
European Journal of Operational Research 288 (2021) 511–522 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Decision Support 

The value of information for price dependent demand 

Zhengwei Sun 
a , Andrea C. Hupman 

b , ∗, Ali E. Abbas c 

a East China University of Science and Technology, 130 Meilong Rd, Xuhui Qu, Shanghai 200237,China 
b University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63139 USA 
c University of Southern California, 650 Childs Way, Los Angeles, CA 90089, USA 

a r t i c l e i n f o 

Article history: 

Received 4 April 2019 

Accepted 29 May 2020 

Available online 6 June 2020 

Keywords: 

Supply chain management 

Decision analysis 

Value of information 

Price elasticity of demand 

Pricing 

a b s t r a c t 

Predicting demand and determining optimal pricing are essential components of operations management. 

It is often useful to think in terms of the price elasticity of demand when reasoning about the demand 

curve. Firms wishing to invest in demand prediction and information gathering should reason about the 

relationship between the expected value of perfect information (EVPI) on demand and demand elastic- 

ity. Should firms pay more/less for information on demand if elasticity is high/low? Furthermore, when 

considering different product prices, correlation may exist between demand at different prices. Should 

firms pay more/less for information if the correlation between demand at different prices is high or low? 

This paper derives analytic and numeric results to answer these questions. We start with the assumption 

that demand is uncertain and follows a uniformly distributed band around a deterministic demand curve 

where the upper and lower bounds of the demand distribution vary with price. This formulation enables 

a closed form expression for EVPI that provides a useful benchmark. We find nuanced behavior of EVPI 

that depends on both the elasticity and the initial price preference. The EVPI approaches zero as elas- 

ticity increases (decreases) for a firm that initially prefers the low (high) price. Numerical results using 

the truncated normal and beta distributions relax assumptions about the uniform distribution and show 

EVPI is similar when the distribution variances are similar. Finally, we relax the assumption of perfect in- 

formation and show the expected value of imperfect information (EVOI) follows similar patterns as EVPI 

with respect to demand elasticity. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Predicting demand and determining an optimal price are es-

ential components of operations management ( Azadian & Murat,

017 ; Hsieh, Liu & Wang, 2010 ; Özer & Phillips, 2012 ; Sun, Hup-

an, Ritchey & Abbas, 2016 ). Although there is a rich literature on

ricing, challenges remain in practice. McKinsey & Company es-

imates that thirty percent of pricing decisions made by compa-

ies are suboptimal ( Baker, Kiewell & Winkler, 2014 ). Firms spend

esources gathering and analyzing data to better predict demand,

ut it is often unclear how much a firm should invest in this task,

articularly as new data sources and analytical methods become

vailable. In the presence of price-dependent demand, it is also

nclear how properties of elasticity of demand relate to the value

f information on demand, and consequently, how much compa-

ies should invest in information gathering. The expected value of

erfect information (EVPI) is a decision analytic construct that can
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nswer these questions. It places an upper bound on how much

 firm should pay for any information gathering activity about an

ncertainty of interest ( Howard, 1966 ; Howard & Abbas, 2016 ). The

VPI differs from information theoretic measures ( Shannon, 1948 )

hat consider the entropy (or the quantity of information) sepa-

ately from the consequences of a decision. In this paper, we ex-

mine EVPI in pricing decisions with price-dependent demand to

nswer these questions. 

For a risk-neutral decision maker or one with an exponential

tility function, the EVPI is found by comparing the value of a de-

ision situation with and without the information ( Howard, 1966 ;

oward & Abbas, 2016 ). The EVPI does not necessarily increase

ith the level of risk ( Gould, 1974 ; Laffont, 1976 ) or with the risk

version ( Abbas, Bakir, Klutke & Sun, 2013 ; Freixas & Kihlstrom,

984 ; Hilton, 1981 ), but in the presence of certain additional in-

ormation about preferences, the EVPI does relate to risk aversion

 Sun & Abbas, 2014 ). Additionally, when information is available

n two uncertainties, the VOI to resolve both uncertainties can be

reater than the sum of the VOI for each uncertainty individually

 Howard & Abbas, 2016 ; Keisler, 2005 ). 
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The value of information sharing among supply chain partners

has garnered much attention in the operations literature. Much of

the work examines sharing information in the context of inven-

tory problems ( Cachon & Fisher, 20 0 0 ; Chen, 2011 ; Raghunathan,

2001 ). The information facilitates enhanced management of un-

certainty including the bullwhip effect ( Bray & Mendelson, 2012 ;

Chen & Lee, 2009 ; Syntetos, Babai, Boylan, Kolassa & Nikolopou-

los, 2016 ) through strategies that include coordination with part-

ners ( Aviv, 2001 ; Zhou, Dan, Songxuan & Xumei, 2017 ). Conditions

that moderate the value of shared information have also been ex-

amined ( Babai, Boylan, Syntetos & Ali, 2016 ; Ciancimino, Cannella,

Bruccoleri & Framinan, 2012 ; Lee, So & Tang, 20 0 0 ; Teunter, Babai,

Bokhorst & Syntetos, 2018 ), and the benefits of additional infor-

mation have been shown ( Asgari, Nikbakhsh, Hill & Zanjirani Fara-

hani, 2016 ; Chatfield, Kim, Harrison & Hayya, 2004 ). Alternatively,

Perakis and Roels (2008) consider the value of information on as-

sumptions about an unknown demand distribution in an inventory

problem. However, relatively little work exists relating the value

of information to pricing decisions, with a few notable excep-

tions. Iyer and Ye (20 0 0) study promotional pricing and show that

the presence or absence of information can affect the profitability

of promotions. Petruzzi and Dada (1999) consider a newsvendor

problem with pricing for additive and multiplicative demand and

derive extensions that relate the value of information for a deci-

sion maker with constant absolute risk aversion, where the base

demand is a linear function of price and an additive error is intro-

duced to model uncertainty. 

Our formulation differs from other analyses in the operations

management literature in that we consider a pricing decision and

that we consider the relation between the value of perfect demand

information and price elasticity. This approach provides a useful

benchmark for firms early in the process of determining an opti-

mal price. This work relates to some prior results that show the

EVPI is at a maximum at the demand elasticity that makes a firm

indifferent between two possible selling prices ( Zellner & Abbas,

2018 ), a finding that corresponds with other results showing the

EVPI is at a maximum when there is indifference between two al-

ternatives ( Delequié, 2008 ; Mehrez & Stulman, 1982 ). Our work is

distinct from these prior results in that we more broadly charac-

terize the behavior of the EVPI, considering different levels of elas-

ticity and correlation between demand at different prices, differ-

ent distributions of demand, and the value of imperfect informa-

tion. The analytic results also contribute to a better understanding

of the drivers of the value of information in pricing decisions, a

helpful result given the conflicting findings of many value of infor-

mation studies (e.g. Ketzenberg, Rosenzweig, Marucheck & Metters,

2007 ). 

We explicitly consider the relationship between the EVPI and

price elasticity of demand given the importance of demand elastic-

ity in the pricing decision. Price elasticity measures how changes

in price affect changes in demand, and these price changes can

have large impacts on profitability ( Mercer, 1993 ; Pauler & Dick,

2006 ). The importance of price elasticity has motivated a large lit-

erature. For example, Tellies (1988) conducts a meta-analysis of

econometric models in the estimation of the price elasticity of de-

mand and shows the distribution of estimated price elasticities.

George, Mercer and Wilson (1996) shows the price elasticities of

market share for some competing items may not be constant on a

relatively large scale. Casado and Ferrer (2013) model a price elas-

ticity of demand, which is constant but different in three intervals

along with two thresholds, based on the heterogeneous consumers’

utilities. 

Previous work has shown that the value of information on de-

mand can be higher when demand is correlated over time ( Lee et

al., 20 0 0 ). Given this result, our analysis also considers the possi-

bility of correlation between the realized demand at two different
rices, i.e. demand at one price is correlated with demand at an-

ther price. We use probability copulas to represent the relation-

hip between the different demands and numerically identify the

opula parameters that correspond to particular values of the Pear-

on correlation coefficient. This approach allows us to report the

ndings in terms of correlation between the demand at different

rices. 

The analysis also considers how the EVPI is affected by dif-

erent distributions of demand. We derive analytic results for the

aximum entropy case of uniform demand. This distribution is

ppropriate for the earliest stages of analysis, for example, as a

rior before information is gathered, and is consistent with work

n Bayesian approaches to demand estimation ( Hill, 1997 ). How-

ver, in practice demand is often modeled as following a normal

 Axsäter, 2013 ; Strijbosch & Moors, 2005 ) or a beta distribution

 Berk, Gürler & Levine, 2007 , Siblermayr et al. 2017). We therefore

onduct numeric analyses using these distributions. We quantify

he deviations between the analytic and numeric results and show

ow the analytic results can be adjusted based on the demand dis-

ribution to provide readily available estimates of EVPI early in the

ecision making process. Finally, we consider the case of the ex-

ected value of imperfect information (EVI) by adding error terms

o the realized demand and shows that it follows similar behavior

s EVPI with respect to demand elasticity. 

