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Predicting demand and determining optimal pricing are essential components of operations management.
It is often useful to think in terms of the price elasticity of demand when reasoning about the demand
curve. Firms wishing to invest in demand prediction and information gathering should reason about the
relationship between the expected value of perfect information (EVPI) on demand and demand elastic-
ity. Should firms pay more/less for information on demand if elasticity is high/low? Furthermore, when
considering different product prices, correlation may exist between demand at different prices. Should
firms pay more/less for information if the correlation between demand at different prices is high or low?
This paper derives analytic and numeric results to answer these questions. We start with the assumption
that demand is uncertain and follows a uniformly distributed band around a deterministic demand curve
where the upper and lower bounds of the demand distribution vary with price. This formulation enables
a closed form expression for EVPI that provides a useful benchmark. We find nuanced behavior of EVPI
that depends on both the elasticity and the initial price preference. The EVPI approaches zero as elas-
ticity increases (decreases) for a firm that initially prefers the low (high) price. Numerical results using
the truncated normal and beta distributions relax assumptions about the uniform distribution and show
EVPI is similar when the distribution variances are similar. Finally, we relax the assumption of perfect in-
formation and show the expected value of imperfect information (EVOI) follows similar patterns as EVPI

with respect to demand elasticity.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Predicting demand and determining an optimal price are es-
sential components of operations management (Azadian & Murat,
2017; Hsieh, Liu & Wang, 2010; Ozer & Phillips, 2012; Sun, Hup-
man, Ritchey & Abbas, 2016). Although there is a rich literature on
pricing, challenges remain in practice. McKinsey & Company es-
timates that thirty percent of pricing decisions made by compa-
nies are suboptimal (Baker, Kiewell & Winkler, 2014). Firms spend
resources gathering and analyzing data to better predict demand,
but it is often unclear how much a firm should invest in this task,
particularly as new data sources and analytical methods become
available. In the presence of price-dependent demand, it is also
unclear how properties of elasticity of demand relate to the value
of information on demand, and consequently, how much compa-
nies should invest in information gathering. The expected value of
perfect information (EVPI) is a decision analytic construct that can
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answer these questions. It places an upper bound on how much
a firm should pay for any information gathering activity about an
uncertainty of interest (Howard, 1966; Howard & Abbas, 2016). The
EVPI differs from information theoretic measures (Shannon, 1948)
that consider the entropy (or the quantity of information) sepa-
rately from the consequences of a decision. In this paper, we ex-
amine EVPI in pricing decisions with price-dependent demand to
answer these questions.

For a risk-neutral decision maker or one with an exponential
utility function, the EVPI is found by comparing the value of a de-
cision situation with and without the information (Howard, 1966;
Howard & Abbas, 2016). The EVPI does not necessarily increase
with the level of risk (Gould, 1974; Laffont, 1976) or with the risk
aversion (Abbas, Bakir, Klutke & Sun, 2013; Freixas & Kihlstrom,
1984; Hilton, 1981), but in the presence of certain additional in-
formation about preferences, the EVPI does relate to risk aversion
(Sun & Abbas, 2014). Additionally, when information is available
on two uncertainties, the VOI to resolve both uncertainties can be
greater than the sum of the VOI for each uncertainty individually
(Howard & Abbas, 2016; Keisler, 2005).
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The value of information sharing among supply chain partners
has garnered much attention in the operations literature. Much of
the work examines sharing information in the context of inven-
tory problems (Cachon & Fisher, 2000; Chen, 2011; Raghunathan,
2001). The information facilitates enhanced management of un-
certainty including the bullwhip effect (Bray & Mendelson, 2012;
Chen & Lee, 2009; Syntetos, Babai, Boylan, Kolassa & Nikolopou-
los, 2016) through strategies that include coordination with part-
ners (Aviv, 2001; Zhou, Dan, Songxuan & Xumei, 2017). Conditions
that moderate the value of shared information have also been ex-
amined (Babai, Boylan, Syntetos & Ali, 2016; Ciancimino, Cannella,
Bruccoleri & Framinan, 2012; Lee, So & Tang, 2000; Teunter, Babai,
Bokhorst & Syntetos, 2018), and the benefits of additional infor-
mation have been shown (Asgari, Nikbakhsh, Hill & Zanjirani Fara-
hani, 2016; Chatfield, Kim, Harrison & Hayya, 2004). Alternatively,
Perakis and Roels (2008) consider the value of information on as-
sumptions about an unknown demand distribution in an inventory
problem. However, relatively little work exists relating the value
of information to pricing decisions, with a few notable excep-
tions. Iyer and Ye (2000) study promotional pricing and show that
the presence or absence of information can affect the profitability
of promotions. Petruzzi and Dada (1999) consider a newsvendor
problem with pricing for additive and multiplicative demand and
derive extensions that relate the value of information for a deci-
sion maker with constant absolute risk aversion, where the base
demand is a linear function of price and an additive error is intro-
duced to model uncertainty.

Our formulation differs from other analyses in the operations
management literature in that we consider a pricing decision and
that we consider the relation between the value of perfect demand
information and price elasticity. This approach provides a useful
benchmark for firms early in the process of determining an opti-
mal price. This work relates to some prior results that show the
EVPI is at a maximum at the demand elasticity that makes a firm
indifferent between two possible selling prices (Zellner & Abbas,
2018), a finding that corresponds with other results showing the
EVPI is at a maximum when there is indifference between two al-
ternatives (Delequié, 2008; Mehrez & Stulman, 1982). Our work is
distinct from these prior results in that we more broadly charac-
terize the behavior of the EVPI, considering different levels of elas-
ticity and correlation between demand at different prices, differ-
ent distributions of demand, and the value of imperfect informa-
tion. The analytic results also contribute to a better understanding
of the drivers of the value of information in pricing decisions, a
helpful result given the conflicting findings of many value of infor-
mation studies (e.g. Ketzenberg, Rosenzweig, Marucheck & Metters,
2007).

We explicitly consider the relationship between the EVPI and
price elasticity of demand given the importance of demand elastic-
ity in the pricing decision. Price elasticity measures how changes
in price affect changes in demand, and these price changes can
have large impacts on profitability (Mercer, 1993; Pauler & Dick,
2006). The importance of price elasticity has motivated a large lit-
erature. For example, Tellies (1988) conducts a meta-analysis of
econometric models in the estimation of the price elasticity of de-
mand and shows the distribution of estimated price elasticities.
George, Mercer and Wilson (1996) shows the price elasticities of
market share for some competing items may not be constant on a
relatively large scale. Casado and Ferrer (2013) model a price elas-
ticity of demand, which is constant but different in three intervals
along with two thresholds, based on the heterogeneous consumers’
utilities.

Previous work has shown that the value of information on de-
mand can be higher when demand is correlated over time (Lee et
al., 2000). Given this result, our analysis also considers the possi-
bility of correlation between the realized demand at two different

prices, i.e. demand at one price is correlated with demand at an-
other price. We use probability copulas to represent the relation-
ship between the different demands and numerically identify the
copula parameters that correspond to particular values of the Pear-
son correlation coefficient. This approach allows us to report the
findings in terms of correlation between the demand at different
prices.

