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Abstract— In this paper, finite-time attitude consensus control
laws for multi-agent rigid body systems are presented using
rotation matrices. The control objective is to stabilize the
relative configurations in a finite convergence time. First, the
control design is done on the kinematic level where the angular
velocities are the control signals. Next, the design is conducted
on the dynamic level in the framework of the tangent bundle
TSO(3) associated with SO(3), where the torques implement
the feedback control of relative attitudes and angular velocities.
The Lyapunov-based almost global finite-time stability of the
consensus subspace is demonstrated for both cases. Finally,
numerical simulations are provided to verify the effectiveness
of the proposed consensus control algorithms.

I. INTRODUCTION

The consensus control of a network of dynamic agents has
become an interesting topic in the past couple of decades,
due to a broad application of multi-agent systems (MAS)
[1]. Consensus is typically obtained asymptotically, however,
various finite-time stabilizing control algorithms have been
proposed in the recent years. The finite-time design is gen-
erally more complicated than an asymptotically stabilizing
control problem [2]. The past few years have witnessed
growing interest in finite time control of multi-agent systems.

Attitude synchronization is defined as the control of a
group of rigid bodies such that their orientations are synchro-
nized [3], [4]. In [5], almost globally convergent controllers
for multiple flexible spacecraft are designed based on the
rotation matrix. A distributed finite-time attitude control
law is proposed in [6] for a group of spacecraft with a
leader-follower architecture exploiting modified Rodriguez
parameters (MRPs). In [7], a finite-time consensus protocol
for strongly convex geodesic balls is proposed to solve
the attitude consensus problem with switching and directed
communication topology. In [8], the finite time formation
control problems of second-order multi-agent systems with
fixed and switching topologies are addressed. In [9], finite-
time attitude synchronization protocols are proposed based
on the axis-angle representations of the rotations, using
discontinuous control laws.

In this paper, decentralized finite-time attitude consensus
protocols are introduced on the kinematic and dynamic levels
to achieve attitude synchronization in a rigid body multi-
agent system. Almost global asymptotically stable feedback
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control laws for attitude control of a single rigid body utilize
Morse-Lyapunov (M-L) functions, which have isolated non-
degenerate critical points on the configuration space repre-
sented by the Lie group SO(3) [10]. Thus, the consensus
control laws proposed here are an extension of the M-L tech-
nique to the problem of rigid body attitude consensus under
a fixed and undirected communication topology among N
agents on SO(3)

N and TSO(3)
N where TSO(3) = SO(3)×

R3 is the tangent bundle associated with SO(3). While
various attitude parameters such as quaternions and MRPs
are used in much of the literature for designing attitude
consensus protocols, in this paper, the rotation matrices are
exploited to describe rigid body attitude since using rotation
matrices for the attitude representation results in a nonsingu-
lar unique representation of rigid body motion. Moreover, to
achieve finite time attitude consensus, the signum function
which makes the control action discontinuous is avoided
in this work. Hence, the resulting control is a continuous
distributed consensus protocol with feedback of the relative
attitudes and angular velocities of the rigid bodies so that the
finite-time consensus is achieved. The multi-agent rigid-body
systems in [11] and [12] achieve consensus asymptotically
while the techniques presented here are designed to control a
multi-agent rigid-body system to consensus in a finite time.
This work proposes an extension of the finite-time control
scheme of [10] designed for controlling a single rigid body,
to the case of multi-agent rigid-body system.

Since the state space associated with the rigid body
attitude is the non-Euclidean tangent bundle TSO(3), general
purpose numerical integrators like Runge-Kutta schemes,
which rely on use of local coordinates to describe the motion,
are not applicable since such schemes do not maintain the
form of the manifold [13]. Therefore, a Lie group variational
integrator is utilized to obtain numerical simulation results
on the dynamic level which maintains the Lie group structure
of the configuration space during the numerical discretiza-
tion. This variational integrator discretizes the Lagrange-
d’Alembert principle for a system before the equations of
motion are obtained via variational principles with non-
conservative forcing. This is constructed to conserve the Lie
group geometry on the configuration space.