We illustrate the applicability of the results with a motivating

xample of a firm purchasing information on uncertain demand.

his purchase could be in various forms of data collection and/or

nalysis, such as investment in information sharing between sup-

ly chain partners. 

.1. Illustrative example 

A major challenge for retailers is setting the price for a new

roduct ( Ferreira, Lee & Simchi-Levi, 2016 ). This challenge forms

he motivating example for this paper and illustrates the applica-

ility of the results. Consider a retailer that has a fully designed

roduct and the ability manufacture sufficient product on demand,

ut it must determine the price to charge that will optimize value

o the retailer. Demand is stochastic and depends on the selling

rice with higher prices resulting in lower average demand and

ice versa. The retailer may also purchase information about the

ncertain demand through means such as additional marketing

nalysis or hiring a consultant, but it is uncertain how much it

hould invest in this information, if anything at all. This decision

otivates the need to calculate the EVPI to ensure it is nonzero

nd to provide an upper bound on the investment. 

The remainder of this paper is organized as follows. Section 2

escribes the problem formulation. Section 3 presents the results

hen demand at one price point is independent of demand at an-

ther price point. Section 4 presents analytic results for demand

hat is perfectly correlated at different prices, while Section 5

resents general results of correlation through a numeric exam-

le. Section 6 examines the effect of different demand distribu-

ions. Section 7 illustrates how numeric calculations can relax the

ssumption of perfect information. Section 8 discusses implications

f the results, and Section 9 provides concluding remarks. 

. Problem formulation 

We are interested in the value of information on uncertain de-

and for a decision maker who must determine what price to

harge for a new product. The new product has uncertain, stochas-

ic demand that is affected by the price. To model this situation,

he following assumptions are made: 
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Fig. 1. The effect of constant elasticity η on mean demand when a price of $50 is 

believed to result in E[ d i ] = 10,0 0 0 units. 
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Fig. 2. The minimum, maximum, and midpoint of uniform distributions for the nu- 

meric example with η= 1.0 and b = 0.2. 
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i. The retailer considers one of the two given prices as its

selling price, and only considers prices greater than the

marginal production cost. 

ii. The product cost is independent of the selling price and is

deterministic. 

iii. The price elasticity of the mean demand is constant and de-

terministic. 

iv. The mean demand for one price (assume the low price with-

out loss of generality) is given. 

v The firm’s belief of the prior distribution is a uniform band

around the baseline demand curve. 

vi. The widths of the demand distributions are a constant mul-

tiple of their means. 

vii. The decision maker is risk neutral. 

The assumption of constant elasticity of demand is commonly

sed (e.g. McAfee & te Velde, 2008 ). The remaining assumptions

re consistent with a firm that has little information on the de-

and of a new product but operates in a market with well-known

roperties of demand elasticity. If the firm believes demand elas-

icity is constant but has difficulty specifying its value, then the

rm may specify the mean demand at the second price and cal-

ulate the corresponding elasticity that would result in the speci-

ed mean demand. This approach results in specifications that are

quivalent to these assumptions. We also note that this formula-

ion implies no economies of scale and an ability to meet demand

t any level. 

With these assumptions in place, we can calculate the value of

ree perfect information, or clairvoyance, to the decision maker and

nalyze its sensitivity to the price elasticity of demand. We use

ndices i = 1 , 2 to differentiate the two selling prices under con-

ideration. The selling prices are denoted s i , with s 1 < s 2 , and the

ssociated mean demand is denoted d i . Demand elasticity is repre-

ented by the parameter η. Using the elasticity of substitution and

ssuming elasticity is constant, we can write 

 i s 
η
i 

= constant . (1) 

The law of demand specifies a negative elasticity, meaning that

ncreases in price have a negative relationship with demand. With

 1 ), negative elasticity corresponds to η > 0 . 

To better illustrate this representation of price elasticity of de-

and, consider the case of a decision maker who believes the

ean demand for a selling price of $50 is 10,0 0 0 units. If η = 0.3,

hen demand is relatively inelastic with fluctuations in the price

esulting in relatively small changes in the demand. As η becomes

arger, elasticity increases, and changes in the price result in larger

ariations in the demand as shown in Fig. 1 , the results of which

re found by relating d i s 
η
i 

in ( 1 ) to values at different prices. For

xample, if we consider d 1 s 
η
1 
and wish to find the resulting mean

emand at other prices, we rearrange (1) to solve for d i , i.e. d i =
 1 s 

η
1 
/s 

η
i 
. 
The profit to the retailer is exclusively determined by the sell-

ng price and demand if the cost is assumed deterministic and in-

ependent of price. This cost is denoted c. Thus, the profit is 

rofit i = d i ( s i − c) . (2) 

The demand distribution is assumed uniform with mean d̄ i . Fol-

owing assumption vi, we formulate the uniform distributions by

efining a parameter b i , 0 < b i < 1 , to represent the distribution as

 function of d̄ i , the mean. To construct the interval of the uni-

orm distribution, b i times of the mean, d̄ i , is added to and sub-

racted from d̄ i . With b 1 = b 2 = b, the intervals of the distributions

ecome [ ̄d i (1 − b) , d̄ i (1 + b)] . Then the range of each distribution

s 2 b d i , making the marginal density functions 

f ( d i ) = 

{
1 

2 b ̄d i 
, i f d̄ i (1 − b) ≤ d i ≤ d̄ i (1 + b) 

0 , otherwise 
. (3) 

This formulation of the demand distributions is illustrated in

ig. 2 using the same numeric example from Fig. 1 with η = 1 . 0

nd b = 0 . 2 Because the variance of the distribution decreases as

he range decreases, an implication of (1) and (3) is that the vari-

nce decreases as the price increases. Stated alternatively, larger

alues of error are associated with larger quantities demanded,

onsistent with modeling assumptions in the literature ( Leland,

972 ). 

For a risk neutral decision maker, the value of free perfect in-

ormation in this pricing decision is the difference in the expected

alue of the decision with perfect information and the expected

alue without perfect information. Given this problem formulation,

he next two sections examine the EVPI for a risk neutral decision

aker when the demand at one price is independent of the de-

and at a second price and for the case when these two demands

re correlated. 

. EVPI when demand is independent at two prices 

We begin by examining the case when the uncertain demand

 1 at price s 1 is independent of the uncertain demand d 2 at price

 2 . This case of independence is appropriate, for example, when

he firm is introducing a new product and is unable to specify a

elief about a dependence structure for observed demand at dif-

erent prices. In this case, given the uniform marginal distributions

n (3) for the two prices, the joint density function of d 1 and d 2 is

f ( d 1 , d 2 ) = 

⎧ ⎨ 

⎩ 

1 

4 ̄d 1 ̄d 2 b 2 
, ∀ [ d 1 , d 2 ] ∈ 

[
d̄ 1 (1 − b) , d̄ 1 (1 + b) 

]
×
[
d̄ 2 (1 − b) , d̄ 2 (1 + b) 

]
;

0 , otherwise. 

(4) 

The bounds of the distribution give the maximal and minimal

emands, which are d̄ i (1 + b) and d̄ i (1 − b) , respectively. From (2),

he maximal and minimal profit at selling price s i are 

 i = (1 + b) d̄ i ( s i − c) , (5)

 = (1 − b) d̄ ( s − c) , (6)
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where M i denotes maximal profit and m i denotes minimal profit.

The relationship between M i and m i depends on the size of s 1 rel-

ative to s 2 . Note that M 1 ≥ M 2 if and only if d̄ 1 ( s 1 − c) ≥ d̄ 2 ( s 2 − c) ,

i.e. η ≥ log s 2 / s 1 
s 2 −c 
s 1 −c , due to (1), and we can also state m 1 ≥ m 2 in

this case. Similarly, M 1 ≥ m 2 if and only if η ≥ log s 2 / s 1 
( s 2 −c)(1+ b) 
( s 1 −c)(1 −b) 

,

and M 2 ≥ m 1 if and only if η ≥ log s 2 / s 1 
( s 2 −c)(1 −b) 
( s 1 −c)(1+ b) . We summarize

all possible orderings of m 1 , M 1 , m 2 , and M 2 with respect to the

elasticity η as follows: 

(i) If η ≥ log s 2 / s 1 
( s 2 −c)(1+ b) 
( s 1 −c)(1 −b) 

, then m 2 < M 2 ≤ m 1 < M 1 ; 

(ii) If log s 2 / s 1 
s 2 −c 
s 1 −c < η < log s 2 / s 1 

( s 2 −c)(1+ b) 
( s 1 −c)(1 −b) 

, then m 2 < m 1 < M 2 <

M 1 ; 

(iii) If log s 2 / s 1 
( s 2 −c)(1 −b) 
( s 1 −c)(1+ b) < η ≤ log s 2 / s 1 

s 2 −c 
s 1 −c , then m 1 ≤ m 2 < M 1 ≤

M 2 

(iv) If η ≤ log s 2 / s 1 
( s 2 −c)(1+ b) 
( s 1 −c)(1 −b) 

, then m 1 < M 1 ≤ m 2 < M 2 . 

