublinear time algorithms for parameter estimation [PR07, MR09, NOOS,
HKNOO09, YYI09].



Campagna et al. [CGR13] provide a local reconstructor for connectivity. Namely, given a
graph which is almost connected, their reconstructor provides oracle access to the adjacency
matrix of a connected graph which is close to the original graph. We emphasize that our
model is different from theirs, in that they allow the addition of new edges to the graph,
whereas our algorithms must provide spanning graphs whose edges are present in the original
input graph.

1.3.2 Distributed algorithms

The name local algorithms is also used in the distributed context [MNS95, NS95, Lin92]. In
the distributed message passing model, the graph G is both the input to the algorithm and
the underlying communication network. Namely, each vertex is assigned a processor, and a
processor can send messages to processors that reside on the neighbors of its vertex. The
algorithm works in rounds where in each round, each vertex can send messages to all its
neighbors. When the algorithm terminates, each processor knows its part of the answer. For
example, if the task is to compute a (small) vertex cover, then each vertex knows whether
or not it is in the vertex cover. If the task is to compute a (close to) minimum weight
spanning tree, then each process known which of the edges incident to its vertex belong to
the spanning tree.

As observed by Parnas and Ron [PRO7], local distributed algorithms can be used to
obtain local computation algorithms as defined in this work, by simply emulating the dis-
tributed algorithm on a sufficiently large subgraph of the graph G. However, while the main
complexity measure in the distributed setting is the number of rounds (where it is usually as-
sumed that each message is of length O(logn)), our main complexity measure is the number
of queries performed on the graph G. By this standard reduction, the bound on the number
of queries (and hence running time) depends on the size of the queried subgraph and may
grow exponentially with the number of rounds. Therefore, this reduction gives meaningful
results only when the number of rounds is significantly smaller than the diameter of the
graph.

The problem of computing a minimum weight spanning tree in this model is a central
one. Kutten et al. [KP98| provided an algorithm that works in O(y/nlog*n + D) rounds,
where D denotes the diameter of the graph. Their result is nearly optimal in terms of the
complexity in n, as shown by Peleg et al. [PR00] who provided a lower bound of 2(y/n/logn)
rounds (when the length of the messages much be bounded).

Another problem studied in the distributed setting that is related to the one studied
in this paper, is finding a sparse spanner. The requirement for spanners is much stronger
since the distortion of the distance should be as minimal as possible. Thus, to achieve this
property, it is usually the case that the number of edges of the spanner is super-linear in n.
Pettie [Pet10] was the first to provide a distributed algorithm for finding a low distortion
spanner with O(n) edges without requiring messages of unbounded length or O(D) rounds.
The number of rounds of his algorithm is log' **™" n. Hence, the standard reduction of [PR07]
yields a local algorithm with a trivial linear bound on the query complexity.



1.3.3 Local cluster algorithms

Local algorithms for graph theoretic problems have also been given for PageRank computa-
tions on the web graph [JW03, Ber06, SBC*T06, ACL06, ABCT08]. Local graph partitioning
algorithms have been presented in [ST04, ACL06, AP09, ZLM13, OZ13|, which find subsets
of vertices whose internal connections are significantly richer than their external connections
in time that depends on the size of the cluster that they output. Even when the size of the
cluster is guaranteed to be small, it is not obvious how to use these algorithms in the local
computation setting where the cluster decompositions must be consistent among queries to
all vertices.

1.3.4 Other related sublinear-time approximation algorithms for graphs

The problem of estimating the weight of a minimum weight spanning tree in sublinear time
was considered by Chazelle, Rubinfeld and Trevisan [CRT05]. They describe an algorithm
whose running time depends on the approximation parameter, the average degree and the
range of the weights, but does not directly depend on the number of nodes. A question
that has been open since that time, even before local computation algorithms were formally
defined, is whether it is possible to quickly determine which edges are in the minimum
spanning tree. Our lower bound for spanning trees applies to this question.

Related minimum weight spanning-tree problems, when the graph resides in a metric
space, were studied in [CS09, CEFT05]. Other papers that deal with sublinear-time approxi-
mation algorithms for graph parameters include [PR07, Fei06, GR08, MR09, NO08, GRY11,
HKNOO09, YYI09, EHNO11].

2 Preliminaries

The graphs we consider have a known degree bound d, and we assume we have query access
to their incidence-lists representation. Namely, for any vertex v and index 1 < i < d it is
possible to obtain the i*" neighbor of v by performing a query to the graph (if v has less
than ¢ neighbors, then a special symbol is returned).? If the graph is edge-weighted, then
the weight of the edge is returned as well. The number of vertices in the graph is n and we
assume that each vertex v has an id, id(v), where there is a full order over the ids.

Definition 1 (Distances and Neighborhoods) Let G = (V, E) be a graph.
1. We denote the distance between two vertices u and v in G by dg(u,v).

2. For vertex v € V and an integer k, let I'y(v,G) denote the set of vertices at distance
at most k from v and let Cy(v, G) denote the subgraph of G induced by I'x(v, G).

2QGraphs are allowed to have self-loops and multiple edges, but for our problem we may assume that there
are no self-loops and multiple-edges (since the answer on a self-loop can always be negative, and the same is
true for all but at most one among a set of parallel edges).



3. Let ni(G) ' maxyey Tk (v, G)|.

When the graph G is clear from the context, we shall use the shorthand d(u,v), I'x(v) and
Ck(v) for dg(u,v), I'r(v, G) and Ci(v, G), respectively.

Definition 2 (Local Algorithms for sparse spanning graphs) An algorithm A is a
local sparse spanning graph algorithm if, given parameters n > 1, ¢ > 0 and 0 < 6 < 1
and given query access to the incidence-lists representation of a graph G = (V, E), the al-
gorithm A provides query access to a subgraph of G, G' = (V, E') such that the following
hold:

1. G’ is connected with probability 1.

2. |E'| < (1+€)-n with probability at least 1 — &, where the probability is taken over the
internal coin flips of A.

3. E'" is determined by G and the internal randomness of the oracle.

Namely, on input (u,v) € E, A returns whether (u,v) € E' and for any sequence of queries,
A answers consistently with the same G'.

An algorithm A is a local sparse spanning graph algorithm with respect to a class of
graphs C if the above conditions hold, provided that the input graph G belongs to C.

We are interested in local algorithms that have small query complexity, namely, that perform
few queries to the graph (for each edge they are queried on) and whose running time (per
queried edge) is small as well. As for the question of randomness and the implied space
complexity of the algorithms, we assume we have a source of (unbounded) public random-
ness. Under this assumption, our algorithms do not keep a state and a global space is not
required. However, if unbounded public randomness is not available, then we note that for
our algorithms this is not an issue: One of our algorithms (see Section 5) is actually deter-
ministic, and for the others, the total number of random bits that is actually required (over
all possible queries) is upper bounded by the running time of the algorithm, up to a multi-
plicative factor of O(logn). In what follows we sometimes describe a global algorithm first,
i.e., an algorithm that reads the entire graph and decides the subgraph G’. After that we
describe how to locally emulate the global algorithm. Namely on query e € E, we emulate
the global algorithm decision on e while performing only a sublinear number of queries.

