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ABSTRACT: We demonstrate how the recently developed Python-based Molecular
Simulation and Design Framework (MoSDeF) can be used to perform molecular dynamics
screening of functionalized monolayer films, focusing on tribological effectiveness. MoSDeF is
an open-source package that allows for the programmatic construction and parametrization of
soft matter systems and enables TRUE (transferable, reproducible, usable by others, and
extensible) simulations. The MoSDeF-enabled screening identifies several film chemistries that
simultaneously show low coeflicients of friction and adhesion. We additionally develop a
Python library that utilizes the RDKit cheminformatics library and the scikit-learn machine
learning library that allows for the development of predictive models for the tribology of
functionalized monolayer films and use this model to extract information on terminal group
characteristics that most influence tribology, based on the screening data.

1. INTRODUCTION making large-scale screening studies intractable. Furthermore,
Computational screening is an emerging approach to materials the use of in-house software and human manipulation as part
design and optimization. Utilization of this approach has of the standard practice can significantly limit reproducibility
enabled, for example, the discovery of metal organic frame- of published results.” Reproducibility in science is an ever-
works with vastly improved gas adsorption' and candidates for growing concern;”” capturing simulation workflows in a
improved organic photovoltaics.” More recently, machine reproducible manner is a challenge for small scale-studies,
learning has been leveraged as a means of improving the and such challenges will only be compounded as the design
efficiency of screening, aiding in the identification of systems space is expanded by orders of magnitude for large-scale

with desirable target properties.”™® However, performing
computational screening of soft matter systems, such as
monolayer thin films, is a challenging task; unlike hard matter
systems where zero temperature, energy minimized states are
often sufficient to robustly calculate relevant properties,3 soft
matter simulations require comparably longer computational
times in order to relax and equilibrate the underlying

screening. In order to efficiently perform screening over
chemical space, tools are required that provide the ability to
systematically vary chemistry during model setup, to automati-
cally apply force field parameters to these models, to manage
the execution of the simulation workflows for large numbers of
systems, and to capture all these many inputs and processes in

constituents before ensemble properties can be measured a reproducible manner. The lack of such tools has been a
from simulation trajectories. To achieve these longer time limiting factor in terms of the widespread adoption of
scales, soft matter simulations typically rely on classical force screening in soft matter, although recent efforts by numerous
fields and use methods such as molecular dynamics (MD) to groups have been aimed at developing new software and
equilibrate and sample the ensemble space. This reliance on approaches related to system construction/initialization'*~>"
classical force fields results in additional challenges in terms of and workflow management”’zz_m (see ref 24 for a detailed

screening, as any changes to the chemistry requires not only
reinitialization of the system configuration but also reparamet-
rization of the system interactions as dictated by the force field.
As a result, typical MD workflows lend themselves better to
screening over thermodynamic space (e.g., varying temperature
or pressure) where the system chemistry and parametrization
is not changed. In practice, system setup and parametrization
of MD simulations is typically performed in an ad hoc manner,
often using human manipulation of data/workflows, thus

discussion of workflow management software).
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As a means to resolve these issues, the Molecular Simulation
and Design Framework (MoSDeF)> has been architected as
an open-source Python framework that includes tools for
generating molecular systems as objects with exchangeable
chemical parts,”*™>* for automatically applying force field
parameters,” > and for generating syntactically correct input
files for common molecular simulation software packages. As
described in refs 26, 29, and 30, the tools underlying MoSDeF
allow for all aspects of the system construction and
parametrization to be performed in a programmatic, scriptable
fashion, eliminating the need for intermediate human
manipulation of the data or workflows, essential for
reproducibility.” In conjunction with the Signac framework®
for workflow management, large-scale screening simulations
can therefore be conducted over chemical space using
MoSDeF, whereby the exact inputs, procedures, and processes
can be captured and preserved, thus ensuring that simulations
have the characteristics of being transparent, reproducible,
usable by others, and extensible (i.e,, TRUE). The concept of
TRUE simulations (specifically, the acronym TRUE) was first
proposed by the authors in ref 34 as a goal for reproducible
molecular simulations that could be enabled through use of the
MoSDeF tools.

Here, we present the use of MoSDeF to screen the chain
length and terminal group chemistry of functionalized
monolayer films, examining 194 unique chemistries (2730
total simulations) with the goal of elucidating the tribological
effectiveness of these films. The use of monolayer films is a
promising approach to protecting and lubricating nanoscale
contacts for use in applications such as nano- and micro-
electromechanical systems (NEMS and MEMS).**™** In this
work, large-scale, nonequilibrium MD screening simulations of
monolayer films under shear are performed, wherein all
simulations can be considered TRUE by using the MoSDeF
toolkit and the Signac framework.”” In conjunction with the
screening studies, a Python library that builds upon the
RDKit*” and scikit-learn*’ Python libraries has been designed
to facilitate the generation of predictive machine learning
models of monolayer tribology; this library is tested with the
data generated from computational screening and used to
identify correlations between monolayer chemistry and
tribology.

The paper is organized as follows. In Section 2, we provide
background on monolayer-based nanoscale tribology and an
overview of the MoSDeF library. In Section 3 we provide
specific details into the usage of MoSDeF for system setup and
initialization of monolayer films and an overview of the
simulation and analysis methodologies. Section 4 presents
results of the screening and the development of predictive
models of tribology using machine learning methods. Section 5
presents concluding remarks.