Note that the expected value of the profit at s i is E[ d i ( s i − c)] =
0 . 5 M i + 0 . 5 m i , i = 1 , 2 . A risk-neutral decision maker will ask for

the low price s 1 in cases (i) and (ii) and the high price s 2 in

cases (iii) and (iv) without the additional information. Next we

consider the EVPI on the uncertain demands d 1 and d 2 . In par-

ticular, we assume that the decision maker can observe the un-

certain demands d 1 and d 2 before determining whether to set the

selling price as s 1 or s 2 . Then he/she will choose the low price

s 1 if the profit at the low price is higher than the profit at the

high price, i.e. d 1 ( s 1 − c) > d 2 ( s 2 − c) . He/she will choose the high

price s 2 if the profit at the high price is higher than the profit

at the low price, i.e. d 2 ( s 2 − c) > d 1 ( s 1 − c) . Therefore, the profit

with the perfect information on the uncertain demands d 1 and d 2 
is max { d 1 ( s 1 − c) , d 2 ( s 2 − c) } and the expected information is 

EV P I = E [ max { d 1 ( s 1 − c) , d 2 ( s 2 − c) } ] 
− max { E [ d 1 ( s 1 − c) ] , E [ d 2 ( s 2 − c) ] } . (7)

Proposition 1. The expected value of perfect information on the un-

certain demands d 1 and d 2 is 

EV P I = 

1 

6( M 1 − m 1 )( M 2 − m 2 ) 

×max 
{
0 , min 

{
( M 1 − m 2 ) 

3 
, ( M 2 − m 1 ) 

3 
}}

. (8)

The proof to Proposition 1 is in the Appendix. 

This result enables firms to calculate the EVPI between two sell-

ing prices by specifying only η and the minimal and maximal de-

mand at one price, simplifying the tasks of specifying demand dis-

tributions and of calculating the value of information. Using this

approach, the firm can use the EVPI to determine whether the

investment of time and resources on additional analysis is value-

adding to the firm. This result also facilitates further analyses such

as examining the sensitivity of the EVPI to the specified parame-

ters. 

Proposition 2. If a risk neutral decision maker asks for the low price

without the perfect information on the uncertain demands, then the

expected value of the perfect information on the uncertain demands

is strictly decreasing to zero as the demand elasticity increases. 

Heuristically speaking, if the firm prefers the low price with-

out the information on the uncertain demands, then the infor-

mation is valuable if and only if it indicates the high price will

lead to more profit than the low price, inducing a change in the

pricing decision. However, the mean demand of the high price

decreases as the demand elasticity increases. Therefore, the EVPI

also decreases as the demand elasticity increases. In particular, re-
all that if η ≥ log s 2 / s 1 
( s 2 −c)(1+ b) 
( s 1 −c)(1 −b) 

, then m 2 < M 2 ≤ m 1 < M 1 . Hence,

rofit from the high price is always smaller than the profit from

he low price, and the firm will not switch to the high price even

f the uncertain demand at the high price achieves its maximum

nd the uncertain demand at the low price achieves its minimum

imultaneously. 

roposition 3. If a risk neutral decision maker asks for the high price

ithout the perfect information on the uncertain demands, then the

xpected value of the perfect information on the uncertain demands

s strictly decreasing to zero as the demand elasticity decreases. 

Again consider the heuristic logic. If the firm prefers the high

rice without the information on the uncertain demands, then the

nformation is valuable if and only if it indicates the low price will

ead to more profit than the high price, inducing a change in the

ricing decision. However, the mean demand of the high price in-

reases as the demand elasticity decreases. Therefore, the EVPI also

ecreases as the demand elasticity decreases. In particular, recall

hat if η ≤ log 1+ h 
( s 2 −c)(1+ b) 
( s 1 −c)(1 −b) 

, then m 1 < M 1 ≤ m 2 < M 2 . Hence, the

rofit from the high price is always larger than the profit from the

ow price, and the firm will not switch to the low price even if the

ncertain demand at the low price achieves its maximum and the

ncertain demand at the high price achieves its minimum simul-

aneously. 

Proofs of Propositions 2 and 3 are straightforward by checking

he sign of the partial derivative of EVPI with respect to d̄ 2 and are

ncluded in the Appendix. 

Propositions 2 and 3 describe conditions in which a firm should

ot risk losing value by investing in information about the demand

ncertainty. If the lower price is preferred and the product has

ighly elastic demand, or if the higher price is preferred and the

roduct has highly inelastic demand, then investing additional re-

ources to resolve the demand uncertainty risks losing value for

he firm. As EVPI decreases to zero, investment in information on

emand will become increasingly detrimental to the firm. These

onditions also underscore the importance that a firm understands

he market in which it operates. If the firm is unaware of whether

he product has elastic or inelastic demand, then the firm cannot

ntelligently invest in, or abstain from investing in, obtaining addi-

ional information. 

roposition 4. A risk neutral decision maker values the information

n the uncertain demands highest when he/she is indifferent between

he high selling price and the low selling price without the informa-

ion among all possible demand elasticities. 

Proposition 4 is a corollary of Propositions 2 and 3 . 

Proposition 4 is complementary to Propositions 2 and 3. While

he prior results showed the cases in which EVPI decreases to

ero, Proposition 4 highlights when EVPI is highest. If the firm has

o strict preference over the two possible selling prices without

he information on the uncertain demands, then the information

s most valuable because it will almost always change the firm’s

reference from indifference to the price with the higher profit.

ropositions 2 , 3 , and 4 show the sensitivity of the EVPI to the

emand elasticity for a risk neutral firm. The following example il-

ustrates the sensitivity analysis on the value of information with

espect to the demand elasticity. 

We consider a numeric example of a firm that is considering a

ow price of $50 versus a high price of $100. The fixed marginal

roduct cost is $40. At the low price, the firm estimates the mean

emand is 10,0 0 0 units, with a range from 80 0 0 to 12,0 0 0 units

i.e. b = 0 . 2 ). Fig. 3 shows the sensitivity analysis of the EVPI to

he demand elasticity. If the demand elasticity is low, i.e. η <

og s 2 / s 1 
s 2 −c 
s 1 −c = 2 . 585 , then the firm will prefer the high price with-

ut the information, and the EVPI will be increasing with demand
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Fig. 3. The sensitivity of the EVPI to changes in elasticity for numeric example with 

b = 0.2, s 1 = 50 , s 2 = 100 , c = 40 , and d 1 = 10 , 0 0 0 . . 
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lasticity following Proposition 3 . Conversely, if the demand elas-

icity is high, i.e. η = 2 . 585 , then the firm will prefer the low price

ithout the information, and the EVPI will be decreasing with de-

and elasticity following Proposition 2 . 

Therefore, the firm will be indifferent between the two prices

ithout the information when η = 2 . 585 , and the EVPI achieves

ts maximum, in this case. Moreover, if the demand elasticity is

ery low, i.e. η ≤ log s 2 / s 1 
( s 2 −c)(1+ b) 
( s 1 −c)(1 −b) 

= 2 , then M 1 ≤ m 2 and the in-

ormation is valueless. Or if the demand elasticity is very high, i.e.

≥ log s 2 / s 1 
( s 2 −c)(1 −b) 
( s 1 −c)(1+ b) = 3 . 17 , then M 2 ≤ m 1 and the information is

lso valueless. 

. EVPI with perfect correlation between demand at two prices 

While the independence of demand at different prices is appro-

riate in some cases, there are also many cases in which relevance

ay exist. For example, it is reasonable that demand for a prod-

ct is related to the success of the product design. If demand is

igh for the product at price s 1 , then it is more likely the prod-

ct design is favorable, and demand is more likely to be high at

rice s 2 as well. The existence of correlation can also be concep-

ualized in terms of epistemic and aleatory uncertainty. Given the

rice elasticity, observing demand at one price reduces epistemic

ncertainty about the product and reduces, but does not eliminate,

ncertainty about demand at another price, implying correlation

etween the demand distributions. 

In this section, we examine EVPI when the demand for the

roduct at price s 1 is relevant to the demand for the product at

rice s 2 . We begin with the special case of perfect correlation and

erive five propositions. The analysis of EVPI with perfect corre-

ation between demand at two different prices provides useful in-

ight to the behavior of EVPI as the correlation increases under var-

ous conditions. We begin with perfect positive correlation. If two

ncertain demands, d 1 and d 2 , at prices s 1 and s 2 , respectively, are

erfectly positively correlated, i.e. ρ = 1 , then d 2 = ( s 1 / s 2 ) 
ηd 1 . 

roposition 5. If d 2 = ( s 1 / s 2 ) 
ηd 1 , then the value of information on

he uncertain demand is zero for any decision maker. 

For positive correlation, the EVPI will approach zero as the cor-

elation increases. This result indicates when the correlation be-

ween demand at different prices is both extremely large and pos-

tive, the firm may not wish to invest in additional information

n the demand. This result follows because with perfect positive

orrelation, additional information about the uncertain demand
oes not result in a change in the pricing decision. If demand

s high at one price, it will also be high at the other price, and

ice versa. Conceptualized another way, perfect positive correlation

eans there is a positive linear relationship between the demands.

ny change in one demand will proportionally change the profits

t both prices in the same way such that there is no change in the

ank of the profits at the prices. 

