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Abstract

Developers are always on the lookout for simple solutions to
manage their applications on cloud platforms. Major cloud
providers have already been offering automatic elasticity
management solutions (e.g., AWS Lambda, Azure durable
function) to users. However, many cloud applications are
stateful —while executing, functions need to share their state
with others. Providing elasticity for such stateful functions is
much more challenging, as a deployment/elasticity decision
for a stateful entity can strongly affect others in ways which
are hard to predict without any application knowledge. Exist-
ing solutions either only support stateless applications (e.g.,
AWS Lambda) or only provide limited elasticity management
(e.g., Azure durable function) to stateful applications.

PLASMA (Programmable Elasticity for Stateful Cloud
Computing Applications) is a programming framework for
elastic stateful cloud applications. It includes (1) an elastic-
ity programming language as a second “level” of program-
ming (complementing the main application programming
language) for describing elasticity behavior, and (2) a novel
semantics-aware elasticity management runtime that tracks
program execution and acts upon application features as
suggested by elasticity behavior. We have implemented 10+
applications with PLASMA. Extensive evaluation on Amazon
AWS shows that PLASMA significantly improves their effi-
ciency, e.g., achieving same performance as a vanilla setup
with 25% fewer resources, or improving performance by 40%
compared to the default setup.
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1 Introduction

Elasticity is essential to the “pay-as-you-go” cloud comput-
ing model [32], allowing cloud applications to automatically

scale their demand for cloud resources in/out in adaptation
to workload changes. Elasticity maximizes the use of re-
sources and thus reduces infrastructure costs, meanwhile
maintaining performance and service quality of cloud appli-
cations. Developers can program elastic cloud applications
as a set of functions executing independently in response
to specific events (e.g., AWS Lambda and Azure Durable
Function). Such functions, usually encapsulated in VMs/con-
tainers, can be automatically scaled in/out on corresponding
platforms [11, 22, 23, 39, 45], freeing developers and admin-
istrators from server management.

This kind of solution provides developers with ideal auto-
matic elasticity management. However, existing automatic
elasticity management provide better support to applications
consisting of stateless functions, such as routines for image
processing [19] or handlers of IoT devices [15]. These pro-
vide a pure transformation from input to output without
external dependencies at execution. When the state of func-
tions is thus limited to internal state, automating elasticity
is relatively straightforward; it can simply focus on plac-
ing a function on a server node with available resources, or
adjusting the number of function instantiations.
However, many cloud applications are stateful, i.e., func-

tions need to share state with each other. Such scenarios are
common across multiple abstraction levels, e.g., metadata
of distributed file systems (one component of an applica-
tion), data access tier of web applications (an entire tier or
layer), microservice applications [33] (multiple loosely cou-
pled components), and massively multi-user online games
(an entire application). Those stateful applications can not be
executed efficiently in state-of-the-art serverless computing
platforms (e.g., AWS Lambda [4]).
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Providing elasticity for generic stateful functions – or
more generally components or (micro-)services – is very
challenging, as an elasticity decision for one stateful compo-
nent depends on not only that component, but also on others
and its interaction with them. Existing programming models
and frameworks enabling automated elasticity [4, 14, 23]
can not capture such stateful scenarios, thus limiting the
scope of the elasticity paradigm. Automating elasticity in
such cases is difficult without any knowledge of applications;
many non-functional requirements are hard if not impossible
to learn just by looking at executions of applications. For
instance one may be tempted to straightforwardly rate low-
frequency component interactions as secondary to others
and thus spread corresponding components across servers.
Even if frequency were straightforwardly correlated with
“importance”, such a placement policy could adversely affect
frequent interactions — of such infrequently interacting com-
ponents — with others. Existing profiling approaches [2, 20]
tracking system-level performance (e.g., server usage) can
not connect low-level performance data to application se-
mantics and trigger appropriate elasticity decisions.

We present PLASMA (Programmable Elasticity for Stateful
Cloud Computing Applications), a novel framework for im-
plementing expressive elastic cloud applications. It extends
an existing actor-based [26] application programming lan-

guage along two dimensions:

Elasticity programming language (EPL). PLASMA adds
a second “level” of programming to the underlying applica-
tion programming language. That is, while actors support
building stateful cloud applications that have horizontal,
scalable relations between stateful components [35, 53, 61],
PLASMA includes a complementary elasticity programming

language (EPL). The EPL allows users to express desired elas-
ticity behavior through simple rules based on high-level appli-
cation semantics exposed to the runtime to help it carry out
fine-grained elasticity management. This is realized without
violating application invariants induced by the actor pro-
gramming model. In this paper we use EPL implementations
for an actor-based language for building stateful distributed
applications, AEON [61], but our concepts are applicable to
others like Microsoft’s Orleans [28] and Scala [56].

Elasticity management runtime (EMR). To guide
PLASMA applications running on cloud platforms in achiev-
ing elasticity, PLASMA involves a novel elasticity manage-

ment runtime (EMR) with two main components. (1) The
elasticity profiling runtime tracks the behavior of actors (e.g.,
location, resource usage) and their interactions (e.g., message
rates), as per the stated EPL elasticity policy. The information
is used in making global elasticity decisions (e.g., co-locating
highly interactive actors, (de-)provisioning resources) that
are acted upon by (2) PLASMA’s elasticity execution run-

time leveraging a two-level architecture to reconcile global
optimization accuracy with scalability.

Graph partition ServerCommunication
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25 ms average latency for DynamoDB write requests and
more than 70 s to write graph vertices, edges, and partitions
from a small 22 MB graph into a DynamoDB table; hence it is
currently impractical to develop stateful applications requir-
ing frequent state load/store (e.g., the distributed PageRank
in § 5.4 needs to update ≈1.2 GB data at each round).

