
Discrete Finite-time Stable Attitude Tracking Control of Unmanned
Vehicles on SO(3)

Reza Hamrah, Amit K. Sanyal1, Sasi Prabhakaran Viswanathan2

Abstract— This paper presents a finite-time stable (FTS)
attitude tracking control scheme in discrete time for an un-
manned vehicle. The attitude tracking control scheme guar-
antees discrete-time stability of the feedback system in finite
time. This scheme is developed in discrete time as it is
more convenient for onboard computer implementation and
guarantees stability irrespective of sampling period. Finite-time
stability analysis of the discrete-time tracking control is carried
out using discrete Lyapunov analysis. This tracking control
scheme ensures stable convergence of attitude tracking errors
to the desired trajectory in finite time. The advantages of finite-
time stabilization in discrete time over finite-time stabilization of
a sampled continuous time tracking control system is addressed
in this paper through a numerical comparison. This comparison
is performed using numerical simulations on continuous and
discrete FTS tracking control schemes applied to an unmanned
vehicle model.

I. INTRODUCTION

This paper investigates the problem of autonomous attitude
trajectory tracking of an unmanned vehicle carrying out
three-dimensional (3D) rotation maneuvers. This is an impor-
tant problem in various applications of unmanned vehicles
where remote piloting is difficult or impossible. Autonomous
operations of unmanned vehicles can play an important role
in these applications, which include security, inspection of
civilian infrastructure, agriculture and aquaculture, space and
underwater exploration, wildlife tracking, package delivery
and remote sensing, all of which can benefit from reliable
autonomous operations. Stable and robust autonomous guid-
ance and control is considered a critical part of reliable
operations of unmanned vehicles, particularly for operations
that require safety and reliability in presence of external
disturbances, e.g., those due to wind and weather. Absence of
nonlinear stability and robustness in these situations can lead
to failure and crash of even remotely piloted vehicles. This
work presents a systematic treatment of discrete finite-time
stable control for tracking attitude trajectories of unmanned
vehicles, to address this problem.

Finite-time stable control has the advantage of providing
guaranteed convergence to a desired state (or trajectory) in
finite time, besides being more robust to bounded tempo-
rary and persistent disturbances than asymptotic stability.
Furthermore, persistent disturbances are better rejected by a
finite-time stable system in comparison to an asymptotically
stable system, because the ultimate bound on the disturbance
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that can be tolerated is of larger for convergence to a given
neighborhood of the desired state or state trajectory [1].
Finite-time stable (FTS) control schemes are particularly
effective in applications where there are bounded disturbance
inputs due to unmodeled dynamics [2]. Continuous FTS
control systems have been explored in prior work, e.g.,
[3]–[6]. An almost global finite time stabilization of rigid
body attitude motion to a desired attitude in finite time is
studied in [2], [7]. Same authors designed a finite-time stable
control scheme for simple mechanical systems represented
in generalized coordinates, as reported in [1]. A continuous-
time FTS integrated guidance and feedback tracking control
scheme for pose (position and orientation) tracking of rigid
bodies was reported in [8]–[10], which ensures finite-time
stability of the overall tracking scheme. The continuous
equations of motion were discretized in the form of a Lie
Group Variational Integrator (LGVI) and the continuous time
control scheme was sampled for computer implementation,
by applying the discrete Lagrange-d’Alembert principle.
Prior related research on LGVI discretization of rigid body
dynamics includes [11]–[17].