Next, we consider perfect negative correlation. If two uncertain

emands, d 1 and d 2 , at prices s 1 and s 2 , respectively, are perfectly

egatively correlated, i.e. ρ = −1 , then d 2 = 2 ̄d 2 − ( s 1 / s 2 ) 
ηd 1 . 

roposition 6. If d 2 = ( s 1 / s 2 ) 
η( 2 ̄d 1 − d 1 ) , then the expected value of

nformation on the uncertain demand is 

V P I = 

1 

2 b( M 1 + m 1 + M 2 + m 2 ) 

×max 
{
0 , min 

{
( M 1 − m 2 ) 

2 
, ( M 2 − m 1 ) 

2 
}}

. (9) 

With perfect negative correlation, the EVPI is nonzero if M 1 >

 2 or if M 2 > m 1 , i.e. the profit at one price is not dominant

ver the profit at the other price. The EVPI can be positive in this

ase because the firm’s decision on the pricing may change based

n the information obtained. For example, the firm may choose a

rice, and the information may indicate the demand at this price is

ery lower. For perfect negative correlation, this indication means

hat the demand at another price is so high that its profits will be

igher than profit at the chosen price. Thus, the firm will change

ts decision and realize more profit due to the information. 

Further investigation of negatively correlated demand results in

he following propositions. 

roposition 7. Assume that the uncertain demands at two selling

rices are perfectly negatively correlated. If a risk neutral decision

aker asks for the high selling price without the perfect information

n the uncertain demands, then the expected value of the perfect in-

ormation on the uncertain demands is strictly decreasing to zero as

he demand elasticity decreases. 

roposition 8. Assume that the uncertain demands at two selling

rices are perfectly negatively correlated. If a risk neutral decision

aker asks for the low selling price without the perfect information

n the uncertain demands, then the expected value of the perfect in-

ormation on the uncertain demands is strictly decreasing to zero as

he demand elasticity increases. 

Propositions 7 and 8 show two different sets of conditions un-

er which the EVPI decreases to zero. These results again un-

erscore the importance of a firm understanding the market in

hich it operates and the characteristics of demand for its product.

ven perfect negative correlation that results in the largest change

n relative value of alternatives cannot guarantee a positive EVPI.

hese results also highlight the complexities of working with the

VPI. Its behavior in this case is dependent on the interaction of

wo parameters; it cannot be summarized with a simple relation-

hip with a single parameter. 

roposition 9. Assume that the uncertain demands at two sell-

ng prices are perfectly negatively correlated. A risk neutral decision

aker values the information on the uncertain demands highest when

e/she is indifferent between the high selling price and the low selling

rice without the information among all possible demand elasticities. 

Proposition 9 complements the previous propositions which re-

uire some knowledge of the demand elasticity to be applied. If

his preliminary information is unknown, it is reasonable that ad-

itional information on the demand would be beneficial, a line of

easoning supported by Proposition 9 . 
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Fig. 4. EVPI for the numeric example with a Gaussian probability copula to repre- 

sent correlation. 

Fig. 5. EVPI for the numeric example with a Frank probability copula to represent 

correlation. 
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Finally, we consider a comparison of the EVPI in the cases of

perfect positive correlation ( EV P I 1 ) , independence ( EV P I 0 ) , and

perfect negative correlation ( EV P I −1 ) . 

Proposition 10. 0 = EV P I 1 ≤ EV P I 0 ≤ (2 / 3) EV P I −1 , where the strict

inequality holds if and only if EV P I 0 > 0 . 

Proposition 10 shows how the EVPI increases as the correlation

between demand at two price points decreases from + 1 to 0 to

−1, indicating an inverse relationship between correlation and the

EVPI. 

5. EVPI with general correlation between demand at two prices

Next we consider the general case where the correlation coef-

ficient is any value between −1 and 1. We use probability copu-

las to represent the joint distributions with correlation, specifically

relying on the Gaussian and the Frank copulas. A probability cop-

ula provides a general structure to represent the joint density of

two variables while maintaining the marginal distributions of each

variable ( Nelson, 1998 ; Sklar, 1959 ), enabling analysis with uniform

marginal distributions consistent with the prior analysis. The pa-

rameters of the copulas govern the dependence structure, and the

parameter that corresponds to a particular level of correlation may

be found numerically. More precisely, copula structure requires the

specification of the marginal distribution of the uncertain demand

with the selling price as s i , i = 1 , 2 , 

P i (x ) = 

min 
{
max 

{
x − d̄ i (1 − b) , 0 

}
, 1 
}

2 b ̄d i 
, i = 1 , 2 . (10)

The Gaussian copula with parameter ρ is then formed from the

multivariate Gaussian distributions as 

G ρ( P 1 , P 2 ) = �ρ( �−1 ( P 1 ) , �
−1 ( P 2 )) , (11)

where �ρ is the joint cumulative distribution function of the two-

dimensional normal distribution with standard normal distribu-

tions as its marginal distributions, with the correlation coefficient

ρ, and with �−1 as the inverse function of the standard normal

distribution. Therefore, the joint cumulative distribution function

of the two uncertain demands is 

F (x, y ) = G ρ( P 1 (x ) , P 2 (y )) = �ρ

⎛ 

⎝ 

�−1 

(
min { max { x −d̄ 1 (1 −b) , 0 } , 1 } 

2 b ̄d 1 

)
, 

�−1 

(
min { max { y −d̄ 2 (1 −b) , 0 } , 1 } 

2 b ̄d 2 

)
⎞
⎠

(12)

In particular, if ρ = −1 , then the two uncertain demands d 1 and

d 2 are perfectly negatively correlated. If ρ = 0 , then the two uncer-

tain demands d 1 and d 2 are independent of each other. If ρ = 1 ,

then the two uncertain demands d 1 and d 2 are perfectly positively

correlated. Generally, we can numerically estimate the correspond-

ing coefficient ρfor a given Pearson correlation coefficient such as

−0.5 or 0.5. 

The Frank copula is formed from a closed form generating func-

tion and has a single parameter δ that governs the strength of pref-

erence ( Nelson, 1998 ) as 

F δ( P 1 , P 2 ) = 

{ 

− 1 
δ
ln 

(
1 − ( 1 −e −δP 1 ) ( 1 −e −δP 2 ) 

1 −e −δ

)
, δ � = 0 , 

P 1 P 2 , δ = 0 . 
(13)

Therefore, the joint cumulative distribution function of the two

uncertain demands is 

F (x, y ) = F δ( P 1 (x ) , P 2 (y )) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

− 1 
δ
ln 

(
1 −

(
1 − e 

− δmin { max { x −d̄ 1 (1 −b) , 0 } , 1
2 b ̄d 1 

min { max { x −d̄ 1 (1 −b) , 0 } , 1 } min { max { x −d̄ 2 (1

4 b 2 ̄d 1 ̄d 2 
1 − e 
− δmin { max { x −d̄ 2 (1 −b) , 0 } , 1 } 

2 b ̄d 2 

)
/ 
(
1 − e −δ

))
, δ � = 0 , 

 , 1 } 
, δ = 0 . 

. (14)

In particular, if δ → −∞ , then the two uncertain demands d 1 
nd d 2 are perfectly negatively correlated. If δ = 0 , then the two

ncertain demands d 1 and d 2 are independent of each other. If

→ + ∞ , then the two uncertain demands d 1 and d 2 are perfectly

ositively correlated. Generally, we can numerically estimate the

orresponding coefficient δ for a given Pearson correlation coeffi-

ient such as −0.5 or 0.5. 

In our example, we specify the Pearson correlation coefficient

s −1, −0.5, 0, 0.5 and 1, respectively, and use the corresponding

arameter for the copula. 

We revisit the numeric example of a firm that is considering

 low price of $50 versus a high price of $100. Recall, the fixed

arginal product cost is $40. At the low price of $50, the firm esti-

ates the average demand is 10,0 0 0 units, with a range from 80 0 0

o 12,0 0 0 units (i.e. b = 0 . 2 ). We examine how the EVPI changes

ith different demand elasticities, different values of correlation,

nd different probability copulas to represent the demand distri-

ution. The results are shown in Figs. 4 and 5 for the Gaussian

opula and the Frank copula, respectively. 

The effect of demand elasticity on the EVPI is not monotonic.

or this example, the maximum EVPI occurs when η = 2 . 585 for

ll values of correlation and for both copulas. EVPI then decreases

o zero as the elasticity decreases and increases away from 2.585.

hese results follow from the effect of elasticity on the relative at-

ractiveness of the alternatives. As elasticity increases, average de-

and decreases more quickly with increases in price, until there

s no overlap between [ m 1 , M 1 ] and [ m 2 , M 2 ] , and the dominance

f one alternative reduces the EVPI to zero. On the other hand,
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Fig. 6. The difference in EVPI between the Gaussian and Frank copulas for the nu- 

meric example. 

Fig. 7. The difference in EVPI between ρ = 0 and ρ = 0 . 5 for the Gaussian copula. 
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Fig. 8. The sensitivity of the EVPI to changes in elasticity for the truncated normal 

distribution with bounds of 80 0 0 and 12,0 0 0 and with mean and standard devia- 

tion matching the uniform distribution of the same bounds. 