The analysis also considers how the EVPI is affected by dif-
ferent distributions of demand. We derive analytic results for the
maximum entropy case of uniform demand. This distribution is
appropriate for the earliest stages of analysis, for example, as a
prior before information is gathered, and is consistent with work
on Bayesian approaches to demand estimation (Hill, 1997). How-
ever, in practice demand is often modeled as following a normal
(Axsdter, 2013; Strijbosch & Moors, 2005) or a beta distribution
(Berk, Giirler & Levine, 2007, Siblermayr et al. 2017). We therefore
conduct numeric analyses using these distributions. We quantify
the deviations between the analytic and numeric results and show
how the analytic results can be adjusted based on the demand dis-
tribution to provide readily available estimates of EVPI early in the
decision making process. Finally, we consider the case of the ex-
pected value of imperfect information (EVI) by adding error terms
to the realized demand and shows that it follows similar behavior
as EVPI with respect to demand elasticity.

We illustrate the applicability of the results with a motivating
example of a firm purchasing information on uncertain demand.
This purchase could be in various forms of data collection and/or
analysis, such as investment in information sharing between sup-
ply chain partners.

1.1. Illustrative example

A major challenge for retailers is setting the price for a new
product (Ferreira, Lee & Simchi-Levi, 2016). This challenge forms
the motivating example for this paper and illustrates the applica-
bility of the results. Consider a retailer that has a fully designed
product and the ability manufacture sufficient product on demand,
but it must determine the price to charge that will optimize value
to the retailer. Demand is stochastic and depends on the selling
price with higher prices resulting in lower average demand and
vice versa. The retailer may also purchase information about the
uncertain demand through means such as additional marketing
analysis or hiring a consultant, but it is uncertain how much it
should invest in this information, if anything at all. This decision
motivates the need to calculate the EVPI to ensure it is nonzero
and to provide an upper bound on the investment.

The remainder of this paper is organized as follows. Section 2
describes the problem formulation. Section 3 presents the results
when demand at one price point is independent of demand at an-
other price point. Section 4 presents analytic results for demand
that is perfectly correlated at different prices, while Section 5
presents general results of correlation through a numeric exam-
ple. Section 6 examines the effect of different demand distribu-
tions. Section 7 illustrates how numeric calculations can relax the
assumption of perfect information. Section 8 discusses implications
of the results, and Section 9 provides concluding remarks.

2. Problem formulation

We are interested in the value of information on uncertain de-
mand for a decision maker who must determine what price to
charge for a new product. The new product has uncertain, stochas-
tic demand that is affected by the price. To model this situation,
the following assumptions are made:
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Fig. 1. The effect of constant elasticity 7 on mean demand when a price of $50 is
believed to result in E[d;]=10,000 units.

i. The retailer considers one of the two given prices as its
selling price, and only considers prices greater than the
marginal production cost.

ii. The product cost is independent of the selling price and is
deterministic.

iii. The price elasticity of the mean demand is constant and de-
terministic.

iv. The mean demand for one price (assume the low price with-
out loss of generality) is given.

v The firm’s belief of the prior distribution is a uniform band
around the baseline demand curve.

vi. The widths of the demand distributions are a constant mul-
tiple of their means.
vii. The decision maker is risk neutral.

The assumption of constant elasticity of demand is commonly
used (e.g. McAfee & te Velde, 2008). The remaining assumptions
are consistent with a firm that has little information on the de-
mand of a new product but operates in a market with well-known
properties of demand elasticity. If the firm believes demand elas-
ticity is constant but has difficulty specifying its value, then the
firm may specify the mean demand at the second price and cal-
culate the corresponding elasticity that would result in the speci-
fied mean demand. This approach results in specifications that are
equivalent to these assumptions. We also note that this formula-
tion implies no economies of scale and an ability to meet demand
at any level.

With these assumptions in place, we can calculate the value of
free perfect information, or clairvoyance, to the decision maker and
analyze its sensitivity to the price elasticity of demand. We use
indices i = 1,2 to differentiate the two selling prices under con-
sideration. The selling prices are denoted s;, with s; <s,, and the
associated mean demand is denoted d;. Demand elasticity is repre-
sented by the parameter 1. Using the elasticity of substitution and
assuming elasticity is constant, we can write

d;s{ = constant. (1)

The law of demand specifies a negative elasticity, meaning that
increases in price have a negative relationship with demand. With
(1), negative elasticity corresponds to 1 > 0.

To better illustrate this representation of price elasticity of de-
mand, consider the case of a decision maker who believes the
mean demand for a selling price of $50 is 10,000 units. If n=0.3,
then demand is relatively inelastic with fluctuations in the price
resulting in relatively small changes in the demand. As 1 becomes
larger, elasticity increases, and changes in the price result in larger
variations in the demand as shown in Fig. 1, the results of which
are found by relating E,s? in (1) to values at different prices. For

example, if we consider as? and wish to find the resulting mean

demand at other prices, we rearrange (1) to solve for d;, i.e. d; =
dys/s!.
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Fig. 2. The minimum, maximum, and midpoint of uniform distributions for the nu-
meric example with 7n=1.0 and b=0.2.

The profit to the retailer is exclusively determined by the sell-
ing price and demand if the cost is assumed deterministic and in-
dependent of price. This cost is denoted c. Thus, the profit is

Profit; = d;(s; — ¢). (2)

The demand distribution is assumed uniform with mean d;. Fol-
lowing assumption vi, we formulate the uniform distributions by
defining a parameter b;, 0 < b; < 1, to represent the distribution as
a function of d;, the mean. To construct the interval of the uni-
form distribution, b; times of the mean, d;, is added to and sub-
tracted from d_, With b; = b, = b, the intervals of the distributions
become [d;(1 — b), d;(1 + b)]. Then the range of each distribution
is 2bd;, making the marginal density functions

F(di) = g ifdi(1=b) =di = di(1+b)
l 0, otherwise '

This formulation of the demand distributions is illustrated in
Fig. 2 using the same numeric example from Fig. 1 with n =1.0
and b = 0.2 Because the variance of the distribution decreases as
the range decreases, an implication of (1) and (3) is that the vari-
ance decreases as the price increases. Stated alternatively, larger
values of error are associated with larger quantities demanded,
consistent with modeling assumptions in the literature (Leland,
1972).

For a risk neutral decision maker, the value of free perfect in-
formation in this pricing decision is the difference in the expected
value of the decision with perfect information and the expected
value without perfect information. Given this problem formulation,
the next two sections examine the EVPI for a risk neutral decision
maker when the demand at one price is independent of the de-
mand at a second price and for the case when these two demands
are correlated.

(3)

3. EVPI when demand is independent at two prices

We begin by examining the case when the uncertain demand
dy at price sy is independent of the uncertain demand d, at price
so. This case of independence is appropriate, for example, when
the firm is introducing a new product and is unable to specify a
belief about a dependence structure for observed demand at dif-
ferent prices. In this case, given the uniform marginal distributions
in (3) for the two prices, the joint density function of d; and d, is

L. V[dy.dy] € [di(1-b).di(1+D)]

4d,dyb2’ -
fldi,dy) =1 % [d2(1—b),da(1 4 b)]; (4)
0, otherwise.