Another approach to obtain an elastic PageRank could be
to directly implement the algorithm using an elastic program-
ming language such as Orleans [53], AEON [61] or Akka [1].
Orleans balances workload by equalizing the number of ac-
tors on each server and by replicating stateless actors as the
workload increases. Orleans also co-locates actors that fre-
quently communicate with one another on the same server to
avoid remote communication. AEON also evenly distributes
actors across a cluster. Akka allows programmers to define
router actors that forward received messages to replicated
routee actors in a certain pattern (e.g., round-robin).
However, none of these languages consider server met-

rics (e.g., CPU usage) for ongoing elasticity management.
They can not therefore properly handle applications such as
PageRank – balanced graph partitioning being a notoriously
difficult task [6, 18, 50, 60]. Consider the example given in
Fig. 1 that provides an intuition of elasticity management
for PageRank applications. In this example, a graph is split
into four partitions. PageRank requires both network (i.e.,
partitions need to exchange data) and CPU (i.e., process-
ing graph partitions) resources. While exact performance
characteristics depend on exact graph partitions, cloud plat-
form, and implementation, simple tests on AWS show that
PageRank can be easily CPU-bound (more details in § 5.4).
Assume partitions are originally evenly distributed across
two servers, as in Orleans, while trying to minimize remote
communication between actors as a secondary objective. But
despite an even split and fair initial placement, a partition
can eventually require much more computation time (Fig. 1a)
to the point where the CPU consumption upper-bound of the
server hosting it is crossed. With PLASMA, a developer can
set CPU consumption bounds (e.g., 60% ≤ load ≤ 80%) to
ensure that a server is neither over- nor underloaded. To al-
leviate the load of a server, PLASMA then migrates actors to
another server to respect the aforementioned CPU consump-
tion bounds (Fig. 1b). While the migration was sufficient at
first, the bottom server becomes the congested one as work-
loads vary, and with no available server to host additional
workload, PLASMA has no choice but to spawn a new server
and migrate actors to that new server (Fig. 1c).

PageRank demonstrates the need for application insights
(e.g., CPU is more important than network in PageRank) for
efficient elasticity management, and for platformmetrics (i.e.,
CPU usage). As we shall show, with custom-fitted elasticity
rules, PLASMA can optimize performance of various applica-
tions and adjust applications’ resources to avoid under- and
overprovisioning. We explore several further applications
benefiting from elasticity management in § 3.3.

Profiling Runtime Profiling Runtime Profiling Runtime

I2

I1

PLASMA Compiler
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performs adjustments when creating actors, and every elas-

ticity (time) period (set by users). Note that the EMR will
not blindly follow rules to conduct elasticity management,
but rather will consider the actual runtime situation (e.g.,
resource limitations, migration overhead) in its decisions.
The EMR does not interfere with the execution of the

original language’s runtime; the EPR only collects runtime
data of actors. In particular PLASMA inherits the fault toler-
ance mechanism from the original runtime and relies on it
to handle failures in the application. Failures in the EMR are
handled by a separate mechanism (presented in § 4).

3 Elasticity Programming Language (EPL)

This section describes how PLASMA’s EPL captures elasticity
behaviors based on high-level application semantics.

3.1 Actor-based Elasticity

Given a distributed actor-based application, elasticity deci-
sions boil down to placing/migrating actors among available
servers for adjusting to workload and variations therein.

Execution features. Numerous features of an actor-based
application’s execution can be used as cues for its perfor-
mance, and to drive actor placement. The features supported
by PLASMA pertain to three categories:
[f-ra] Resource usage of actors (e.g., CPU).
[f-rs] Resource usage of servers (e.g., network).
[f-ia] Interaction between actors (e.g., message rate).

Elasticity rules. Similarly to the above classes of runtime
features, we can classify rules guiding elasticity decisions
based on the above features by the type of reaction (behavior)
they induce on the application execution:

[r-r] Resource elasticity rules correspond to resource fea-
tures, and strive for a better resource usage. Server re-
sources are not directly influenced, but rather affected in-
directly by adjusting the placement (and thus resource us-
age) of actors, and so this category of rules corresponds to
both [f-ra] and [f-rs]. These rules provide programmers
with a way to reserve certain amounts of resources for
actors or balancing resource usage among servers. For ex-
ample, programmers can specify upper and lower bounds
on CPU resources for servers. If a server’s CPU utilization
hits the upper bound, a select group of its actors will be
migrated to other servers with idle CPU resources.

[r-i] Interaction elasticity rules correspond to actor interac-
tion features [f-ia]. These rules allow programmers to
expose high-level application semantics to the runtime,
allowing it, e.g., to co-locate actors that strongly inter-
act, as per application semantics and actually observed at
execution, thus reducing communication latency.

3.2 Syntax

Next, we detail the syntax and usage of PLASMA’s EPL,
realizing the above elasticity programming model. We opted
for a declarative language over an imperative one as we feel

I. Actor-based application programming language basics

Program proд ::= aclass

Actor class aclass ::= aname{prop f unc}

Property prop ::= type pname;

Function f unc ::= type f name(type . . .){. . .}

II. Elasticity programming language

Policy pol ::= rul

Rule rul ::= cond ⇒ beh;

Actor actor ::= atype(var) | atype | var

Actor type atype ::= aname | any

Condition cond ::= cond or cond | cond and cond

| true | f eat .stat comp val

| actor in ref(actor .pname) [f-ia]

Feature f eat ::= entity.res

| cllr .call(actor . f name) [f-ia]

Entity entity ::= actor [f-ra]

| server [f-rs]

Caller cllr ::= client | actor

Statistic stat ::= count | size | perc

Resource res ::= cpu | mem | net

Comparison comp ::= < | > | >= | <=

Behavior beh ::= balance({atype}, res) [r-r]

| reserve(actor , res) [r-r]

| colocate(actor , actor) [r-i]

| separate(actor , actor) [r-i]

| pin(actor) [r-i]

Value val ∈ N ∪ R

Figure 3. Basic definitions for actor programming language
and abstract syntax of PLASMA’s EPL.

that it is more natural for developers to express “policies”
that way (cf. [43]). The EPL assumes only basic features of
the underlying actor programming language, as shown in
Fig. 3.I: a program includes a set of actors of different types
(aclass), each declaring a set of functions (f unc) — which
give rise to messages — and fields (properties – prop). x
denotes several instances of x .

Actor-condition-behavior. The EPL (see Fig. 3.II) is used
to describe – separately from the main program – a policy
pol that consists of a set of elasticity rules rul . PLASMA’s
elasticity rules (both [r-r] and [r-i]) are expressed in an
actor-condition-behavior style. That is, rules usually purport
to features regarding certain actors, and when certain condi-

tions on those features are met which may adversely affect
performance, the runtime is advised to apply elasticity be-

haviors (to certain actors).