2. BACKGROUND

2.1. Monolayer Lubrication. The design space of
nanoscale devices has been constrained by the friction and
wear associated with surfaces in sliding contact, with
conventional lubrication schemes proven ineffective.*"** Self-
assembled monolayer films have shown promise as a potential
solution to these issues, providing a dense layer of surface-
bound chains that prevent direct surface—surface contact and
reduce both adhesive and frictional forces.”” > A favorable
characteristic of monolayer lubricants is their highly tunable
chemistry, which can be altered in numerous ways, such as (1)
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at the level of the chain (e.g, chain length, internal and
terminal functional groups), (2) by mixing different chain
chemistries within a single film (i.e, multicomponent
monolayers), and (3) by functionalizing opposing surfaces
with monolayers of different chemistries. This presents a rich
chemical parameter space that can be investigated to optimize
monolayer chemistry for tribological applications, and
considerable efforts have been made to understand how
chemical changes influence frictional response. For example, it
has been observed that increasin§ the backbone chain length
yields reduced frictional forces* " attributed to an increase in
attractive interchain van der Waals (VDW) forces with longer
backbones.”” Phenyl-terminated monolayer films have been
observed to yield higher frictional forces than methyl-
terminated films, attributed to the presence of additional
energy dissipation modes through the twisting of phenyl
groups during shear.”® Monolayers terminated with fluorinated
moieties have shown both increased” and decreased’’
frictional forces compared with standard hydrogenated
monolayers. The presence of hydroxyl (OH) and carboxyl
(COOH) terminal moieties has been shown to lead to
increased frictional and adhesive forces, attributed to the
formation of hydrogen bonds between the two contacting
interfaces.*>' ™ A CHj-functionalized friction force micro-
scope tip in contact with either an OH- or COOH-terminated
monolayer resulted in a lower COF than the same tip in
contact with a CH;-terminated monolayer.*> However, despite
the considerable attention that monolayer films have received
over the past several decades, much of the vast chemical space
remains unexplored.

Experimentally, synthesis of monolayer films can be
nontrivial; examination of novel chemistries often requires
changes to synthetic approaches, which can make it difficult to
decouple the effects of chemical changes from the effects of
other properties such as monolayer density. Furthermore,
comparisons between different experimental studies can be
challenging if different synthesis protocols or techniques for
measuring tribological properties are used. For example,
atomic force microscopy (AFM) and tribometry, two common
techniques, feature probes with radii of curvature that differ by
several orders of magnitude; it has been shown that even slight
differences in probe shape can enable different mechanisms of
energy dissipation in monolayer films.”* As a result, MD
simulation has become a useful tool for probing the tribological
properties of monolayers,””*”****=>" affording atomic-level
resolution and direct control over system variables. MD can be
utilized for systematic, self-consistent variation of monolayer
chemistry in order to identify both tribologically favorable
chemistries, as well as chemistry-property relationships that
can provide useful insight for the design of more favorable
monolayers, as will be the focus of this work.

2.2. Molecular Simulation and Design Framework
(MoSDeF). MoSDeF* is an open-source Python library made
up of a set of composable/modular tools, where each “module”
is designed such that it can be used within MoSDeF, or as a
standalone package. This modular approach allows MoSDeF to
be more easily modified, tested, extended, and have fewer
bugs®® than a monolithic approach. MoSDeF is built using
concepts from the computer science field of model integrated
computing (MIC).*”%° MIC is a systems engineering approach
that focuses on the creation of domain specific modeling
languages to capture the essential features of the individual
components of a given process, at the level of abstraction that

https://dx.doi.org/10.1021/acs.jctc.9b01183
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Figure 1. a.) Overview of the chemical parameter space examined in this work. The pool of terminal group chemistries consists of (row 1) amino,
hydroxyl, methyl, acetyl, carboxyl, isopropyl; (row 2) nitrile, vinyl, methoxy, nitro; and (row 3) perfluoromethyl, cyclopropyl, 2-pyrrole, phenyl,
fluorophenyl, and nitrophenyl. Representative dual-monolayer systems include both b.) chemically identical and c.) chemically dissimilar
compositions, shown as both schematics and simulation renderings, where oxygen is colored red, silicon is colored yellow, carbon is colored cyan,

hydrogen is colored white, and fluorine is colored green.

is appropriate for the end users. Two key tools are part of the
MoSDeF library, namely mBuild and Foyer; MoSDeF
interfaces readily with the Signac workflow management
system developed by the Glotzer group,” to handle job
submission and data workspace management. The combina-
tion of these tools allows all simulation initialization and
parametrization procedures, including variation in chemical
space, to be captured in a single Python script, that can be
embedded into a Signac project, allowing the exact inputs and
procedures to be encapsulated and preserved. While details of
the underlying tools have been presented elsewhere,”*>%*
they have seen continued development and improvement since
their introduction, in particular to facilitate the interoperability
between mBuild, Foyer, and Signac, as well as with other
community tools and simulation engines; this development has
allowed for the novel combination of tools to facilitate large-
scale screening of monolayer films and development of
machine learning models relating tribology and chemistry, as
will be the focus of this work.

Briefly, the mBuild Python library,””*® originally presented
in ref 26, is a general, customizable tool for constructing
arbitrarily complex system configurations in a programmatic
fashion (i.e., scriptable), designed such that complex systems
are built-up from smaller, interchangeable pieces, following the
concepts from generative, or procedural, modeling. The power
of the mBuild software lies in its underlying Compound data
structure; a Compound is a general “container” that can
describe effectively anything: an atom, a collection of atoms, a
molecule, a collection of Compounds, etc.; Compounds can
also include functions that modify the underlying data (e.g, a
function to perform polymerization). The same base
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operations (e.g,, translation, rotation, duplication, etc.), can
be applied to any Compound using the same syntax, regardless
of what the Compound represents. To allow individual
Compounds to be joined, Ports are used to define both
location and orientation of a possible connection; for atomistic
systems, the number of Ports and their locations/orientation
typically represent the underlying chemistry. A user (or
algorithm) simply states which Ports on two Compounds
should connect, and mBuild automatically performs trans-
lations and orientations, creating a new (composite)
Compound via an equivalence transform (see Klein et al.*
for more details). No information is lost when joining two
Compounds (i.e., the underlying Compounds and Ports are
preserved), allowing such connections to also be removed in a
reversible fashion. This design approach allows for declara-
tively expressing repetitive structures, such as polymer chains
and planar tilings, essential for the creation of monolayer films.
Because Compounds are general containers, they can be easily
swapped, making it trivial to change characteristics such as the
repeat unit of a polymer or a terminal functional group. Thus,
mBuild allows for significant reuse of individual Compounds
and data generation routines, enabling significant modifications
to system chemistry to be performed with minimal or even no
changes to the initialization routines. Thus, one can
programmatically vary system parameters, an essential
functionality required to perform screening studies as a
function of chemistry, the focus of the work presented here.
Detailed, up-to-date documentation and source code of
mBuild can be found online.””**
The Foyer Python library®** is a general tool for applying
force fields to molecular systems (ie, atom-typing), that

https://dx.doi.org/10.1021/acs.jctc.9b01183
J. Chem. Theory Comput. 2020, 16, 1779-1793



Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

provides a standardized approach to defining chemical context
and atom-typing rules; a detailed explanation of the underlying
concepts of the software is presented in refs 29 and 30. Foyer
does not hard-code rules into the source code and does not
rely on a complex hierarchy of nested conditional statements
to determine the appropriate atom-type. In Foyer, force field
parameters and their usage rules are encoded within a single
XML-formatted file that extends the OpenMM®' XML force
field file format. Usage rules are encoded using SMARTS® to
define the chemical environment for which an atom type
applies, along with “overrides” statements to set rule
precedence, making these definitions both human and machine
readable, and contained within a single unambiguous format.
In Foyer, each molecular model is treated as a graph, and
appropriate atom-types are determined by matching chemical
environments to the patterns defined by the SMARTS usage
rules. This file format also supports digital object identifiers
(DOIs) corresponding to the source of the parameters, to aid
in reproducibility. By encoding parameters and usage rules in a
separate XML file, the Foyer software does not need to change
when the rules themselves change or are extended, making it
easier for the rules to be archived, shared, updated, customized,
and disseminated in a publication, enhancing reproducibility,
and enabling TRUE simulations. Detailed, up-to-date
documentation and the source code of Foyer can be found
online.”"**

3. MODEL AND METHODS

3.1. Initialization of System Configurations Using the
MoSDeF mBuild Library. Systems in this work consist of two
opposing monolayer films attached to amorphous silica
substrates, consistent with models used in earlier work;56’57
crystalline surfaces have been used in other work;*”*"%*%*
however, the in-plane ordering of attachment sites has been
shown to exaggerate chain orientational order.”® The surfaces
used here have an atomic-scale roughness of ~0.11 nm, found
to closely match prior work that explicitly considered a surface
oxidation treatment typical of experiment;>” most prior studies
that have used amorphous silica substrates have considered
atomically smooth surfaces, which earlier work suggests
influences the behavior and trends.”**®*” The procedure for
carving the amorphous surfaces builds upon procedures found
in the literature®*° and used in prior work®" (detailed in the
Supporting Information, including links to the associated
mBuild source code). Systems are constructed using the
mBuild library in a hierarchical manner, whereby (1) a
prototype for each chain is constructed, (2) duplicates are
attached to assigned sites on a silica surface (where the specific
attachment sites can be randomized), (3) any external facing
oxygens that are a part of the silica interface and not consumed
by one of the duplicated chains are then hydrogenated,
mimicking surface oxidation, and (4) the monolayer is
duplicated, rotated by 180 deg, and shifted to yield the
complete system. Chain prototypes are generated such that
both the backbone chain length and the functional group used
to terminate the chain are tunable, thus enabling screening to
be easily performed and abstracted for end user consumption.
Listing 1 includes a snippet of the script used to generate the
monolayers in this work, and the approach is shown graphically
in Figure 1. Using concepts from the field of MIC, mBuild is
designed such that the underlying code can be presented at a
level that captures the appropriate details/language to describe
the given system and processes; specifically, in Listing 1,
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Silicalnterface provides a clear way to define the silica
substrate, Alkylsilane provides a way to define the molecule
to be grafted, and SurfaceMonolayer provides a clear way to
define how these the surface and chain are associated and
modified to create a monolayer. Due to the hierarchical,
component-based framework of mBuild, these routines can be
trivially modified to allow screening to be extended to
additional chemical degrees of freedom, such as backbone
monomer, multicomponent films, etc., which can be
considered in future studies. Scripts for the initialization of
films in mBuild (i.e., the specific routines underling listing 1)
are available online,””® ensuring the procedure is transparent
and reproducible thus meeting the definition of a TRUE
simulation. In all cases, monolayers consist of 100 chains
attached to an amorphous silica substrate of dimensions 5 nm
X § nm, with a surface density of 4.0 chains/nm?, consistent
with prior studies.”””°

The pool of terminal group chemistries examined in this
work is shown in Figure la and was chosen to satisfy two
primary criteria: (1) functional group should be able to be
described using existing parameters within the OPLS force
field (described in further detail below) and (2) the entire
functional group pool should span a wide range of chemical
characteristics (e.g., size, shape, polarity) to facilitate
chemistry/property analysis. Several of the chosen functional
groups may not be synthesizable or may readily react following
synthesis.”' However, as reactions are not considered in the
simulations, since classical force fields with fixed bonds are
used, such groups remain stable. Furthermore, as the goal is to
study a chemically diverse range of terminal group chemistries,
such systems still provide valuable data in terms of chemistry-
property relationships.

Screening of dual-monolayer systems was performed over
two distinct parameter spaces: (1) chemically identical systems
(Figure 1b, where the top and bottom monolayer films feature
the same chemistry) as a function of terminal group and chain
length and (2) chemically dissimilar systems (Figure lc, where
the top and bottom monolayer films feature different
chemistries) for a single fixed chain length of 17 carbons.
For each chemistry, five systems were generated, each
corresponding to a unique arrangement of chains on the
available binding sites on the silica surface, by changing the
“seed” provided to SurfaceMonolayer (see Listing 1). Proper-
ties were evaluated for each of the five replicas and averaged to
obtain values for each chemistry that are independent of chain
arrangement. For systems featuring chemically identical films,
all 16 terminal group chemistries from Figure la were
considered along with five chain lengths (S, 8, 11, 14, and
17 backbone carbons, excluding the terminal group), and three
different normal loads (5, 15, 25 nN) resulting in 80 unique
chemistries and 1200 simulations in total. Chemically
dissimilar films feature backbone chain lengths of 17 carbons
and include select combinations of seven terminal groups
(carboxyl, fluorophenyl, hydroxyl, isopropyl, methyl, nitro, and
perfluoromethyl) with the 16 terminal groups in Figure la
(ignoring duplicates already considered for chemically identical
films), for an additional 84 unique chemistries and 1260 total
simulations. For the development of machine learning models,
the set of 100 unique terminal group combinations (both
chemically identical and dissimilar) with a chain back length of
17 carbons is considered. Signac workflows that define this
parameter space and all the MoSDeF routines are available
online for chemically identical”””® and chemically dissim-

https://dx.doi.org/10.1021/acs.jctc.9b01183
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ilar”*”> monolayer systems. To evaluate the predictive nature

of the models, toluene and phenol terminal groups are
considered and placed in contact with opposing monolayers
composed of the original 16 terminal groups (see Figure la)
with a chain length of 17 carbons. This provides 30 additional
unique chemistries (phenyl-phenol and pyrrole-phenol are not
considered due to instability of the simulations under high
normal loads); 3 normal loads (5, 15, 25 nN) are considered
and 3 replicates for each of these systems, for a total of 270
additional simulations; Signac workflows that define this
parameter space for these systems can be found online.””””
In sum, 2730 simulations are therefore performed, with 194
unique dual monolayer chemistries with the aid of MoSDeF.