The bounds of the distribution give the maximal and minimal
demands, which are d;(1 + b) and d;(1 — b), respectively. From (2),
the maximal and minimal profit at selling price s; are

M; = (1+b)d;(si — ©). (5)

m; = (1 - b)di(s; — ©), (6)
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where M; denotes maximal profit and m; denotes minimal profit.
The relationship between M; and m; depends on the size of s; rel-
ative to s,. Note that M; > M, if and only if d;(s; — ¢) > dy (s, — ),
ie. n > logg, 2—:'; due to (1), and we can also state m; > m, in

this case. Similarly, My > m, if and only if n > logg, s, %,
(sp—=0)(1-b)

and M > my if and only if 1 > log;, s, IGEGIEIR We summarize
all possible orderings of m;, M;, m,, and M, with respect to the
elasticity n as follows:
. —0)(1+b .
(i) If n > logy, /s, %, then my < My <my < My;
" — —0)(1+b
(i) If logs, /5, 2=¢ < 11 < log, 5, % then my <my <M, <

M1:
_o)(1-b _
(iii) If logy, /s, 8?_3% <1 = logg, 5, 2=¢, then my <my < My <

M,
. —0(1+b
(iv) If n < logy, 5, %, then m; < M; <my < M.

Note that the expected value of the profit at s; is E[d;(s; — ¢)] =
0.5M; +0.5m;, i =1, 2. A risk-neutral decision maker will ask for
the low price s; in cases (i) and (ii) and the high price s, in
cases (iii) and (iv) without the additional information. Next we
consider the EVPI on the uncertain demands d; and d,. In par-
ticular, we assume that the decision maker can observe the un-
certain demands d; and d, before determining whether to set the
selling price as s; or s,. Then he/she will choose the low price
sy if the profit at the low price is higher than the profit at the
high price, i.e. d;(s; — ¢) > d, (s, — ¢). He[she will choose the high
price s, if the profit at the high price is higher than the profit
at the low price, ie. dy(sy —c) > di(s; — ¢). Therefore, the profit
with the perfect information on the uncertain demands d; and d,
is max{d;(s; —¢),d> (s, — c¢)} and the expected information is

EVPI = E[max{d; (s; — ¢), da(s, — 0)}]
— max{E[d; (s; — ¢)], E[d2(s2 — O)]}. (7)

Proposition 1. The expected value of perfect information on the un-
certain demands d; and d is

1
FP = S0 —my M, —my)
x max {0, min { (M, —m2)3,(M2—m1)3}}4 (8)

The proof to Proposition 1 is in the Appendix.

This result enables firms to calculate the EVPI between two sell-
ing prices by specifying only n and the minimal and maximal de-
mand at one price, simplifying the tasks of specifying demand dis-
tributions and of calculating the value of information. Using this
approach, the firm can use the EVPI to determine whether the
investment of time and resources on additional analysis is value-
adding to the firm. This result also facilitates further analyses such
as examining the sensitivity of the EVPI to the specified parame-
ters.

Proposition 2. If a risk neutral decision maker asks for the low price
without the perfect information on the uncertain demands, then the
expected value of the perfect information on the uncertain demands
is strictly decreasing to zero as the demand elasticity increases.

Heuristically speaking, if the firm prefers the low price with-
out the information on the uncertain demands, then the infor-
mation is valuable if and only if it indicates the high price will
lead to more profit than the low price, inducing a change in the
pricing decision. However, the mean demand of the high price
decreases as the demand elasticity increases. Therefore, the EVPI
also decreases as the demand elasticity increases. In particular, re-

call that if n > logs, 5, %, then m, < M, < my < M;. Hence,
profit from the high price is always smaller than the profit from
the low price, and the firm will not switch to the high price even
if the uncertain demand at the high price achieves its maximum
and the uncertain demand at the low price achieves its minimum

simultaneously.

Proposition 3. If a risk neutral decision maker asks for the high price
without the perfect information on the uncertain demands, then the
expected value of the perfect information on the uncertain demands
is strictly decreasing to zero as the demand elasticity decreases.

Again consider the heuristic logic. If the firm prefers the high
price without the information on the uncertain demands, then the
information is valuable if and only if it indicates the low price will
lead to more profit than the high price, inducing a change in the
pricing decision. However, the mean demand of the high price in-
creases as the demand elasticity decreases. Therefore, the EVPI also
decreases as the demand elasticity decreases. In particular, recall
that if n < 10g1+hgf$8fg;, then m; < M; <my < M,. Hence, the
profit from the high price is always larger than the profit from the
low price, and the firm will not switch to the low price even if the
uncertain demand at the low price achieves its maximum and the
uncertain demand at the high price achieves its minimum simul-
taneously.

Proofs of Propositions 2 and 3 are straightforward by checking
the sign of the partial derivative of EVPI with respect to d, and are
included in the Appendix.

Propositions 2 and 3 describe conditions in which a firm should
not risk losing value by investing in information about the demand
uncertainty. If the lower price is preferred and the product has
highly elastic demand, or if the higher price is preferred and the
product has highly inelastic demand, then investing additional re-
sources to resolve the demand uncertainty risks losing value for
the firm. As EVPI decreases to zero, investment in information on
demand will become increasingly detrimental to the firm. These
conditions also underscore the importance that a firm understands
the market in which it operates. If the firm is unaware of whether
the product has elastic or inelastic demand, then the firm cannot
intelligently invest in, or abstain from investing in, obtaining addi-
tional information.

Proposition 4. A risk neutral decision maker values the information
on the uncertain demands highest when he/she is indifferent between
the high selling price and the low selling price without the informa-
tion among all possible demand elasticities.

Proposition 4 is a corollary of Propositions 2 and 3.

Proposition 4 is complementary to Propositions 2 and 3. While
the prior results showed the cases in which EVPI decreases to
zero, Proposition 4 highlights when EVPI is highest. If the firm has
no strict preference over the two possible selling prices without
the information on the uncertain demands, then the information
is most valuable because it will almost always change the firm’s
preference from indifference to the price with the higher profit.
Propositions 2, 3, and 4 show the sensitivity of the EVPI to the
demand elasticity for a risk neutral firm. The following example il-
lustrates the sensitivity analysis on the value of information with
respect to the demand elasticity.

We consider a numeric example of a firm that is considering a
low price of $50 versus a high price of $100. The fixed marginal
product cost is $40. At the low price, the firm estimates the mean
demand is 10,000 units, with a range from 8000 to 12,000 units
(i.e.b=0.2). Fig. 3 shows the sensitivity analysis of the EVPI to
the demand elasticity. If the demand elasticity is low, ie. n <
log,, s, 2—:2 = 2.585, then the firm will prefer the high price with-
out the information, and the EVPI will be increasing with demand
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Fig. 3. The sensitivity of the EVPI to changes in elasticity for numeric example with
b=0.2, sy =50, s, = 100, ¢ =40, and d; = 10, 000..

elasticity following Proposition 3. Conversely, if the demand elas-
ticity is high, i.e. n = 2.585, then the firm will prefer the low price
without the information, and the EVPI will be decreasing with de-
mand elasticity following Proposition 2.