Actors. As actors of the same type tend to have similar
behavior patterns, elasticity rules are expressed a priori for
actor types, and, as detailed shortly, behaviors are expressed
similarly with respect to actors of given types. A subject type
of actor is specified by the name of the actor type’s name
aname as defined in the main application program. However,
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a rule can contain several actors of the same type. In order
to disambiguate yet keep definitions concise by avoiding
verbose variable declarations in front of every rule, we use
a form of implicit variable declaration, where the use of an
actor type in a rule can declare a variable var in an inline
fashion. E.g., a condition relating to Innernode(i) specifies
actor type Innernode and introduces variable i to refer later
to all Innernode instances to which the condition applies.
PLASMA also introduces the special type any, allowing

rules to be defined for all actors in an application. Note that
PLASMA currently treats actor subtypes in the application
program as distinct types from their parent types.

Conditions. Conditions are used to specify situations
that may affect the performance of applications. Though
rules – and thus a priori also conditions – relate to actor
types, as alluded to above, conditions end up selecting a
subset of actors of such a type. While actors of the same
type follow the same execution logic, their actual runtime
behaviors will also be affected by workloads and thus differ.

Conditions can be composed (and, or) of more elementary
conditions. Basic conditions can be trivial (true) or compare
statistics stat (highlighted in orange) for a runtime feature
f eat to some value val (a lower or upper bound), where sta-
tistics can be a number of instances (count), a size value, or
a percentage. Note that not all statistics apply to all features.
Actual features are of three basic categories (the actual

features in the syntax are highlighted in green).
The first category (i) consists in conditions of the shape

actor in ref(actor ′.pname) which essentially select actors
of the former type actor that are referenced by specific fields
pname of actors of the second type actor ′.

The second category (ii) corresponds to resource features
of specific entities (entity.res). Two subcategories arise from
the two types of entities considered: actors (ii .a) or servers
(ii .b). They correspond to [f-ra] and [f-rs] respectively. The
resources considered here, in turn, are of three types (blue):
cpu, memory, and network usage.

The third category (iii) corresponds to interaction features
[f-ia] just like conditions on referencing (i). For specific
types of messages f name sent from either clients or actors
of one type to actors of another type (cllr.call(actor . f name))
we consider the number of such messages sent per time unit,
e.g., 1 min, their size, or the percentage of a particular type
of calls received by an actor, out of the total number of this
type of calls received by all actors on the same server.

Behaviors. Finally, (elasticity) behaviorsbeh (red) tell the
runtime how to react to specified conditions on given actors.
There are five kinds of elementary behaviors (Fig. 3). The
first two give rise to resource elasticity rules [r-r] and the
others yield interaction elasticity rules [r-i].
In the former category we have balance and reserve.

balance({atype}, res) prompts the runtime to balance the

workload on each server by migrating actors of types indi-
cated in atype from overloaded servers to ones with idle
resources. res refers to the type of critical resource that
should be taken into consideration when balancing work-
loads. Note that balance does not allow type variables to
be used in its first argument – using atype as opposed to
actor . This is because balance targets servers instead of ac-
tors. Referring to specific actors here, programmers could
add conditions on those actors (e.g., cpu.perc>30); then the
runtime could only migrate those actors to balance the work-
load. This would eliminate most flexibility for the runtime
(e.g., migrating actors with CPU below 30% might alleviate
a bottleneck). reserve(actor , res) instructs the runtime to
keep those actors on dedicated servers exclusively, whose
resources are sufficient to meet the actors’ demands. res spec-
ifies the type of desired resources on the dedicated servers.

The second behavior category spans colocate, separate
and pin. colocate(actor ,actor ) tells the runtime to keep the
concerned actors on the same server. Notice that conditions
in the rule can also (further) constrain the interaction be-
tween the actors. Consideractor2.call(actor1. f name1).count
with f name1 a function of actor1. Placing a condition on
this term can, for instance, restrict the total number of mes-
sages f name1 toactor1 called byactor2. Conversely, behavior
separate(actor ,actor) instructs the runtime to keep the ac-
tors of the two types separated whenever resources are avail-
able whilst the accompanying conditions are satisfied. This
can be used for example when actors of the two types run
computationally demanding activities (i.e., instead, colocate
may obstruct their operations). Lastly, pin(actor) indicates
that particular actors should not be moved. This prevents
migration from hampering highly available services.

3.3 Examples

We show the use of PLASMA’s EPL via five concrete exam-
ples. These applications are evaluated empirically in § 5.

Metadata Server. The Metadata Server is composed of
folders and files, handled by Folder actors and File actors
respectively, all of which can be opened and accessed by
remote clients. Some folders are in much higher demand
than others, thus receiving a significant portion of the overall
number of requests. To avoid congestioning servers, we opt
to migrate highly demanded folders to idle servers.

Performing such elasticity managements requires the run-
time to have knowledge of application semantics, as is easily
achieved with PLASMA. For instance, the aforementioned
elasticity behavior can be expressed in PLASMA by defining
the following elasticity rule: a Folder actor is migrated to
an idle server (reserve) when (1) the current server’s CPU
usage exceeds 80% and (2) this folder receives more than 40%
client requests among all Folder actors on this server. The
rule also tells the runtime to place all File actors under this
Folder actor on the same server (colocate).
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Table 1. Applications implemented with PLASMA. We show
elasticity rules and evaluation for the first five applications.

Application LoC Elasticity rules (and number of rules)

Metadata 253 1. Colocate Folder with Files in it

Server (since they are accessed together)

PageRank [31] 465 1. Balance CPU workload

E-Store [64] 645 1. Put hot Partitions on idle servers

2. Colocate parent-child Partitions

3. Balance CPU workload of Partitions

Media 756 1. Balance network workload for FrontEnds

Service [40] 2. Provide VideoStream with enough CPU

3. Colocate linked VideoStream and UserInfo

4. Avoid migrating MovieReview

5. Balance CPU workload of ReviewChecker

6. Colocate linked ReviewEditor and

UserReview

Halo Presence 314 1. Balance CPU workload of Routers

Service [51] 2. Colocate Session with Players in it

B+ tree 1457 1. Colocate parent-child inner nodes

2. Put leaf nodes on separate servers

Piccolo [57] 564 1. Balance CPU workload for Workers

2. Colocate Worker and Table that Worker

reads data from

zExpander [66] 506 1. Put leaf nodes on idle servers

Cassandra [47] 221 1. Put table replicas on different servers

server.cpu.perc > 80 and

client.call(Folder(fo).open).perc > 40 and

File(fi) in ref(fo.files) ⇒

reserve(fo, cpu); colocate(fo, fi);

PageRank. As we introduced in § 2.1, we should balance
the PageRank partitions according to CPU usage:

server.cpu.perc > 80 or server.cpu.perc < 60 ⇒

balance({Partition}, cpu);

E-Store. E-Store [64] is an elastic partitioning framework
for distributed OLTP DBMSs. Initially, root-level keys are
range-partitioned into blocks of fixed size and co-located
with descendant tuples. At runtime, the system monitors
the workload on each server and avoids imbalance. When
observing a server’s resource usage (e.g., CPU) exceeding a
high-water mark, the system selects k% partitions with high
activity on the hot server and migrates them to idle servers.
If inversely observing a server’s resource usage being below
a low-water mark, the system also redistributes the data.