3 A Lower Bound for General Bounded-Degree
Graphs

In this section we prove the following theorem.



Theorem 1 Any local sparse spanning graph algorithm has query complexity Q(y/n). This
result holds for graphs with a constant degree bound d and for constant 0 < € < 2d/3 and
0<d<1/3.

Let V be a set of vertices and let vy and v; be a pair of distinct vertices in V. In order to
prove the lower bound we construct two families of random d-regular graphs over V', F

(vo,v1)
and .7:(;0 ) .7:&’)0 o) 18 the family of d-regular graphs, G = (V| E), for which (vy,v1) € E.
f
v0,01)

is the family of d-regular for which (vo,v1) € E and the removal of (vg,v;) leaves
the graph with two connected components, each of size ® n/2. We prove that given (vg, v;),
any algorithm that performs at most y/n/c queries for some sufficiently large constant ¢ > 1
cannot distinguish the case in which the graph is drawn uniformly at random from .7:&’) 1)
from the case in which the graph is drawn uniformly at random from F, (w0, 01)" Essentially,
if the number of queries is at most y/n/c, then with high constant probability, each new
query to the graph returns a new random vertex in both families. By “new vertex” we
mean a vertex that neither appeared in the query history nor in the answers history. Since
the algorithm must answer consistently with a connected graph G’, for every graph in the
support of ]-"(;Ml) it must answer with probability 1 positively on the query (v, v;). But
since the distributions on query-answer histories in both cases are very close statistically, this
can be shown to imply that there exist graphs for which the algorithm answers positively on
a large fraction of the edges.

Proof of Theorem 1: We consider a pair of oracles that generate a random graph from
./’:(U0 oy and F . respectively, on the fly. On query (w, ) the oracle returns (v, j) where v
is i-th nelghbor of w, denoted N (w, 1), and w is the j-th neighbor of v. If w does not have an
i-th neighbor then the oracle returns (). Both oracles construct the graph on demand, i.e. on
on query (w, 1), if N(w,i) was not determined in a previous step then the oracle determines

N(w, ).

FIRST ORACLE Recall that a random d-regular graph can be generated as follows (the
approach was invented by [BC78] and independently by [Bol79]). Define a matrix M =
[n] x [d] where the i-th row corresponds to the i-th vertex. Partition the cells of M into nd/2
pairs, namely, find a random perfect matching on the cells of M. Now let (w,7) and (v, j)
be a pair of matched cells, then in the corresponding graph it holds that N(w,i) = v and
N(v,j) = w. Thus, to obtain a random d-regular graph from the family of d-regular graphs
G = (V, E), for which (v, v;) € E proceed as follows.

1. Match a random cell in vy’s row to a random cell with v;’s row.

2. Find a random perfect matching of the remaining cells.

3Although a graph that is drawn uniformly from }'('; 0.01) (or Flo qu)) might be disconnected, this event

happens with negligible probability [Bol01]. Hence, the proof of the lower bound remains valid even if we
consider ]—'(JLO oy N C and ]—'(U vy N C where C is the family of connected graphs.



Our first oracle, O(J;O n)’ determines the perfect matching on demand as we describe next.

The oracle keeps a matrix, M, with n rows which correspond to the n vertices and d columns,
which correspond to d neighbors. At the initialization step:

1. All the cells are initialized to (.

2. A single edge is determined: M (vg, to) := (vy,t1) and M (vy,t1) := (vo, to) where tg and
t, are chosen uniformly and independently over [d].
On query (w, 1), the oracle O(J;Ml), proceeds as follows:

1. Checks if M(w, ) was determined in a previous step, i.e. if M(w,) # (, if so it returns
the matched cell (u,j).

2. Otherwise, it picks uniformly one of the empty cell in the matrix, (u, 7).
3. Sets M(w,i) := (u,7), M(u,j) := (w,i). Namely, adds the edge (u,w) to the graph.
4. Returns (u, j).

Without loss of generality assume that n - d is even *. Thus, if the oracle is queried on all
the entries of the matrix then the resulting graph is a random d-regular graph that contain
the edge (vg,v1) (where self-loops and parallel edges are allowed). Notice that the resulting
graph is drawn uniformly (and independently of the order of the queries) from the family of
graphs F,"

(1)(),1)1) :

SECOND ORACLE Our second oracle, (9(_1)0 o) generates a random graph from the family of

graphs .7-"( ) The oracle (9(_1)0 o) keeps a pair of matrices My, M;. The matrix, M,, has

V0,01
|n/2| rows and d columns and the matrix, M;, has [n/2] rows and d columns °. At the

initialization step:
1. All the cells of both matrices are initialized to ().
2. The rows of the matrices are not allocated to any vertex.
3. A random row in M,, 4, is allocated to v, for each b € {0,1}.

4. A single edge is determined: M (i, to) := M (i1, t1) and M (i1, t1) := My(ig, to) where
to and t; are chosen uniformly and independently over [d].

For a vertex v, let (v) denote the index of the row that is allocated to v and the corresponding
matrix by M,. Given a row j and a matrix M, let v(M, j) denote the vertex that the j-th

row in M is allocated to. On query (w, 1), (9(_1)0 o) proceeds as follows:

4In case that d-n is odd we add an extra entry to the matrix, (0,0), so that M (w,4) = (0,0) means that
w does not have an i-th neighbor.
®Here too, if the number of entries in a matrix is odd we add an entry (0,0).



1. If a row was not allocated to w in previous steps then a random row is picked uniformly
(from the set of rows that are free) and is allocated to w.

2. If the the i-th neighbor of w was determined previously, i.e., the cell M, (r(w),7) was
matched in previous steps to another cell M, (¢, 7), then return (v(M,,¢), 7).

3. Otherwise, select randomly and uniformly an empty cell in M, (¢, j). If the ¢-th row
of M, is free, then allocate this row to a vertex which is picked uniformly from the set
of vertices without an allocated row.

4. Add an edge between (w,i) and (v(M,,?),7), i.e., set My (r(w),i) := M,(¢,j) and
My (£, j) = My (r(w),i). Return (v(My, £), j).