II. PRELIMINARIES

A. Communication Graph

Suppose there are N agents in a network defined by
undirected communication links between the agents. To
model the communication topology among these agents, we
use undirected graph G , (V, E), where V = {V1, . . . ,VN}
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is the node set and E = {E1, E2 . . . , Em} ⊆ V × V is the
edge set, in which each edge Ei, i = 1, . . . ,m, represents
an undirected communication link between a pair of agents.
Let A = [aij ] ∈ RN×N and L = [`ij ] ∈ RN×N be the
symmetric adjacency and Laplacian matrices associated with
G, respectively. The elements of the Laplacian matrix are
defined by

`ij =

{∑N
k=1,i 6=k aik, i = j

−aij , i 6= j
(1)

B. Dynamics on SO(3)

The orientation of a rigid body from the body-fixed
coordinate frame B to the inertial frame N is expressed by
the rotation matrix R, which is an element of the real special
orthogonal group SO(3) = {R ∈ R3×3| RTR = I3 and
det(R) = 1}, where SO(3) is the 3-dimensional Lie group
matrix representation of rigid body attitude and I3 ∈ R3×3

is the identity matrix.
The rotational kinematics of the rigid body are

Ṙ = Rω× (2)

where ω ∈ R3 denotes the angular velocity expressed in the
body frame of the rigid body. For x = [x1, x2, x3]T ∈ R3,

x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 ∈ so(3) (3)

where the space of 3 × 3 real skew-symmetric matrices is
denoted by so(3), which is the Lie algebra of the Lie group
SO(3). Also, the vec() operation undoes the ()× operation
as

C =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

⇒ vec(C) = [c1, c2, c3]T (4)

The attitude of the rigid body can also be expressed
in terms of principal rotation vector Θ ⊂ R3 using the
logarithm map

Θ× = log(R) ∈ so(3) (5)

in which Θ is the exponential coordinates for attitude (prin-
cipal rotation vector). The set of principal rotation vectors
is the closed unit ball of radius π in R3. Every principal
rotation vector inside the ball uniquely corresponds to a cer-
tain physical attitude, while there are two principal rotation
vectors on the surface of the ball corresponding to a given
attitude (rotation by π about some axis).

The rotational kinetics of the rigid body can be written as

Jω̇ = −ω×Jω + τ (6)

where J ∈ D ⊂ R3×3 is the inertia matrix and τ ∈ R3

denotes the control torque input.
The following two lemmas in the context of finite time

control design are used throughout this paper.

Lemma 1 [14]: Consider a system described with ẋ =
f(x) with f(0) = 0 and there exists a continuous differential
positive-definite function V (x) such that

V̇ (x) + βV η(x) ≤ 0 (7)

where β > 0 and η ∈ (0, 1) are real numbers. Then,
the origin of the system is locally finite-time stable, with
the convergence time depending on the initial state x(0),
satisfying

T (x0) ≤ V 1−η(x0)

β(1− η)
(8)

Lemma 2 [10]: Let a and b be non-negative real numbers
and let p ∈ (1, 2). Then

a(1/p) + b(1/p) ≥ (a+ b)(1/p) (9)

Note that this inequality is a strict inequality if both a and
b are non-zero.

III. PROBLEM STATEMENT

In this section, the problem of finite-time attitude consen-
sus control of a networked rigid body system is investigated
in two cases:

Case 1: Finite-time attitude kinematic consensus steering
control

Case 2: Finite-time consensus control of rigid-body atti-
tude on TSO(3)

N

In the subsequent discussion, the control laws and the
corresponding convergence analysis are provided for each
of these cases.

A. Case 1: Finite-time attitude kinematic consensus steering
control

In this part, a finite-time attitude kinematic consensus
steering control protocol is designed where the angular
velocities are the control signals [11]. An inner servo loop
controller in each agent may be designed to track the
prescribed angular velocities by implementing the required
control torques. The control goal for N rigid bodies is to
achieve and maintain a synchronized attitude. To this end,
the leaderless consensus steering control protocol for the ith
agent is obtained using the relative attitude with respect to
those of its neighbors.