It is a typical balancing problem where programmers need
to define the conditions to trigger data distribution (i.e., high-
water mark and low-water mark), and how to redistribute
data (i.e., migrate hot data to idle servers). Furthermore, since
data is organized in a tree structure, we can not solelymigrate
the hot partitions but also need to consider moving their
descendants. We express E-Store needs with these 3 rules:

server.cpu.perc > 80 and

client.call(Partition(p1).read).perc > 30 ⇒

reserve(p1, cpu);

Partition(p2) in ref(Partition(p1).children) ⇒

colocate(p1, p2);

server.cpu.perc < 50 ⇒ balance({Partition}, cpu);

Media Service. The Media Service [40] is a more intricate
stateful application, it provides two major functions, (1) rent
and watch movies and (2) review movies, involving 8 types
of interdependent actors in a cloud microservice.
Specifically, the FrontEnd actors are the entrance of the

Media Service and are network-intensive. VideoStream ac-
tors streammovies to users and are CPU-intensive and latency-
sensitive. A UserInfo actor contains the information of a
user: when a user is watching a movie, the VideoStream ac-
tor keeps updating this user’s watching history to the user’s
UserInfo actor. This yields the following three rules:

server.net.perc > 80 or server.net.perc < 60 ⇒

balance({FrontEnd}, net);

server.cpu.perc>50 ⇒ reserve(VideoStream(v),cpu);

VideoStream(v).call(UserInfo(u).track).count > 0 ⇒

pin(v); colocate(v, u);

In addition, users can read/write movie reviews via the
ReviewEditor actors, which frequently interact with the
UserReview actors by updating reviews on them. MovieReview
actors, on the other hand, store a large amount of reviews
by movie types (e.g., comedy), thus are memory-intensive.
Finally, users’ reviews will be checked by ReviewChecker ac-
tors before publication, and hence are CPU-intensive. Such
semantics lead to the remaining three elasticity rules:

ReviewEditor(r).call(UserReview(u).update).count

> 0 ⇒ pin(r); colocate(r, u);

true ⇒ pin(MovieReview(m));

server.cpu.perc > 90 or server.cpu.perc < 70 ⇒

balance({ReviewChecker}, cpu);

Halo Presence Service. The Halo Presence Service [51]
is a deployed actor-based system that tracks player liveness
in Halo 4. Active game consoles periodically send heartbeat
messages to the service. Each of these messages is first de-
crypted by a randomly selected Router actor, before it is
forwarded to the related Session actor which finally for-
wards it to the corresponding Player actor.

A Session actor can only send messages to Player actors
partaking in the session it manages, while Player actors can
only belong to one session at a time. This isolation between
Session actors and between the Player actors of different
sessions can be leveraged to improve the system communi-
cation performance. For instance, remote messaging can be
avoided by co-locating at runtime Player actors with their
corresponding Session actor:

Player(p) in ref(Session(s).players) ⇒

pin(s); colocate(p, s);

6
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Table 2. API summary.
(a) GEM & LEM local functions

Function Functionality

getActRules Return actor elasticity rules

getActorsRuntime Return runtime info of all local actors

applyActRules Return migration actions as per actor run-

time info and elasticity rules on LEMs

getResRules Return resource elasticity rules

collectActorsFResRules Return runtime info of actors related to

resource elasticity rules

getServerRuntime Return local server runtime info

resolveActions Resolve conflicted migration actions of

LEMs and GEMs. Return final actions

applyResRules Return migration actions according to ac-

tor and server runtime info and resource

elasticity rules on GEMs

checkIdleRes Decide if one server has enough idle re-

sources to accept an actor

(b) Action datatype

Action datatype field Content

actor Actor for migration

srcServ Server currently holding the actor

trgServ Target server for actor migration

GEM. After receiving the profiling information from LEMs of
its managed servers, a GEM creates a global runtime snapshot

for all its managed servers. Referring to this snapshot, the
GEM checks the conditions of resource elasticity rules. If
any are met, the GEM identifies executable actions (O2 in
Fig. 2) from the rules, and tasks servers.
Take for example a balance rule. When its condition is

met (typically a lower or upper bound on server resources
is exceeded), the GEM migrates a select set of actors among
its managed servers to balance workload. PLASMA uses a
simple heuristic to thus select actors: a GEM only migrates
actors from overloaded servers (i.e., with resource usage
above upper bounds) to servers with enough idle resources
– especially below specified lower bounds. If all of a GEM’s
managed servers are overloaded (resp. under-utilized), it
broadcasts an adjustment message to all other GEMs. GEMs
reply whether their observations are similar. If the majority
of replies received by the requester GEM corroborate its own
view, it increases (resp. decreases) the number of servers.

LEM-GEM interaction. Alg. 1 and Alg. 2 outline how
LEMs and GEMs coordinate on generating migration actions
based on elasticity rules and runtime performance informa-
tion (using APIs summarized in Tab. 2). Each LEM (Alg. 1)
reads actors’ runtime information from the profiling runtime
and identifies migration actions (line 7) based on actor elas-
ticity rules (line 5). The LEM then checks resource elasticity
rules and reports related actors’ runtime information as well
as its server runtime information to a GEM (line 12).
The GEM (Alg. 2) starts processing reports from LEMs

when it receives enough of those (line 8). It only checks

Algorithm 1 Elasticity execution on LEM lem

1: Local variables:

2: existActors ⊲ local actors and actors to be migrated to this server

3: gems ⊲ addresses of GEMs

4: task processElasticity do

5: actRules ← getActRules()

6: actorsRT ← getActorsRuntime()

7: lemActions ← applyActRules(actorsRT , actRules)

8: resRules ← getResRules()

9: ractorsRT ← collectActorsFResRules(actors, resRules)