Therefore, the firm will be indifferent between the two prices
without the information when n = 2.585, and the EVPI achieves
its maximum, in this case. Moreover, if the demand elasticity is
very low, ie. n <logg, s % =2, then M; <m;, and the in-
formation is valueless. Or if the demand elasticity is very high, i.e.
n = logg, /s, % = 3.17, then M, < m; and the information is

also valueless.
4. EVPI with perfect correlation between demand at two prices

While the independence of demand at different prices is appro-
priate in some cases, there are also many cases in which relevance
may exist. For example, it is reasonable that demand for a prod-
uct is related to the success of the product design. If demand is
high for the product at price s;, then it is more likely the prod-
uct design is favorable, and demand is more likely to be high at
price s, as well. The existence of correlation can also be concep-
tualized in terms of epistemic and aleatory uncertainty. Given the
price elasticity, observing demand at one price reduces epistemic
uncertainty about the product and reduces, but does not eliminate,
uncertainty about demand at another price, implying correlation
between the demand distributions.

In this section, we examine EVPI when the demand for the
product at price s; is relevant to the demand for the product at
price s,. We begin with the special case of perfect correlation and
derive five propositions. The analysis of EVPI with perfect corre-
lation between demand at two different prices provides useful in-
sight to the behavior of EVPI as the correlation increases under var-
ious conditions. We begin with perfect positive correlation. If two
uncertain demands, d; and d,, at prices s; and s,, respectively, are
perfectly positively correlated, i.e.p = 1, then d, = (51/52)"d;.

Proposition 5. If d, = (s1/53)"d4, then the value of information on
the uncertain demand is zero for any decision maker.

For positive correlation, the EVPI will approach zero as the cor-
relation increases. This result indicates when the correlation be-
tween demand at different prices is both extremely large and pos-
itive, the firm may not wish to invest in additional information
on the demand. This result follows because with perfect positive
correlation, additional information about the uncertain demand

does not result in a change in the pricing decision. If demand
is high at one price, it will also be high at the other price, and
vice versa. Conceptualized another way, perfect positive correlation
means there is a positive linear relationship between the demands.
Any change in one demand will proportionally change the profits
at both prices in the same way such that there is no change in the
rank of the profits at the prices.

Next, we consider perfect negative correlation. If two uncertain
demands, d; and d,, at prices s; and s;, respectively, are perfectly
negatively correlated, i.e. p = —1, then d, = 2d; — (s1/52)"d;.

Proposition 6. If dy = (s1/5,)"(2d; — dy), then the expected value of
information on the uncertain demand is

1
2b(My +mq + My + my)
x Max {O, min {(M1 —my)?, (My — m1)2}}. (9)

EVPI =

With perfect negative correlation, the EVPI is nonzero if M; >
m, or if M, > my, i.e. the profit at one price is not dominant
over the profit at the other price. The EVPI can be positive in this
case because the firm’s decision on the pricing may change based
on the information obtained. For example, the firm may choose a
price, and the information may indicate the demand at this price is
very lower. For perfect negative correlation, this indication means
that the demand at another price is so high that its profits will be
higher than profit at the chosen price. Thus, the firm will change
its decision and realize more profit due to the information.

Further investigation of negatively correlated demand results in
the following propositions.

Proposition 7. Assume that the uncertain demands at two selling
prices are perfectly negatively correlated. If a risk neutral decision
maker asks for the high selling price without the perfect information
on the uncertain demands, then the expected value of the perfect in-
formation on the uncertain demands is strictly decreasing to zero as
the demand elasticity decreases.

Proposition 8. Assume that the uncertain demands at two selling
prices are perfectly negatively correlated. If a risk neutral decision
maker asks for the low selling price without the perfect information
on the uncertain demands, then the expected value of the perfect in-
formation on the uncertain demands is strictly decreasing to zero as
the demand elasticity increases.

Propositions 7 and 8 show two different sets of conditions un-
der which the EVPI decreases to zero. These results again un-
derscore the importance of a firm understanding the market in
which it operates and the characteristics of demand for its product.
Even perfect negative correlation that results in the largest change
in relative value of alternatives cannot guarantee a positive EVPL
These results also highlight the complexities of working with the
EVPL Its behavior in this case is dependent on the interaction of
two parameters; it cannot be summarized with a simple relation-
ship with a single parameter.

Proposition 9. Assume that the uncertain demands at two sell-
ing prices are perfectly negatively correlated. A risk neutral decision
maker values the information on the uncertain demands highest when
he/she is indifferent between the high selling price and the low selling
price without the information among all possible demand elasticities.

Proposition 9 complements the previous propositions which re-
quire some knowledge of the demand elasticity to be applied. If
this preliminary information is unknown, it is reasonable that ad-
ditional information on the demand would be beneficial, a line of
reasoning supported by Proposition 9.
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Finally, we consider a comparison of the EVPI in the cases of
perfect positive correlation (EVPIl;), independence (EVPI,), and
perfect negative correlation (EVPI_;).

Proposition 10. 0 = EVPI; < EVPIy < (2/3)EVPI_;, where the strict
inequality holds if and only if EVPIy > 0.

Proposition 10 shows how the EVPI increases as the correlation
between demand at two price points decreases from +1 to 0 to
—1, indicating an inverse relationship between correlation and the
EVPL

5. EVPI with general correlation between demand at two prices

Next we consider the general case where the correlation coef-
ficient is any value between —1 and 1. We use probability copu-
las to represent the joint distributions with correlation, specifically
relying on the Gaussian and the Frank copulas. A probability cop-
ula provides a general structure to represent the joint density of
two variables while maintaining the marginal distributions of each
variable (Nelson, 1998; Sklar, 1959), enabling analysis with uniform
marginal distributions consistent with the prior analysis. The pa-
rameters of the copulas govern the dependence structure, and the
parameter that corresponds to a particular level of correlation may
be found numerically. More precisely, copula structure requires the
specification of the marginal distribution of the uncertain demand
with the selling price as s;,i=1, 2,

PO < min {max {x d,_(l b),O},l}’ i—12
2bd;

The Gaussian copula with parameter p is then formed from the
multivariate Gaussian distributions as

Gp(Pi,P) = @y (D71 (P), @7 (P), (11)

where ®,, is the joint cumulative distribution function of the two-
dimensional normal distribution with standard normal distribu-
tions as its marginal distributions, with the correlation coefficient
0, and with ®-1 as the inverse function of the standard normal
distribution. Therefore, the joint cumulative distribution function
of the two uncertain demands is

(10)

P
2bd,

Fx.y) = Gp(P1(x). B (y)) = @, o1 <min{max{yfd—z(l—b)ﬂ},l})
2bd,

_1 { min {max {x—d; (1-b).0}.1}

(12)

In particular, if p = —1, then the two uncertain demands d; and
d, are perfectly negatively correlated. If p = 0, then the two uncer-
tain demands d; and d, are independent of each other. If p =1,
then the two uncertain demands d; and d, are perfectly positively
correlated. Generally, we can numerically estimate the correspond-
ing coefficient pfor a given Pearson correlation coefficient such as
—0.5 or 0.5.

The Frank copula is formed from a closed form generating func-
tion and has a single parameter § that governs the strength of pref-
erence (Nelson, 1998) as
-G s

j

—Lln (1
E(P,P)=1 38
PP, 5§ =0.

Therefore, the joint cumulative distribution function of the two
uncertain demands is

(13)

8 min {max {x-d; (1-b).0}.1}

—1ln(1-(1-e 2bdy
F(x,y) =KP1(x),RW) =

min {max {x—d_l (l—b)40},1} min {max {x—tfz (1 —b),O}.
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Fig. 4. EVPI for the numeric example with a Gaussian probability copula to repre-
sent correlation.
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Fig. 5. EVPI for the numeric example with a Frank probability copula to represent
correlation.