Let A be an algorithm that interacts with OZZO oy and let mh = (qf ,af,...,q" a) be the
random variable describing the communication between A and O+ )" Namely, 7, is a list
of r queries of A and r corresponding answers of O(f) Slmllarly, deﬁne m, for (9 . We

(vo,v1)
claim that for r = ¢y/n, the distribution of 7" is statlstlcally close to the distribution of .
Recall that every query ¢; is a pair (¢;1, ¢;2) where the first entry denotes a name of a vertex
and the second entry denotes an index in [d]. Similarly, every answer a; is a pair (a;1,a;2).
Let AT be the event that for every i € [r] it holds that, ;' # a], for every i # j € [r] and
a;f | F q;-fl for every j € [r]. Similarly, define A~. Without loss of generahty we assume that
A does not make queries that does not reveal any new information on the graph. Hence,
in words, AT (respectively, A7) is the event that whenever O(*;O’Ul) (respectively OJ;O vl))
selects an empty (un-matched) cell, the corresponding row is empty as well. It is easy to
verify that the distribution of 7" conditioned on A" is identical to the distribution of 7,
conditioned on A~. Hence, the statistical distance between the distribution of 7" and the
distribution of 7, is bounded by Q\Pr(AJ’) Pr(A7)|. Since both Pr(A*) and Pr(A~) are

upper bounded by 27 - /2 = 8r?/n = 8¢, we obtain that the statistical distance is bounded
by 16¢* = 16/49 < 1/3 for ¢ = 1/7.

From this the lower bound is implied as follows. Assume towards contradiction that there
exists a local spanning graph algorithm, A, with query complexity c¢y/n. When A interacts

with (9 ) it must answer yes with probability 1 (over the random coins of A and (9 (% vl))
when querled on (vg,vy). Since O g,0r) a0d (9 o) are statistically close, A that interacts
with (’)(J; ;) Must answer yes with probability at least 2 /3 (over the random coins of O lvoom)

and for every setting of random coins of .A4) when queried on (vg,v;). This implies that for
every setting of random coins of A, A answers yes on at least 2/3 of the d-regular graphs
that contain (vg, v1). By an averaging argument it follows that there exists a d-regular graph,
G, such that A answers yes on at least 2/3 of the edges of G. A contradiction. W

10



4 Graphs with High Expansion

In this section we describe an algorithm that gives meaningful results for graphs in which,
roughly speaking, the local neighborhood of almost all vertices expands in a similar rate. In
particular this includes graphs with high expansion. In fact we only require that the graph
expands quickly for small sets: A graph G is an (s, «)-vertex expander if for all sets S of
size at most s, N () is of size at least «|S|, where N(.S) denotes the set of vertices adjacent
to vertices in S that are not in S. Define hy(G) to be the maximum « such that G is an
(s, a)-vertex expander. We shall prove the following theorem.

Theorem 2 Given a graph G = (V, E) with degree bound d, there is a local sparse spanning

graph algorithm with query complexity and running time (d- s)'°%r@ * where s = s(n, €, ) o

V/2n/e-log(n/d).

By Theorem 2, for bounded degree graphs with high expansion we get query and running
time complexity nearly O(n'/?). In particular, if hy(G) = Q(d) for s = s(n,¢,d) then the
complexity is n!/2+0(/10gd) In fact, even for hy(g) > d'/>T1/1°8" the complexity is o(n).
Recall that in the construction of our lower bound of Q(n!/?) we construct a pair of families
of d-regular random graphs. In both families, the expansion (of small sets) is £2(d), implying
that the complexity of our algorithm is almost tight.

Our algorithm, the local Centers’ Algorithm (which appears as Algorithm 1), is based on a
global algorithm which is presented in Subsection 4.1. The local Centers’ Algorithm appears
in Subsection 4.2 and it is analyzed in the proof of Theorem 3.

4.1 The Global Algorithm

For a given parameter k the global algorithm first defines a global partition of (part or all
of) the graph vertices in the following randomized manner.

1. Select ¢ = \/en/2 centers uniformly and independently at random from V', and denote
them vy, ..., vy

2. Initially, all vertices are unassigned.

3. Fori=0,....k forj=1,... ¢
Let L! denote the vertices in the i'" level of the BFS tree of v; (where L9 = {v;}).
Assign to v; all vertices in L; that were not yet assigned to any other v;.

Let S(v;) denote the set of vertices that are assigned to the center v;. By the above con-
struction, the subgraph induced by S(v;) is connected.

The subgraph G' = (V, E') is defined as follows.

11



1. For each center v, let E'(v) denote the edges of a BFS-tree that spans the subgraph
induced by S(v) (where the BFS-tree is determined by the order over the ids of the
vertices in S(v)). For each center v, put in £ all edges in E'(v).

2. For each vertex w that does not belong to any S(v) for a center v, put in E’ all edges
incident to w.

3. For each pair of centers u and v, let P(u,v) be the shortest path between u and v that
has minimum lexicographic order among all shortest paths (as determined by the ids
of the vertices on the path). If all vertices on this path belong either to S(u) or to
S(v), then add to £’ the single edge (z,y) € P(u,v) such that z € S(u) and y € S(v),
where we denote this edge by e(u,v).

In what follows we shall prove that G’ is connected and that for k that is sufficiently large,
G' is sparse with high probability as well. We begin by proving the latter claim. To this
end we define a parameter which determines the minimum distance needed for most vertices
to see roughly /n vertices. More formally, define kg(;(G) to be the minimum distance k
ensuring that all but an €/(2d)-fraction of the vertices have at least s(n, €, d) vertices in their
k-neighborhood. That is,

KOS(G) < min {|{v : Ix(v) > s(n,e,0)} > (1 —¢/(2d)) [V} - (1)

We next establish that for k& > k5(G) it holds that [E’| < (14 €)n with probability at least
1 — 4, over the random choice of centers. Since for j = 1,..., ¢ the sets E'(v;) are disjoint,

we have that ‘Uﬁ:l E'(v;)

each pair of centers u, v and the number of centers is £ = y/en/2, the total number of these
edges in E’ is at most en/2. Finally, Let T C V denote the subset of the vertices, v, such
that [I'x(v)| > s(n,€,0). Since the centers are selected uniformly, independently at random,
for each w € T the probability that no vertex in I'y(w) is selected to be a center is at most

(1-— log(n/é)/\/en/2)m < 0/n. By taking a union bound over all vertices in T', with
probability at least 1 — ¢, every w € T' is assigned to some center v. Since the number of
vertices in V' '\ T' is at most (ed/2)n and each contributes at most d edges to E’, we get the
desired upper bound on |E’|.

< m. Since there is at most one edge e(u,v) added to E’ for

It remains to establish that G’ is connected. To this end it suffices to prove that there
is a path in G’ between every pair of centers v and v. This suffices because for each vertex
w that is assigned to some center v, there is a path between w and v (in the BFS-tree of
v), and for each vertex w that is not assigned to any center, all edges incident to w belong
to E'. The proof proceeds by induction on d(u,v) and the sum of the ids of u and v as
follows. For the base case consider a pair of centers u and v for which d(u,v) = 1. In this
case, the shortest path P(u,v) consists of a single edge (u,v) where u € S(u) and v € S(v),
implying that (u,v) € E’. For the induction step, consider a pair of centers u and v for which
d(u,v) > 1, and assume by induction that the claim holds for every pair of centers (u',v’)
such that either d(u/,v") < d(u,v) or d(u',v") = d(u,v) and id(v’) 4+ id(v") < id(u) + id(v).
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Similarly to base case, if the set of vertices in P(u,v) is contained entirely in S(u) U S(v),
then w and v are connected by construction. Namely, P(u,v) = (u, 21, ..., %, Ysy -+, Y1, V)
where z1,...,2; € S(u) and yy,...,ys € v. The edge (z,ys) was added to £’ and there
are paths in the BFS-trees of u and v between v and x; and between v and vy, respectively.
Otherwise, we consider two cases.