10: serverRT ← getServerRuntime() ⊲ collect server runtime info

11: gem ← gemx | gemx ∈ gems ⊲ pick random GEM

12: send (REPORT, ractorsRT , serverRT ) to gem ⊲ report to GEM

13: wait until receive (RREPLY, gemActions) from gem

14: finalActions ← resolveActions(lemActions, gemActions)

15: for all (action ∈ finalActions) do

16: send (QUERY, action) to action.trgServ ⊲ can server accept

17: upon receive (QUERY, action) from lem′ do

18: if checkIdleRes(existActors, action.actor) then

19: existActors ← existActors ∪ {action.actor} ⊲ take resources

20: send (QREPLY, action) to lem′

21: upon receive (QREPLY, action) do

22: migrate action.actor to action.trgServ

resource elasticity rules and generates corresponding migra-
tion actions (line 10) and informs relevant LEMs (line 14). A
LEM and a GEM can generate different, potentially conflict-
ing, actions for the same actor. A LEM then resolves such
conflicts once it receives migration actions from its GEM
(line 14). Finally, the LEM starts migrating actors when the
target server agrees to accept them (line 22).

New actor creation. When the application creates an ac-
tor (of type atype) on a server, this server’s LEM queries
the GEM, which managed it during last the elasticity period,
where to place the new actor. The GEM checks relevant elas-
ticity rules and decides the initial placement. E.g., the rules
require to co-locate atype actors with references, or identify
atype actors as CPU-intensive. Then the new actor is to be
co-located with another actor that has a reference to it, or
put on a server with idle CPU resources. If the GEM can not
find a valid rule for atype actors, it randomly picks a server
from the ones it manages. With the help of input elasticity
rules, PLASMA has a higher chance to place new actors on
the right servers from the start, as we will see shortly.

4.3 Discussion on Runtime

Conflict resolution. As stated above, LEMs and GEMs
identify executable actions based on rules. These actions are
enqueued at LEMs, and are executed by the actor program-
ming language’s runtime via its live actor migration proce-
dure. However, as programmers may define multiple elas-
ticity rules for one actor type, conflicts may arise. PLASMA

provides two mechanisms to resolve these. (1) When compil-

ing elasticity rules, PLASMA’s compiler detects conflicting
8
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Algorithm 2 Elasticity execution on GEM gem

1: Local variables:

2: actorsRTs ⊲ queue for actor runtime information from LEMs

3: serversRTs ⊲ queue for server runtime information from LEMs

4: actionQs ⊲ map of addresses to action queues

5: upon receive (REPORT, actorsRT , serverRT ) from lem do

6: actorsRTs ← actorsRTs ⊕ {actorsRT }

7: serversRTs ← serversRTs ⊕ {serverRT }

8: if |servers | > K then ⊲ K is given by user

9: resRules ← getResRules()

10: actions ← applyResRules(actorsRTs, serversRTs, resRules)

11: for all (act ∈ actions) do

12: actionQs[act.srcServ]← actionQs[act.srcServ] ⊕{act}
13: for all (addr | ∃ actionQs[addr] do

14: send (RREPLY, actionQs[addr]) to addr ⊲ ret to LEM

rules for the same actor type, and issues warnings. (2) When
applications are running, LEMs resolve the remaining con-
flicts by choosing the migration action for an actor with the
highest priority, which can be specified by programmers or
determined by assigning priorities to migration actions. E.g.,
colocate can break the resource elasticity actions of balance
in that multiple LEMs might try to migrate their actors to the
same server and overload it. If PLASMA prioritizes balance
over colocate, it will only allow the target server to accept
actors if it has enough resources. Existing conflict resolution
approaches [30, 42, 47] can also be leveraged in PLASMA;
they are beyond the scope of this paper.

Fault tolerance. As is evident from Alg. 1 and Alg. 2, no
state synchronization is required between LEMs and GEMs
or among GEMs. Hence, if a GEM fails while computing the
set of migration actions, LEMs can still progress by picking
another GEM through the shuffling process described. We
run multiple GEMs for scalability and fault tolerance when
evaluating PLASMA in § 5.

Actor placement stability. We opt for a conservative
policy to actor migration to minimize the cost associated
with actor state “re”-migrations. More aggressive migration
policies [46] could be employed, e.g., by pre-profiling actor
resource consumption or migrating more actors than strictly
needed, but no optimal policy exists.
To avoid frequent actor migrations, an actor can only be

migrated if it stayed on the same server for a certain time,
which is set to be equal to the elasticity period (cf. § 2.2).

5 Evaluation

The concepts of PLASMA can be implemented in many actor
programming languages.

5.1 Synopsis

We evaluate our approach through an implementation in
AEON [61] involving 3500 Python LoC added to the AEON
compiler, that parses both PLASMA elasticity rules andAEON
program to generate an elasticity configuration file (PLASMA

compiler in Fig. 2). We also extend AEON’s runtime by 5000

C++ LoC to collect actors’ and platform’s runtime informa-
tion (profiling runtime in Fig. 2), and conduct elasticity man-
agement (execution runtime in Fig. 2). We chose AEON over
Orleans [53] and Akka [1], as when starting our prototyp-
ing, Orleans’ code-base was undergoing frequent significant
updates while Akka lacks live actor migration features.
We evaluate PLASMA with several stateful applications

on Amazon AWS. The elasticity rules used for each scenario
are described in § 3.3, with their summary in Tab. 1, demon-
strating the low effort with which a multi-actor application
can be complemented with PLASMA.
We first evaluate the overhead of PLASMA’s runtime

(§ 5.2). Next we demonstrate how a simple elasticity rule
leveraging application-specific knowledge improves a Meta-
data Server’s elasticity management (§ 5.3). We compare the
efficiency of PLASMA against the state of the art on an elas-
tic PageRank (§ 5.4). Then we showcase how PLASMA can
help developers implement specific elasticity management
in E-Store (§ 5.5). We show how PLASMA handles highly
dynamic workloads in a Media Service (§ 5.6). Finally, we
evaluate how different number of GEMs impact the perfor-
mance of the Halo Presence Service (§ 5.7).

5.2 PLASMA’s Runtime Overhead

First we assert that the EPR does not impose high overheads
on applications when tracking performance data. The EPR
only collects runtime information of actors on the server it
is deployed on, the EPR overhead is therefore only affected
by the number of actors and messages on a single server,
regardless of the number of servers used by this application.