However, implementing a sampled continuous-time stable
tracking control scheme does not ensure discrete-time sta-
bility of the resulting feedback system. This was shown for
the case of nonlinear observer design for attitude dynam-
ics in some of our prior work [16]–[18]. A discrete-time
stable feedback tracking control scheme was developed in
[19], in which discrete-time control laws obtained guarantee
asymptotic discrete-time stability of pose tracking control
of underactuated vehicles on SE(3). Note that, like the
continuous-time FTS control schemes in [1]- [4], [7]- [10],
the discrete-time FTS control scheme proposed here main-
tains finite time stable convergence to the desired equilibrium
or trajectory, but it does so in discrete time. In addition, this
discrete-time FTS control scheme enables onboard computer
implementation with any discrete-time sampling frequency.
This forms the motivation of this paper: to design a finite-
time stable attitude tracking control scheme in discrete time.
To the best of our knowledge, a finite-time stable attitude
tracking control scheme in discrete time as proposed in this
paper has not been reported in prior literature. A finite-
time stabilization scheme in discrete-time is formulated here
for attitude tracking on the tangent bundle of SO(3), using
discrete-time Lyapunov analysis which leads to the discrete
time control law. The Lyapunov function designed is sum of
a Morse function on SO(3) and a quadratic function of a
vector-valued function of rotational motion tracking errors.
This vector-valued function is constructed such that when
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its value is the zero vector, the rotational tracking errors
converge to zero in finite time. A discrete-time control law is
then obtained, that ensures that this vector converges to the
zero vector in finite time, and therefore the attitude trajectory
tracking errors converge to zero in a finite-time interval.
Thereafter, the stability and performance of this discrete
time FTS scheme is numerically compared with that of a
continuous FTS scheme, and the results are discussed.

This paper is organized as follows. Section II outlines
the general formulation of rigid body attitude dynamics on
SO(3), as well as providing the attitude kinematics and
dynamics model of the vehicle and their discretizations.
Section III deals with the discrete-time Lyapunov framework
and finding discrete-time attitude tracking control law for
FTS attitude tracking control. Numerical simulation results
based on a Lie group variational integrator and the finite-time
stable control laws obtained in discrete time, are presented
in IV. This section also presents a comparison of the sta-
bility performance between the discrete and continuous FTS
schemes, and discusses these results. The concluding section
V provides a summary of results presented, and mentions
related research directions to be pursued in the near future.

II. PROBLEM FORMULATION

A. Coordinate Frame Definition

In order to define the attitude of an unmanned vehicle
modeled as a rigid body, we consider a coordinate frame B
fixed to its body and another coordinate frame I that is fixed
in space and takes the role of an inertial coordinate frame.
Let R ∈ SO(3) denote the orientation (attitude) of the body,
defined as the rotation matrix from frame B to frame I.

B. Attitude Trajectory Generation

The desired attitude trajectory for an unmanned aerial
vehicle (UAV) as a rigid body is assumed to be known a prior.
Such a trajectory is usually generated and available from the
control law for following a position trajectory, by using the
known dynamics model and body-fixed actuator orientations.
The position trajectory control law gives a desired thrust
direction, which is then used to generate a desired attitude
trajectory, as described in [8]. Let J denotes inertia of a rigid
body. The rotational dynamics of the rigid body is given by:

Ṙ = RΩ×, (1)

JΩ̇ = JΩ× Ω + τ. (2)

where Ω is the rotational velocity of the underactuated
vehicle, and τ is the input torque. The cross map:(·)× : R3 →
SO(3) is given by [13]:

x× =

x1

x2

x3

×

=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
C. Tracking errors kinematics and dynamics in discrete time

The attitude tracking error is defined in [13] by:

Q = (Rd)TR. (3)

Taking the time derivative results in:

Q̇ = Qω×, (4)

where ω = Ω − QTΩd is the angular velocity tracking
error. Consider tracking a desired attitude trajectory Rd(t) as
described in [8], with corresponding angular velocity Ω(t), in
a time interval [t0, tf ] ∈ R+ separated into N equal-length
sub-intervals [tk, tk+1] for k = 0, 1, ..., N , with tN = tf and
tk+1−tk = ∆t where ∆t is the time step size. Therefore, one
can express the discretized rotational kinematics and the real
attitude dynamics of an underactuated vehicle in the form of
LGVI presented in [12], [19] as{