#extract screening variables from Signac

chainlength = job.statepoint()['chainlength']

n_chains = job.statepoint()['n']

seed = job.statepoint()['seed']
terminal_group = job.statepoint()['terminal_group']

#Generate amorphous silica interface
surface = SilicaInterface(thickness=1.2, seed=seed)

#Generate prototype of functionalized alkylsilane chain
chain_prototype = Alkylsilane(chain_length=chainlength,
terminal_group=terminal_group)

#Create monolayer on surface, backfilled with hydrogen caps

monolayer = SurfaceMonolayer(surface=surface, chains=chain_prototype,
n_chains=n_chains, seed=seed,
backfill=H(), rotate=False)

#Duplicate to yield two opposing monolayers
dual_monolayer = DualSurface(monolayer, separation=2.0)

#Make sure box is elongated in z to be pseudo-2D periodic
box = dual_monolayer.boundingbox
dual_monolayer.periodicity += np.array([0, 0, 5. * box.lengths[2]])

#define location of the Foyer force field file
forcefield_dir = resource_filename('atools', 'forcefields')

#atom-type and save to GROMACS input
dual_monolayer.save('init.gro', overwrite=True)
dual_monolayer.save('init.top',

forcefield_files=os.path.join(forcefield_dir, 'oplsaa.xml'),
combining_rule='geometric', overwrite=True)
#atom-type and save to LAMMPS input
dual_monolayer.save('init.lammps',
forcefield_files=os.path.join(forcefield_dir, 'oplsaa.xml'),

combining_rule='geometric’, overwrite=True)

Listing 1. Code snippet of the Python code used by Signac, that calls various mBuild and

Foyer functions, to initialize the systems for screening.

3.2. Application of Force Fields Using the MoSDeF
Foyer Library. After creation of the monolayer structures, the
systems are atom-typed, ie., the appropriate force field
parameters are determined for the bonded and nonbonded
interactions of the system using the Foyer library’”* in
MoSDeF. The OPLS all-atom force field is used.”*™** The
specific OPLS version used was that provided with the
Gromacs 5.1 distribution,® in addition to parameters for silica
that were obtained from Lorenz et al.” It should be noted that
for several systems, certain parameters were not available
(most commonly dihedrals including either alpha, beta, or
gamma carbons neighboring the terminal group). In these
cases, additional parameters were introduced according to
sensible conventions; for example, in the case of missing
dihedrals including alpha, beta, or gamma carbons, standard
C—C—C-C alkane dihedrals were used, as this was found to
be the convention within the rest of the OPLS force field. All
parameters are provided in the Supporting Information and in
Foyer compatible XML file format in the associated GitHub
repositories.””~” As such, the parametrization of the models is
transparent and reproducible, again meeting the definition of a
TRUE simulation.
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3.3. Simulation Methods. MD simulations are performed
using the GROMACS molecular dynamics engine (version
5.1.0 for the initial screening; model validation for toluene and
phenol use version 2018, as this provides increased perform-
ance).®> An initial, short, distance-limited (i.e., particles were
not allowed to move more than 0.1 A per time step) NVE
simulation is performed using the LAMMPS molecular
dynamics enginegé’87 (March 2018 version) to remove overlaps
between terminal groups from the initial configuration. After
converting the final structure from the LAMMPS to
GROMACS format, simulations are executed using GRO-
MACS in four stages: (1) energy minimization, (2)
equilibration, (3) compression, and (4) shear. Energy
minimization is performed using a steepest descent algorithm,
where minimization is stopped once the maximum force on
any atom is less than 10 kJ/mol/nm. Following energy
minimization, equilibrium molecular dynamics simulations are
performed, whereby monolayers and surfaces (excluding the
outer 4 A of each surface which is kept rigid) are allowed to
relax over 1 ns to reach a low-energy state, using a time step of
1 fs. Following relaxation, a force of 5 nN is applied to the
bottom surface in the z direction (i.e., toward the top
monolayer) to bring the two monolayers into contact, where
they are compressed over 0.5 ns, allowing the intersurface
distance to reach a steady-state value. Beginning from
snapshots at the end of the compression stage, three
independent simulations are performed where monolayers
are sheared under normal loads of 5, 15, and 25 nN
(corresponding to pressures of 200, 600, and 1000 MPa,
respectively), consistent with normal loads used for such
systems in the literature.””*¥*” To maintain a constant normal
load a constant force is applied to the bottom silica surface in
the z direction. Shear is introduced by coupling the top surface
to a ghost particle via a harmonic spring (with a spring
constant of 10,000 kJ/(mol'nm?®)) and pulling the ghost
particle in the x direction at a rate of 10 m/s. Shear is
performed for 10 ns, where the final 5 ns is used for sampling
and analysis. All MD simulations are performed under the
NVT ensemble using a Nose-Hoover thermostat’”" with
damping coefficient (tau-t) set to 1.0 ps to maintain a system
temperature of 298.15 K. Previous work using a thermostat in
the x and y dimensions only (i.e., not in the shear dimension)
revealed no shear-induced heating,* agreeing with reports in
the literature for similar systems,®® thus application of a
standard thermostat is justified. Bonds to hydrogen atoms are
constrained using the LINCS algorithm,92 removing high-
frequency atomic motions and affording a time step of 2 fs to
be used for the compression and shear stages. The particle-
mesh Ewald method”>** is used for long-range electrostatics,
using a force and pressure correction in the z-dimension to
support slab geometries; systems are periodic in the monolayer
plane.

The MD workflow is maintained and executed using the
Signac workflow manager (v0.5.4), a part of the Signac
framework.”® With Signac-flow, individual molecular dynamics
operations (e.g, equilibration) are wrapped into Python
functions. These operations are then performed on each
state point (i.e., each system), with Signac-flow keeping track
of all operations that had been performed on each state point,
and Signac managing the dataspace on the filesystem. All
scripts used to execute simulations and analysis, along with
initialization scripts and force fields, are freely available
online,””**”>~"7 ensuring that the full and exact procedures
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Figure 2. Coefficient of friction (y, blue circles), adhesive force (F,, red diamonds), and nematic order (S,, yellow squares) for chemically identical
systems shown for each terminal group chemistry as a function of chain length. Note the scale for F, differs between the two rows in order to clearly
display trends for both polar and nonpolar systems. Error bars represent a single standard deviation calculated from the average of the five chain

attachment configurations for each system.

and system inputs are transparent, and thus the simulations can
be reproduced, used by others, and extended (i.e., the
simulations are TRUE).