To this end, we use an online chat room microbenchmark
where users, represented each by an actor, can exchange
messages with others within the same room. The EPR tracks
information on all messages (e.g., type, size, number) and the
times for actors to process them. The chat room is deployed
on a single AWS instance, i.e., actors are stationary, and is
tested with different numbers of users. Tab. 3 shows the pro-
filing overheads of PLASMA’s EPR on the chat room actors
by normalizing the execution time of PLASMA with that
of a vanilla system without elasticity (e.g., 1.007 means 7‰
overhead). The setup x-instance refers to the number of users
x , with x ∈ {8, 16, 32}, deployed on either am1.small instance
identified as s or a m1.medium instance identified as m. In all
setups, users keep generating messages at high rates to put
pressure on the server’s CPU. In this overloaded situation
we never observe more than 2.3% overhead, showing that
message latency is virtually unaffected by profiling.
While the overhead of the EER is highly related to the

elasticity rules, we do not observe any noticeable overhead
(i.e., over 1%) on any of the applications we evaluate. The EER
overhead remains low thanks to: (1) its periodical execution,
the EER only executes for a couple of seconds per period in
our scenarios, and (2) the low rule count (i.e., less than 10)
needed to cover applications elasticity requirements.
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Table 3. Normalized EPR overhead.
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5.3 Metadata Server

In our first scenario we display the effect of a simple mix
of Resource elasticity rules and Interaction elasticity rules in
PLASMA when deployed on a Metadata Server (cf. § 3.3).

In the experiment, we create 4 folders with 8 files in each.
The server is deployed on an AWS m1.small instance, and 16
clients on another m1.medium instance. This setup overloads
an m1.small instance, i.e., simulates a service under high
demand. Among the 4 Folder actors, 1 actor receives 50%
of requests from clients, and the other 3 evenly share the
remaining 50%. File actors in a same folder have the same
workloads. We compare three setups: (1) res-col-rule executes
the reserve and colocate elasticity rule defined in § 3.3;
(2) def-rule mimics a default rule, simply migrating actors
with heavy workload (i.e., Folder actors) to an idle server;
(3) no-rule does not conduct any elasticity management. The
first two setups require an extra server; they use an elasticity
time period of 80 s. We run each setup for ≈100 s to collect
enough data before and after elasticity management.
Fig. 5a shows that the elasticity rule (res-col-rule) reduces

latency by 40% compared to both other setups. The second
setup (def-rule) however does not display any visible latency
benefit compared to the setup without elasticity (no-rule)
because accessing a folder implies accessing the files con-
tained in it, even when the Folder and File actors are on
different servers. Therefore all accesses to a Folder actor
on one server end up being forwarded to File actors on
another server, provoking an overheard that nullifies the
potential migration gains. This demonstrates the importance
of application knowledge in elasticity management.

5.4 PageRank

In this scenario, we show the efficiency of PLASMA on a
distributed actor-based variant of the popular PageRank [31]
algorithm. We focus on the basic algorithm without specific
optimizations as these do not address workload imbalances.

In our implementation, each Worker actor iteratively com-
putes on one partition and synchronizes at the end of each
iteration with the other workers to exchange computation
results. Since all workers synchronize at the same time, the
overall execution speed is limited by the slowest worker.

Though many partitioning schemes and systems have
been proposed for partitioning graphs [6, 18, 50, 60] and
thusly balancing workloads across workers, ensuring a fair
workload distribution remains a non-trivial task. We use
SNAP’s LiveJournal online social network [24] as dataset.
The graph is split with the popular graph partitioning tool
METIS [18] that computes balanced partitions.

Dynamicworkload balance. Wefirst showhow PLASMA

balances workloads among a fixed set of resources. This ex-
periment uses 8 VMs, each being an AWS m5.large instance
(2 vCPUs and 8 GB memory), for a total of 16 vCPUs that are
connected with 10 Gbps links. All runs are congestion-free.

We first compare PLASMA with elasticity management to
the limited elasticity management of Orleans consisting in
attempting to balance workload by putting the same number
of actors on each server. We implement the same elasticity
rules in AEON. We use METIS to evenly split the graph in
32 partitions, resulting in 32 actors, and randomly assign
them across the 8 VMs. Since the number of actors is already
balanced across servers, Orleans elasticity management does
not take further action. PLASMA uses the same partition as-
signment, but combines it with a balance resource elasticity
rule that sets the lower bound to 60% and upper bound to
80% (as for Piccolo in § 3.2). Once the PageRank application
starts, PLASMA’s EMR balances the worker actors among
the 8 VMs based on their CPU resource usage, while the
worker actors stay in the same VMs with Orleans’ elasticity.
The experiment is repeated 3 times for each of the 5 differ-
ent random distributions used. Fig. 6a shows that PageRank
converges 24% faster with our elastic solution PLASMA redis-
tributing actors, compared to Orleans elasticity management.
Fig. 7b and Fig. 7c show the detailed behavior in a given

experiment run of the CPU consumption for each server and
the per-server actor distribution respectively. Once worker
actors finish reading data and start iterative computations,
the CPU usage of each server starts diverging greatly despite
the even partitioning performed by METIS. PLASMA detects
load imbalance and moves worker actors from overloaded
servers (e.g., server 5) to under-utilized ones (e.g., servers
1 and 2, until the CPU usage of servers falls between the
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Figure 8. PageRank dynamic resource allocation. PLASMA achieves the same application-level performance with 12 servers
in comparison with the conservative provisioning case using 16 servers (with one worker per vCPU).

upper and lower bounds (i.e., 60%-80%). As a result, PageR-
ank converges faster since the computation time of each
partition is more homogeneous with elastic PLASMA, and
no one worker actor is lagging behind for the system-wide
synchronization happening at the end of each iteration. This
experiment clearly shows that under fixed resources (e.g.,
CPU), PLASMA can detect workload imbalance and improve
resource efficiency by automatic actor re-location.

We further compare PLASMA with Mizan [48], a state-of-
the-art graph processing system for dynamically balancing
computation across servers via graph vertex migration. We
run the open source Mizan [25] with both its default configu-
ration (without elasticity) and its dynamic migration scheme
(with elasticity) in the same setting as PLASMA– 8 AWS
m5.large VMs and the LiveJournal graph with 32 partitions.
Since the absolute iteration time of Mizan is about 4× longer
than that of PLASMA, to compare elasticity effectiveness
of the two solutions, we normalize each iteration time to
the first iteration of the respective case without elasticity.
Fig. 7a shows Mizan with elasticity reduces iteration time
by up to 3% compared to the case without elasticity. In con-
trast, PLASMA with elasticity reduces iteration time by up
to 24% compared to the case without elasticity, showing that
PLASMA balances load more effectively while being generic.

