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Abstract 

 

We tackle the problem of evaluating the impact of different operation policies on the performance of a 

microtransit service. This study is the first empirical application using the stable matching modeling 

framework to evaluate different operation cost allocation and pricing mechanisms on microtransit service. 

We extend the deterministic stable matching model to a stochastic reliability-based one to consider user’s 

heterogeneous perceptions of utility on the service routes. The proposed model is applied to the evaluation 

of Kussbus microtransit service in Luxembourg. We found that the current Kussbus operation is not a stable 

outcome. By reducing their route operating costs of 50%, it is expected to increase the ridership of 10%. If 

Kussbus can reduce in-vehicle travel time on their own by 20%, they can significantly increase profit several 

folds from the baseline. 
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1. Introduction 

Mobility on-demand (MOD) service has been promoted as an effective alternative to reduce traffic 

congestion and CO2 emissions in many countries (Murphy and Feigon, 2016). A range of such MOD 

services include microtransit, ridesharing, paratransit, taxi, and ride-hailing, etc. have been successfully 

deployed in many cities with different service requirements and operation policies (Kwoka-Coleman, 2017; 

Metro magazine, 2019). As rural areas have low accessibility to public transport service, a microtransit 

system presents a good potential to compensate for this gap and reduce personal car use. Microtransit is any 

shared public or private sector transportation service that offers fixed or dynamically allocated routes and 

schedules in response to individual or aggregate consumer demand, using smaller vehicles and capitalizing 

on widespread mobile GPS and internet connectivity (see Volinski, 2019; Chow et al., 2020).  
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Microtransit service is particularly relevant in the rural area where travel demand is low and public transport 

is not well supplied. The role of microtransit service is to provide flexible and complimentary transit service 

to toward transit-oriented modal shift goals and reduce CO2 emission (Davison et al., 2012). Jokinen et al. 

(2019) reviewed past microtransit services and pointed out that one of the most critical barriers for its 

successful implementation is the financial issue, its high operating cost, generally much exceeding its 

revenue from ticketing, and require government subsidy. Moreover, customers are sensitive to the fare and 

the quality of services (waiting time, walking distance to stops, and in-vehicle travel time, etc.). Developing 

a sustainable business model is not a trivial task and needs to develop a new methodology to jointly consider 

the interactions of user’s choice, operator’s operation policies, and government subsidies and analyze the 

impacts of these factors on ridership and operator revenue. 

A mix of successful ventures like Via and MaaS Global along with failed microtransit services like 

Kutsuplus (Haglund et al., 2019), Bridj (Bliss, 2017), and Chariot (Hawkins, 2019) show the importance of 

operating cost allocation decisions for a sustainable service operation. Service planning should consider 

travellers’ choice preferences as well as operators’ cost allocation policy to predict and evaluate ridership 

on the service network. For example, cost allocation policies may include fare prices, stop locations (which 

trade-off with access time), or frequency setting (which trade-off with wait time), which all involve 

distributing generalized travel costs that are transferable between users and operators. Although the existing 

transportation network assignment methodology provides tools to analyze supply-demand equilibrium flows, 

such a method does not allow the policy makers and operators to evaluate the impacts of cost allocation 

mechanism and understand the underlying mechanism due to complex supply-demand interactions 

evaluated via simulations (Rasulkhani and Chow, 2019). 

Evaluation of platforms that support multiple operators, including microtransit services, requires models 

that capture both travellers’ and operators’ choices. There are a few methods that can address this 

requirement, but not without caveats. Bilevel network design models (Zhou, Lam, and Heydecker 2005) 

have been used to model markets of multiple transit operators as a generalized Nash equilibrium between 

operators. The interaction of travellers and operators can also be achieved by dynamic systems simulation 

via day-to-day adjustment (Djavadian and Chow, 2017a, b) toward the same noncooperative equilibrium. 

These models find one equilibrium between multiple operators; however, equilibria can be non-unique and 

dependent on a governing platform’s (or public agency acting as one) mechanism design. In other words, a 

noncooperative game framework between operators limits the design considerations for a market that can 

incorporate subsidies, fare bundling, transfer locations, etc., that would involve more flexible transfer of 

utility between operators and travellers. 

Assignment games (Shapley and Shubik, 1971; Sotomayor, 1992) are a form of transferable utility (TU) 

stable matching model, also called a TU-game, that outputs the set of stable outcomes corresponding to an 

optimal assignment. Whereas only a profit-maximizing objective is allowed in a noncooperative game in 

the bilevel network design problems, assignment games allow for a range of outcomes that can include both 

welfare-maximizing objectives as well, or for any mechanism that lies in between. In assignment games, 

these two opposing outcomes are called the buyer-optimal outcome (welfare maximizing) and seller-optimal 

outcome (profit maximizing). This allows platforms in which different operators may seeks different 

objectives (including having both public and private operators or operators seeking a hybrid objective). 

Travellers receive a net utility from using the service and transfer the cost (ticket price) as a benefit to the 

operator. The platform’s assignment game is formulated as two subproblems: a matching or assignment 

problem in which travellers and operators are optimally assigned to each other, and a stable outcome 

problem that ensures that the matching has sufficient incentives (non-zero profit on each side) to participate.  

Rasulkhani and Chow (2019) proposed an assignment game for modelling a platform that includes a set of 

capacitated operator-routes and a set of travellers. Travellers’ preference, generalized travel cost, and 

operators’ routing cost and service design options can be explicitly considered. This new approach allows 

the platform to evaluate the impacts of different operating policies and incentive mechanisms on ridership, 

which overcomes the drawbacks of existing equilibrium-based simulation methods. While subsequent 
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studies have extended the work to include generalized multimodal trips (Pantelidis, Chow, and Rasulkhani, 

2020), no empirical study has been conducted with this methodology yet.  