Rk+1 = Rk Fk,

J Ωk+1 = FT
k JΩk + uk,

(5)

where uk = ∆tτk is the control input, and Fk ≈
exp(∆TΩ×

k ) ∈ SO(3) guarantees that Rk evolves on SO(3).
Using the discretized rotational kinematics equation given in
(5) and attitude tracking error of (3) in discrete time, one
can write

Qk+1 = (Rdk+1)TRk+1 = (Rdk+1)TRk Fk, (6)

where Rdk+1 = Rdk F
d
k . Then,

Qk+1 = (F dk )T(Rdk)TRk Fk

= (F dk )TQk Fk. (7)

Using the definitions for Fk and F dk given earlier into the
above expression and carrying out some algebraic simplifi-
cations, one obtains

Qk+1 ≈ Qk
[
I + ∆t (Ωk −QT

kΩdk)×
]

= Qk(I +$k
×), (8)

where $k = ∆t ωk, and ωk is the angular velocity tracking
error at time instant tk.

The following section provides a finite-time stable feed-
back control law in discrete time to stabilize the attitude error
dynamics (5).

III. DISCRETE FINITE-TIME STABLE ATTITUDE
TRACKING CONTROL ON TSO(3)

In this section, a finite-time stable attitude tracking control
scheme in discrete time is provided. The following result is
a basic result on finite-time stability and convergence for
discrete-time systems, and it has been reported first in [20],
[21].

Lemma 1: Consider a discrete-time system with inputs
uk ∈ Rm and outputs yk ∈ Rl. Define a corresponding
positive definite (Lyapunov) function V : Rl → R and let
Vk = V (yk). Let α be a constant in the open interval
]0, 1[, η ∈ R+ a constant, and let γk := γ(Vk) where
γ : R+

0 → R+
0 is a positive definite function of Vk. Let

γk satisfy the condition:

γk ≥ η for all Vk ≥ ε, (9)
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for some (possibly small) constant ε ∈ R+. Then, if Vk
satisfies the relation

Vk+1 − Vk ≤ −γkV αk , (10)

the discrete system is (Lyapunov) stable at y = 0 and yk
converges to y = 0 for k > N , where N ∈W is finite.

Proof: The proof of this lemma is given in [20], [21],
and omitted here for brevity.

The following two lemmas are also used to prove the main
result.

Lemma 2: Let x and y be non-negative real numbers and
let p ∈ (1, 2). Then

x(1/p) + y(1/p) ≥ (x+ y)(1/p). (11)

Moreover the above inequality is a strict inequality if both
x and y are non-zero.

Lemma 3: Let K = diag(k1, k2, k3), where k1 > k2 >
k3 ≥ 1. Define

sK(Q) =
3∑
i=1

ki(Q
Tei)× ei, (12)

such that d
dt 〈K, I − Q〉 = ωTsK(Q). Here 〈A,B〉 =

tr(ATB), which makes 〈K, I−Q〉 a Morse function defined
on SO(3). Let S ⊂ SO(3) be a closed subset containing the
identity in its interior, defined by

S =
{
Q ∈ SO(3) : Qii ≥ 0 and QijQji ≤ 0

∀i, j ∈ {1, 2, 3}, i 6= j
}
. (13)

Then for Q ∈ S , we have

sK(Q)T sK(Q) ≥ tr(K −KQ). (14)

Proof: The proof of this lemma is given in [7], and
omitted here for brevity.
The discrete finite-time attitude tracking control scheme and
its proof of stability and domain of convergence are given
as follows.