3.4. Tribological and Structural Analysis Methods.
Monolayer tribology is evaluated via calculation of the
coefficient of friction (COF) and adhesive force as defined
by the Derjaguin form of Amontons’ Law of Friction”

F=FK+uwk, (1)
where F; u, and F, represent the friction force, COF, and
normal force, respectively. F, represents the friction force
between the two surfaces under zero normal load, often
referred to as the adhesion term, offset term, or Derjaguin
offset; here, we refer to this term interchangeably as the
adhesion force or force of adhesion. For each system, shear
simulations are performed under a series of normal loads (5,
15, and 25 nN), and the average friction force is measured for
each simulation, allowing COF and the force of adhesion to be
determined from eq 1 through linear regression. Values
reported for each unique chemistry (i.e., unique combination
of terminal groups and/or chain length) represent the average
of the five systems with different chain configurations on the
surface. Monolayer structure is examined via the nematic order
parameter,”****’ which provides a measure of the global
orientational order of the monolayer backbones in each film
(note, the two monolayers in each system are considered
separately and the average is reported). Briefly, a director
vector is obtained for each monolayer chain by taking the
eigenvector associated with the lowest eigenvalue of the chain’s
moment of inertia tensor. The nematic order parameter can
then be calculated from

= <ic0529_ l>
2 2 (2)

where 6 is the angle between a chain’s director vector and the
monolayer director (i.e., the average of all chain directors), and
the angle brackets represent an ensemble average. An S, value
of 1 indicates perfect ordering (i.e., all chains are aligned),
while deviations toward 0 indicate increased disorder, with a
value of ~0.8 visually correlating with a disordered film.
Reported values represent the average of the top and bottom

S,
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films. All analysis routines can be found online;*”%* the
management and execution of the analysis routines are also
handled by the Signac (v0.8.5) and Signac-flow (v0.5.4)
Python packages within the Signac framework.”

4. RESULTS AND DISCUSSION

4.1. Screening Chemically Identical Monolayers as a
Function of Backbone Length and Terminal Group
Chemistry. The effect of backbone chain length is explored by
calculating COF, adhesion force, and nematic order for
chemically identical monolayer film systems with chain lengths
of §, 8, 11, 14, and 17 backbone carbons; this is presented in
Figure 2 for each terminal group chemistry (numerical values
are included in the Supporting Information in Tables S1—SS).
In general, the COF is found to decrease as the backbone chain
length is increased for each terminal group chemistry. Similar
trends, primarily concerning methyl-terminated films, are
reported in the literature™ *7*>"7 demonstrating that the
addition of carbons to the chain backbone correlates with a
reduction in the frictional forces.”*™*® Experiments of methyl
terminated alkylsilanes, examined a similar range to the
simulations in this work, e.g., Xiao et al. o8 con51dered backbone
lengths of 2, 5, 7, and 17, and Lio et al.** considered $, 7, 11,
and 17. Figure 2 shows that this trend is stronger for some
terminal group chemistries than others, where for example
benzene-terminated monolayers show little reduction in COF
over the chain lengths considered. The nematic order
parameter for the intermediate normal load of 15 nN is
reported in Figure 2 as a function of chain length, whereby
monolayer nematic order is found to increase as the backbone
chain length is increased, consistent with prior work.”” The
systems where COF exhibits only a slight dependence on chain
length also appear to have higher nematic order values at lower
chain lengths; these correspond to those systems with “bulkier”
terminal groups (e.g, fluorophenyl, nitrophenyl, benzene) for
which steric interactions between the terminal groups likely
promote more ordered films. The adhesion force is also plotted
in Figure 2 and is found to be less dependent on chain length
than COF and instead is primarily dependent on terminal
group chemistry. For all systems examined, adhesion either
decreases or remains at roughly the same value as chain length

https://dx.doi.org/10.1021/acs.jctc.9b01183
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Figure 3. (a) Scatter plot of COF and adhesion force data for chemically identical systems (yellow) and chemically dissimilar systems (blue). The
highlighted region indicates the area featuring the most tribologically favorable systems. (b) Plots the data from the highlighted region, where the
seven systems are annotated and (c) provides the corresponding terminal group chemistries in the favorable region. These include (1) nitrile-
isopropyl, (2) nitrile-methyl, (3) nitrile-perfluoromethyl, (4) vinyl-perfluoromethyl, (S) vinyl-nitro, (6) carboxyl-isopropyl, and (7) carboxyl-vinyl.

is increased from 8 to 17 backbone carbons (i.e., excluding the
shortest chain length that tends to show low film order). While
there does not appear to be an obvious relationship between
the magnitude of the COF and terminal group chemistry, a
strong correlation between terminal group polarity and
adhesion is observed. Systems with the largest adhesion forces
are all polar molecules, and the groups with the smallest
adhesion forces are all nonpolar (see Figure SI in the
Supporting Information). This is consistent with the
literature, > where, for example, experiments showed that
the adhesion was higher for carboxylic-terminated monolayers
with a backbone length of 10, as compared to equivalent length
methyl terminated monolayers.*®

4.2. Screening of Chemically Dissimilar Monolayer
Films as a Function of Terminal Group Chemistry. In
Figure 3a the COF and adhesion results for systems of both
chemically identical (16 in total) and chemically dissimilar (84
in total) films with a backbone length of 17 carbons are shown;
numerical values for chemically dissimilar films are included in
the Supporting Information in Table S6. From a tribological
standpoint, the ideal monolayer chemistry should feature both
a low COF and low adhesive force, and thus favorable
chemistries would exist in the lower left-hand corner of Figure
3a. Several chemically dissimilar systems appear to provide
favorable tribological properties as compared to chemically
identical systems, as highlighted in Figure 3b and c. The
majority of these systems features one monolayer that is polar/
hydrophilic and another that is nonpolar/hydrophobic. As an
example, while carboxyl-terminated monolayers are found to
yield the highest adhesive forces for chemically identical
systems (see Figure 2), when paired with a nonpolar counter
monolayer the ability to form intermonolayer hydrogen bonds
is eliminated, and these combinations of terminal groups are
able to provide favorable COF and adhesion values, consistent
with prior studies in the literature.”*”'* In particular,
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favorable tribological properties are found for monolayers
featuring nitrile and vinyl terminal groups, as shown in Figure
3c. While nitrile and vinyl have several differences (chemical
composition, polarity), both groups are linear and feature a
cylindrical shape with a small VDW radius, and a more rigid
nature owed to the presence of a double or triple bonds.