The contribution of this study is threefold. We study a microtransit service as a platform hosting a set of 

vehicle-operators serving travellers in which data is available. To make use of such data, we first propose a 

stochastic variant of the user-operator stable outcome subproblem to match users and a set of service lines 

with capacity constraints. This model takes into account the heterogeneous nature of users’ perceived travel 

utility, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and 

ridership forecasting. We show the stochastic stable outcome problem corresponds to that heterogeneous 

matching subproblem. The stochastic variant is necessary to incorporate real data that exhibits 

heterogeneous behaviour. Second, we develop the methodology to estimate the model parameters and 

calibrate them to evaluate an operator’s service policy. Third and primarily, we apply the proposed approach 

to an empirical study of a microtransit service, namely Kussbus1, in Luxembourg and its French- and 

Belgium-side border area using real data shared by the company UFT (Utopian Future Technologies S.A.). 

We conduct a sensitivity analysis to investigate the impact of route cost, in-vehicle travel time and access 

distance to bus stops on ticket prices, ridership and operator’s profit. The results support the new approach 

and tool to evaluate different operating and cost allocation policies for operators. 

 

2. Methodology 

  

2.1. Stable matching model with heterogeneous user groups 

The stable matching problem has been studied since 1960 (Gale and Shapley, 1962) to determine an optimal 

matching involving multiple participants on a two-sided matching market. Early studies (Shapley and 

Shubik, 1971; Sotomayor, 1992) formulate the problem as an assignment game to find an optimal matching 

to form coalitions between buyers and sellers along with feasible transfers of utility between participants 

such that no participant has incentive to break the coalition. The assignment game approach has been applied 

in collaborative transportation problems to set up stable cost/profit allocation mechanism to form profitable 

collaboration between participants (Agarwal and Ergun, 2010; Verdonck et al., 2016; Schulte et al., 2019). 

In the basic form of the assignment game (Sotomayor, 1992), two distinct set of players, i.e. sellers J and 

buyers I, are considered. In such a setting, a seller j provides service with a cost 𝑐𝑗 while a buyer 𝑖 pays a 

price 𝑝  and receives a utility 𝑈𝑖𝑗 . The payoffs generated from a seller-buyer matching is 𝑎𝑖𝑗 =

 𝑚𝑎𝑥(0, 𝑈𝑖𝑗  − 𝑐𝑗) where buyer 𝑖 gains a net utility 𝑢𝑖 = 𝑈𝑖𝑗 − 𝑝, and seller 𝑗 a net profit of 𝑣𝑗 = 𝑝 − 𝑐𝑗. 

An assignment game is a type of transferable utility game (TU game), which belongs in the set of cooperative 

games involving stable matching. The basic form can be extended to set up a cost allocation mechanism to 

evaluate various operation policies of capacitated route mobility services (Rasulkhani and Chow, 2019) and 

collaborative Mobility-as-a-Service platforms (Pantelidis, Chow and Rasulkhani, 2020).  

In the context of user-operator assignment game for a microtransit service platform, the problem considers 

a set of users, 𝑠 ∈ 𝑆, to be assigned to a set of routes, 𝑟 ∈ 𝑅, provided by one or multiple operators. The 

problem is a many-to-one assignment game in which one route can be matched to multiple users and one 

user can match to only one route (see an illustrative example in Figure 1). The decision-maker is the 

platform (not necessarily a public agency) in which each microtransit vehicle run is an operator. The 

stable matching approach first considers optimal assignment of users’ ride requests and operator’s service 

routes and then determines a route cost allocation and pricing mechanism to ensure the assignment is stable. 

Each route is a sequence of stops visited by one or more vehicles on which line (for multiple vehicles) or 

vehicle (for single vehicle) capacity constraints need to be satisfied. We consider each user a buyer, and 

each route a seller with a selling price for using that portion of the service route. When users are assigned 

 
1 https://kussbus.lu/ 
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to routes, users pay a respective ticket price and gain a payoff upon trip completion, while the seller gains a 

profit as the revenue received from a user reduced by the cost allocated to the supply of that portion of routes. 

The objective of the assignment game is to find a seller-buyer matching/assignment such that a total 

generalized payoff is maximized. The outcome of the model is route flows as well as stable cost/profit 

allocation outcome, i.e. user payoff and operator profit profiles. This is the same logic as Shapley and Shubik 

(1971) as a transferable utility game involving coalition formation between the operators (as sellers) and 

users (as buyers). The cost allocation outcome can be used to design ticket prices and other travel disutilities 

(e.g. wait or access times due to matching algorithms which impact the total payoff available for cost 

allocation) and evaluate their impact on ridership and operator revenue. The reader is referred to Rasulkhani 

and Chow (2019) for a more detailed description of the model properties. 

 

 

Figure 1. Example of one user and two routes (r1 and r2). A user’s generalized travel cost includes a 

door-to-door travel cost as the weighted sum of walking time, waiting time, in-vehicle travel time, and 

ticket price paid to the operator. 