Theorem 1: Consider the discretized rotational error kine-
matics and the real dynamics of an underactuated vehicle
given in (5), with sK(Qk) as defined in (12). Define

zK(Qk) =
sK(Qk)(

sT
K(Qk)sK(Qk)

)1−1/p
(15)

where p is as defined in Lemma 2, and let kl be a constant
in the interval (0, 1]. Define

ψk(ωk, Qk) = ωk + klzK(Qk). (16)

Then, the discrete-time control law given by

uk = J

([ (ψT
kJψk)1−1/p − Γ

(ψT
kJψk)1−1/p + Γ

](
ωk + klzK(Qk)

)
− klzK(Qk+1) +QT

k+1 Ωdk+1

)
− FT

k JΩk, (17)

stabilizes the rotational error dynamics

ωk+1 =

[
(ψT
kJψk)1−1/p − Γ

(ψT
kJψk)1−1/p + Γ

]
ψk(ωk, Qk)− klzK(Qk+1)

(18)

in finite time.

Proof: Consider ψk(ωk, Qk) = 0 which leads to
ωk = −klzK(Qk), and discretized error kinematics given
in (8) and define the discrete-time Morse-Lyapunov function
Vk = kp 〈I −Qk,K〉 on SO(3) where kp > 1. Then time
difference of this discrete-time Morse-Lyapunov function
along the attitude kinematics is given by

Vk+1 − Vk = kp 〈Qk −Qk+1,K〉
= kp〈−Qk $×

k ,K〉

=
1

2
kp〈$×

k ,KQk −Q
T
k K〉

= kp $
T
k SK(Qk). (19)

Substituting $k = ∆t ωk in (19), one finds

kp $
T
k SK(Qk) = −∆t kp kl zK(Qk)TsK(Qk)

= −kp kl ∆t
(
sK(Qk)TsK(Qk)

)1/p
≤ −kp kl ∆t

(
〈I −Qk,K〉

)1/p
≤ −kl ∆t

(
kp 〈I −Qk,K〉

)1/p
. (20)

where we employed inequality (14) in lemma 3. Therefore,
when ψk = 0, one can conclude that 〈I − Qk,K〉 → 0
in finite time for all initial Qk in the subset S ⊂ SO(3)
defined in Lemma 2, which yields Qk → I in finite time
once Qk ∈ S . Moreover, as ∆Vk is negative definite when
ψk = 0, it keeps decreasing in time and therefore Qk will
reach S in finite time. Therefore, Qk → I in finite time.

The control law is then designed to ensure that ψk → 0
in finite time. Define the Lyapunov function

Vk(ωk, Qk) =
1

2
ψT
k Jψk + kp 〈I −Qk,K〉 . (21)

The time difference of this discrete-time Lyapunov function
can be evaluated as follows:

∆Vk = Vk+1 − Vk =
1

2
(ψk+1 + ψk)TJ(ψk+1 − ψk)

+ kp 〈Qk −Qk+1,K〉 . (22)

One can consider

ψk+1 = Ψ(ωk, Qk)ψk, (23)

where

Ψ(ωk, Qk) =
(ψT
k Jψk)1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

, (24)

and let Γ > 0.
Substituting (24) in (23) gives

(ψk+1 − ψk) = − Γ

(ψT
k Jψk)1−1/p

(ψk+1 + ψk). (25)
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Therefore, one can rewrite (22) as

∆Vk = −Γ

2

(ψk+1 + ψk)TJ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

+ kp ω
T
k SK(Qk). (26)

Note that the first term on the right-hand side of expression
(26) is zero if and only if ψk+1 = −ψk, which is possible if
and only if Ψ = −1 according to (23). From (24), one can
see that Ψ = −1 if and only if ψk = 0. Therefore, from (23)
and (24) we conclude that

−Γ

2

(ψk+1 + ψk)TJ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

= 0 ⇔ ψk = 0.