Assume there are N rigid bodies and the rotational kine-
matics of the ith agent is written as

Ṙi = Riω
×
i (10)

Suppose Si is defined in terms of the sum over neighbors of
agent i as

Si =
∑
j∼i

vec(RTi RjAij −AijRTj Ri) (11)

where Ri and Rj represent the rotation matrices of the ith
and jth agents, respectively. Moreover, Aij is a symmetric
positive definite gain matrix.
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Theorem 1: Assuming that rigid body i, i = 1, . . . , N
has access to the attitudes of its neighbors, then the closed-
loop system reaches consensus in finite time with the attitude
kinematic consensus protocol

ωi =
Si(

STi Si
)(1− 1

p1
)

i = 1, · · · , N (12)

where p1 ∈ (1, 2) is a positive real number. In addition, it
does so with almost global finite-time stability.

Proof: To ensure the stability of the closed-loop system,
the Lyapunov analysis is used to demonstrate the stability
of the closed-loop system of Eqs. (10-12). Consider the
Lyapunov function as [12]

V1 =
N∑
i=1

∑
j∼i
〈Aij , (I3 −RTj Ri)〉 > 0 (13)

∀Ri\{RTj Ri = I3}

where 〈A,B〉 = trace(ATB) denotes the trace inner product.
This Lyapunov function is an extension of the Morse-
Lyapunov function V (R) = 〈A, (I3 − R)〉 used in [15] for
control of a single rigid body. It can be shown that if A is
diagonal with distinct diagonal elements, then V (R) has the
set of non-degenerate critical points

Ec = {I3, diag(−1, 1,−1), diag(1,−1,−1), diag(−1,−1, 1)}
(14)

on SO(3). As discussed in [15], these four points consist
of a minimum, a maximum, and two saddles. The critical
points of the function 〈Aij , (I3−RTj Ri)〉 are obtained when
the relative attitude Rij = RTj Ri satisfies vec(AijRTj Ri −
RTi RjAij) = 0 for which Rij = I3 is one solution. If Aij
is diagonal with distinct diagonal elements, then the critical
points are when Rij equals one of the four points in Ec.

For an arbitrary real square matrix B and vector ω

trace(Bω×) = ωT vec(BT −B) (15)

Differentiating Eq. (13) with respect to time, substituting
Eq. (10) and using Eq. (15) yields

V̇1 = −
N∑
i=1

∑
j∼i

trace(Aij(Ṙ
T
j Ri +RT

j Ṙi))

= −
N∑
i=1

∑
j∼i

trace(−Aijω
×
j R

T
j Ri +AijR

T
j Riω

×
i )

= −
N∑
i=1

∑
j∼i

ωi
T vec(RT

i RjAij −AijR
T
j Ri)

−
N∑
i=1

∑
j∼i

ωT
j vec(R

T
j RiAij −AijR

T
i Rj) (16)

It is seen that V1 and V̇1 double count each connected
(i, j) pair and are therefore symmetric with respect to the
relative attitude Rij = RTj Ri. Thus, for an undirected graph
topology, V̇1 remains the same when the indices are switched

in the first term. Therefore, the result of Eq. (16) can be
simplified as

V̇1 = −2
N∑
i=1

ωi
T
∑
j∼i

vec(RTi RjAij −AijRTj Ri)

= −2
N∑
i=1

ωi
TSi (17)

Following the strategy of Lemma 2 in [10], we have

2
N∑
i=1

STi Si ≥
N∑
i=1

∑
j∼i
〈Aij , (I3 −RTj Ri)〉 = V1 (18)

in some neighborhood about the identity when Rij ≈ I3.
The coefficient 2 appears because V1 double counts each
connected (i, j) pair and is therefore symmetric with respect
to the relative attitude Rij . By inserting the proposed con-
sensus control law of Eq. (12) into the final result of Eq. (17)
while using Lemma 2 (Eq. (9)) and Eq. (18), one has