 

The stable matching model is as two subproblems. First, an optimal user-route matching problem (P1, below) 

determines user-route matches that maximize total generated payoff. The output of P1 is a set of matched 

user-route flows on the operator’s service network. Second, given the matching result of P1, a stable 

outcome problem (P2, described later) is used to determine the stable outcome space corresponding to the 

assignment in which operators and users have no incentive to switch (for users this might involve switching 

to other service routes or a dummy route for no travel or an option external to the market; for operators this 

involves matching to other users). The output of P2 is the profile of net payoffs for users and routes of 

operators, i.e. (𝒖𝑠, 𝒗𝑟). The overall problem is a transferable utility game where P1 finds the best matches 

and P2 provides a set of stable cost allocations from which the platform can choose. The utility in P1 is the 

total gain from which the benefits of both the operator and the users split the profits if they match 

successfully. Note we measure all transferable utility, payoff and profit in monetary units (euros) in 

this study. 

   

P1: User-route matching model  

𝑚𝑎𝑥 ∑ ∑ 𝑎𝑠𝑟𝑥𝑠𝑟

𝑟∈𝑅𝑠∈𝑆

 

 

(1) 

s.t.  

 ∑ 𝑥𝑠𝑟 ≤ 𝑑𝑠, ∀𝑠 ∈ 𝑆\{𝑘}

𝑟∈𝑅

 

 

(2) 

∑ 𝛿𝑎𝑠𝑟𝑥𝑠𝑟 ≤ 𝑞𝑟, ∀𝑎 ∈ 𝐴𝑟, 𝑟 ∈ 𝑅

𝑠∈𝑆\{𝑘}

 

 

(3) 
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∑ 𝑥𝑠𝑟 ≤ 𝑀(1 − 𝑥𝑘𝑟), ∀𝑟 ∈ 𝑅

𝑠∈𝑆\{𝑘}

 

 

(4) 

𝑥𝑠𝑟 ∈ {0, ℤ+}, ∀𝑠 ∈ 𝑆\{𝑘}, ∀𝑟 ∈ 𝑅 (5) 

  

𝑥𝑘𝑟 ∈ {0,1} (6) 

 

The objective function (1) maximizes total payoff gains form the matching. 𝑎𝑠𝑟 is the net payoff of a user(𝑠)-

route(𝑟) match. The payoff gained by a user 𝑠 for matching with route r is 𝑎𝑠𝑟 = max (0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟), where 

𝑈𝑠𝑟 is the utility gain for user s using route r, 𝑡𝑠𝑟 is the generalized travel cost for user-route pair (𝑠, 𝑟). The 

latter parameter 𝑡𝑠𝑟  can be tuned to account for many different policy or algorithm designs as well as 

scenario settings. For example, one can specify 𝑡𝑠𝑟 = 𝑡𝑠𝑟,𝐼𝑉 + 𝑏1𝑡𝑠𝑟,𝑤𝑎𝑖𝑡 + 𝑏2𝑡𝑠𝑟,𝑎𝑐𝑐𝑒𝑠𝑠 as three terms for 

in-vehicle time (IV), waiting, and access with corresponding coefficients 𝑏1, 𝑏2. In that case, an operator 

interested in evaluating a new matching algorithm that would on average increase access time for users but 

reduce wait time and in-vehicle time as well as operating cost 𝐶𝑟 of route 𝑟 can use this model to compare 

the effect of the operating designs. A city agency wanting to measure the effect of increased travel times 

due to added congestion on the roads can increase the in-vehicle time to see how that impacts the assignment 

game outcomes. 

Equation (2) states for any user 𝑠 the summation of flows over routes cannot exceed its demand 𝑑𝑠. Equation 

(3) states assigned user flow on any route needs to satisfy corresponding route capacity constraint 𝑞𝑟 

(passengers per hour). 𝛿𝑎𝑠𝑟 is an indicator being 1 if arc 𝑎 is used by user 𝑠 for route 𝑟 and 0 otherwise. The 

dummy user 𝑘 of not matching with any route is set as a reference alternative, generally with a utility of 0. 

This assumes that the market has no other travel options outside the system that provides travel utility for 

matching (i.e. a closed market as opposed to an open market or submarket controlled with a platform). 

Equation (4) ensures that a route is only matched when its total payoff exceeds a threshold cost; for private 

operators with no subsidy this would be setting 𝑎𝑘𝑟 = 𝐶𝑟. 𝑀 is a big positive number. Equation (5) ensures 

that the decision variable 𝑥𝑠𝑟 is a non-negative integer which is a more generalized case where 𝑥𝑠𝑟 can be 

larger than 1. Only 𝑥𝑘𝑟  (dummy user for inactive routes) (Equation (6)) needs to be binary. 

Departing from Rasulkhani and Chow (2019), we make the following modification to the model to allow us 

to forecast utility from route-level or user-level attributes. In the original model, each user group 𝑠 ∈ 𝑆, 

typically representing an origin-destination (OD) pair, is assumed homogeneous. In this study, we assume 

users for a particular OD group are heterogeneous: the utility 𝑈𝑠𝑟  is an independent random variable 

composed of a deterministic part 𝑉𝑠𝑟 and an unobserved part 𝜀𝑠𝑟 as Equation (7). 

𝑈𝑠𝑟 = 𝑉𝑠𝑟 + 𝜀𝑠𝑟 

  
(7) 

where  𝑉𝑠𝑟 is the mean utility gain of a trip and 𝜀𝑠𝑟 is a random utility term that follows a Normal distribution 

with mean 0 and standard deviation 𝜎. Note that one can extend this assumption by considering more 

various distributions. Given 𝑈𝑠𝑟 is probabilistic, so is 𝑎𝑠𝑟. Objective (1) is modified to Eq. (8) to reflect the 

optimization of the expected value of 𝑎𝑠𝑟.  