4.3. Implementation of Machine Learning and QSPR
Modeling for Monolayer Tribology. To further examine
the relationships between chemistry and tribology, a Python
library is developed that provides a framework for the creation
of topological quantitative structure—property relationship
(QSPR) models using the random forest machine learning
method for monolayer films. The routines and procedures used
to perform this analysis and model development are available
online.'”'~'%* Here, the approach taken for the generation of
these models is described. These models are given a
“fingerprint” for each system as input, which represents each
system as a series of numerical values. These numerical values
are referred to as “molecular descriptors” and characterize a
variety of molecular aspects such as size (e.g, approximate
surface area), shape (e.g, asphericity), complexity (e.g, Chi
indices), and charge distribution (e.g., topological polar surface
area), as categorized in Figure 4.

As shown in Figure Sa—d, “molecular fingerprints” are first
calculated for the terminal groups of each monolayer (ie., we
do not consider the complete monolayer system or any
properties measured from it). Here, we utilize two separate
molecules to represent terminal groups (as shown in Figure
Sb): (1) a hydrogen atom caps the attachment site where the
terminal group is attached to the chain backbone and is used in
the calculation of descriptors that relate to molecular shape,
and (2) a methyl group caps this attachment site and is used in
the calculation of the remaining descriptors. The methyl group
is chosen as this chemistry is comparable to that of the chain
backbone and thus should provide a reasonable estimate of the

https://dx.doi.org/10.1021/acs.jctc.9b01183
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Figure 4. Features considered for the QSPR models, grouped into
clusters describing charge distribution, complexity (i.e, degree of
connectivity/branching), shape, and size. Additional descriptions of
these features can be found in the Supporting Information in Table
S7.

distribution of charge. Note, chain backbone length is not
considered in the model presented herein, as the data set we
are focusing on only includes systems with backbone lengths of
17 carbons.

The approach developed in this work for molecular
fingerprinting relies only upon information on the molecular
bond graph as an input. Molecules are provided to RDKit in
the notation of the simplified molecular-input line-entry system
(SMILES),'” shown in Figure Sc. This provides a concise
input syntax that allows the QSPR models in this work to be
easily extensible to additional terminal group chemistries
beyond those considered here; that is molecular fingerprints do
not depend upon simulation data. After providing RDKit*”
with SMILES representations of the two molecules represent-
ing each terminal group in a given system, molecular

fingerprints are generated for each terminal group, shown in
Figure S5d. While the majority of these descriptors is
topological, meaning they are inferred from the molecular
graph, several additional descriptors are considered that
require a 3D molecular conformation. These conformations
are generated by RDKit using the Experimental-Torsion
Distance Geometry approach with “basic knowledge” terms
(ETKDG), as proposed by Riniker and Landrum.'”® For
descriptors requiring information concerning molecular charge,
charges are assigned via RDKit to the molecular graph using
the approach of Gasteiger and Marsili.'”” We have additionally
implemented an additional descriptor, termed the “hydrogen
bond factor” that provides a relative estimate of the maximum
availability for intermonolayer hydrogen bonding. The
descriptor is calculated using counts of the number of
hydrogen bond donor and acceptor atoms in the two terminal
groups of a dual monolayer system via

0, min(d,, a,) =0
hby, =
max(dt) ab)) min(dn ab) >0

0, min(d,, a,) =0

>
=
|

max(db, at)) min(db; at) >0

hbonds = hb,, + hb,, (3)

where d and a represent the number of hydrogen donor and
acceptor atoms present in terminal groups for the top (f) or
bottom (b) monolayers, and hby, and hb,, are intermediate
quantities that estimate the ability of the top and bottom
monolayers to act as the hydrogen donor, respectively.

A complete list of all descriptors used (i.e., those presented
in Figure 4), including brief descriptions of each, is provided in
the Supporting Information in Table S7. System fingerprints
are then created from the two molecular fingerprints by using
the mean and minimum values of each component (descriptor)
of the molecular fingerprint (shown in Figure Se). While other
combinations of these values (such as the maximum and
absolute difference) were considered, analysis of correlations
with the target variables (COF and adhesion) suggested only
the mean and minimum values were needed,'®® which also

helps reduce complexity of the QSPR models.
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Figure S. Workflow of the process used to fingerprint each interfacial chemistry. a.) For a given interfacial chemistry (a perfluoromethyl-acetyl
system is shown as an example), b.) prototypes are determined for each terminal group. c.) These prototypes are then converted to SMILES
representations d). and fed to the RDKit Python package used to calculate a variety of molecular descriptors (see Figure 4). The fingerprint for the
interfacial chemistry is then described by the mean and minimum values for all molecular descriptors calculated for the two terminal groups.
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. 1 109,110 .
A random forest regression algorithm % is used for

QSPR models, as implemented in the scikit-learn Python
package.*” Random forest is an ensemble method that utilizes a
forest of decision trees obtained from bootstrap sampling of
the training data and produces a prediction based on the
average values obtained for each tree. Predictions from random
forest converge for a large number of decision trees,"'" thus,
1000 trees are used in this work. The random forest algorithm
also allows contributions to the model from the various
molecular descriptors to be easily extracted, and furthermore,
interaction terms are implicitly included by the nature of the
algorithm. Evaluation metrics for these models consist of the
root-mean-square error (RMSE), mean absolute error (MAE),
and the coefficient of determination (R*) between the
predicted and expected target values within both the training
set and a 20% holdout test (i.e., the model is developed using
80 randomly chosen chemistries and tested with the remaining
20). In this work, S different models are constructed using
different randomly chosen sets where the mean and standard
deviation of the models are used for prediction of the
tribological properties (i.e., test-train splits); note, COF and
force of adhesion are each trained independently for each
model but use the same descriptors and subset of data for
training. Additional model evaluation is accomplished via out-
of-bag (OOB) sampling, whereby predictions are made on
subsets of the data held out for each tree. The RMSE, MAE,
and R* on the OOB estimates of each sample are also provided
as a measure of model efficacy.