Therefore, the first term on the right side of expression (26)
can be simplified as follows:

−Γ

2

(ψk+1 + ψk)TJ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

= −ρ(ψk) (ψT
k Jψk)1/p,

(27)

where

ρ(ψk) = ρk = 4Γ
(0.5)1−1/p(ψT

k Jψk)2−2/p(
(ψT
k Jψk)1−1/p + Γ

)2 . (28)

From equations (27) and (28), one can see that the first
term on the right side of expression (26) is monotonously
decreasing if

0 < ρk <
4Γ

21−1/p
for 0 < ψT

k Jψk <∞,

Therefore using (20) and (27), expression (26) is evaluated
as follows:

∆Vk = −ρk(ψT
k Jψk)1/p − kpkl

(
sK(Qk)TsK(Qk)

)1/p
≤ −(ψT

k Jψk)1/p − kl ∆t
(
kp 〈I −Qk,K〉

)1/p
≤ −kl ∆t

(
(ψT
k Jψk)1/p +

(
kp 〈I −Qk,K〉

)1/p)
.

(29)

for (Qk, ωk) ∈ S × R3. Finally, using inequality (11) in
Lemma 2, one obtains

∆Vk ≤ −kl ∆t
(
ψT
k Jψk + kp 〈I −Qk,K〉

)1/p

≤ −kl ∆t V1/p
k , (30)

where kp > 0, and 0 < kl ≤ 1. Therefore, all initial states
of the feedback system that start in the domain of attraction
of the equilibrium (I, 0) with finite value of the Lyapunov
function V , converge to (I, 0) in finite time.

Now, by substituting ψk(ωk, Qk) given in (16) into (23),
one can obtain

ωk+1 =

[
(ψT
k Jψk)1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

]
ψk(ωk, Qk)− klzK(Qk+1).

(31)

From the discretized dynamics equation of rotational motion
obtained in the form of LGVI given in (5) where

Ωk+1 = ωk+1 +QT
k+1 Ωdk+1, (32)

one can find the discrete-time control law uk that guarantees
the stability of the attitude tracking control in a finite time,
as follows:

uk = J

([ (ψT
k Jψk)1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

](
ωk + klzK(Qk)

)
− klzK(Qk+1) +QT

k+1 Ωdk+1

)
− FT

k JΩk.

(33)

The following section presents numerical comparison re-
sults obtained by implementing the proposed FTS scheme in
discrete time, and a sampled finite-time continuous scheme
given in [10].

IV. SIMULATION RESULTS

This section presents numerical simulation results for
the FTS attitude tracking control scheme in discrete time.
Also, the performance of the proposed FTS tracking control
scheme in discrete time is compared to a sampled continuous
time FTS tracking scheme presented in [10] . The numerical
simulation results are provided for an UAV quadcopter with
a mass m = 4 kg, for different time periods of T = 5, 25,
and 50s, with different time step sizes of ∆t = 0.01, 0.05,
and 0.1s and the same total number of time steps, using
discrete-time FTS control law obtained in (33), and the
sampled continuous-time control law given as equation (29)
in [10]. The desired attitude (Rd) that is to be tracked by
the proposed attitude tracking control scheme, is generated
using the desired control force vector given by an outer loop
position tracking scheme [8]. A helical desired trajectory
with the following initial conditions is used:

bdk = bd(tk) =
[
0.4 sinπtk 0.6 cosπtk 0.4 tk

]T
,

R0 = I, Ω0 =
[
0 0 0

]T
, Ωd0 =

[
0 0 0

]T
.

The gains are selected and tuned after trial and error for FTS
discrete-time attitude tracking scheme as follows:

kl = 0.01, Γ = 0.5,

and for FTS sampled continuous scheme as follows:

LΩ = 3.5 I3×3, kp = 4.5, κ = 0.04,

which provide desirable and similar transient response char-
acteristics of both tracking control schemes when ∆t = 0.01.
The time trajectory of the UAV tracking the desired trajectory
is shown in Fig. 1 and it shows that the trajectory converges
to the desired values in finite time. and remains stable for
all time t > 0.