𝑚𝑎𝑥 𝔼 [∑ ∑ 𝑎𝑠𝑟𝑥𝑠𝑟

𝑟∈𝑅𝑠∈𝑆

] = 𝑚𝑎𝑥 [∑ ∑ max (0, 𝑉𝑠𝑟 − 𝑡𝑠𝑟)𝑥𝑠𝑟

𝑟∈𝑅𝑠∈𝑆

] 

  

(8) 

Let us call the heterogeneous form of P1 where the objective function (1) is replaced with Eq. (8) as P1H. 

 

P2: User-operator stable outcome model  
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Per Rasulkhani and Chow (2019), the stable outcome model is specified as follows in Equations (9) – 

(14).  

 𝑚𝑎𝑥 𝑍 

 

(9) 

s.t. 

 
 

∑ 𝑢𝑠 + 𝑣𝑟 ≥ ∑ 𝑎𝑠𝑟 − 𝐶𝑟

𝑠∈𝐺(𝑟,𝑥)

, ∀𝐺(𝑟, 𝑥) 𝑎𝑛𝑑 𝑟 ∈ 𝑅

𝑠∈𝐺(𝑟,𝑥)

 

 

(10) 

∑ 𝑢𝑠 + 𝑣𝑟 = ∑ 𝑎𝑠𝑟 − 𝐶𝑟

𝑠∈𝑆(𝑟,𝑥)

, ∀ 𝑟 ∈ 𝑅∗

𝑠∈𝑆(𝑟,𝑥)

 

 

(11) 

𝑣𝑟 = 0, ∀𝑟 ∈ 𝑅\𝑅∗ (12) 

𝑢𝑠 = 0, 𝑖𝑓 𝑠 ∈ 𝑆̅ = {𝑠| ∑ 𝑥𝑠𝑟 = 0

𝑟∈𝑅

}  (13) 

𝑢𝑠 ≥ 0, 𝑣𝑟 ≥ 0, ∀𝑟 ∈ 𝑅∗ (14) 

Equation (9) is the objective function to be maximized. Based on the design objective, one can set 𝑍 =
∑ 𝑢𝑠𝑠∈𝑆  to maximize total utility gain of users (𝑢𝑠), which would be a vertex of interest to public agencies. 

Its solution, if any, is a buyer-optimal cost allocation outcome. Alternative, if we aim to maximize total 

profit gain of operators (𝑣𝑟), the objective function becomes 𝑍 = ∑ 𝑣𝑟𝑟∈𝑅 . The optimal solution is a seller-

optimal outcome. If no cost allocation mechanism is being evaluated, one can solve the stable outcome 

problem twice, once for buyer-optimal and again for seller-optimal objective, to obtain the vertices for the 

full range of stable outcomes from which the platform can select one. Since the problem is convex (a set of 

linear constraints), the prices based on convex combinations of the two vertices would all be stable as well 

(Rasulkhani and Chow, 2019). Equation (10) ensures the stable condition for which no user would have a 

better payoff other than the current assignment. 𝐺(𝑟, 𝑥) is the group of users which can be feasibly assigned 

on route 𝑟 given the solutions 𝑥 of P1. In the case of an operator owning multiple routes, constraint (10) is 

only applied to routes not owned by that operator. In other words, in the case of a centralized operator where 

costs can freely transfer between routes, constraint (10) would be relaxed. For the Kussbus case study we 

assume routes do not freely transfer costs between each other.  

The feasibility constraints are verified when 𝐺(𝑟, 𝑥) satisfies Equation (3). For example, consider a 

matching outcome 𝑥 assigns users {𝑠1, 𝑠2, 𝑠3} to a route 𝑟. The set of group users 𝐺(𝑟, 𝑥) is the union of 

subsets of users from {𝑠1, 𝑠2, 𝑠3}, i.e. {{𝑠1}, {𝑠2}, {𝑠3}, {𝑠1, 𝑠2}, {𝑠1, 𝑠3}, {𝑠2, 𝑠3}, {𝑠1, 𝑠2, 𝑠3}}. Equation (11-13) 

are the feasibility conditions where 𝑅∗ is the subset of routes with at least one matched user. Equation (11) 

split the total utility gain between the user and the operator. 𝑆(𝑟, 𝑥) is the set of users matching route 𝑟, 

given an optimal matching solution x obtained by P1. Equation (14) ensures the decision variable 𝑢𝑠 and 𝑣𝑟 

are non-negative continuous variables. We call {(𝒖, 𝒗); 𝑥} a cost allocation outcome given an optimal 

matching x. The cost allocation outcome is the list of payoffs and profits for users and routes.  

New in this study, Equation (10) and (11) are modified to stochastic constraints because of the presence of 

a stochastic 𝑎𝑠𝑟. By introducing Equation (7) in (10), Equation (10) becomes Equation (15). 

∑ 𝑢𝑠

𝑠∈𝐺(𝑟,𝑥)

+ 𝑣𝑟 + 𝐶𝑟 − ∑ 𝑚𝑎𝑥(0, 𝑉𝑠𝑟 − 𝑡𝑠𝑟)

𝑠∈𝐺(𝑟,𝑥)

≥ ∑ 𝜀𝑠𝑟

𝑠∈𝐺(𝑟,𝑥)

, ∀𝐺(𝑟, 𝑥), 𝑟 ∈ 𝑅 (15) 

The constraint represents a heterogeneous population, which is not the same as the “stochastic stability” 

condition (see Fernández et al., 2002; Sawa, 2014; Klaus and Newton, 2016) in evolutionary games with 

random perturbations. Instead, under heterogeneity the stability condition can only be guaranteed for a 

portion of the population. Consider the concept of 𝛼-stability in Definition 1. 
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Definition 1. An outcome {(𝑢, 𝑣); 𝑥} for a population of heterogeneous user groups 𝑆 is 𝜶-stable if (1 − 𝛼) 

of each user group 𝑠 ∈ 𝑆 meets the stability condition in Eq. (10). When 𝛼 = 0.50 the stability condition 

simplifies back to the deterministic case of Rasulkhani and Chow (2019). 