V̇1 = −2
N∑
i=1

(
ST
i Si

) 1
p1 ≤ −

(
2

N∑
i=1

ST
i Si

) 1
p1

≤ −
( N∑

i=1

∑
j∼i

〈Aij , (I3 −RT
j Ri)〉

) 1
p1

= −V
1
p1

1 (19)

According to Lemma 1, the result in Eq. (19) proves that V1
converges to zero in finite time. Hence, the system converges
to the invariant set contained in

E =
{
Ri, Rj : vec(RTi RjAij −AijRTj Ri) = 0

}
(20)

If Aij is a symmetric positive-definite matrix, Eq. (20 implies
that Rij is symmetric and thus according to the Rodrigues
formula for the relative attitude given by

Rij = I3 + sin θij

(
Θij

θij

)×
+ (1− cos θij)

((
Θij

θij

)×)2

(21)

the corresponding principal rotation angle is θij = 0 or π.
The attitude consensus subspace (where Rij = I3 and θij =
0) is the stable equilibrium where the exceptional set lying
outside the domain of attraction forms an unstable manifold
corresponding to a relative rotation of θij = π about any
axis, which corresponds to the manifold S2. Since this is
a set of zero measure on SO(3), the attitudes of all rigid
bodies reach consensus with almost global stability. Also, it
takes a finite time for the trajectory to enter the set where
Eq. (18) holds, and subsequently consensus is achieved in a
finite time. Thus, the consensus subspace is almost globally
finite time stable.

B. Finite-time consensus control of rigid-body attitude on
TSO(3)

N

In the second case, control laws are constructed on the
dynamic level for rigid body attitude synchronization us-
ing the relative attitudes for feedback. The objective is to
synchronize the attitudes and set the angular velocities to
zero. Assume there are N rigid bodies with inertia matrices
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Ji, i = 1, . . . , N . The dynamic equations for the ith rigid
body attitude motion can be written as

Ṙi = Riω
×
i (22a)

Jiω̇i = Jiωi × ωi + τi (22b)

Before introducing the designed control law, a few variables
are defined here. Let Zi be defined as a function of Si as

Zi =
Si

(Si
TSi)

(1− 1
p2

)
(23)

where Si is defined in Eq. (11). The time derivative of Si is
defined as

Wi = Ṡi (24)

The variables Ψi and Hi are defined as

Ψi = ωi − Zi (25a)

Hi = I3 − 2(1− 1

p2
)
SiSi

T

(Si
TSi)

(25b)

where p2 ∈ (1, 2) is a real constant. Using Eqs. (24-
25b), the time derivative of Zi can be written based on the
aforementioned variables

Żi =
∂Zi
∂Si

.
∂Si
∂t

= (Si
TSi)

−(1− 1
p2

)HiWi (26)

Theorem 2: Consider rigid body i, i = 1, . . . , N has
access to the relative attitude with respect to its neighbors.
With the feedback control law for agent i as

τi = −Jiωi×Zi−
JiΨi(

ΨT
i JiΨi

)(1− 1
p2

)
+

JiHiWi

(Si
TSi)

(1− 1
p2

)
+2Si

(27)
the closed-loop system of Eqs. (22-27) reaches consensus
with almost global finite time stability.

Proof: To show the finite-time stability of the closed-
loop system, the Lyapunov stability theory is utilized. For
this purpose, let us introduce the Lyapunov candidate as

V2 =
N∑
i=1

∑
j∼i
〈Aij , (I3 −RTj Ri)〉+

1

2

N∑
i=1

ΨT
i JiΨi > 0

(28)

∀{Ri, ωi}\{RTj Ri = I3, ωi = 0},

Differentiating this Lyapunov candidate with respect to time,
and substituting Eq. (25) yields

V̇2 = −
N∑
i=1

∑
j∼i

(
trace(−Aijω

×
j R

T
j Ri) + trace(AijR

T
j Riω

×
i )
)