1. There exists a vertex x in P(u,v), and a center, y, such that z € S(y). Note that this
must be the case when d(u,v) < 2k + 1. This implies that either d(z,y) < d(x,v) or
that d(z,y) = d(x,v) and id(y) < id(v). Hence, either

d(u,y) < d(u,z) +d(z,y) < d(u, ) + d(z,v) = d(u,v)

or d(u,y) = d(u,v) and id(u) +id(y) < id(u) +id(v). In either case we can apply the
induction hypothesis to obtain that u and y are connected. A symmetric argument
gives us that v and y are connected.

2. Otherwise, all the vertices on the path P(u,v) that do not belong to S(u)U S(v) are
vertices that are not assigned to any center. Since E’ contains all edges incident to
such vertices, v and v and connected in this case as well.

4.2 The Local Algorithm

Theorem 3 Algorithm 1, when run with k > k:S(;(G), 1s a local sparse spanning graph
algorithm. The query complezity and running time of the algorithm are O(d - ng(G)).

Proof: We prove the theorem by showing that Algorithm 1 is a local emulation of the global
algorithm that appears in Subsection 4.1. Given z and y, by performing a BFS to depth &
from each of the two vertices, Algorithm 1 either finds the centers v and v that x and y are
(respectively) assigned to (by the global algorithm, for the same selection of centers), or for
at least one of them it finds no center in the distance k neighborhood. In the latter case,
the edge (z,y) belongs to £’, and Algorithm 1 returns a positive answer, as required. In the
former case, there are two subcases.

1. If x and y are assigned to the same center, that is, u = v, then Algorithm 1 checks
whether the edge (z,y) is an edge in the BFS-tree of u (ie., (z,y) € E'(u)). If
and y are on the same level of the tree (i.e., are at the same distance from u), then
Algorithm 1 returns a negative answer, as required. If y is one level further than x,
then Algorithm 1 checks whether y has another neighbor w that is also assigned to
u, is on the same level as x and has a smaller id than z. Namely, a neighbor of y
that is on a shortest path between y and u and has a smaller id than x. If this is the
case, then the edge (z,y) does not belong to the tree (but rather the edge (w,y)) so
that the algorithm returns a negative answer. If no such neighbor of y exists, then the
algorithm returns a positive answer (as required).
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Algorithm 1 (Centers’ Algorithm)

For a random choice of ¢ = \/en/2 centers, vy,...,v, in V (which is fixed for all queries),
and for a given parameter k, on query (z,y):

1.

2.

Perform a BFS to depth k in G from x and from y.
If either Ty (x) N {v1,..., v} =0 or Tx(y) N {vy,..., v} =0, then return YES.

Otherwise, let u be the center closest to x and let v be the center closest to y (if there
is more than one such center, break ties according to the order vy, ..., v,).

If u = v then do the following:

o If d(x,u) = d(y,u), then return NO.

o If d(y,u) = d(z,u) + 1, then consider all neighbors of y, w, on a shortest path
between y and u. If there exists such neighbor w for which id(w) < id(x), then
return NO, otherwise, return YES.

. If u # v, then perform a BFS of depth k from both of the centers, v and v. Find the

shortest path between u and v that has the smallest lexicographical order, and denote
it by P(u,v). Return YES if both € P(u,v) and y € P(u,v). Otherwise, return NO.

. If x and y are assigned to different centers, that is, u # v, then Algorithm 1 determines

whether (z,y) = e(u, v) exactly as defined in the global algorithm: The algorithm finds
P(u,v) and returns a positive answer if and only if (z,y) belongs to P(u,v). Notice
that from the fact that € S(u) and y € S(v) and the fact that (z,y) belongs to
P(u,v) it follows that all the vertices on P(u,v) belong to either S(u) or S(v). This
is implied from the fact that for every center u and a vertex which is assigned to u, w,
it holds that every vertex on a shortest path between v and w is also assigned to wu.

Finally, the bound on the query complexity and running time of Algorithm 1 follows directly
by inspection of the algorithm. M

4.3 The Parameter k

Recall that Algorithm 1 is given a parameter k that determines the depth of the BFS that
the algorithm performs. By Theorem 3 is suffices to require that k > l{;g(;(G) in order to
ensure that the spanning graph obtained by the algorithm is sparse. For the case that £ is
not given in advance we describe next how to compute k such that with probability at least

1 — ¢4 it holds that

ks(G) <k <ES(G), (2)
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where k/(G) = ming, {[{v : T(v) > s(n,e,6)} > (1 — <) [V|}. Select uniformly at random
s = O(1/e*log(1/6)) vertices from V. Let vy, ..., v, denote the selected vertices. For each
vertex in the sample v;, let k; = ming{T'x(v;) > s(n,€,d)}. Assume without loss of generality
that k1 < ..., < kg and set k£ = kn—g—;]- By Chernoft’s inequality we obtain that with

probability greater than 1 — § Equation (2) holds.

We are now ready to prove Theorem 2.

Proof of Theorem 2: Assume without loss of generality that l{;g(;(G) is unknown and
we run Algorithm 1 with & such that k5(G) < k < k/5(G). From the fact that n,(G) >

min{h(G)*, s} we obtain that k/5(G) < 10;;}% for s = s(n,€,6). On the other hand, since

the degree is bounded by d, it holds that n(G) < 1 + d*. Hence, by Theorem 3 we obtain
log s
that the query complexity is bounded by d - (1 + d®s#+(© ), as desired. H

5 Hyperfinite Graphs

In this section we provide an algorithm that is designed for the family of hyperfinite graphs.
Roughly speaking, hyperfinite graphs are non-expanding graphs. Formally, a graph G =
(V,E) is (e, k)-hyperfinite if it is possible to remove at most €|V/| edges of the graph so
that the remaining graph has connected components of size at most k. We refer to these
edges as the separating edges of G. A graph G is p-hyperfinite for p : R, — R, if for
every € € (0,1], G is (e, p(e))-hyperfinite. The family of hyperfinite graphs includes many
subfamilies of graphs such as graphs with an excluded-minor (e.g. planar graphs), graphs
that have subexponential growth and graphs with bounded treewidth. The complexity of
our algorithm does not depend on the size of the graph as stated in the next theorem.