 

For example, a 0.05-stable outcome for a heterogeneous user assignment game implies cost allocations that 

can only guarantee stability for 95% of the users. Then Equation (15) can be expressed deterministically as 

a chance constraint (16). 

𝛷 [
(∑ 𝑢𝑠𝑠∈𝐺(𝑟,𝑥) + 𝑣𝑟 + 𝐶𝑟 − ∑ 𝑚𝑎𝑥(0, 𝑉𝑠𝑟 − 𝑡𝑠𝑟)𝑠∈𝐺(𝑟,𝑥) )

|𝐺(𝑟, 𝑥)|
] ≥ 1 − 𝛼, ∀𝐺(𝑟, 𝑥), 𝑟 ∈ 𝑅 (16) 

where 𝛷(𝑧) = Pr (𝑍 ≤ 𝑧) is the cumulative density function of Z.  

Equation (16) is a nonlinear constraint which can be transformed to a linear inequality in Equation (17) per 

Shapiro, Dentcheva, and Ruszczyński (2009). 

∑ 𝑢𝑠

𝑠∈𝐺(𝑟,𝑥)

+ 𝑣𝑟 + 𝐶𝑟 − ∑ max (0, 𝑉𝑠𝑟 − 𝑡𝑠𝑟)

𝑠∈𝐺(𝑟,𝑥)

≥ 𝑍1−𝛼𝜎′, ∀𝐺(𝑟, 𝑥), 𝑟 ∈ 𝑅 (17) 

with new deviation 𝜎′ = √|𝐺(𝑟, 𝑥)|𝜎2. Eq. (11) can be correspondingly converted to Eq. (18). 

∑ 𝑢𝑠 + 𝑣𝑟+𝐶𝑟 − ∑ max (0, 𝑉𝑠𝑟 − 𝑡𝑠𝑟)

𝑠∈𝑆(𝑟,𝑥)

= 𝔼 ( ∑ 𝜀𝑠𝑟

𝑠∈𝑆(𝑟,𝑥)

) = 0, ∀ 𝑟 ∈ 𝑅∗

𝑠∈𝑆(𝑟,𝑥)

 

 

(18) 

Let us call P2 with Eq. (10) – (11) replaced with Eq. (17) and (18) as P2H. P2H is a linear programming 

problem and can be solved efficiently by the simplex algorithm or interior-point algorithm using existing 

commercial solvers.  

Given the 𝛼-stability outcome {(𝑢, 𝑣); 𝑥}𝛼, we can determinate ticket prices for user s using route r as shown 

in Equation (19). 

𝑝𝑠𝑟 = 𝑣𝑠𝑟 + 𝑐𝑠𝑟, ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆\{𝑘} (19) 

where 𝑣𝑠𝑟 is the profit gained of operating route r from user s. 𝑐𝑠𝑟 is the cost of operating route r to be 

transferred to user s. We have  ∑ 𝑐𝑠𝑟𝑠∈𝑆(𝑟,𝑥) = 𝐶𝑟 and ∑ 𝑣𝑠𝑟𝑠∈𝑆(𝑟,𝑥) = 𝑣𝑟, ∀𝑟 ∈ 𝑅.  

Operators may determine the ticket prices based on a preferred policy (e.g. equal-share or cost-based share 

policy) given the stable cost allocation outcome. Given a user-route matching outcome in P1H and a value 

𝛼  for the platform, one can solve the P2H problem to obtain buyer- and seller-optimal outcomes. An 

example is shown in Section 2.2. 

 

2.2. Illustrative example 

We illustrate the stable matching model with heterogeneous user groups by a simple 4-node transit route 

example drawn from Rasulkhani and Chow (2019) (see Figure 2). Travel time from node 𝑖 to node 𝑗 is 

shown on Figure 2. The operation cost of a route is assumed as a function of number of its links, defined as 

𝐶𝑟 = 4.5 + 0.5|𝐴𝑟|, where 𝐴𝑟 is the set of arcs on route 𝑟. We assume all possible routes can be enumerated 

resulting in 52 possible routes. A total of 60 users (demand) is generated with 10 users for each user group, 

i.e. 𝑑𝑠 = 10, ∀𝑠 ∈ 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6} ={(1, 2), (1, 3), (2, 3), (3, 2), (4, 1), (4, 2)}. The line capacity 
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𝑞𝑟, ∀𝑟 ∈ 𝑅 is set to 6. The utility of trip is assumed as 𝑈𝑟𝑠 = 𝑉𝑠 + 𝜀𝑠, ∀𝑠 ∈ 𝑆, with 𝑉𝑠 = 20 for 𝑠1 − 𝑠3, and 

𝑉𝑠 =25 for 𝑠4 − 𝑠6. 𝜀𝑠~ℕ(0, 𝜎𝑠) with 𝜎𝑠=1 , 2, and 3 for {𝑠1, 𝑠4}, {𝑠2, 𝑠5}, and {𝑠3, 𝑠6}, respectively.  