In particular, if § — —oo, then the two uncertain demands d;
and d, are perfectly negatively correlated. If § =0, then the two
uncertain demands d; and d, are independent of each other. If
8 — +o0, then the two uncertain demands d; and d, are perfectly
positively correlated. Generally, we can numerically estimate the
corresponding coefficient § for a given Pearson correlation coeffi-
cient such as —0.5 or 0.5.

In our example, we specify the Pearson correlation coefficient
as —1, —0.5, 0, 0.5 and 1, respectively, and use the corresponding
parameter for the copula.

We revisit the numeric example of a firm that is considering
a low price of $50 versus a high price of $100. Recall, the fixed
marginal product cost is $40. At the low price of $50, the firm esti-
mates the average demand is 10,000 units, with a range from 8000
to 12,000 units (i.e. b= 0.2). We examine how the EVPI changes
with different demand elasticities, different values of correlation,
and different probability copulas to represent the demand distri-
bution. The results are shown in Figs. 4 and 5 for the Gaussian
copula and the Frank copula, respectively.

The effect of demand elasticity on the EVPI is not monotonic.
For this example, the maximum EVPI occurs when n = 2.585 for
all values of correlation and for both copulas. EVPI then decreases
to zero as the elasticity decreases and increases away from 2.585.
These results follow from the effect of elasticity on the relative at-
tractiveness of the alternatives. As elasticity increases, average de-
mand decreases more quickly with increases in price, until there
is no overlap between [my, M;] and [m,, M,], and the dominance
of one alternative reduces the EVPI to zero. On the other hand,

_ Smin {max {x~dp (1-b).0}.1}
1-e 2, )/(1—65)>,87&0,
. (14)

1 os—o

4b2d;d,
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Fig. 6. The difference in EVPI between the Gaussian and Frank copulas for the nu-
meric example.
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Fig. 7. The difference in EVPI between p =0 and p = 0.5 for the Gaussian copula.

as elasticity decreases, the average demand becomes insensitive to
price changes, again reducing the EVPI to zero.

Next we compare the results obtained with the Gaussian copula
to those obtained with the Frank copula for different values of cor-
relation. The results are shown in Fig. 6. For the cases of perfect
negative correlation, independence, and perfect positive correla-
tion, the difference is zero because these are all limiting cases that
eliminate the effect of correlation. When the correlation is non-
zero and is not perfect, we observe nonlinear behavior in the EVPI.
Neither copula guarantees a higher or lower EVPI. Importantly, we
find the magnitude of the differences in EVPI is small relative to
the absolute value of EVPI for either copula. For p = —0.5, the
maximum absolute difference is $86.94 and occurs at n = 2.61, re-
sulting in an error of only 1.2% for specifying the incorrect copula.
For p = 0.5, the maximum absolute difference is $45.08 and occurs
at 1 = 2.56, resulting in a maximum error of 1.2% for specifying
the incorrect copula.

Finally, we examine the effect of assuming independence be-
tween demand at different selling prices when there is actually
positive correlation by comparing the EVPI results from the Frank
copula with p =0 and p = 0.5. The differences are shown in Fig.
7. The maximum difference is 2151.22 and occurs at 1 = 2.585,
the same elasticity as the maximum EVPI. Thus, assuming inde-
pendence when p = 0.5 results in an overestimation of EVPI by
32.27%.

6. EVPI for non-uniform demand distributions

Though uniform distributed uncertain demand shows interest-
ing properties on value of information, it may not be always valid
in practice. Now we relax Assumption V and consider the uncer-
tain demand which is not uniformly distributed. Specifically, we
consider the truncated normal distribution and the beta distribu-
tion, which are commonly used to represent uncertain demand. Al-
though these distributions do not enable elegant analytic results
on the EVPI, we can show similar propositions on the EVPI with
numeric results. Recall, we examine a firm that is considering a
low price of $50 versus a high price of $100 for a product. The
fixed marginal product cost is $40. At the low price of $50, the
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Fig. 8. The sensitivity of the EVPI to changes in elasticity for the truncated normal
distribution with bounds of 8000 and 12,000 and with mean and standard devia-
tion matching the uniform distribution of the same bounds.
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Fig. 9. The sensitivity of the EVPI to changes in elasticity for beta distributed de-
mands with k =r =5.

firm estimates the average demand is 10,000 units, with a range
from 8000 to 12,000 units, i.e. b = 0.2, using the notation of (3).

First, we examine how EVPI changes with different demand
elasticities when the uncertain demand d; follows a truncated nor-
mal distribution. The bounds of the distribution are the same as
those previously specified. The mean is 10,000, and the standard
deviation is o; = bd;,i =1, 2,for the low and high price. The de-
mand at the low price is independent of demand at the high price.
The results of the EVPI are similar to those obtained with the uni-
form distribution and are shown in Fig. 8. The maximum EVPI is
$6229.35, representing a 6.55% decrease from the EVPI with a uni-
form distribution.

Next, we consider the case when demand follows a beta distri-
bution. Fig. 9 plots the EVPI of uncertain demand when demand
follows a beta distribution with parameters k =r =5 for the low
and high price. In this case, the maximum EVPI shows much more
deviation from the case with uniform demand; the EVPI decreases
by 48.44%. Note, however that the deviation in EVPI from the uni-
form distribution to the Beta distribution depends on the change
in the variance of the demand distributions. If the beta parameters
are k =r =1, then the beta distribution becomes a uniform distri-
bution, and there is no difference in EVPL. As the parameters k and
I increase, the variance of the beta distribution decreases, causing
the EVPI to decrease as well. We also examine the effect of corre-



518 Z. Sun, A.C. Hupman and A.E. Abbas/European Journal of Operational Research 288 (2021) 511-522

lation between demand with a beta distribution and find the same
patterns of behavior as previously described.

7. The expected value of imperfect information

Finally, we consider the scenario where perfect information is
not available but imperfect information can be obtained in which
some uniformly distributed error is present. More precisely, the de-
cision maker can obtain the extra information on the demands as
two random variables q; and ¢,, which are the exact demands plus
two error terms e; and e,, respectively. i.e.

gi=di+e,i=1,2,

where e; and e, are independent and uniformly distributed in
[—a, a]. Therefore, the conditional probability density of g; given
the demands d; and d; is

1

id_a<q<d+a
. . — 2a° “1 =41 =Y
fi(gildr. dz) = {Oa otherwise.

We revisit the independent case in Section 3 but with the
imperfect information g; and ¢,. The expected value of imper-
fect information (EVI) from the observations of q; and g, is the
surplus in the profit as EVOI = E[max{E[(s1 — ¢)d1]q1. q2]. E[(s1 —
0)d11q1. g21}] — max{(s; — ¢)dy, (s2 — ©)da}.

The joint density function of dy, d;, q; and g, is

di—a<gq<di+ad(1-Db)

<d;<di(1+b),i=1,2;
0, otherwise.