Dynamic resource allocation. Trivially we can reach
best PageRank convergence time by over-provisioning re-
sources (conservative provisioning). We thus run 16 AWS
m5.large instances for a total of 32 vCPUs, randomly mapping

each of the 32 worker actors to their own vCPU. As expected,
the convergence time is nearly halved (11.67 s, cf. Fig. 6b)
compared to that of a 16-vCPU setup (19.77 s, cf. Fig. 6a).
But can we achieve the same (or close) performance using
fewer resources? To answer this question, we set PLASMA

to allocate resources dynamically – we re-use the above
balance rule, but once all of the existing servers are over-
loaded, PLASMA provisions a new server (cf. § 4.2). In our
experiments (cf. Fig. 8), we start with one running server
for PLASMA and place all 32 worker actors on it. Fig. 8b
clearly shows PLASMA provisioning new servers (via AWS
Instance Scheduler [10]) until it reaches a stable state where
the CPU usage of every server is within the defined lower
and upper bounds. Fig. 8c shows the details of the worker
actor re-distributions as PLASMA provisions new instances.
Performance improves each round as PLASMA performs
elasticity management gradually (cf. § 4.3) and inches to-
wards an optimal actor distribution. Eventually, PLASMA

performance comes very close to the best performance as
shown in Fig. 8a for one run and in Fig. 6b for the average
across runs. PLASMA achieves nearly identical performance
with 12 servers as the over-provisioning case does with 16
servers, saving 25% of resources.

5.5 E-Store

Programmers often end up implementing specific elasticity
management in their applications without help from special-
ized tools. We show here that PLASMA can deliver similar
performance as in-app implemented elasticity management.
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Figure 10. Elasticity management for the Media Service. A small elasticity period
lowers the latency and fasten resources allocation/reclaiming.

As detailed in § 3.3, E-Store [64] has to migrate hot key
partitions to handle unbalanced workloads. At the same time,
root level partitions must also be co-located with their de-
scendants to avoid remote communication. We implemented
E-Store in AEON [61] and added 3000 LoC to its runtime to
include the specific platform details (e.g., CPU usage, actor
placement) used by E-Store for elasticity. We compare the
performance of this AEON E-Store with PLASMA E-Store
that (only) executes the elasticity rules defined in § 3.3.
We evenly deploy 40 root level partitions of E-Store on 4

m1.small instances. Each such partition has 4 child partitions.
Querying E-Store are 48 clients on another 2 m1.medium in-
stances, generating unbalanced workload on partitions. The
first root partition receives 35% of total requests; the second
receives 35% of the remaining 65% of requests; the third re-
ceives 35% of the requests remaining after that, aso. Requests
arriving at a root partition will continue to access one child
partition randomly. We also run a non-elastic version for
comparison. During execution, AEON E-Store and PLASMA

E-Store both require an extra instance.
As Fig. 9 shows, the performance of AEON E-store and

PLASMA E-store are close to each other, and they both show
obvious performance improvement compared to AEON E-
Store without elasticity management (No Elasticity). After de-
tailed analysis, we find elasticity behaviors in both versions
are quite similar despite differences in their concrete elastic-
ity management. For example, AEON E-Store migrates the
top k% root partitions on overloaded servers to idle servers
while PLASMA picks root partitions that receive a certain
percentage of requests among all root partitions on the same
server. This demonstrates the usefulness of PLASMA for
implementing application-specific elasticity behavior.

5.6 Media Service

We next show how PLASMA improves the Media Service
(§ 3.3) performance with highly dynamic workloads, with a
focus on showing the impact of elasticity time periods.
We deploy 128 clients on 8 AWS m1.small instances. In

the first 10 minutes, these clients join the service (i.e., start
making requests) following a normal distribution (µ = 2min,
σ = 90 s) and they keep sending requests for 4 more minutes.

They all leave the service starting from the 14 minute mark,
for a period of 10 minutes, following a normal distribution
(µ = 19 min, σ = 90 s). Half of the clients’ requests are
“watch movie” and half are “review movie”.

On the server side, the Media Service is deployed on mul-
tiple m1.small instances, 4 instances initially, and can scale
up to 65 instances. One UserInfo or UserReview actor only
serves one client while all other actors serve two clients
each (e.g., FrontEnd). More actors are created as more clients
access the service. As the number of clients (i.e., workload)
evolves, PLASMA’s runtime gradually adjusts those actors’
placement to ensure low request latency. We start 1 GEM
to execute elasticity rules as described in § 3.2 and run a
scenario per elasticity period of 60 s, 120 s and 180 s.
As shown in Fig. 10a, a smaller elasticity time period en-

ables a better responsiveness from PLASMA’s runtime, with
the 60 s elasticity period displaying the best latency results.
Fig. 10b details the number of servers used by the application
over time under different elasticity time periods: PLASMA’s
runtime — with shorter elasticity time period — can allo-
cate and reclaim resources in a faster manner corresponding
to the workload dynamics. Yet too frequent elasticity man-
agement may incur additional overhead. This clearly shows
PLASMAworks well with more (e.g., 6) elasticity rules under
dynamic workload, with a well-chosen elasticity time period.

5.7 Halo Presence Service

In this scenario, we show how to improve performance of
the Halo Presence Service [51] with rules for different types
of actors, and assess the effect of the number of GEMs used.