We first solve P1H to obtain optimal user-route flows 𝑥𝑠𝑟 . Then we solve P2H using the results of P1H to 

determine ticket prices 𝑝𝑠𝑟. Each route 𝑟 should charge each user group 𝑠 under different reliability (1 − 𝛼) 

to meet the stable condition (Eq. (17)). Two design objectives (buyer-optimal (𝑍 = ∑ 𝑢𝑠𝑠∈𝑆 ) and seller-

optimal (𝑍 = ∑ 𝑣𝑟𝑟∈𝑅 )) are considered. We use MATLAB intlinprog and linprog solvers to solve P1H and 

P2H problems, respectively. 

 

 

Figure 2. A simple 4-node network example. 

 

The optimal user-route matching result is shown in Table 1. The optimal objective function value is 1137. 

All users are matched with 6 routes where route (4-2) has 4 users and route (4-1-3-2) has 17 users. Given 

the user-route matches, we set up the ticket price based on buyer-/seller- optimal objectives with different 

level of stabilities 𝛼 ∈ {0.5,0.4,0.3,0.2,0.1}. The results are shown on Tables 2 and Table 3. Under the 

buyer-optimal objective, the total payoffs of users are almost the same with 𝑍∗ = 113.7 (the last line of 

Table 2) given different values of  𝛼. The lack of change is because the operator fares are all pushed to the 

minimum allowed. However, under the seller-optimal objective, increasing (1- 𝛼) results in lower ticket 

price 𝑝𝑠𝑟  and lower total payoff of operator (Table 2). When there’s heterogeneity, smaller values of 𝛼 

require a higher percent of the population to be satisfied, resulting in less room to maximize fare price and 

profit. As a result, the convex stable outcome region between buyer- and seller-optimal spaces shrinks (and 

even collapses to a unique value for Route 6 for 𝛼 ≤ 0.3). 

 

Table 1.  Result of user-route matches on the illustrative example. 

r User group (𝑜, 𝑑)  

Route 

number Links of route Cost of route (1,2) (1,3) (2,3) (3,2) (4,1) (4,2) Total 

6 4-2 5 0 0 0 0 0 4 4 

7 1-3-2 5.5 0 5 0 4 0 0 9 

9 1-2-3 5.5 6 0 4 0 0 0 10 

25 4-1-2 5.5 4 0 0 0 4 0 8 

28 4-2-3 5.5 0 0 6 0 0 6 12 

49 4-1-3-2 6 0 5 0 6 6 0 17 

Total    10 10 10 10 10 10 60 
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Table 2. Ticket prices in buyer-optimal and seller-optimal allocation mechanisms under different 

levels of stability. 

Route 

number 

Buyer-optimal Seller-optimal 

𝛼 𝛼 

0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1 

6 1.25 1.25 1.25 1.25 - 4.00 3.71 1.25 1.25 - 

7 0.61 0.61 0.61 0.61 - 1.67 1.36 1.99 1.35 - 

9 0.55 0.55 0.55 0.69 - 3.30 2.77 1.97 0.81 - 

25 0.69 0.69 0.69 0.69 - 2.25 2.25 1.64 0.81 - 

28 0.46 0.46 0.46 0.46 - 2.75 1.95 0.63 0.63 - 

49 0.35 0.35 0.35 0.42 - 1.18 0.93 1.43 1.15 - 

𝑍∗ 113.7 113.7 113.7 113.4 - 102.0 79.0 54.4 25.7 - 

 Remark: - : no solution  

 

Table 3. Operator’s profit on different routes in buyer-optimal and seller-optimal allocation 

mechanisms under different level of stability. 

Route 

number 

Buyer-optimal Seller-optimal 

𝛼 𝛼 

0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1 

6 0.0 0.0 0.0 0.0 - 11.0 9.8 0.0 0.0 - 

7 0.0 0.0 0.0 0.0 - 9.5 6.7 12.4 6.6 - 

9 0.0 0.0 0.0 1.4 - 27.5 22.2 14.2 2.6 - 

25 0.0 0.0 0.0 0.0 - 12.5 12.5 7.6 1.0 - 

28 0.0 0.0 0.0 0.0 - 27.5 17.9 2.0 2.0 - 

49 0.0 0.0 0.0 1.1 - 14.0 9.9 18.3 13.5 - 

   Remark: - : no solution 

 

3. Stable matching application case study 

We present a methodology to estimate and calibrate the model parameters for the stochastic assignment 

game model and evaluate different service design such as access time, ride time, and paid fare on the 

operator’s revenue and the ridership. More precisely, it aims to respond to the following research questions: 

• Based on the estimated utility parameters and the characteristics of the routes, the model predicts a 

stable outcome range for user ticket prices for a given reliability measure 𝛼. Having the individual 

ride observations, how should one calibrate 𝛼 if the objective is to maximize matches between 

predicted vehicle-route flow and the observed data?  

• What is the impact of different pricing policies on the ridership and operator’s profit? 

• If Kussbus should focus on one area to improve upon (i.e. reduction in operating cost, reduction in 

access time, or in-vehicle time), which should they focus on to increase ridership and what would 

be the resulting impact on its net profit?  