+
N∑
i=1

ΨT
i Ji(ω̇i − Żi) = −2

N∑
i=1

∑
j∼i

trace(AijR
T
j Riω

×
i )

+
N∑
i=1

ΨT
i Ji(ω̇i − Żi) = −2

N∑
i=1

ωT
i Si

+
N∑
i=1

ΨT
i

(
Jiωi × ωi + τi − (Si

TSi)
−(1− 1

p2
)
JiHiWi

)
(29)

By substituting the proposed control law in Eq. (27), the
result of Eq. (29) can be expressed as

V̇2 =
N∑
i=1

[
ΨT

i (Jiωi × ωi − Jiωi × Zi)− (ΨT
i JiΨi)

1
p2 − 2ZT

i Si

]

=
N∑
i=1

[
− (ΨT

i JiΨi)
1
p2 − 2(ST

i Si)
1
p2

]
(30)

From this result and the Eq. (18) it is concluded that

V̇2 = −
N∑
i=1

[
(ΨT

i JiΨi)
1
p2 + 2(STi Si)

1
p2

]
≤ −

[
(
N∑
i=1

ΨT
i JiΨi)

1
p2 + (

N∑
i=1

∑
j∼i
〈Aij , (I3 −RTj Ri)〉)

1
p2

]
≤ −V

1
p2
2 (31)

which implies that the closed-loop system is almost globally
finite-time stable using the same arguments as in Part III-A
and according to Lemma 1.

IV. NUMERICAL INTEGRATION

The Lie group numerical integration method is given by
the following integration rule [16] to numerically obtain the
states at time tn+1 for Case 1

ωni =
Sni(

(STi )nSni
)(1− 1

p1
)

i = 1, · · · , N (32a)

Rn+1
i = exp

(
−0.5∆t

(
ωni + ωn+1

i

)×)
Rni (32b)

where the fixed time step is denoted by ∆t = tn+1 − tn.
Note that Sni is derived from Eq. (11). Lie group variational
integrators preserve the structure of the configuration space.
Variational integration obtained from the discrete Lagrange-
d’Alembert principal [13] is used for Case 2 to obtain the
states at time tn+1 in terms of those at time tn as

Ji =
1

2
trace[Ji]I3 − Ji (33a)

(Jiω
n
i )× = ∆t(Fni Ji − JiFni ) (33b)

Rn+1
i = Rni F

n
i (33c)

τni =
1

2
(τ(Rni , ω

n
i , R

n
j , ω

n
j )

+τ(Rn+1
i , ωni , R

n+1
j , ωnj )), j ∼ i (33d)

Jiω
n+1
i = {Fni }TJiωni + ∆tτni (33e)

These equations should be used to compute the evolution of
the attitude and angular velocity. Here, Ji is the modified
inertia matrix of agent i in terms of the moment of inertia
matrix Ji. Note that Fni is implicit, and it is solved using
the Newton-Raphson method.

V. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, the performance of the proposed con-
trol schemes is studied for each of the two aforemen-
tioned cases. For simulation purposes, four (non-identical)
rigid bodies (N = 4) with inertia tensors of J1 =
diag(4.97, 6.16, 8.37) kg.m2, J2 = diag(5.97, 7.16, 9.37)
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kg.m2, J3 = diag(4.47, 5.66, 7.87) kg.m2, and J4 =
diag(5.47, 6.66, 8.87) kg.m2 are considered. As depicted in
Fig. 1, an undirected line graph communication topology
is used for both scenarios. Moreover, the weight matrices
between each pair of the agents are chosen as A12 =
diag(1.5, 1.1, 1.0), A23 = diag(1.3, 1.2, 1.1), and A34 =
diag(1.4, 1.3, 1.0). In the following, each of the two de-

1 2 3 4

Fig. 1. Undirected information exchange topology between four rigid bodies

scribed cases is examined.