Fig. 9. The sensitivity of the EVPI to changes in elasticity for beta distributed de- 

mands with k = r = 5 . 
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s elasticity decreases, the average demand becomes insensitive to

rice changes, again reducing the EVPI to zero. 

Next we compare the results obtained with the Gaussian copula

o those obtained with the Frank copula for different values of cor-

elation. The results are shown in Fig. 6 . For the cases of perfect

egative correlation, independence, and perfect positive correla-

ion, the difference is zero because these are all limiting cases that

liminate the effect of correlation. When the correlation is non-

ero and is not perfect, we observe nonlinear behavior in the EVPI.

either copula guarantees a higher or lower EVPI. Importantly, we

nd the magnitude of the differences in EVPI is small relative to

he absolute value of EVPI for either copula. For ρ = −0 . 5 , the

aximum absolute difference is $86.94 and occurs at η = 2 . 61 , re-

ulting in an error of only 1.2% for specifying the incorrect copula.

or ρ = 0 . 5 , the maximum absolute difference is $45.08 and occurs

t η = 2 . 56 , resulting in a maximum error of 1.2% for specifying

he incorrect copula. 

Finally, we examine the effect of assuming independence be-

ween demand at different selling prices when there is actually

ositive correlation by comparing the EVPI results from the Frank

opula with ρ = 0 and ρ = 0 . 5 . The differences are shown in Fig.

 . The maximum difference is 2151.22 and occurs at η = 2 . 585 ,

he same elasticity as the maximum EVPI. Thus, assuming inde-

endence when ρ = 0 . 5 results in an overestimation of EVPI by

2.27%. 

. EVPI for non-uniform demand distributions 

Though uniform distributed uncertain demand shows interest-

ng properties on value of information, it may not be always valid

n practice. Now we relax Assumption V and consider the uncer-

ain demand which is not uniformly distributed. Specifically, we

onsider the truncated normal distribution and the beta distribu-

ion, which are commonly used to represent uncertain demand. Al-

hough these distributions do not enable elegant analytic results

n the EVPI, we can show similar propositions on the EVPI with

umeric results. Recall, we examine a firm that is considering a

ow price of $50 versus a high price of $100 for a product. The

xed marginal product cost is $40. At the low price of $50, the
rm estimates the average demand is 10,0 0 0 units, with a range

rom 80 0 0 to 12,0 0 0 units, i.e. b = 0 . 2 , using the notation of (3). 

First, we examine how EVPI changes with different demand

lasticities when the uncertain demand d i follows a truncated nor-

al distribution. The bounds of the distribution are the same as

hose previously specified. The mean is 10,0 0 0, and the standard

eviation is σi = b d i , i = 1 , 2 , for the low and high price. The de-

and at the low price is independent of demand at the high price.

he results of the EVPI are similar to those obtained with the uni-

orm distribution and are shown in Fig. 8 . The maximum EVPI is

6229.35, representing a 6.55% decrease from the EVPI with a uni-

orm distribution. 

Next, we consider the case when demand follows a beta distri-

ution. Fig. 9 plots the EVPI of uncertain demand when demand

ollows a beta distribution with parameters k = r = 5 for the low

nd high price. In this case, the maximum EVPI shows much more

eviation from the case with uniform demand; the EVPI decreases

y 48.44%. Note, however that the deviation in EVPI from the uni-

orm distribution to the Beta distribution depends on the change

n the variance of the demand distributions. If the beta parameters

re k = r = 1 , then the beta distribution becomes a uniform distri-

ution, and there is no difference in EVPI. As the parameters k and

 increase, the variance of the beta distribution decreases, causing

he EVPI to decrease as well. We also examine the effect of corre-
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Fig. 10. The expected value of imperfect information (EVI) for the numeric exam- 

ple. 
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lation between demand with a beta distribution and find the same

patterns of behavior as previously described. 

7. The expected value of imperfect information 

Finally, we consider the scenario where perfect information is

not available but imperfect information can be obtained in which

some uniformly distributed error is present. More precisely, the de-

cision maker can obtain the extra information on the demands as

two random variables q 1 and q 2 , which are the exact demands plus

two error terms e 1 and e 2 , respectively. i.e. 

q i = d i + e i , i = 1 , 2 , 

where e 1 and e 2 are independent and uniformly distributed in

[ −a, a ] . Therefore, the conditional probability density of q i given

the demands d 1 and d 2 is 

f i ( q i | d 1 , d 2 ) = 

{
1 
2 a 

, d i − a ≤ q i ≤ d i + a 
0 , otherwise. 

We revisit the independent case in Section 3 but with the

imperfect information q 1 and q 2 . The expected value of imper-

fect information (EVI) from the observations of q 1 and q 2 is the

surplus in the profit as E V OI = E [ max { E [( s 1 − c) d 1 | q 1 , q 2 ] , E [( s 1 −
c) d 1 | q 1 , q 2 ] } ] − max { ( s 1 − c) ̄d 1 , ( s 2 − c) ̄d 2 } . 

The joint density function of d 1 , d 2 , q 1 and q 2 is 

f ( d 1 , d 2 , q 1 , q 2 ) = 

⎧ ⎨ 

⎩ 

1 

16 a 2 b 2 ̄d 1 ̄d 2 
, d i − a ≤ q i ≤ d i + a, d̄ i (1 − b) 

≤ d i ≤ d̄ i (1 + b) , i = 1 , 2 ;
0 , otherwise. 

Therefore, the joint density function of q 1 and q 2 is 

f ( q 1 , q 2 ) = 

⎧ ⎨ 

⎩ 

( α1 −β1 )( α2 −β2 ) 

16 a 2 b 2 ̄d 1 ̄d 2 
, ∀ [ q 1 , q 2 ] ∈ [ d̄ 1 (1 − b) − a, d̄ 1 (1 + b)

+ a ] × [ d̄ 2 (1 − b) − a, d̄ 2 (1 + b) + a ] ;
0 , otherwise, 

where αi = min { ̄d i (1 + b) , q i + a } and βi = max { ̄d i (1 − b) , q i − a } ,
i = 1 , 2 . The expected demands given the observations of q 1 and q 2 

are E[ d i | q 1 , q 2 ] = 

αi + βi 
2 , i = 1 , 2 . Therefore, the expected profit after

knowing q 1 and q 2 is 

 [ max { E [ ( s 1 − c) d 1 | q 1 , q 2 ] , E [ ( s 1 − c) d 1 | q 1 , q 2 ] } ] 
= 

∫ d̄ 2 (1+ b)+ a 

d̄ 2 (1 −b) −a 

∫ d̄ 1 (1+ b)+ a 

d̄ 1 (1 −b) −a 

( α1 − β1 )( α2 − β2 ) 

32 a 2 b 2 d̄ 1 d̄ 2 

max { ( s 1 − c)( α1 + β1 ) , ( s 2 − c)( α2 + β2 ) } d q 1 d q 2 (15)

The integral in ( 15 ) does not have a simple analytic functional

form as it did in the case of perfect information. However, we

can calculate it numerically through software such as Matlab. We

revisit the numeric example of a firm that is considering a low

price of $50 versus a high price of $100 that was first presented

in Section 3 . We compare the EVPI and the EVI when the imper-

fect information has different accuracies as a = 100 and 500. The

results are shown in Fig. 10 . The EVI follows the same monotonic-

ity as the EVPI. The value of the information increases becomes as

a decreases to 0, where the EVPI is the upper bound of the value

when a = 0 . Notably, when a is as large as 100, value of informa-

tion is nearly indistinguishable from EVPI in Fig. 10 . 

8. Discussion and application 

This work is motivated by the need to provide an estimate

of the EVPI on uncertain demand when little prior information

is available. By providing an upper bound for how much a firm

should invest in activities related to estimating demand, the re-

sults of this work provide a useful benchmark early in the process

of determining product price and other decision making processes.
n the case of a firm that is considering two prices for a new prod-

ct and can specify its prior belief of the demand distribution as

ither (i) a uniform distribution over one price and the level of de-

and elasticity, or (ii) a uniform distribution for one price and the

ean demand for a second price, information from which demand

lasticity can be calculated, an exact expression for EVPI can be

ound. The firm should not invest more time or resources in clari-

ying the demand distribution than the EVPI. In the case of a firm

hat believes the demand distribution is more likely to follow a

ormal distribution, the firm may identify the uniform distribution

hat has the same mean and variance as the normal distribution.

t may then use the EVPI to calculate an upper bound on infor-

ation gathering activities, keeping in mind that the use of the

niform distribution overestimates the upper bound by a margin

f approximately 6% in the numeric example studied. 

Perhaps most usefully, the EVPI expression allows firms to de-

ermine situations in which EVPI is zero, emphasizing that firms

an lose value by seeking information in the wrong situation. In

he numeric example, the firm specifies an initial estimate of the

emand distribution as uniform from 80 0 0 to 12,0 0 0 units at a

rice of $50. If the firm is also considering a price of $100 and es-

imates the mean demand at $100 to be any value less than 2500

nits, then the EVPI is zero, and the firm should proceed with its

referred price. The firm may also conduct sensitivity analyses to

he specification of the initial demand distribution and the mean

emand at the second price to determine how much the initial es-

imates would need to change in order for the EVPI to be nonzero.

iven the similarity of EVPI for the uniform and normal distribu-

ion, the ability to identify scenarios when the firm should proceed

ith the pricing decision extend to normally distributed demand

s well. 