Theorem 4 Algorithm 2, when run with k = p(¢€), is a local sparse spanning graph algorithm
for the family of p-hyperfinite graphs with a degree bounded by d. The query complexity and
running time of Algorithm 2 are O(d?9%1), and its success probability is 1.

We note that we could also obtain a local sparse spanning graph algorithm for hyperfinite
graphs by using the partition oracle of [HKNOO9] (see the reduction described in Section 6)
but the complexity would be higher (O(d*"”)).

We present Algorithm 2 in Subsection 5.1. In Subsection 5.2 we give an improved analysis
for the subfamily of graphs that have subexponential growth.

5.1 The Algorithm

Recall that Kruskal’s algorithm for finding a minimum-weight spanning tree in a weighted
connected graph works as follows. First it sorts the edges of the graph from minimum to
maximum weight (breaking ties arbitrarily). Let this order by eq,...e,,. It then goes over
the edges in this order, and adds e; to the spanning tree if and only if it does not close a cycle
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with the previously selected edges. It is well known (and easy to verify), that if the weights
of the edges are distinct, then there is a single minimum weight spanning tree in the graph.
For an unweighted graph G, consider the order defined over its edges by the order of the ids
of the vertices. Namely, we define a ranking r of the edges as follows: r(u,v) < r(u',v') if
and only if min{id(u),id(v)} < min{id(v’),id(v’)} or min{id(u),id(v)} = min{id(u’),id(v")}
and max{id(u),id(v)} < max{id(u'),id(v")}. If we run Kruskal’s algorithm using the rank
r as the weight function (where there is a single ordering of the edges), then we obtain a
spanning tree of G.

While the local algorithm we give in this section (Algorithm 2) is based on the afore-
mentioned global algorithm, it does not exactly emulate it, but rather emulates a certain
relazed version of it. In particular, it will answer YES for every edge selected by the global
algorithm (ensuring connectivity), but may answer YES also on edges not selected by the
global algorithm.

Algorithm 2 (Kruskal-based Algorithm)
The algorithm is provided with an integer parameter k, which is fixed for all queries. On
query (z,y):

1. Perform a BFS to depth k from x, thus obtaining the subgraph Cj(x) induced by I'x(z)
in G.

2. If (x,y) is the edge with largest rank on some cycle in C(z), then answer NO, otherwise,
answer YES.

Proof of Theorem 4: By the description of Algorithm 2 it directly follows that its answers
are consistent with a connected subgraph G’. We next show that the algorithm returns YES
on at most (1 + €)n edges. Let k = p(e). For a vertex u, let C'(u) = (V(u), E(u)) denote
the component of u after the removal of the separating edges (as defined at the start of the
subsectlon) We next prove that G’ does not contain a cycle on the subgraph induced on
V(u). In our proof we use properties of C(u), however, we note that the algorithm does
not compute C(u). By definition, |V( )| < k, thus the diameter of C'(u) is at most k — 1.
This implies that Cj(u) contains C(u) for every u € G. Let o be a cycle in C(u) and let
e = (w,v) be the edge in o with the largest rank. Since C(u) = C(v) = C(w) it follows that
on query (w,v) the algorithm returns NO. We conclude that for every u € V' the algorithm
returns YES only on at most |V (u)| — 1 among the edges in E(u). Since the number of edges
that do not belong to any component C (u), that is, the number of separating edges in an
(e, k = p(€))-hyperfinite graph is at most €|V | we have that the total number of edges for
which the algorithm returns YES is at most (1 +¢)|V|. W
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5.2 Graphs with Subexponential-Growth

In this subsection we analyze Algorithm 2 when executed on graphs with subexponential-
growth and for an appropriate k. We first show that graphs with subexponential-growth are
(€, p(€))-hyperfinite. In order to obtain an improved analysis of the complexity of Algorithm 2
for graphs with subexponential-growth, we bound not only the size of each component but
also the diameter of each component.

A monotone function f : N — N has subexponential growth if for any 8 > 0, there exists
rr(B) > 0 such that f(r) <exp(f-r) for all » > r¢(f). A graph G has growth bounded by f
if for every k > 1, ni(G) < f(k).

Theorem 5 Given a graph G = (V, E) with degree bounded by d that has growth bounded
by f : N — N where f has subexponential growth, there is a local sparse spanning graph
algorithm with query complezity and running time O(d - n,,(5)(G)) = O(d - exp(B - r;(8)))
Jor =55

Recall that Algorithm 2 is provided with an integer parameter, k, which determines the depth
of the BFS that is performed by the algorithm. In case the graph is (e, p(¢))-hyperfinite we
showed that setting k = p(e) is sufficient. For a general graph G, we next define another
parameter which is also sufficient for bounding the required depth of the BFS, as we show
in Theorem 6. Thereafter, we shall prove that for graphs with subexponential-growth this
parameter is small and can be computed efficiently.

Define k% 5(G) to be the minimum distance & ensuring that all but an a-fraction of the
vertices have at most exp (8k/2) vertices in their k-neighborhood (k is allowed to be larger
than the diameter of G' so that k% 5(G) is well defined). Formally,

ko s(G) = min {[{v : |T(v)| < exp(Bk/2)} > (1= a) [V]} . (3)

Theorem 6 Algorithm 2, when run with k > kgB(G), where o+ B = €/d, is a local sparse
spanning graph algorithm. The query complexity and running time of the algorithm are

O(dny(@)) = O(d*+).

Theorem 5 follows directly from Theorem 6 and Theorem 6 follows directly from the proof
of Theorem 4 and the following lemma.

Lemma 1 Every graph G = (V, E) is (e, (1 4 8)¥)-hyperfinite for k = k% 4(G) and a + 5 =
€/d. Moreover, it is possible to remove at most €|V| edges of the graph so that the remaining
graph has connected components with diameter at most 2k.

Proof: Let S C V denote the set of vertices, v, for which |I'y(v)| > exp(fk/2). We start
by removing all the edges adjacent to vertices in S. Overall, we remove at most da|V|
edges. For each vertex v € V — S it holds that |I'y(v)| < exp(Bk/2). From the fact that
exp(z) < 1+ 2z for every z < 1 we obtain that [T'y(v)| < (14 ). Therefore, there exists
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k' < k such that |['yyq1(v)| < |Te(v)[(1 + 5). Thus, Cy(v) can be disconnected from G by
removing at most df|T'y (v)| edges. Since it holds that |T'(v)| < (1 + B8)* for every subgraph
of G and every v € V — S, we can continue to iteratively disconnect connected components
of diameter at most 2k from the resulting graph. Hence, we obtain that by removing at most

d(a+ B)|V] edges, the remaining graph has connected components with diameter at most
2k, as desired. W

5.3 The Parameter k

Recall that Algorithm 2 is given a parameter k that determines the depth of the BFS that
the algorithm performs. By Theorem 6 it is sufficient to require that k > k:fj(z i)/ (2 d)(G)
in order to ensure that the resulting graph is sparse. For the case that k is not given in
advance, we can compute k such that with probability greater than 1 — ¢ it holds that

kL ) .e)ay(G) <k < kg j0ay (G) (4)

as follows. Sample O(1/e?1log(1/d)) vertices. Start with & = 1 and iteratively increase k
until for at least (1 — 29)-fraction of the vertices, v, in the sample it holds that |[I';(v)| <
exp(ek/(4d)). By Chernoff’s inequality we obtain that with probability greater than 1 — §
Equation (4) holds.