A. Case 1: Finite-time attitude kinematic consensus steering
control

The first case is associated with the finite-time attitude
consensus steering control problem where the angular veloc-
ities are the control signals. For this case, two examples with
different initial conditions are presented.

Example 1: In the first example, the initial orientations of
the four rigid bodies in terms of the principal rotation vectors
(rad) are selected as Θ1(t0) =

[
0.50 −0.18 −0.68

]T
,

Θ2(t0) =
[
0 0 0

]T
, Θ3(t0) =

[
−0.15 −0.07 0.17

]T
,

and Θ4(t0) =
[
−0.57 0.05 1.53

]T
. By implementing the

proposed steering control law derived in Eq. (12), all rigid
bodies converge to a synchronized attitude in a finite time. As
depicted in Fig. 2, all rigid bodies achieve and maintain the
same constant attitude and consequently the relative attitude
between each pair of the agents converges to the identity
attitude in a finite time. Note that the attitudes in Fig. 2
are expressed in terms of principal rotation angle. Since
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Fig. 2. Case 1 (Example 1): Absolute attitude (top) and relative attitude
(principal rotation angle) (bottom) (p1 = 1.35)

the closed-loop system is first order, the convergence rate
is relatively high. The upper bound of the convergence time
using Eq. (8) is calculated as 5.82s which is compliant to
the simulation results in this example.

Example 2: As the second example, a different set
of initial attitudes (rad) are considered as Θ1(t0) =[
−0.37 −0.37 −0.17

]T
, Θ2(t0) =

[
0 0 −2.26

]T
,

Θ3(t0) =
[
−0.59 −2.23 1.09

]T
, and Θ4(t0) =[

−1.88 0.16 1.12
]T

. It is desired to show that the con-
vergence time depends on the initial conditions. In Fig. 3, the
absolute attitudes and relative attitudes between pairs of the
agents in terms of the principal rotation angle are depicted.
As can be seen, the convergence time is different from that
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Fig. 3. Case 1 (Example 2): Absolute attitude (top) and relative attitude
(principal rotation angle) (bottom) (p1 = 1.35)

of the Example 1. The upper bound of the convergence time
is calculated as 8.02s for this example.

B. Case 2: Finite-time consensus control of rigid-body atti-
tude on TSO(3)

N

In this part, the control design is conducted on the dynamic
level. Here, the initial orientations are the same as the
first example in Case 1 and the initial angular velocities
of the four rigid bodies (rad/s) are ω1(t0) =

[
1 3 2

]T
,

ω2(t0) =
[
2 −3 −2

]T
, ω3(t0) =

[
2 1 −1

]T
, and

ω4(t0) =
[
−3 0 0.3

]T
. After applying the proposed

controller given by Eq. (27), all rigid bodies converge to
the same attitude in a finite time, as depicted in Fig. 4.
The norms of the angular velocities of the rigid bodies are
demonstrated in Fig. 5. As expected, the angular velocities
of all four agents converge to zero. Furthermore, the norms
of the control torques and integrated control torques are
depicted in Fig. 6. Here, the upper bound of the convergence
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Fig. 4. Case 2: Relative attitude (principal rotation angle) between each pair
of agents (p2 = 1.19)
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Fig. 5. Case 2: Norms of angular velocities (p2 = 1.19)
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Fig. 6. Case 2: Norms of control torques (top) and integrated torques
(bottom) (p2 = 1.19)

time is calculated as 14.32s which is consistent with the
results in this section.

VI. CONCLUSIONS

In this work, almost global finite-time consensus algo-
rithms were introduced for the kinematic and dynamic at-
titude control of a multi-agent system of N heterogenous
rigid bodies. The attitudes of the rigid bodies were described
in terms of the rotation matrices while the communication

topology was assumed to be fixed and undirected. The
control objective was to achieve attitude synchronization in
a finite convergence time which depends on the initial condi-
tions. Numerical simulations were demonstrated to verify the
effectiveness of these methods and it was shown the system
reaches consensus in a finite time. The upper bound of the
convergence times were calculated for both cases.
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