1
16a2b2dd,
fldi.d2.q1.q2) =

Therefore, the joint density function of q; and g is

—P@—fs) gy, q,] € [di(1—b) —a,di(1+Db)

16a2b2d; d, : Z
+a] x [d2(1 —b) —a,dy(1+b) +al;
0, otherwise,

fq1.q2) =

where «; = min{d;(1+b),q;+a} and B; = max{d;(1—b),q; — a},
i=1,2. The expected demands given the observations of q; and g,
are E[d;|q1,q2] = %ﬂ' i =1, 2. Therefore, the expected profit after
knowing q; and q; is

E[max{E[(s1 — O)d1]q1, q2], E[ (51 — ©)d1]q1. q2]}]
dy(1+b)+a pd;(1+b)+a (a1 — B1) (s — B2)
[

~ Ja,a-by-a Jd,(1-b)-a 32a2h2d,d,
max {(s; — ¢)(aq + B1). (52 — ©) (a2 + B2)}dq1dqa (15)

The integral in (15) does not have a simple analytic functional
form as it did in the case of perfect information. However, we
can calculate it numerically through software such as Matlab. We
revisit the numeric example of a firm that is considering a low
price of $50 versus a high price of $100 that was first presented
in Section 3. We compare the EVPI and the EVI when the imper-
fect information has different accuracies as a = 100 and 500. The
results are shown in Fig. 10. The EVI follows the same monotonic-
ity as the EVPL. The value of the information increases becomes as
a decreases to 0, where the EVPI is the upper bound of the value
when a = 0. Notably, when a is as large as 100, value of informa-
tion is nearly indistinguishable from EVPI in Fig. 10.

8. Discussion and application

This work is motivated by the need to provide an estimate
of the EVPI on uncertain demand when little prior information
is available. By providing an upper bound for how much a firm
should invest in activities related to estimating demand, the re-
sults of this work provide a useful benchmark early in the process
of determining product price and other decision making processes.

7000
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Fig. 10. The expected value of imperfect information (EVI) for the numeric exam-
ple.

In the case of a firm that is considering two prices for a new prod-
uct and can specify its prior belief of the demand distribution as
either (i) a uniform distribution over one price and the level of de-
mand elasticity, or (ii) a uniform distribution for one price and the
mean demand for a second price, information from which demand
elasticity can be calculated, an exact expression for EVPI can be
found. The firm should not invest more time or resources in clari-
fying the demand distribution than the EVPL In the case of a firm
that believes the demand distribution is more likely to follow a
normal distribution, the firm may identify the uniform distribution
that has the same mean and variance as the normal distribution.
It may then use the EVPI to calculate an upper bound on infor-
mation gathering activities, keeping in mind that the use of the
uniform distribution overestimates the upper bound by a margin
of approximately 6% in the numeric example studied.

Perhaps most usefully, the EVPI expression allows firms to de-
termine situations in which EVPI is zero, emphasizing that firms
can lose value by seeking information in the wrong situation. In
the numeric example, the firm specifies an initial estimate of the
demand distribution as uniform from 8000 to 12,000 units at a
price of $50. If the firm is also considering a price of $100 and es-
timates the mean demand at $100 to be any value less than 2500
units, then the EVPI is zero, and the firm should proceed with its
preferred price. The firm may also conduct sensitivity analyses to
the specification of the initial demand distribution and the mean
demand at the second price to determine how much the initial es-
timates would need to change in order for the EVPI to be nonzero.
Given the similarity of EVPI for the uniform and normal distribu-
tion, the ability to identify scenarios when the firm should proceed
with the pricing decision extend to normally distributed demand
as well.

Additionally, the results elucidate the nuanced relationships be-
tween price elasticity of demand, initial price preferences, and
the correlation between demand at different prices. These patterns
provide additional insight for firms on the basis of these parame-
ters. For firms that initially prefer the low (high) price, the EVPI
approaches zero as elasticity increases (decreases) for the cases
of independent demand and perfectly negatively correlated. In the
special case of perfect positive correlation, the EVPI is zero. This
finding suggests that when a firm believes there is strong corre-
lation for demand at the considered prices, it should carefully ex-
amine whether EVPI is zero. On the other hand, if the firm believes
negative correlation may exist, then EVPI may be higher since EVPI
for a particular initial price preference and elasticity is at a max-
imum in the case of perfect negative correlation. When EVPI is
nonzero, the results highlight the importance of a firm’s treatment
of correlation. Assuming demand is independent when a positive
correlation exists causes much more error in the calculation of
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the EVPI than it does to assume an incorrect correlational struc-
ture, i.e. assume the copula when the Gaussian copula is correct
or vice versa. This result underscores the danger of assuming inde-
pendence for the purpose of simplifying the problem.

Finally, we show that the EVI follows the same monotonic pat-
tern with respect to demand elasticity, illustrating how numeric
results may be used for further study of information gathering ac-
tivities in the case the EVPI, the upper bound on the value of these
activities, is nonzero.

9. Conclusion

This paper examines the EVPI on demand taking into account
the price elasticity of demand and potential correlation between
demand at two different prices. This work provides useful ana-
lytic results for EVPI that inform pricing decisions before a prod-
uct is placed on the market, providing a useful upper bound on
the value of investment in data acquisition and analysis early in
decision making processes when minimal information is available
to specify a prior demand distribution. Patterns of correlation and
EVPI are examined, and numeric analysis of EVPI in the case of
non-uniform demand distributions shows close alignment between
the EVPI for demand that follows a uniform distribution or that fol-
lows a truncated normal distribution with the same first and sec-
ond moments. Numeric results also show how the assumption of
perfect information can be relaxed to quantify how the value of in-
formation decreases with decreases in the accuracy of the informa-
tion that can be obtained. Firms, however, must remain cognizant
of the limitations of this work which include the assumption that
elasticity is constant and the assumption that the cost of producing
the product is deterministic and known. Future research is needed
to consider how relaxing these assumptions of the problem formu-
lation might affect EVPI and how other factors may affect the value
of information in pricing decisions.

Overall, the results underscore the nuanced behavior of EVPL
It is not monotonic with demand elasticity and can have special
properties as elasticity increases or decreases, making the appli-
cation of these results quite useful to fields with highly elastic or
highly inelastic demand. The results provide insight on how de-
mand elasticity and the correlation of demand for a product at dif-
ferent prices affect the EVPI and underscore the importance of in-
cluding the effects of correlation in the calculation of the EVPL
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Appendix

Proof of Proposition 1: We shall prove it by considering four
different cases on M; and m;, i =1, 2:

(i) my < My <mqy < Mj: The risk-neutral decision maker will
always ask for the low selling price s; with or without the
information since the profit at s; is always higher than the
profit at s,. Therefore, EVPI = 0, which satisfies (8) since
(M5 —m;)3 < 0 in this case.