The results of the numerical simulation for attitude and an-
gular velocity tracking response of the discrete-time control
law obtained in (33) for ∆t = 0.01 and tf = 5s is shown
in Fig.2. These subplots show that the attitude and angular
velocity tracking errors converge to zero in finite time, and
therefore the discrete-time control scheme proposed here is
able to track the desired trajectory in finite time. The attitude
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error function Φ is parameterized as principle rotation angle,
in terms of Q as given by

Φ = cos−1
(1

2

(
tr(Q)− 1

))
(34)

The attitude tracking error Φ is shown that converges in finite
time which indicates that R tracks the desired trajectory
Rd as shown in Fig. 2c. The time plots of the control
input uk in Fig.2d shows that the control effort is within
reasonable bounds and practically achievable for multi-rotor
UAVs. Other simulation results are presented in Fig. 3 to
Fig. 5 in order to compare the performance of the discrete-
time FTS tracking scheme with a sampled continuous FTS
tracking scheme for different values of time step sizes.

Comparing the results of these two schemes as shown in
the plots using a method similar to the one presented in our
previous paper [20], one can find out that the control law
obtained by sampling the FTS continuous control input does
not guarantee the stability of the attitude tracking when the
time step size changes. The results of this comparison are
given in Table I, in which ∆Vmax is denoted as the maximum
positive value of the time difference Vk+1 − Vk as:

∆Vmax = max
[
(Vk+1 − Vk) > 0

]
. (35)

This parameter is to confirm whether the Lyapunov function
Vk increases in value at certain time instants, and whether
that increase is significant or is just an artifact of machine
(float) precision. The value of Vk+1 − Vk is expected to be
negative for a finite-time stable system until it converges to
zero in finite time, which ensures stability of the system in
finite time. On the contrary, a significant increase in the value
of ∆Vmax occurs for the sampled continuous FTS tracking
scheme as time step size increases, whereas ∆Vmax has a
negligible value (to machine precision) when the discrete-
time FTS tracking control scheme is implemented.

V. CONCLUSION

A discrete finite-time stable attitude tracking control
scheme for unmanned vehicles is presented here. This
scheme is based on using a Lyapunov framework for finite-
time stabilization of an attitude tracking control that results
in discrete-time error dynamics in terms of attitude motion
tracking errors. A two-step method is presented to construct
a Lyapunov function that is sum of a Morse-Lyapunov
function and a quadratic vector-valued function in terms
of rotational motion tracking errors. This is followed by
a discrete-time control torque vector that guarantees that
the Lyapunov function converges to zero in finite time, and
therefore the attitude states converge to the desired trajectory
in a finite time interval. Numerical results show that this
discrete-time FTS attitude tracking control scheme is more
reliable for onboard computer implementation when we need
to work with a variety of input data frequencies, comparing
with a sampled continuous FTS scheme. Future work will
look at a discrete-time FTS pose tracking control scheme
for underactuated vehicles on SE(3), and comparison of
this discrete-time stable tracking control scheme with other
sampled continuous time tracking control schemes.
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Fig. 1: Time trajectory of UAV

Tracking Control Scheme ∆t(s) tf (s) ∆Vmax

Discrete-time FTS
0.01 5 1.0991× 10−16

0.05 25 4.0776× 10−25

0.1 50 4.1364× 10−25

Sampled Continuous FTS
0.01 5 2.3153× 10−5

0.05 25 0.3166
0.1 50 1.7888

TABLE I: Stability performance of discrete-time FTS vs. sampled
continuous-time FTS tracking control scheme on SO(3).
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Fig. 2: Rotational motion errors and control law for discrete-
time FTS tracking control scheme for ∆t = 0.01 and tf =
5s.
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Fig. 3: Rotational motion errors for sampled FTS continuous
tracking control scheme for ∆t = 0.01 and tf = 5s.
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Fig. 4: Rotational motion errors for discrete-time FTS track-
ing control scheme for ∆t = 0.05 and tf = 25s.
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Fig. 5: Rotational motion errors for sampled FTS continuous
tracking control scheme for ∆t = 0.05 and tf = 25s.

829