6 Partition Oracle Based Algorithm

In this section we describe a simple reduction from local algorithm for sparse spanning graph
to partition oracle. We begin with a few definitions concerning partition oracles.

Definition 3 Fore € (0,1], K > 1 and a graph G = (V, E), we say that a partition P =
(Vi,.... Vi) of V is an (e, k)-partition (with respect to G), if the following conditions hold:

1. For every 1 <i <t it holds that |V;| < k;
2. For every 1 <1 <t the subgraph induced by V; in G is connected;

3. The total number of edges whose endpoints are in different parts of the partition is at
most €|V| (that is, |{(vi,v;) € E: v; € Vi, v; € Vi # 5} < €lV]).

Let G = (V, E) be a graph and let P be a partition of V. We denote by gp the function from
v € V to 2V (the set of all subsets of V), that on input v € V, returns the subset V, € P
such that v € V,.

Definition 4 ([HKNOO9]) An oracle O is a partition oracle if, given query access to the

incidence-lists representation of a graph G = (V, E), the oracle O provides query access to
a partition P = (Vi,...,V;) of V., where P is determined by G and the internal randomness
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of the oracle. Namely, on input v € V, the oracle returns gp(v) and for any sequence of
queries, O answers consistently with the same P. An oracle O is an (e, k)-partition oracle
with respect to a class of graphs C if the partition P it answers according to has the following
properties.

1. For every Vy € P, |Vy| < k and the subgraph induced by V; in G is connected.

2. If G belongs to C, then |{(u,v) € E : gp(v) # gp(u)}| < €|V| with high constant
probability, where the probability is taken over the internal coin flips of O.

By the above definition, if G € C, then with high constant probability the partition P is
an (e, k)-partition, while if G ¢ C then it is only required that each part of the partition is
connected and has size at most k.

Theorem 7 If there exists an (€, k)-partition oracle, O, for the family of graphs C having
query complezity q(e, k,d,n) and running time t(e, k,d,n), then there exists a local sparse
spanning graph algorithm, A, for the family of graphs C, whose success probability is the
same as that of O. The running time of of A is bounded from above by t(e, k,d,n) + O(kd)
and the query complezity of A is q(e, k,d,n) + O(kd).

Proof: On query (u,v) the algorithm A proceeds as follows:

1. Query O on u and v and get gp(u) and gp(v), respectively.

2. If gp(u) # gp(v), return YES.

3. Otherwise, let w denote the vertex in gp(u) such that id(w) is minimal.
4. Perform a BFS on the subgraph induced on gp(u), starting from w.

5. If (u,v) belongs to the edges of the above BFS then return YES, otherwise, return NO.

The fact that A returns YES on at most (1 + €)|V| edges follows from the fact that P is a
partition can that [{(u,v) € E : gp(v) # gp(u)}| < €|V]. The connectivity follows from the
fact that the subgraph induced on V; is connected for every V; € P. The additional term of
O(kd) in the time and query complexity is due to the BFS performed on gp(u). W

The following corollaries follow from [EHNO11]| and [LR13a, LR13b], respectively.

Corollary 8 There exists a local sparse spanning graph algorithm for the family of graphs
with bounded treewidth. This algorithm has high constant success probability and its query
complexity and running time are poly(1/e, d).

Corollary 9 There exists a local sparse spanning graph algorithm for the family of graphs

with a fized excluded minor. This algorithm has high constant success probability and its
query complexity and running time are (d/e)©0801/9)
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7 Graphs with an Excluded Minor - the Weighted Case

In this section we focus on another subfamily of hyperfinite graphs, graphs with an excluded
fixed minor. We consider a more general setting of the problem in which the edges of the
graph are weighted and the goal is to locally find a spanning graph with small weight (see
Definition 5). The time and query complexity of the local algorithm we provide is quasi-
polynomial in 1/e and d.

For the unweighted case, we note that by a reduction to partition oracle for graphs with
an excluded minor (see Section 6) we can obtain a local algorithm for sparse spanning graph
that also have a quasi-polynomial complexity ©.

A graph H is called a minor of a graph G if H is isomorphic to a graph that can be obtained
by zero or more edge contractions on a subgraph of G. A graph G is H-minor free or excludes
H as a minorif H is not a minor of G.

Definition 5 A local algorithm for (1 + €)-approzimating the minimum weight spanning
graph of a graph G = (V, E,w) with positive weights and min.cgw(e) > 1, is a local al-
gorithm for (1 + €)-sparse spanning graph of G = (V, E,w) for which the following holds:
Yoeer w(e) < (1 +€)a, where a is the weight of a minimum weight spanning tree of G.

For a graph G = G = (V, E,w) define Wz = max.cpw(e) (for the sake of presentation,
when it is clear from the context, we sometimes omit the subscript G). We shall prove the
following theorem:

Theorem 10 There exists a local algorithm for (1 + €)-approximating the minimum weight
spanning graph for the family of graphs with a fived excluded minor, with high constant
success probability and time and query complexity (Wd/e)CUsW/e),

We note that the complexity of the algorithm must depend on the maximum edge weight,
W. To see why this is true, consider the following families of graphs. In the first family, each
graph consists of s = O(n/W) cycles of size ©(W): Cy,...,Cs. Each cycle C; is connected
to C;11 with a single edge and in each C; there is a single edge of weight W and all the
other edges have weight 1. We similarly define the second family with the exception that we
remove a random edge from each cycle. It is easy to see that in order to distinguish between
these two families we need to make Q(W) queries.

We begin with describing a global algorithm that iteratively selects edges where all the
edges selected by the algorithm belong to a minimum weight spanning tree (Subsection 7.1).
Thereafter, we describe a local algorithm that by local simulation selects the same edges that
the global algorithm selects along with an additional small set of edges (Subsection 7.2).

6At a high level the technique in our algorithm appears similar to the one in [LR13a]. However, due to
the difference in the operation of contraction (Definition 6) the behavior of the algorithm is very different.
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7.1 The Global Algorithm

We begin by describing a global partitioning algorithm. In the description of our global
partitioning algorithm we shall use the following definitions and subroutines.

We first define the operation of contraction. Roughly speaking, given a partition of the graph
into connected components, the operation of contraction replaces each connected component
with a single vertex. A pair of vertices in the new graph are connected with an edge if the
edge cut of the corresponding connected components is not empty. The weight of the edge
is set to be the weight of the edge with the minimum weight in the edge cut, as explained
formally in what follows.