(ii) my <m; <My < My: Recall that the risk-neutral decision
maker will ask for the low selling price s; without the in-
formation. Therefore, the expected value of information

dy(14b)  pdy(1+b)
EVPI = f / F(dy, ds)
di(1-b) Jdy(1-b)

(max{d,(sz — ¢),d1(s1 — )} — di(s1 — ¢))dd,dd,

LUDEO g4

= /; ﬁ (s1-0) f(dq,dy)(dy(s2 —©)
d,(1-b) o)

— d] (S] — C))ddzdd]

dy (1+b) (s,0)
1 $1—C

B 4d,dyb2? Ja,(1-p)
— d] (51 — C))ddzdd] .
We use the transformation u=d;(sy; —¢) —dq(s; —c¢) and v=
dy(sy — ¢) +dq(s; — ¢). Therefore, d; = % and d, = % and
the determinant of their Jacobian matrix is

dy (1+b)
dys, o) (d2(52 =€)
Sp—C

ol e me 1
=\ =R O = .
W Z(SzlfC) 2(51176) 2(51 =0 (52 - 0)
Hence,
1 dy(14b) (s3—¢)~d; (1-b) (s1—¢)  p2d5 (1+b)(s1—C)—u
EVPl = ——— / / ]
4dqd,b? Jo 2d; (1-b) (s1—¢)+u
1 My—my 2M,—u
Judvdu = —— / / udvdu
8d1d2b2 (S] — C) (52 — C) 0 2my+u
1 My —my
= —— / [My — my — uJudv
4d1dyb%(s1 — ) (s, — ¢) Jo
M;—my
_ 1 M2 —mq uz _ uj 2
(My —my)(My —my) 2 31,

. My—my)’
6(My —my) (M —my)
Note that M; —my > My —my >0, since my <my <M, < M.

- (My—my)°®
Hence, EVPI = M, —1m7) (My—3)

satisfies (8).

(iii) my <my < My < My: Recall that the risk-neutral decision
maker will ask for the high selling price s, without the in-
formation. Therefore, the EVPI becomes

dy(1+b)  pdi(1+b)
EVPI = f / £(dy, dy)
d(1-b) Jdi(1-b)

x(max{d,(s; — ¢), d1(s1 — €)} — da(s2 — ¢))ddqdd;
d1(1+b) (s1—¢)

e d, (1+b)
= /- dy(s—¢
d,(1-b) &g

x f(d1, d2)(d1(s1 — ¢) — da(s2 — ©))ddrdd,
1 7@(%5)_(;14) d (1+b)
" 4didp? fdz(kb) 49
x(d1(s1 =€) — da(s2 — €))ddzdd;.
Using the same transformation in case (ii), we have

1 0 2d; (1+b) (sy—¢)+u
L / / Jjudvdu

4d,dob? Jdy(1-b)(sy-0)—dy (14b) (51 —¢) J2d, (1-b) (s—0)—u

1 0 2Mi+u
- — / / udvdu
8d1d2b2 (S] — C) (52 — C) my—M; J2my—u

[M1 — my + uJudv

EVPl = —

1 0
T 4d_]d-2b2(51 — C)(52 — C) /7’;2—1‘/11
0

_ 1 _1\/1]-1’)’12,’12_1.173
 (My —my) (M — my) 2 3

(M; —m;)*
6(M; —mq)(My —my)’

my—M;
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Note,
Hence, EVPI =

M, —mq >M; —my >0, since

My —my)* ;
SO~y (v —i3) satisfies (8).

m1§m2<M1§M2.

(iv) my < My <my < My: The risk-neutral decision maker will
always ask for the high selling price s, with or without the
information since the profit at s, is always higher than the
profit at s;. Therefore, EVPI = 0, which satisfies (8) since
(M; —my)3 <0 in this case.

Proof of Propositions 2: Note that the expectation of the un-
certain demand at the high selling price will increase as the de-
mand elasticity decreases when the expectation of the uncertain
demand at the low selling price is given. So does the expected
profit at the high selling price. Therefore, if a risk neutral deci-
sion maker asks for the high selling price without the information
on the uncertain demands at the two prices, then he/she will keep
asking for the high selling price without the information as the
demand elasticity decreases. Hence,

(M; —m,)’
6(M; —my)(My —my)

EVPI = (16)

Recall that My = dy(1 + b)(s, — ¢), we know that ‘% -1+
2
b)(sy —¢) = M2 Similarly, ™2 = ™2 Therefore,
dy ad, 4

. 3 -
QEVPI MR (My — my) — MM (M —my)’
ddy 6(M; —my)(M; — my)?
_ 3my(M,; — m)* (My — my) + (M — mp) (M — m,)° -0
6d>(M; —my) (My — m;)?

Hence, the EVPI is strictly decreasing with the mean demand at
the high selling price in this case. Note that the mean demand at
the high selling price is strictly increasing as the demand elasticity
decreases. Therefore, the EVPI is strictly decreasing as the demand
elasticity decreases.

Proof of Propositions 3: Note that the expectation of the un-
certain demand at the high selling price will decrease as the de-
mand elasticity increases when the expectation of the uncertain
demand at the low selling price is given. So does the expected
profit at the high selling price. Therefore, if a risk neutral deci-
sion maker asks for the low selling price without the information
on the uncertain demands at the two prices, then he/she will keep
asking for the low selling price without the information as the de-
mand elasticity increases. Hence the EVPI in this case is

(M, —m;)’
6(M; —my) (M, —myp)

EVPI =

(17)

Recall that M, =d,(1+b)(s, — ¢), we know that % =1+
2

amy

b)(sy —¢) = %. Similarly, o0,

= ™2 Therefore,
dy

ad,
ddy 6(M; —my) (M, — my)?
_ 30 —m)’ @My +my)
6dy (M1 — mq)(My — my)

Hence, the EVPI is strictly increasing with the mean demand at
the high selling price in this case. Note that the mean demand at
the high selling price is strictly decreasing as the demand elasticity
increases. Therefore, the EVPI is strictly decreasing as the demand
elasticity increases.

Proof of Proposition 4: If risk neutral decision maker values
the information on the uncertain demands highest when he/she is
indifferent between the high selling price and the low selling price
without the information, then he/she will ask for the high selling

A 3 -
QEVP MMM (Mp —my) — 2 (M —my)’

price as the demand elasticity decreases and ask for the low selling
price as the demand elasticity increases without the information.
Therefore, his/her value of information will decrease whenever the
demand elasticity decreases or increases per to Propositions 2 and
3. Hence, he/she will value the information highest among all pos-
sible demand elasticities in this case.

Proof of Proposition 5: If d, = (%)Ml, then % = (z—f)”, which
is a constant. Hence, (s; — ¢)d; < (s — ¢)d, when (32)" < if—:ﬁ and
(s1 —c)dy = (s, — ¢)d;, otherwise. Recall that the profits for the
high selling price and the low selling price are (s; —c)d; and
(s — €)d,, respectively. Therefore, any type of decision maker will
ask for the high selling price if (i—f)’? < if—:i and ask for the low
selling price otherwise with or without the information on the un-
certain demands at these two prices. Hence, any decision maker
will pay nothing for the information on the uncertain demands.

Proof of Proposition 6: To simplify the notation, we denote the
expected profit at the two prices sq, Sp as p; = (s; — ¢)d; = 0.5M; +
0.5m;, i =1, 2. We shall prove it by considering four different cases
on M; andm;, i =1, 2:

(i) my < My <mq < M;y: The risk-neutral decision maker will
always ask for the low selling price s; with or without the
information since the profit at s; is always higher than the
profit at s,. Therefore, EVPI = 0, which satisfies (9) since
(M2 —my )2 <0.