Interaction elasticity rule. As discussed in § 3.3, a
Session actor can only send messages to Player actors in
it, suggesting that they be co-located. We could also instead
use a rule that co-locates actors that frequently interact with
one another, but this rule can lead to poor migration choices
(e.g., if a router actor happens to send many messages to
one session actor for a while). Moreover, frequent can have
various interpretations. We use this frequency-based rule as
our default rule (baseline) for our evaluation.
The experiment setup is composed of 8 Router actors

and 8 Session actors that are deployed on 8 AWS m1.small
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Figure 11. Elasticity management for Halo Presence Service. (a) shows the elasticity rules enable smoother player latency
evolution, (b) shows the importance of actors colocation, and (c) shows the slight impact on latency of number of used GEM(s).

servers, with one of each actor type deployed per server. To
highlight remote messaging latency, router actors do not
perform decryption and forward messages directly. We sim-
ulate players behind game consoles by starting 32 clients on
another 2 AWS m1.medium servers. The 32 clients join the
game in 4 rounds (of 180 s each), with 8 clients joining per
round, each at a random time during the round. A joining
client is assigned to a session and the application creates a
corresponding Player actor for it. Depending on the rule in
place, this new Player actor either (1) gets co-located with
its session actor when the aforementioned elasticity rule is
established, or (2) is first placed on a random server and
the default rule attempts to co-locate it with the actors it
frequently interacts with. Only one GEM is started and the
elasticity period is set to 70 s.
Fig. 11a depicts the average message latencies resulting

from the two rules. With the elasticity rule (inter-rule), clients
largely avoid remote messaging from the start of the experi-
ment while the default rule (def-rule) leads to degraded per-
formance for certain timespans (e.g., 0 s–85 s, 171 s–247 s).
Only once Player actors are co-located with their Session
actor do message latencies become similar (85 s–171 s, 247 s–
332 s). The elasticity rule enables smoother latency evolution
for an enhanced user (i.e., Halo player) experience.

Fig. 11b shows the detailed performance of each client for
the first round of a single run under the default rule. Out of
the 8 joining clients, c1, c5 and c8 are fortuitously instantiated
on the right servers for their Session actor, while c2, c3, c4, c6
and c7 experience a latency between 30 ms and 40 ms, which
is ≈35% higher than that of well-placed clients. All clients’
latency is reduced to 20 ms after re-distribution (after 70 s of
presence). Note that high latency in the first fewminutes may
limit a player’s interest in the game. Attempting to obtain
better results by shortening the elasticity period might lead
to overzealous actor migration that can worsen performance.

Resource elasticity rule. As mentioned in § 3.3, we need
to provide Router actors with enough CPU resources. To
demonstrate the efficiency of this rule, we define a setup
made of 64 Session actors and 32 Router actors and deploy

them on 64 AWS m1.small servers. Each Session actor is
hosted on a separate server whereas Router actors are ini-
tially evenly distributed across 8 of these servers. We run up
to 128 clients (i.e., 128 Player actors) on 8 AWS m1.medium

servers with a varying number of GEMs: 1, 2, and 4. The
elasticity time period is set to 80 s.
Fig. 11c shows a sudden rise in average latency as more

and more clients join the game, indicating that the 8 servers
with Router actors are overloaded. In response, the GEM(s)
start to balance the workload as per the resource elasticity
rule until each Router actor ends on a server with enough
resources, allowing latency to stabilize. Additionally, we see
that deploying several GEMs, for scalability and fault toler-
ance, only has a small impact on latency.

6 Related Work

Stateless/state-agnostic elasticity. Infrastructure-level
elasticity services for the cloud are typically provided through
auto-scaling [7–9, 12]. The number of VMs etc. can be auto-
matically adjusted based on predefined policies and metrics.
To use such infrastructure-level elasticity, cloud applications
must follow a very specific programming model. E.g., service-
oriented programming [29, 55] allows each service of a web
application to be scaled in/out via sharding or partitioning
[34, 36].Machine learning techniques have been used for elas-
tic provisioning in such models based on workload change
prediction [41, 54]; these however remain coarse-grained.
Serverless computing is a recent trend in elastic cloud

programming [11, 22, 23, 39, 45]. It allows developers to de-
compose cloud applications into stateless functions, deployed
and scaled elastically. E.g., AWS Lambda [11] allows users
to upload their function code to the cloud; management and
capacity planning is done automatically. PLASMA extends
the scope of serverless computing to stateful applications.

Elasticity for stateful applications. Programming state-
ful applications in extant serverless computing requires lever-
aging a storage tier (e.g., database, cross-application cache,
network file/object store) to store state across functions [5,
17, 21, 57, 65, 67]. Yet relying on such a storage tier fails to
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exploit inherent data locality (of accessing functions) and
thus limits effectiveness of application elasticity. Scaling the
storage tier automatically is notoriously hard [28, 35, 53, 61].

Many approaches provide elasticity management for spe-

cific stateful applications [27, 38, 48, 59, 64]. E.g., ElastMan [27]
includes an elasticity manager for key-value storage in multi-
tier web applications. E-Store [64] and Mizan [48], intro-
duced earlier, realize elastic partitioning for distributed OLTP
databases and graph vertex migration for map-reduce based
graph processing systems [6, 50, 60] respectively.
Ray [52] is a reinforcement learning framework that supports
stateful computationwith actors. The elasticitymanagement
of these solutions is system/application-specific and fail to

provide general solutions.
Both Locus [58] and Pocket [49] provide a more efficient

storage solution for serverless computing. Locus combines
cheap but slow storage with fast but expensive storage to
achieve good performance and cost-efficiency at the same
time. Pocket is an elastic distributed data store for serverless
computing that provides similar performance as ElastiCache
Redis [3] at a lower cost. While Locus and Pocket tackle the
performance of serverless computing from the storage side,
PLASMA focuses on elasticity management by, for example,
colocating two actors (or functions) that frequently interact.
Azure durable functions [13] allow programmers to im-

plement stateful functions for their serverless applications.
Programmers however can not customize their application’s
elasticity management like they can with PLASMA.

Elastic actor programming languages. The actor pro-
gramming model [26] allows building applications with scal-
able (a prequisite for elasticity) relations between entities,
well-studied in the context of cloud applications, e.g., in
EventWave [35], Orleans [53] and AEON [61]. Though these
languages support live actor migration, they do not pro-
vide automated elasticity management. Previously [62] we
sketched the case for elasticity programming, however only
providing coarse-grained monolithic constructs instead of
fine-grained elasticity conditions and behaviors, and with-
out detailed and evaluated runtime techniques for elasticity
action execution.

7 Conclusions

Existing automatic elasticity solutions (e.g., serverless com-
puting) simplify development and deployment of distributed
applications executing in third-party infrastructure by pro-
viding simple abstractions such as functions, and dealing
with resource provisioning completely automatically in the
face of fluctuating workloads. PLASMA introduces the same
benefits to stateful applications by complementing the actor-
based programming model with: (1) a second “level” of pro-
gramming for delineating actor-condition-behavior rules that
drive elasticity management; (2) an elasticity-aware runtime
that accordingly profiles actors of specified types and applies
corresponding actions. While a core design goal was to keep

PLASMA’s elasticity programming language simple, we are
investigating several extensions.
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