Additionally, the results elucidate the nuanced relationships be-

ween price elasticity of demand, initial price preferences, and

he correlation between demand at different prices. These patterns

rovide additional insight for firms on the basis of these parame-

ers. For firms that initially prefer the low (high) price, the EVPI

pproaches zero as elasticity increases (decreases) for the cases

f independent demand and perfectly negatively correlated. In the

pecial case of perfect positive correlation, the EVPI is zero. This

nding suggests that when a firm believes there is strong corre-

ation for demand at the considered prices, it should carefully ex-

mine whether EVPI is zero. On the other hand, if the firm believes

egative correlation may exist, then EVPI may be higher since EVPI

or a particular initial price preference and elasticity is at a max-

mum in the case of perfect negative correlation. When EVPI is

onzero, the results highlight the importance of a firm’s treatment

f correlation. Assuming demand is independent when a positive

orrelation exists causes much more error in the calculation of
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he EVPI than it does to assume an incorrect correlational struc-

ure, i.e. assume the copula when the Gaussian copula is correct

r vice versa. This result underscores the danger of assuming inde-

endence for the purpose of simplifying the problem. 

Finally, we show that the EVI follows the same monotonic pat-

ern with respect to demand elasticity, illustrating how numeric

esults may be used for further study of information gathering ac-

ivities in the case the EVPI, the upper bound on the value of these

ctivities, is nonzero. 

. Conclusion 

This paper examines the EVPI on demand taking into account

he price elasticity of demand and potential correlation between

emand at two different prices. This work provides useful ana-

ytic results for EVPI that inform pricing decisions before a prod-

ct is placed on the market, providing a useful upper bound on

he value of investment in data acquisition and analysis early in

ecision making processes when minimal information is available

o specify a prior demand distribution. Patterns of correlation and

VPI are examined, and numeric analysis of EVPI in the case of

on-uniform demand distributions shows close alignment between

he EVPI for demand that follows a uniform distribution or that fol-

ows a truncated normal distribution with the same first and sec-

nd moments. Numeric results also show how the assumption of

erfect information can be relaxed to quantify how the value of in-

ormation decreases with decreases in the accuracy of the informa-

ion that can be obtained. Firms, however, must remain cognizant

f the limitations of this work which include the assumption that

lasticity is constant and the assumption that the cost of producing

he product is deterministic and known. Future research is needed

o consider how relaxing these assumptions of the problem formu-

ation might affect EVPI and how other factors may affect the value

f information in pricing decisions. 

Overall, the results underscore the nuanced behavior of EVPI.

t is not monotonic with demand elasticity and can have special

roperties as elasticity increases or decreases, making the appli-

ation of these results quite useful to fields with highly elastic or

ighly inelastic demand. The results provide insight on how de-

and elasticity and the correlation of demand for a product at dif-

erent prices affect the EVPI and underscore the importance of in-

luding the effects of correlation in the calculation of the EVPI. 
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ppendix 

Proof of Proposition 1: We shall prove it by considering four

ifferent cases on M i and m i , i = 1 , 2 : 

(i) m 2 < M 2 < m 1 < M 1 : The risk-neutral decision maker will

always ask for the low selling price s 1 with or without the

information since the profit at s 1 is always higher than the

profit at s 2 . Therefore, EV P I = 0 , which satisfies (8) since

( M 2 − m 1 ) 
3 < 0 in this case. 

(ii) m 2 < m 1 ≤ M 2 < M 1 : Recall that the risk-neutral decision

maker will ask for the low selling price s 1 without the in-

formation. Therefore, the expected value of information 

EV P I = 

∫ d̄ 1 (1+ b) 

d̄ 1 (1 −b) 

∫ d̄ 2 (1+ b) 

d̄ 2 (1 −b) 
f ( d 1 , d 2 ) 

( max { d 2 ( s 2 − c) , d 1 ( s 1 − c) } − d 1 ( s 1 − c)) d d 2 d d 1 
= 

∫ d̄ 2 (1+ b)( s 2 −c) 
s 1 −c 

d̄ 1 (1 −b) 

∫ d̄ 2 (1+ b) 
d 1 ( s 1 −c) 
s 2 −c 

f ( d 1 , d 2 )( d 2 ( s 2 − c) 

−d 1 ( s 1 − c)) d d 2 d d 1 

= 

1 

4 d̄ 1 d̄ 2 b 2 

∫ d̄ 2 (1+ b)( s 2 −c) 
s 1 −c 

d̄ 1 (1 −b) 

∫ d̄ 2 (1+ b) 
d 1 ( s 1 −c) 
s 2 −c 

( d 2 ( s 2 − c) 

−d 1 ( s 1 − c)) d d 2 d d 1 . 

We use the transformation u = d 2 ( s 2 − c) − d 1 ( s 1 − c) and v =
 2 ( s 2 − c) + d 1 ( s 1 − c) . Therefore, d 1 = 

v −u 
2( s 1 −c) 

and d 2 = 
u + v 

2( s 2 −c) 
, and

he determinant of their Jacobian matrix is 

 = 

∣∣∣∣ ∂ d 1 ∂u 
∂ d 1 
∂v 

∂ d 2 
∂u 

∂ d 2 
∂v 

∣∣∣∣ = 

∣∣∣∣− 1 
2( s 2 −c) 

1 
2( s 1 −c) 

1 
2( s 2 −c) 

1 
2( s 1 −c) 

∣∣∣∣ = − 1 

2( s 1 − c)( s 2 − c) 
. 

Hence, 

EV P I = 

1 

4 d̄ 1 d̄ 2 b 2 

∫ d̄ 2 (1+ b)( s 2 −c) −d̄ 1 (1 −b)( s 1 −c) 

0 

∫ 2 ̄d 2 (1+ b)( s 1 −c) −u 

2 ̄d 1 (1 −b)( s 1 −c)+ u 

 J| ud v d u = 

1 

8 d̄ 1 d̄ 2 b 2 ( s 1 − c)( s 2 − c) 

∫ M 2 −m 1 

0 

∫ 2 M 2 −u 

2 m 1 + u 
ud v d u 

= 

1 

4 d̄ 1 d̄ 2 b 2 ( s 1 − c)( s 2 − c) 

∫ M 2 −m 1 

0 
[ M 2 − m 1 − u ] udv 

= 

1 

( M 1 − m 1 )( M 2 − m 2 ) 

( [
M 2 − m 1 

2 
u 2 − u 3 

3 

]∣∣∣∣
M 2 −m 1 

0 

) 

 

( M 2 − m 1 ) 
3 

6( M 1 − m 1 )( M 2 − m 2 ) 
. 

Note that M 1 − m 2 > M 2 − m 1 ≥ 0 , since m 2 < m 1 < M 2 < M 1 .

ence, EV P I = 

( M 2 −m 1 ) 
3 

6( M 1 −m 1 )( M 2 −m 2 ) 
satisfies ( 8 ). 

(iii) m 1 ≤ m 2 < M 1 ≤ M 2 : Recall that the risk-neutral decision

maker will ask for the high selling price s 2 without the in-

formation. Therefore, the EVPI becomes 

EV P I = 

∫ d̄ 2 (1+ b) 

d̄ 2 (1 −b) 

∫ d̄ 1 (1+ b) 

d̄ 1 (1 −b) 
f ( d 1 , d 2 ) 

×( max { d 2 ( s 2 − c) , d 1 ( s 1 − c) } − d 2 ( s 2 − c)) d d 1 d d 2 

= 

∫ d̄ 1 (1+ b)( s 1 −c) 
s 2 −c 

d̄ 2 (1 −b) 

∫ d̄ 1 (1+ b) 
d 2 ( s 2 −c) 
s 1 −c 

× f ( d 1 , d 2 )( d 1 ( s 1 − c) − d 2 ( s 2 − c)) d d 2 d d 1 

= 

1 

4 d̄ 1 d̄ 2 b 2 

∫ d̄ 1 (1+ b)( s 1 −c) 
s 2 −c 

d̄ 2 (1 −b) 

∫ d̄ 1 (1+ b) 
d 2 ( s 2 −c) 
s 1 −c 

×( d 1 ( s 1 − c) − d 2 ( s 2 − c)) d d 2 d d 1 . 

Using the same transformation in case (ii), we have 

V P I = − 1 

4 d̄ 1 d̄ 2 b 2 

∫ 0 
d̄ 2 (1 −b)( s 2 −c) −d̄ 1 (1+ b)( s 1 −c) 

∫ 2 ̄d 1 (1+ b)( s 1 −c)+ u 

2 ̄d 2 (1 −b)( s 2 −c) −u 

| J| ud v d

= − 1 

8 d̄ 1 d̄ 2 b 2 ( s 1 − c)( s 2 − c) 

∫ 0 
m 2 −M 1 

∫ 2 M 1 + u 

2 m 2 −u 

ud v d u 

= − 1 

4 d̄ 1 d̄ 2 b 2 ( s 1 − c)( s 2 − c) 

∫ 0 
m 2 −M 1 

[ M 1 − m 2 + u ] udv 

= 

1 

( M 1 − m 1 )( M 2 − m 2 ) 

( [
−M 1 − m 2 

2 
u 2 − u 3 

3 

]∣∣∣∣
0 

m 2 −M 1 

) 

= 

( M 1 − m 2 ) 
3 

6( M − m )( M − m ) 
. 
1 1 2 2 
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Note, M 2 − m 1 ≥ M 1 − m 2 > 0 , since m 1 ≤ m 2 < M 1 ≤ M 2 .