 

3.1. Data and case study setting  

Kussbus Smart shuttle service (https://kussbus.lu/en/how-it-works.html) is a first microtransit service 

operating in Luxembourg and its border area. The service was provided by the Utopian Future Technologies 

https://kussbus.lu/en/how-it-works.html
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S.A.(UFT) from April 2018 to March 2019. Like most microtransit systems, users use dedicated Smartphone 

applications to book a ride in advance with desired origin, destination and pickup time as input. Service 

routes are flexible to meet maximum access distance constraint. Routes are generated in a way that we 

assume users need to walk from/to the origin/destination to/from shuttle stops given a pre-defined threshold 

(i.e. around one kilometer). The service started operating between the Arlon region in Belgium and the 

Kirchberg district of Luxembourg City on 04/25/2018 and a second line started on 09/24/2018 between 

Thionville region (France) and Kirchberg district. Existing transit services on these two areas are rail-based 

service and a couple of fixed-route bus service, operated by the Luxembourg National Railway Company 

(https://www.cfl.lu/). On the Belgium side, there is one railroad line that connects Arlon and Luxembourg 

City central station. On the French side, one railroad line links main towns from Metz to Thionville until 

the central station of Luxembourg City. Due to widespread suburbs in both regions, lacking feeder services 

to connect the railroad stations, and insufficient transit capacity to meet user demand, both regions are highly 

congested on road networks due to high car use during morning and afternoon peak hours (Rifkin et al., 

2016; Karasz, 2019). 

The empirical ride data was provided by the operator for the period from 4/25/2018 to 10/10/2018. A total 

of 3258 trips (rides) were collected. Each ride contains the following information: booking date and time, 

pickup time and drop-off time, pickup and drop-off locations, pickup and drop-off stops, walking distance 

between stops and origins/destinations, origin-destination pairs of users, and fare. Any abnormal trips (e.g. 

trip duration less or equal to 5 minutes) were removed. As a result, a total of 3010 trips were used for this 

study.  

We summarize the characteristics of Kussbus service as follows. More detail about the operation policy 

and characteristics of Kussbus service can be found at:  https://uft.lu/en/news/references/kussbus.  

• Service areas: two service areas: a.) Arlon region (Belgium) < −> Kirchberg district (Luxembourg 

City), and b.) Thionville region (France) < −> Kirchberg district. 

• Operating hours: From 05:30 to 09:30 and from 16:00 to 19:00 from Monday to Friday. 

• Vehicle capacity: vehicle capacity differs from 7-seater, 16-seater, and 19-seater. 

• Booking and ticket price: users need to book a ride by the dedicated Smartphone application. First 6 

trips are free, and then the unit ticket price is around 5 euros per trip. 

• Vehicle routing policy: vehicle routes are scheduled based on pre-booked customer requests on previous 

days. Late-requests could be accepted under certain operational constraints.  

 

The entire study period of Kussbus riding data contains 235 commuting periods in the morning or afternoon 

from April to October 2018. The operator’s routes are generated beforehand based on the observed routes 

in the data. We solve P1 and P2 under a multi-period, static setting.  

There are 429 possible routes observed from Arlon to Kirchberg (see Figure 3) and 449 in the reverse 

direction. From Thionville to Kirchberg there are 52 routes (see Figure 4) with 50 routes in the reverse 

direction. The average operation costs takes into account driver and fuel costs. For the operating cost of 

route (i.e. vehicle-route), it is estimated as the average operating cost per kilometer travelled multiplied by 

travel distance. Route travel time is estimated by Google Maps API during corresponding peak hour traffic 

conditions. Table 4 reports the characteristics of Kussbus service and relevant parameter settings for the 

case study.  

We calibrate users’ utility (Equation (7)) to fit observed user-route matches. For this purpose, we divide the 

data into a training dataset (first 80% rides (213 commuting periods)) and a test dataset (remaining 20% 

rides (remaining 22 periods)). The calibration consists of two steps. The first step consists of estimating the 

value of in-vehicle travel time (VOT). The estimated VOT can then be used to estimate users’ generalized 

travel costs. The second step consists of calibrating the users’ utility values to fit observed user-route 

matches (i.e. user-used route pair) over the studied period. We use the commercial solver intlinprog of 

https://www.cfl.lu/
https://uft.lu/en/news/references/kussbus
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MATLAB to solve the P1 and P2 problems based on a Dell Latitude E5470 laptop with win64 OS, Intel i5-

6300U CPU, 2 Cores and 8GB memory.  

 

Table 4. Kussbus service characteristics and parameters settings. 

Attribute Value Attribute Value 

Number of trips 3010 User’s maximum waiting 

time at stop 

10 minutes  

Value of in-vehicle 

time (VOT) 

(euro/hour)* 

24.21 

 

Capacity of vehicles  7, 16 and 19 passenger 

seats 

Walking speed 5km/hr Average route cost 61.0 euros 

Average route distance  46.5 km Average travel distance of 

users 

43.0 km 

* based on the estimation in this study.  

 

 

Figure 3. Kussbus operating routes from Arlon to Luxembourg City. 
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Figure 4. Kussbus operating routes from Thionville to Luxembourg City. 

 

3.2. VOT estimation  

To estimate the VOT for commuting trips in the study area, we use a mobility survey conducted in October-

November 2012 for the EU officials and temporary employees working in the European institutions at the 

Kirchberg district of Luxembourg. The survey contains samples living in Luxembourg and its French, 

Belgium and Germany border areas, which perfectly matches Kussbus’s service area. A total of 370 valid 

samples (individuals) were collected in which there are 131 individuals from the European Investment Bank 

(∼6.2% of total staff in 2012) and 239 individuals from the Court of Justice of the European Union (∼11.2% 

of total staff). After a data cleaning process, a total of 309 individuals’ commuting trip data were used for 

the analysis. The spatial distribution of respondents’ residential locations appeared as Luxembourg (78.3%), 

France (9.4%), Belgium (7.8%) and Germany (4.5%). Note that Belgium employees live mainly in Arlon 

(45.8% of Belgium employees). French employees live mainly in Thionville, Hettange-Grande, and Yutz 

(44.8% of French employees). As only 5% of the sample use ‘walk’ and ‘bicycle’ as commuting mode, 

these samples are excluded from the analysis. We focuses on bimodal (car and public transport) mode choice 

case, which is consistent with the current mode share in the study area (“Luxmobil” survey, 2017).   