For a graph G = (V, E) and two sets of vertices V1, Vo C V., we let E(V;, V3) denote the

set of edges in G with one endpoint in Vi and one endpoint in V5. That is E(V;, V3) dof

{('Ul,’Ug) el veV,me ‘/2}

Definition 6 Let G = (V, E,w) be an edge-weighted graph and let P = (Vi,...,V;) be a
partition of the vertices of G such that for every 1 < i < t, the subgraph induced by V;
is connected. Define the contraction G/P of G with respect to the partition P to be the
edge-weighted graph G' = (V' E',w'") where:

1. VI ={W,...,Vi} (that is, there is a vertex in V' for each subset of the partition P);
2. (Vi,V;) € E' if and only if i # j and E(V;,V;) #0;
3. w'((Vi, V5)) = ming ey vy) w((u, v)).

We note that in the definition of contraction that appears in [LR13a] the weight of an edge
in the new graph is set to be the sum of weights of the edges in the cut as opposed to the
minimum weight as it appears in Item 3 of Definition 6.

As a special case of Definition 6 we get the standard notion of a single-edge contraction.

Definition 7 Let G = (V, E,w) be an edge-weighted graph on n vertices vy, .. .,v,, and let
(vi,v;) be an edge of G. The graph obtained from G by contracting the edge (v;,v;) is G/P
where P is the partition of V' into {v;,v;} and singletons {vy} for every k # 1, j.

We assume without loss of generality that a graph G = (V, E,w) has distinct weights and
thus a unique minimum weight spanning tree denoted by MST(G). This can be achieved
by determining that for every ¢’ € E, e € E for which w(e) = w(e’) we have w(e) > w(e'),
where e is the edge with higher rank amongst ¢’ and e.

Mader [Mad67] proved that a sufficiently large average degree guarantees a K;-minor as
stated in the next fact.

Fact 1 Let H be a fized graph. There is a constant ¢;(|H|), such that in every H-minor free
graph, G = (V, E), it holds that |E| < ¢, (|H|) - |V].
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In our algorithm we shall use the following subroutine.

Theorem 11 ([LR13a], Corollary 2) Let H be a fized graph. There is a constant
co(H) > 1 such that for every ~v € (0,1], every H-minor free graph G = (V, E) with degree
bounded by d is (v, co(H)d?/v?)-hyperfinite. Furthermore, there exists a set S of vertices
such that:

115 = (y/d)|V].
2. The removal of S leaves G with connected components of size at most co( H)d?/v? each.

3. S can be found in time O(|V|*/?).

Algorithm 3 A global partition algorithm for an H-minor free graph G = (V, )
1. Set G* :=G

2. Fori =1 to ¢ = O(logW/e):

(a) Toss a fair coin for every vertex in G'~'.

(b) For each vertex u let (u,v) be an edge with minimum weight that is incident to
u (where ties are broken according to the rank of the edges). If u’s coin toss is
‘Heads” and v’s coin toss is ‘Tails’, then contract (u,v).

(¢c) Let G' = (V*, E*, @) denote the graph resulting from the contraction of the edges
as determined in the previous step. Hence, each vertex ’17; € V? corresponds to a
subset of vertices in G, which we denote by C’;

(d) Let v =¢/(6W). For each 6’; such that |5’;| > co(H)d?/~?, partition the vertices
in C into connected subsets of size at most k = co(H)d*/+* each by running the
algorithm referred to in Theorem 11 on the subgraph induced by C;» in G.

(e) Set G':= G/P?, where P’ is the partition resulting from the previous step.

3. For each subset Cf in P* such that |Cf| > c(H)W?2d?/€?, partition the vertices in Cf

into connected subsets each of size at most 3co(H)W?2d?/e? by running the algorithm
referred to in Theorem 11, and output the resulting partition.

We begin by describing a global partitioning algorithm with the following properties.

Theorem 12 Let H be a fized graph. If the input graph G = (V, E,w) is H-minor free
and has degree bounded by d, then for any given € € (0, 1], with high constant probability,
Algorithm 8 outputs a partition P = {Vi,...,V,} of G for which the following holds:

1. The subgraph induced on V; is connected for every i € [m).
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2. |Vi| = O(W?d?/é?).
3. Y cerw(e) < elV] where F' = {(u,v) € E:Ji# j s.t. ueV;Av eV}
In addition every edge that Algorithm 8 contracts belongs to MST(G).

Proof: The fact that every edge that Algorithm 3 contracts belongs to MST(G) fol-
lows from the fact that the minimum-weight edge adjacent to every vertex belongs to the
minimum weight spanning tree of G. Items (1)-(2) of the theorem follow from the con-
struction. Hence, in what follows we prove item (3). We say that an iteration i is suc-
cessful if |Vi| < 15|Vi=1/16. Fro every v € Vi~! Define I, to be the indicator variable
for the event that an edge selected by v is contracted. Recall that this event occurs if the
coin flip of v is ‘Heads’ and that of w is ‘Tails’, implying that Pr[I,] = 1/4. Note that
for any outcome of coin flips it holds that [Vi| = [Vi'| = S, i1 I,. Thus we obtain
that E(|V?]) = 3|Vi~l|/4. By Markov’s inequality, the probability of success is at least
n = 4/5, for every iteration 7. Let Y; be the random variable that takes the value —1/n + 1
if the i-th iteration is successful and takes the value 1 otherwise. Let Z; = Z;Zl Y;, then
E(Zi1|Z1, ... Zy) < Ze+1-(1=n)+(1=1/n)-n=Z and | Z — Z}_1| < % for every k. By
Azuma’s inequality [Azu67] we obtain that Pr(Z, > t) < e **/®/"%) for every t. Setting
t = 3v/{/n, we obtain that with probability greater than 9/10, Z, < 3v/¢/n. Let s denote
the number of successful iterations, then Z, = ({ — s) + s(1 — 1/n) = £ — s/n. Thus, we
obtain that s > n¢ — 3v//. We conclude that with probability at least 9/10, the number of
successful iterations is at least n¢/2 = 2¢/5 for sufficiently large ¢.

Our second claim is that for every i, after Step 2d, it holds that [Vi| < [V + sz (Where

n = |V|). This follows from Theorem 11: For each component 6’; that we break, we increase

the total number of vertices by an additive term of at most 27|5’;| = ;'VCV;!. Thus, after
Step 2d of the (™ iteration, with probability at least 9/10, the number of vertices in G* is
at most y
1\° en 2en
H)y-n-(1-— Iz < — . 5
Cl(>”< 16) T S 3w (5)

Since we add at most en/(3W) vertices in Step 3 (when breaking the subsets corresponding
to vertices in G into subsets of size at most 3cy(H)W?2d?/e?), we obtain the desired result.
|

7.2 The Local Algorithm

In what follows we prove Theorem 10. The proof consists of two parts. In the first part we
describe how, given query access to the incidence-lists representation of a graph G = (V, E, w)

"We note that we only use the independence of the coin tosses between adjacent vertices. Therefore, in
the i-th iteration it is enough to require 2d;-wise independence, where d; denotes the maximum degree of

G
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and a vertex v € V, it is possible to simulate Algorithm 3 locally and determine the part
that v belongs to in the partition P that the algorithm outputs. In the second part of the
proof we describe how to obtain a local algorithm for approximating the minimum weight
spanning graph, given query access to the above partition.