(ii) my <mq <My < My: Recall that the risk-neutral decision
maker will ask for the low selling price s; without the in-
formation. Therefore,

d,(1+b)
EVPI = / F(dy)
dy (1-b)

x[max{(i—;)n(Zcfl —di)(s2— ). di(s1 — c)}

—dy(sy — c)]dd1

2(My+my)d;
M, +M;
:‘/: 1+My+mq+my f(d1)
d;(1-b)
$1 n -
X [(*) (Zd] — d])(Sz — C) — d] (S] — C)]dd]
$2
2(My+my)dy
[ Mi+Mpmam; 1
) (1-b) 2bd,

d
x [2(1\42 +my) — d.—luwl +My+my +m2)]dd1
1

M;—m t
- dt
/0 2b(M1 + M; +my +m2)
(My —m;)?
2b(My + My +my +my)’

Where t=2(M;+my) — Z.—‘(Ml + M; +mq +my). Note that
1
M; —my > My —my > 0,since my, < my; < My < M. Hence, EVPI =

(My—my) ; :
S5V 0+ ) which satisfies (9).
(ili) my <my < My < M,: Recall that the risk-neutral decision
maker will ask for the high selling price s, without the in-
formation. Therefore,

d; (1+b)
EVPI = / )
d,(1-b)
max { (%)'7 2dy —dy) (52 — ©). di (51 — c)}

_ dd
- (2)(2d - )52 -0 1

X



Z. Sun, A.C. Hupman and A.E. Abbas/European Journal of Operational Research 288 (2021) 511-522 521

di (1+b) 1 s1\" . =
= 2(My-tmy)d, de_ [dl (51 — C) — <g) (2d1 — dl)(SZ — C)]dd1

M +M;+my+m; 1

d, (1+b) 1 d]
= | 20nimpd, 57 |:d-(M1 +M2+m1+m2)—2(M2+m2)]dd1
M;+M;y+my+m;, 1 1

_/M]_mz $ ds— (M; —my)?
“Jo 2b(My + My +mq+my)  2b(My +My +mq +my)’

where t=2(M;+my) — Z_—‘(Ml +M, +my; +my). Note that
1

My —mq >M; —my >0, since my<my;<M; <M, Hence,
My —my)? .
EVPI = m satisfies (9).

(iv) m; < My <my < M,: The risk-neutral decision maker will
always ask for the high selling price s, with or without the
information since the profit at s, is always higher than the
profit at s;. Therefore, EVPI = 0, which satisfies (9) since
(Ml — m2)2 < 0.

Proof of Propositions 7: Note that the expectation of the un-
certain demand at the high selling price will increase as the de-
mand elasticity decreases when the expectation of the uncertain
demand at the low selling price is given. So does the expected
profit at the high selling price. Therefore, if a risk neutral deci-
sion maker asks for the high selling price without the information
on the uncertain demands at the two prices, then he/she will keep
asking for the high selling price without the information as the
demand elasticity decreases. Hence,

(M; —my)?

EVPI = :
2b(M; + M + my + my)

(18)

know  that
Therefore,

Recall that M, =dy(1+b)(s;—c), we

3% =1 +b)(s2—0) = ”;’—22 Similarly, M2 — ™

ody ady &y

3(Mq—my)? 8 (My +My iy imp) (o 2

—_ —_— —m
QEVPI _ __ 0d; ad, (My-m,)
ad, 2b(My+My+my +my)?

(M1+My+my+my)—

_ —2(My —mp)my(My + My + my +my) — (M + my) (M; — m2)2
Zbdz(M] + My +my + m2)2

_ My —mp)[2my(M; + M, +my +mp) + Mz +mp) (My —my)]

= il 0.
2bd, (M + M + my + my)?

Hence, EVPI is strictly decreasing with the mean demand at the
high selling price in this case. Note that the mean demand at the
high selling price is strictly increasing as the demand elasticity de-
creases. Therefore, EVPI is strictly decreasing as the demand elas-
ticity decreases. Also, if My < my, then the risk-neutral decision
maker will always ask for the low selling price s; with or with-
out the information since the profit at s; is always higher than the
profit at s,. Therefore, EVPI=0, which is trivial in Propositions 7.
This will be true in Proposition 8 as well. Therefore, we can as-
sume M, > my in these proofs.

Proof of Propositions 8: Note that the expectation of the un-
certain demand at the high selling price will decrease as the de-
mand elasticity increases when the expectation of the uncertain
demand at the low selling price is given. So does the expected
profit at the high selling price. Therefore, if a risk neutral decision
maker asks for the low selling price without the information on
the uncertain demands at the two prices, he/she will keep asking
for the low selling price without the information as the demand
elasticity increases. Hence the EVPI in this case is

(M —my)*

EVPI =
2b(M; + M + my + my)

(19)

Recall M, = dy (1 +b)(s; —¢). and ‘% =(1+b)(s;—0) = 22.
2 2
amy

Similarly, 732 = %. Therefore,
2 2

2 ,
QEVP MMM (Mg + My +my my) — SN (M, —my)

dd, 2b(My + My +mq + m2)2
_ 2(My — m)My (My + My + my +m;) — (My +mp) (My — my)?
Zbdz(Ml +M2 +my + m2)2

_ (M —mq)[2M (M; + M, + my + my) — (M 4+ myp) (My — my)]
2bdy (M + M + my +my)?

_ Mz —my)(My + m)[(My + Ma + My +m3) — (M — )]

2bdy (M + My + my +my)?

_ (M —my) (M + myp) (My + 2m + m;) -
Zbd_z(M] +M; +my + mz)z

Hence, the EVPI is strictly increasing with the mean demand at
the high selling price in this case. Note that the mean demand at
the high selling price is strictly decreasing as the demand elasticity
increases. Therefore, the EVPI is strictly decreasing as the demand
elasticity increases.

Proof of Proposition 9: If risk neutral decision maker values
the information on the uncertain demands highest when he/she is
indifferent between the high selling price and the low selling price
without the information, then he/she will ask for the high selling
price as the demand elasticity decreases and ask for the low selling
price as the demand elasticity increases without the information.
Therefore, his/her EVPI will decrease whenever the demand elas-
ticity decreases or increases per to Propositions 7 and 8. Hence,
he/she will value the information highest among all possible de-
mand elasticities in this case.

Proof of Proposition 10: Denote p; = (s; — c)d_j as the expected
profit as selling price s;, i = 1, 2, respectively. Then M; = p;(1 + b)
and m; = p;(1-b), i =1, 2, respectively. If My <m, or My <my,
then EVPI_; = EVPIy = 0. Otherwise, if my, < M; < M,, then p; <
py and 0 < My — my < M, — my. Therefore,

0

EVPl, (M; —ms)* 2b(M; + My + my + my)
EVPLy — 6(My —my)(My —m3) (M, —my)>
. b(My + My + mq +my)(M; — m3y)
- 3(My —my)(My — mp)
_ 2b(P1+p2)(p1 (1 +b) —p,(1—b))
12b2p:1p;
_ (P1+p2)(P1(A+b) —p(1-D)) (20)
6bp1p2
Note that

(p1+ p2)(p1(1 +b) — p2(1 - b))
= (1-b)(p1+ p2)(p1 — p2) + 2bp1(p1 + p2)

<2bp1(p1 + p2) < 4bpip,. (21)

Substituting (16) into (14) gives EE‘}/PI;E < % Therefore, 0 <

EVPly < 2EVPL 4.
Similarly, we can prove that if m; < My < My, then 0 < EVPIy <
2EVPI 4.
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