Hence, EV P I = 

( M 1 −m 2 ) 
3 

6( M 1 −m 1 )( M 2 −m 2 ) 
satisfies ( 8 ). 

(iv) m 1 < M 1 ≤ m 2 < M 2 : The risk-neutral decision maker will

always ask for the high selling price s 2 with or without the

information since the profit at s 2 is always higher than the

profit at s 1 . Therefore, EV P I = 0 , which satisfies (8) since

( M 1 − m 2 ) 
3 ≤ 0 in this case. 

Proof of Propositions 2: Note that the expectation of the un-

certain demand at the high selling price will increase as the de-

mand elasticity decreases when the expectation of the uncertain

demand at the low selling price is given. So does the expected

profit at the high selling price. Therefore, if a risk neutral deci-

sion maker asks for the high selling price without the information

on the uncertain demands at the two prices, then he/she will keep

asking for the high selling price without the information as the

demand elasticity decreases. Hence, 

EV P I = 

( M 1 − m 2 ) 
3 

6( M 1 − m 1 )( M 2 − m 2 ) 
(16)

Recall that M 2 = d 2 (1 + b)( s 2 − c) , we know that 
∂ M 2 

∂ ̄d 2 
= (1 +

b)( s 2 − c) = 

M 2 

d̄ 2 
. Similarly, 

∂ m 2 

∂ ̄d 2 
= 

m 2 

d̄ 2 
. Therefore, 

∂EV P I 

∂ d̄ 2 
= 

∂ ( M 1 −m 2 ) 
3 

∂ ̄d 2 
( M 2 − m 2 ) − ∂( M 2 −m 2 ) 

∂ ̄d 2 
( M 1 − m 2 ) 

3 

6( M 1 − m 1 ) ( M 2 − m 2 ) 
2 

= −3 m 2 ( M 1 − m 2 ) 
2 
( M 2 − m 2 ) + ( M 2 − m 2 ) ( M 1 − m 2 ) 

3 

6 d̄ 2 ( M 1 − m 1 ) ( M 2 − m 2 ) 
2 

< 0 . 

Hence, the EVPI is strictly decreasing with the mean demand at

the high selling price in this case. Note that the mean demand at

the high selling price is strictly increasing as the demand elasticity

decreases. Therefore, the EVPI is strictly decreasing as the demand

elasticity decreases. 

Proof of Propositions 3: Note that the expectation of the un-

certain demand at the high selling price will decrease as the de-

mand elasticity increases when the expectation of the uncertain

demand at the low selling price is given. So does the expected

profit at the high selling price. Therefore, if a risk neutral deci-

sion maker asks for the low selling price without the information

on the uncertain demands at the two prices, then he/she will keep

asking for the low selling price without the information as the de-

mand elasticity increases. Hence the EVPI in this case is 

EV P I = 

( M 2 − m 1 ) 
3 

6( M 1 − m 1 )( M 2 − m 2 ) 
(17)

Recall that M 2 = d 2 (1 + b)( s 2 − c) , we know that 
∂ M 2 

∂ ̄d 2 
= (1 +

b)( s 2 − c) = 

M 2 

d̄ 2 
. Similarly, 

∂ m 2 

∂ ̄d 2 
= 

m 2 

d̄ 2 
. Therefore, 

∂EV P I 

∂ d̄ 2 
= 

∂ ( M 2 −m 1 ) 
3 

∂ ̄d 2 
( M 2 − m 2 ) − ∂( M 2 −m 2 ) 

∂ ̄d 2 
( M 2 − m 1 ) 

3 

6( M 1 − m 1 ) ( M 2 − m 2 ) 
2 

= 

3 ( M 2 − m 1 ) 
2 
(2 M 2 + m 1 ) 

6 d̄ 2 ( M 1 − m 1 )( M 2 − m 2 ) 
> 0 

Hence, the EVPI is strictly increasing with the mean demand at

the high selling price in this case. Note that the mean demand at

the high selling price is strictly decreasing as the demand elasticity

increases. Therefore, the EVPI is strictly decreasing as the demand

elasticity increases. 

Proof of Proposition 4: If risk neutral decision maker values

the information on the uncertain demands highest when he/she is

indifferent between the high selling price and the low selling price

without the information, then he/she will ask for the high selling
rice as the demand elasticity decreases and ask for the low selling

rice as the demand elasticity increases without the information.

herefore, his/her value of information will decrease whenever the

emand elasticity decreases or increases per to Propositions 2 and

. Hence, he/she will value the information highest among all pos-

ible demand elasticities in this case. 

Proof of Proposition 5: If d 2 = ( 
s 1 
s 2 

) ηd 1 , then 
d 1 
d 2 

= ( 
s 2 
s 1 

) η , which

s a constant. Hence, ( s 1 − c) d 1 < ( s 2 − c) d 2 when ( 
s 2 
s 1 

) η < 

s 2 −c 
s 1 −c and

( s 1 − c) d 1 ≥ ( s 2 − c) d 2 , otherwise. Recall that the profits for the

igh selling price and the low selling price are ( s 1 − c) d 1 and

( s 2 − c) d 2 , respectively. Therefore, any type of decision maker will

sk for the high selling price if ( 
s 2 
s 1 

) η < 

s 2 −c 
s 1 −c and ask for the low

elling price otherwise with or without the information on the un-

ertain demands at these two prices. Hence, any decision maker

ill pay nothing for the information on the uncertain demands. 

Proof of Proposition 6: To simplify the notation, we denote the

xpected profit at the two prices s 1 , s 2 as p i = ( s i − c) ̄d i = 0 . 5 M i +
 . 5 m i , i = 1 , 2 . We shall prove it by considering four different cases

n M i and m i , i = 1 , 2 : 

(i) m 2 < M 2 < m 1 < M 1 : The risk-neutral decision maker will

always ask for the low selling price s 1 with or without the

information since the profit at s 1 is always higher than the

profit at s 2 . Therefore, EV P I = 0 , which satisfies (9) since

( M 2 − m 1 ) 
2 < 0 . 

(ii) m 2 < m 1 ≤ M 2 < M 1 : Recall that the risk-neutral decision

maker will ask for the low selling price s 1 without the in-

formation. Therefore, 

EV P I = 

∫ d̄ 1 (1+ b) 

d̄ 1 (1 −b) 
f ( d 1 ) 

×
[ 
max 

{ (
s 1 
s 2 

)η(
2 d̄ 1 − d 1 

)
( s 2 − c) , d 1 ( s 1 − c) 

} 
−d 1 ( s 1 − c) 

] 
d d 1 

= 

∫ 2( M 2 + m 2 ) ̄d 1 
M 1 + M 2 + m 1 + m 2 

d̄ 1 (1 −b) 
f ( d 1 ) 

×
[ (

s 1 
s 2 

)η(
2 d̄ 1 − d 1 

)
( s 2 − c) − d 1 ( s 1 − c) 

] 
d d 1 

= 

∫ 2( M 2 + m 2 ) ̄d 1 
M 1 + M 2 + m 1 + m 2 

d̄ 1 (1 −b) 

1 

2 b ̄d 1 

×
[
2( M 2 + m 2 ) − d 1 

d̄ 1 
( M 1 + M 2 + m 1 + m 2 ) 

]
d d 1 

= 

∫ M 2 −m 1 

0 

t 

2 b( M 1 + M 2 + m 1 + m 2 ) 
dt 

= 

( M 2 − m 1 ) 
2 

2 b( M 1 + M 2 + m 1 + m 2 ) 
, 

Where t = 2( M 2 + m 2 ) − d 1 
d̄ 1 

( M 1 + M 2 + m 1 + m 2 ) . Note that

 1 − m 2 > M 2 − m 1 ≥ 0 ,since m 2 < m 1 < M 2 < M 1 . Hence, EV P I =
( M 2 −m 1 ) 

2 

2 b( M 1 + M 2 + m 1 + m 2 ) 
, which satisfies (9). 