Proof of Theorem 10: Recall that the partition Algorithm 3 outputs, P, is determined
randomly based on the ‘Heads’/‘Tails’ coin-flips of the vertices in each iteration. Also recall
that gp(v) denotes the subset of vertices that v belongs to in P. Since we want the algorithm
to be efficient, the algorithm will flip coins “on the fly” as required for determining gp(v).
Since the algorithm has to be consistent with the same P for any sequence of queries it gets,
it will keep in its memory all the outcomes of the coin flips it has made. For the sake of
simplicity, whenever an outcome of a coin is required, we shall say that a coin is flipped,
without explicitly stating that first the algorithm checks whether the outcome of this coin
flip has already been determined.

Recall that the algorithm constructs a sequence of graphs G° = G, G, G, ..., G GY,
and that for each 0 < 7 < ¢, the vertices in G* correspond to connected subgraphs of G (which
we refer to as components). For a vertex v € V' let C*(v) denote the vertex/component that
v it belongs to in G7, and define C'(v) analogously with respect to G'. Indeed, we shall
refer to vertices in G° (él) and to the components that correspond to them, interchangeably:.
When the algorithm flips a coin for a vertex C' in G*, we may think of the coin flip as being
associated with the vertex having the largest id in the corresponding component in G.

Let Q'(v) denote the number of queries to G that are performed in order to determine
C'(v), and let Q' denote an upper bound on Q'(v) that holds for any vertex v. We first
observe that Q' < d?. In order to determine C*(v), the algorithm first flips a coin for v.
If the outcome is ‘Tails’ then the algorithm queries the neighbors of v. For each neighbor
u of v it determines whether (u,v) is the lightest edge incident to u (by querying all of u’s
neighbors). If so, it flips a coin for u, and if the outcome is ‘Heads’, then the edge is contracted
(implying that u € C(v)). If v is a ‘Heads’ vertex, then it finds its lightest incident edge,
(v,u) by querying all of v’s neighbors. If u is a ‘Tails’ vertex (so that (v, u) is contracted),
then the algorithm queries all of u neighbors, and for each neighbor it queries all of its
neighbors. By doing so (and flipping all necessary coins) it can determine which additional
edges (u,y) incident to u are contracted (implying for each that y € C'(v) = C'(u)). In
both cases (of the outcome of v’s coin flip), the number of queries performed to G is at
most d?. Recall that a component_as constructed above is ‘broken’ if it contains more than
k = O(W?d?/e?) vertices. Since |C'(v)| < d + 1 for every v, we have that C'(v) = C'(v).

For general © > 1, to determine the connected component that a vertex v belongs to
after iteration 7, we do the following. First we determine the component it belongs to after
iteration i — 1, namely C"~!(v), at a cost of at most Q" queries. Note that by the definition
of the algorithm, |C*~'(v)| < k. We now have two cases:

Case 1: C1(v) is a ‘Tails’ vertex for iteration 7. In this case we query all edges incident
to vertices in C*~'(v), which amounts to at most d - k edges. For each endpoint u of such
an edge we find C*"!(u). For each C*~!(u) that is ‘Heads’ we determine whether its lightest
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incident edge connects to C'~!(v) and if so the edge is contracted (so that C*~(u) C Ci(v)).
To do so, we need, again, to query all the edges incident to vertices in C*~*(u). The total
number of vertices x for which we need to find C*~!(x) is upper bounded by dk + 1. The
total number of additional queries we make is upper bounded by d?k2.

Case 2: C""}(v) is a ‘Heads’ vertex in iteration i. In this case we find its lightest incident
edge in G~! and the other endpoint in G*~*. Let C' denote the other endpoint in G*~*. If C’
is a ‘Tails’ vertex then we apply the same procedure to C” as described in Case 1 for C*~!(v)
(that is, in the case that C*~!(v) is a ‘Tails’ vertex in G*~!). The bound on the number of
queries performed is also as in Case 1. In either of the two cases we might need to ‘break’
C'(v) (in case |C*(v)| > k) so as to obtain C*(v). However, this does not require performing
any additional queries to GG since all edges between vertices in 6”(@) are known, and this step

only contributes to the running time of the algorithm. We thus get the following recurrence
relation for Q: Q' =d? - k®> + (d-k+1)-Q"*. Since k = poly(Wd/e) we get that

QY < (-d® K+ (d-poly(Wd/e)) = (Wd/e)OUoeW/e)) (6)

as claimed.

We next turn to bounding the running time. Let 7%(v) denote the running time for
determining C*(v). By the same reasoning as above we have that 7° < O(d - k) - T""' + B
where B is an upper bound on the running time of breaking a connected component at each
iteration. From Theorem 11 we obtain that B < (d - k?)*%. Thus, the running time of
the algorithm is (Wd/e)?UeW/<) for a single query. As explained above, for the sake of
consistency, the algorithm stores its previous coin-flips. By using a balanced search tree to
store the coin flips we obtain that the total running time of the algorithm for a sequence of
q queries is qlogq - (Wd/e)?1eW/e) " as claimed.

Finally, we turn to describing how, by locally simulating Algorithm 3 we obtain a local
algorithm for approximating the minimum weight spanning graph. On query (u, v) simulate
Algorithm 3 on query u and query v. If gp(u) # gp(v), return YES if and only if (u,v) is
that lightest edge which has one endpoint in gp(u) and one end point in gp(v). Otherwise,
return YES if and only if (u,v) was contracted, at some point, during the local simulation
of Algorithm 3.

Let £’ denote the set of edges for which the local algorithm returns a positive response.
From that fact that every edge that Algorithm 3 contracts belongs to M ST (G) and the fact
that the number of edges (u,v) for which gp(u) # gp(v) is bounded by en/W we conclude
that ) w(e) < a+e€|V| as desired. We conclude the proof by showing that the subgraph
G' = (V, E’) is connected. Observe that £’ contains all the edges contracted by Algorithm 3.
Thus, the subgraph induced in G on gp(u) is connected for every u. In addition for every
u and v for which gp(u) # gp(v), if the subset of edges of G, S(u,v), with one endpoint in
gp(u) and another endpoint in gp(v), is not empty, then E’ contains at least one edge of
S(u,v), namely E' N S(u,v) # 0. We conclude that G’ is connected. Since both the time
complexity and query complexity of the local algorithm is dominated by the local simulation
complexity of Algorithm 3 we derive the same bounds on the corresponding complexities.
[
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