4.4, Model Evaluation. Table 1 details the RMSE, MAE,
and the coefficient of determination (R>) between the
predicted and expected target values within both the training
set and a 20% holdout test set for QSPR models of COF and
adhesion, along with results from OOB samples, for systems
with a backbone length of 17 carbons. It is observed from
Table 1 that the models for both COF and adhesion perform
consistently well and do not depend heavily on the different
random subset of the data used (see Table S8 for more
details). The random forest algorithm is known to overfit to
the training data, so the high R? values observed for the
training data sets are expected and alone do not provide a great
metric for the performance of the models. R* values above 0.6
are observed for both the test data as well as for the OOB
samples, providing more reliable estimates of model perform-
ance and suggesting respectable predictive power. For the
small data set considered here (100 total samples, only 20 of
which are included within the test set) evaluation metrics on
the test data set for the five models shown in Table 1 feature
moderate fluctuation. This suggests that for some models the
small test set does not provide a good representation of the
overall population (or at least, the feature distributions within
the training and testing sets differ); this is most obvious for the
force of adhesion, likely related to the fact only a few data
points exist in the higher adhesion regime. However, the
evaluation metrics obtained for the OOB samples are found to
remain mostly stable between the five models for COF and
force of an adhesion, providing greater confidence in the
results and in the models” predictive power.

To provide visual evaluation of the models for COF and
adhesion, Figure 6a,b shows both the training data and the test
data used to generate and evaluate Model 1. For COF, the
majority of the test data sits close to the y = x line, with no
significant deviations with most data falling within the error of
the values calculated from the simulations. For the adhesion
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Table 1. Evaluation of Random Forest Regression Models for COF and F,” for Systems with a Carbon Backbone Length of 17 for the Training, Out of Bag (OOB) Cross

Validation and Test Sets

test set

cross-validation (OOB)

training set

RMSE

R
0.6524
0.690S
0.6049
0.9422
0.6571

RMSE

R
0.6306
0.6985
0.6067
0.6586
0.5594

RMSE

R
0.9496
0.9600
0.9473
0.9539
0.9418

target variable

model no.

0.0068
0.4237
0.0086
0.2439
0.0087

0.0090
0.9530
0.0110
0.3252
0.0114

0.0079
0.3782
0.0074
0.4046
0.0078

0.0100
0.7259
0.0099
0.8351
0.0101

0.0029
0.1383
0.0027
0.1473
0.0028

0.0037
0.2644
0.0036
0.3067
0.0037

COF

F, (nN)
COF

F, (nN)
COF
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Figure 6. Values predicted by QSPR Model 1 for a.) COF and b.)
adhesive force compared to the values calculated from simulation for
systems with 17 carbon backbones. The y = x line is drawn in black
for reference. Black circles denote data used as part of the training set,
while red squares denote data that was part of the test set.
Comparison of predicted values and those calculated from simulation
of c¢.) COF and d.) adhesive force for phenol (black) and toluene
(blue).

force shown in Figure 6b, the model’s predictive capacity is
best for systems with lower values of adhesion, e.g., less than 4
nN, again, possibly due to the fact that only a few systems with
such high adhesion are considered. Systems in this higher
adhesion region correspond to those that feature intermono-
layer hydrogen bonds. Fortunately, accuracy in this regime is of
least concern, as interfacial chemistries featuring large adhesive
forces would be considered poor candidates for lubricating
films due to their higher likelihood to exhibit stiction, and thus
the model still properly differentiates between low and high
adhesion values, allowing these unfavorable systems to be
correctly screened out. Similar plots evaluating Models 2—S5 are
included in Figures S2—SS, and numerical values of the mean
predictions of the 5 Models for each system are included in
Table S6. We note that the models presented here are only
trained with data for a backbone length of 17 and thus are not
designed to predict the tribological properties for other chain
lengths. The framework could be adapted to take into account
chain length, but this would require collection of additional
data as a function of chain length in order to generate a
sufficiently large training set. However, as seen in Figure 2,
adhesion is generally not strongly dependent on chain length,
and thus we expect that the values of the model would provide
reasonable estimates even for shorter chain lengths. Similarly,
Figure 2 shows that the COF tends to increase as chain length
is reduced; while we would not expect the current models to
quantitatively capture the COF values for shorter chain
lengths, we would reasonably expect qualitative trends to
hold with regards to which terminal group combinations
provide favorable tribological properties.

To further evaluate the utility of the models in Table 1, and
in particular their ability to prescreen parameter space,
simulations are performed for toluene and phenol terminal
groups (not part of the original training set) in contact with the
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initial 16 terminal groups (see Figure la). Figure 6¢,d plots
predicted vs simulated values of COF and adhesion, where the
predicted values represent the average of the predictions of the
5 models in Table 1 and error bars correspond to the standard
deviation of these S predictions (numerical values of both the
simulated and predicted values are tabulated in Table S9). The
models predict the COF with reasonable accuracy, where most
of the predictions are within the standard error of the
simulated values and data points visually track the line y = «.
The ability to predict the force of adhesion values is similar to
that observed in Figure 6b, in that values are well predicted in
the lower adhesion regime but underpredicted for higher
values; specifically, quantitative agreement is not observed for
phenol under conditions where significant hydrogen bonding
can occur between the two layers, although, as before, the
model does capture the appropriate trends. The QSPR models
themselves are hosted on GitHub'*® and archived on
Zenodo,"* along with all of the code related to this work,
allowing for transparency and the extension/use in future
studies that explore the monolayer chemical parameter space.