(iii) m 1 ≤ m 2 < M 1 ≤ M 2 : Recall that the risk-neutral decision

maker will ask for the high selling price s 2 without the in-

formation. Therefore, 

EV P I = 

∫ d̄ 1 (1+ b) 

d̄ 1 (1 −b) 
f ( d 1 ) 

×
[ 

max 

{ (
s 1 
s 2 

)η(
2 d̄ 1 − d 1 

)
( s 2 − c) , d 1 ( s 1 − c) 

} 
−
(
s 1 
s 

)η(
2 d̄ 1 − d 1 

)
( s 2 − c) 

] 

d d 1 
2 
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= 

∫ d̄ 1 (1+ b) 
2( M 2 + m 2 ) ̄d 1 

M 1 + M 2 + m 1 + m 2 

1 

2 b ̄d 1 

[ 
d 1 ( s 1 − c) −

(
s 1 
s 2 

)η(
2 d̄ 1 − d 1 

)
( s 2 − c) 

] 
d d 1

= 

∫ d̄ 1 (1+ b) 
2( M 2 + m 2 ) ̄d 1 

M 1 + M 2 + m 1 + m 2 

1 

2 b ̄d 1 

[
d 1 

d̄ 1 
( M 1 + M 2 + m 1 + m 2 ) −2( M 2 + m 2 ) 

]
d d 1

= 

∫ M 1 −m 2 

0 

s 

2 b( M 1 + M 2 + m 1 + m 2 ) 
ds = 

( M 1 −m 2 ) 
2 

2 b( M 1 + M 2 + m 1 + m 2 ) 
,

here t = 2( M 2 + m 2 ) − d 1 
d̄ 1 

( M 1 + M 2 + m 1 + m 2 ) . Note that

 2 − m 1 > M 1 − m 2 ≥ 0 , since m 1 ≤ m 2 < M 1 ≤ M 2 . Hence,

V P I = 

( M 1 −m 2 ) 
2 

2 b( M 1 + M 2 + m 1 + m 2 ) 
satisfies (9). 

(iv) m 1 < M 1 ≤ m 2 < M 2 : The risk-neutral decision maker will

always ask for the high selling price s 2 with or without the

information since the profit at s 2 is always higher than the

profit at s 1 . Therefore, EV P I = 0 , which satisfies (9) since

( M 1 − m 2 ) 
2 < 0 . 

Proof of Propositions 7: Note that the expectation of the un-

ertain demand at the high selling price will increase as the de-

and elasticity decreases when the expectation of the uncertain

emand at the low selling price is given. So does the expected

rofit at the high selling price. Therefore, if a risk neutral deci-

ion maker asks for the high selling price without the information

n the uncertain demands at the two prices, then he/she will keep

sking for the high selling price without the information as the

emand elasticity decreases. Hence, 

V P I = 

( M 1 − m 2 ) 
2 

2 b( M 1 + M 2 + m 1 + m 2 ) 
. (18)

Recall that M 2 = d 2 (1 + b)( s 2 − c) , we know that
∂ M 2 

∂ ̄d 2 
= (1 + b)( s 2 − c) = 

M 2 

d̄ 2 
. Similarly, 

∂ m 2 

∂ ̄d 2 
= 

m 2 

d̄ 2 
. Therefore,

∂EV PI 
∂ ̄d 2 

= 

∂ ( M 1 −m 2 ) 
2 

∂ ̄d 2 
( M 1 + M 2 + m 1 + m 2 ) −

∂( M 1 + M 2 + m 1 + m 2 ) 
∂ ̄d 2 

( M 1 −m 2 ) 
2 

2 b ( M 1 + M 2 + m 1 + m 2 ) 
2 

 

−2( M 1 − m 2 ) m 2 ( M 1 + M 2 + m 1 + m 2 ) − ( M 2 + m 2 ) ( M 1 − m 2 ) 
2 

2 b ̄d 2 ( M 1 + M 2 + m 1 + m 2 ) 
2 

 − ( M 2 − m 1 ) [ 2 m 2 ( M 1 + M 2 + m 1 + m 2 ) + ( M 2 + m 2 )( M 1 − m 2 ) ] 

2 b ̄d 2 ( M 1 + M 2 + m 1 + m 2 ) 
2 

< 0 .

Hence, EVPI is strictly decreasing with the mean demand at the

igh selling price in this case. Note that the mean demand at the

igh selling price is strictly increasing as the demand elasticity de-

reases. Therefore, EVPI is strictly decreasing as the demand elas-

icity decreases. Also, if M 2 ≤ m 1 , then the risk-neutral decision

aker will always ask for the low selling price s 1 with or with-

ut the information since the profit at s 1 is always higher than the

rofit at s 2 . Therefore, EVPI = 0, which is trivial in Propositions 7.

his will be true in Proposition 8 as well. Therefore, we can as-

ume M 2 > m 1 in these proofs. 

Proof of Propositions 8: Note that the expectation of the un-

ertain demand at the high selling price will decrease as the de-

and elasticity increases when the expectation of the uncertain

emand at the low selling price is given. So does the expected

rofit at the high selling price. Therefore, if a risk neutral decision

aker asks for the low selling price without the information on

he uncertain demands at the two prices, he/she will keep asking

or the low selling price without the information as the demand

lasticity increases. Hence the EVPI in this case is 

V P I = 

( M 2 − m 1 ) 
2 

2 b( M + M + m + m ) 
(19) 
1 2 1 2 
Recall M 2 = d 2 (1 + b)( s 2 − c) , and 
∂ M 2 

∂ ̄d 2 
= (1 + b)( s 2 − c) = 

M 2 

d̄ 2 
.

imilarly, 
∂ m 2 

∂ ̄d 2 
= 

m 2 

d̄ 2 
. Therefore, 

∂EV PI 

∂ d̄ 2 
= 

∂ ( M 2 −m 1 ) 
2 

∂ ̄d 2 
( M 1 + M 2 + m 1 + m 2 ) − ∂( M 1 + M 2 + m 1 + m 2 ) 

∂ ̄d 2 
( M 2 − m 1 ) 

2 

2 b ( M 1 + M 2 + m 1 + m 2 ) 
2 

= 

2( M 2 − m 1 ) M 2 ( M 1 + M 2 + m 1 + m 2 ) − ( M 2 + m 2 ) ( M 2 − m 1 ) 
2 

2 b ̄d 2 ( M 1 + M 2 + m 1 + m 2 ) 
2 

= 

( M 2 − m 1 ) [ 2 M 2 ( M 1 + M 2 + m 1 + m 2 ) −( M 2 + m 2 )( M 2 − m 1 ) ] 

2 b ̄d 2 ( M 1 + M 2 + m 1 + m 2 ) 
2 

> 

( M 2 − m 1 )( M 2 + m 2 ) [ ( M 1 + M 2 + m 1 + m 2 ) − ( M 2 − m 1 ) ] 

2 b ̄d 2 ( M 1 + M 2 + m 1 + m 2 ) 
2 

= 

( M 2 − m 1 )( M 2 + m 2 )( M 1 + 2 m 1 + m 2 ) 

2 b ̄d 2 ( M 1 + M 2 + m 1 + m 2 ) 
2 

> 0 

Hence, the EVPI is strictly increasing with the mean demand at

he high selling price in this case. Note that the mean demand at

he high selling price is strictly decreasing as the demand elasticity

ncreases. Therefore, the EVPI is strictly decreasing as the demand

lasticity increases. 

Proof of Proposition 9: If risk neutral decision maker values

he information on the uncertain demands highest when he/she is

ndifferent between the high selling price and the low selling price

ithout the information, then he/she will ask for the high selling

rice as the demand elasticity decreases and ask for the low selling

rice as the demand elasticity increases without the information.

herefore, his/her EVPI will decrease whenever the demand elas-

icity decreases or increases per to Propositions 7 and 8. Hence,

e/she will value the information highest among all possible de-

and elasticities in this case. 

Proof of Proposition 10: Denote p i = ( s i − c) ̄d i as the expected

rofit as selling price s i , i = 1 , 2 , respectively. Then M i = p i (1 + b)

nd m i = p i (1 − b) , i = 1 , 2 , respectively. If M 1 ≤ m 2 or M 2 ≤ m 1 ,

hen E V P I −1 = E V P I 0 = 0 . Otherwise, if m 2 < M 1 < M 2 , then p 1 <

p 2 and 0 < M 1 − m 2 < M 2 − m 1 . Therefore, 

EV P I 0 
EV P I −1 

= 

( M 1 − m 2 ) 
3 

6( M 1 − m 1 )( M 2 − m 2 ) 
· 2 b( M 1 + M 2 + m 1 + m 2 ) 

( M 2 − m 1 ) 
2 

= 

b( M 1 + M 2 + m 1 + m 2 )( M 1 − m 2 ) 

3( M 1 − m 1 )( M 2 − m 2 ) 

= 

2 b( p 1 + p 2 )( p 1 (1 + b) − p 2 (1 − b)) 

12 b 2 p 1 p 2 

= 

( p 1 + p 2 )( p 1 (1 + b) − p 2 (1 − b)) 

6 b p 1 p 2 
(20) 

Note that 

( p 1 + p 2 )( p 1 (1 + b) − p 2 (1 − b)) 

= (1 − b)( p 1 + p 2 )( p 1 − p 2 ) + 2 b p 1 ( p 1 + p 2 ) 

< 2 b p 1 ( p 1 + p 2 ) < 4 b p 1 p 2 . (21) 

Substituting (16) into (14) gives 
EV P I 0 
EV P I −1 

< 
2 
3 . Therefore, 0 <

 V P I 0 < 
2 
3 E V P I −1 . 

Similarly, we can prove that if m 1 < M 2 < M 1 , then 0 < EV P I 0 <
2 
3 EV P I −1 . 
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