This validation provides evidence as to the predictive nature
of the models and that correlations between chemistry and
tribology used by the machine learning model are appropriate.
As such, the “feature importances” are extracted from the
models to evaluate which elements of the system fingerprint
have the most influence over each variable. Figures 7 and 8
provide the relative contributions of the eight molecular
descriptors with the highest contributions to the prediction of
COF and adhesion, respectively, along with values for each
terminal group chemistry of the top four contributing
descriptors to each property. The “-mean” or “-min” in the
descriptor names in these figures indicate whether this
corresponds to the mean or minimum value, respectively, of
the descriptor for the two terminal groups in the system (refer
to Figure Se). For COF, the majority of the top contributing
descriptors is those which describe mean values between the
two terminal groups (for additional details on mean-based
modeling, see Figure S6). Furthermore, it is observed that the
majority of features with high contributions to the model are
those that describe molecular shape. In particular, the
molecular descriptor with the largest contribution is the
mean Hall-Kier alpha value between the two terminal groups in
the system, where the positive correlation indicates that lower
Hall-Kier alpha values should result in lower COF. The Hall-
Kier alpha is described by'"

=3

i=1

R;
R¢

-1
@ (4)

where A is the number of (non-hydrogen) atoms in the
molecule, R , is the covalent radius of the sp® carbon, and R;
p

is the covalent radius of atom i. From this definition, the Hall-
Kier alpha is shown to provide a measure of hybridization,
where contributions to @ decrease from sp® > sp* > sp
hybridized atoms. This agrees with the terminal group
chemistries observed in Figure 7b to have low COF, where
those terminal groups that feature the lowest Hall-Kier alpha
values are those with aromatic rings and to a lesser extent
carbonyl-containing groups and the nitrile group. Dependence
of the model on the “inertial shape factor” (ISF) is also
observed, where ISF is a ratio of the systems principal
moments of inertia (described further in Table S7). A negative

https://dx.doi.org/10.1021/acs.jctc.9b01183
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Figure 7. a.) Relative feature importances extracted from the random
forest regression model (Model 1 in Table 1) for COF and b.) values
of the top four contributing features for each terminal group
chemistry. Symbols in (a.) represent the molecular aspect
characterized by each feature (yellow circles: charge distribution,
blue triangles: shape, red squares: size, black diamonds: complexity).
Stick colors represent whether each feature correlates positively (red)
or negatively (light blue) with COF.

correlation is observed between ISF and COF, and it is
observed that the ISF of the nitrile group dominates the values
calculated for any other group (whose values can be
approximated as zero). This is a result of the perfect linear
nature of the nitrile terminal group and reveals how the model
accounts for the low COF of systems containing a nitrile group
(which was observed in Figure 3c). From these results, it can
be summarized that of shape, size, charge distribution, and
complexity, molecular shape is the most important terminal
group aspect relating to COF and that COF will be minimized
for terminal group moieties that are planar or linear.

Feature contributions to the QSPR model for the prediction
of adhesion are shown in Figure 8a. Following expectations,
nearly all of the top contributing molecular descriptors provide
measures of the distribution of charge on the terminal group.
Nearly all of these descriptors are found to be those that
correspond to the minimum value between the two terminal
groups, rather than the mean value and thus one film will
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Figure 8. a.) Relative feature importances extracted from the random
forest regression model (Model 1 in Table 1) for adhesion and b.)
values of the top four contributing features for each terminal group
chemistry. Symbols in (a.) represent the molecular aspect
characterized by each feature (yellow circles: charge distribution,
blue triangles: shape, red squares: size, black diamonds: complexity).
Stick colors represent whether each feature correlates positively (red)
or negatively (light blue) with adhesion.

dominate the behavior. The top contributing feature is found
to be the minimum topological polar surface area (TPSA)
between the two terminal groups. That this feature is a strong
predictor of adhesion is sensible, as large adhesive forces will
require both terminal groups in the system to feature
significant charge imbalances (ie., large dipole moments).
From Figure 8b, the terminal groups featuring the high TPSA
are found to be the nitro and nitrophenyl groups in addition to
the three groups featuring hydrogen bond donors and
acceptors (carboxyl, hydroxyl, and amino). However, the fact
that a positive correlation is observed with the minimum TPSA
suggests that if one of the monolayers features a terminal group
with a low polar surface area (a nonpolar molecule such as a
hydrocarbon), the adhesion force between the two monolayers
will be low. This agrees with the findings of Figure 3c. A
modest contribution to the QSPR model is also observed from
the “hbonds” descriptor. This descriptor characterizes a
system’s ability to form intermonolayer hydrogen bonds, and

https://dx.doi.org/10.1021/acs.jctc.9b01183
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the positive correlation indicates that the more combinations
of hydrogen bond donors and acceptors the higher the
adhesive force should be. While systems featuring intermono-
layer hydrogen bonding are found to not have their adhesive
forces predicted with high accuracy, as evidenced by Figure 6,
the addition of the “hbonds” descriptor does allow the model
to achieve a qualitatively correct prediction that such systems
will feature high adhesion.

5. CONCLUSION

In this work, the screening of functionalized monolayer films is
enabled by use of the MoSDeF software suite and Signac
framework. In agreement with prior literature, increases in the
length of the chain backbone are found to reduce COF and
increase monolayer order. Adhesion between monolayer films
is observed to be relatively insensitive to backbone chain
length. The effects of terminal group chemistry on monolayer
tribology are examined for both chemically identical systems
(i.e., where both monolayers feature the same chemistry) and
chemically dissimilar systems. It is observed that combinations
of polar and nonpolar terminal groups in chemically dissimilar
films yield favorable tribological properties (i.e., low COF and
low adhesion), thus the utility of chemically dissimilar systems
appears primarily in the reduction of adhesion through the
inclusion of at least one nonpolar terminal group.

The use of MoSDeF to facilitate screening over chemical
space enables relationships to be uncovered that could easily
be overlooked or obscured in small-scale studies.''® The
breadth of the data in this study has afforded the ability to use
machine learning to generate QSPR models, which require
only a simple SMILES representation of the terminal group as
an input and are found to vyield reasonable predictive
capability. Feature extraction from these models reveals that
the COF is most sensitive to terminal group shape, whereby
planar or linear groups result in the lowest COF values.
Adhesion is found to be most sensitive to charge distribution
on the terminal group, whereby both the polar surface area and
ability for the formation of intermonolayer hydrogen bonding
are found to be strong predictors of adhesion. The QSPR
models generated in this work have utility in narrowing the
scope of the monolayer parameter space for future screening.
Furthermore, the workflow utilized in this study should be
readily extensible to the examination of more complex
monolayer films (e.g, multicomponent films) which may
provide even more favorable tribological properties. Finally,
through the SI and codes deposited in open-source
repositories””*%7>7 7476771017104 44 enabled by the use of
MoSDeF, all of the simulations underpin this paper as TRUE**
simulations and thus are able to be transferred, reproduced,
used, and extended by other researchers.
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