Based on previous studies (Gerber et al., 2017; Ma, 2015, Ma, Chow, and Xu 2017), explanatory variables 

for mode choice include individual-specific socio-demographic variables (gender, age, presence of children 

etc.), and alternative-specific variables (i.e. travel time and travel cost etc.). Two discrete choice models are 

specified: a multinomial probit model (MP) and a mixed logit model (ML). The mixed logit model allows 

random preference coefficient specification to capture travelers’ preference heterogeneity (Train 2003).  As 

no convergent estimation results were obtained for the mixed logit model, we only report the estimation 

results of the MP model in Table 5. The first model (MP-1) considers relevant socio-demographic variables 

and mode-specific variables. The second model (MP-2) further incorporates spatial-specific variables 

related to the municipality of respondents’ residential locations. The likelihood ratio test shows the MP-2 

outperforms the MP-1 at a statistical significance level of 0.05 (Prob. > chi-square=0.0148). We retain the 

MP-2 model as the final selected model. 

Regarding the estimated coefficients in the final model, the results are consistent. Travel time and travel 

cost have negative effects on individuals’ choices on car use. Free parking at the workplace encourages 

individuals to use car. Similarly, season ticket subscriptions might be related to frequently public transport 

users who prefer public transport. Number of children and number of cars in the household positively 
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influence individuals’ preferences to use car as a commuting mode. This result might be explained by the 

convenience of using cars for pickup/drop-off needs when children are present in the household. 

Luxembourg residents have significant preference for using car as a commuting mode due to lower 

accessibility to public transport in rural area, and other reasons related to habits, social and cultural norm. 

The estimated VOT for the MP-2 is 24.21 euro/hour which is consistent with existing VOT studies related 

to Luxembourg’s situation2 (Wardman, Chintakayala, and de Jong., 2016).  

 

Table 5. Estimation results of the multinomial probit models with different model specifications. 

 MP- 1 MP- 2 

Variable Coef. Std. Coef. Std. 

Travel time -0.013 0.009 -0.023* 0.012 

Cost -0.155*** 0.060 -0.057 0.072 

Free_parking  0.589* 0.349  0.608* 0.354 

Season_ticket -1.050*** 0.249 -1.025*** 0.254 

Gender -0.183 0.236 -0.176 0.238 

Couple -0.669** 0.329 -0.720** 0.333 

Age34 -0.377 0.411 -0.297 0.417 

Age35_44 -0.169 0.385 -0.138 0.389 

Age45_54 -0.711* 0.398 -0.722* 0.405 

N_children  0.329*** 0.124  0.350*** 0.127 

N_car  1.193*** 0.224  1.225*** 0.230 

Flex_time  0.014 0.320 -0.091 0.331 

Res_lux    1.711** 0.767 

Res_fr    0.340 0.858 

Res_be    1.042 0.780 

Constant -0.981* 0.593 -2.773*** 1.012 

Number of individuals   309 309 

Log-likelihood value 

at convergence 
-161.65 -156.51 

Degree of freedom 13 16 

Prob. > chi-square <0.000001 <0.000001  

Pseudo R2   0.2446 0.2686 

AIC 349.3 345.02 

BIC 397.8 404.8 

Adjusted Pseudo R2   0.1885 0.1985 

Likelihood ratio test  

( Prob. > chi-square) 

<0.00001 

 

0.0148 

(MP-2 vs MP-1) 
                Remark: *0.05 < p-value ≤ 0.1. **0.01 < p-value ≤ 0.05. ***p-value ≤ 0.01 

  

 
2 Wardman, Chintakayala, and de Jong (2016) estimated the values of time (€ per hour based on 2010 incomes and 

prices) for car commute is 18.06 (urban free flow) and 25.68 (urban congestion) in Luxembourg. For car business 

travel, it is 37.94 euros/hour in urban free flow situation and 53.95 euros/hour in urban congestion situation. 
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3.3. Utility calibration   

We calibrate the utility 𝑈𝑠𝑟 using the first 80% training dataset to maximize the user-route matches between 

observation and model predicted results. As no available survey data is available to direct estimate user 

commuting trip utility, we approximate it as an equivalent door-to-door car-use generalized travel cost (𝑈𝑠
𝑐𝑎𝑟) 

plus a constant utility ( 𝑈𝑠
0 ) to be calibrated (i.e. 𝑈𝑠𝑟 = 𝑈𝑠

0 + 𝑈𝑠
𝑐𝑎𝑟 = 𝑈𝑠

0 + 𝑐̂𝑠 + 𝜀𝑠𝑟 ). Note that 

𝑈𝑠
𝑐𝑎𝑟 represents the perceived cost of the reference mode, and 𝑈𝑠

0 is the differentiation value between car 

and Kussbus service (Breidert, 2005). We estimate users’ car-use generalized travel cost as 𝑉𝑂𝑇 × 𝑡𝑠 +

𝑐𝑐̅𝑎𝑟 × 𝑑𝑠, where 𝑡𝑠 is a user’s trip travel time from origin to destination and 𝑑𝑠 is the trip travel distance. 

𝑐𝑐̅𝑎𝑟 is the average cost per kilometer travelled by car estimated as 0.2534 euros/km by considering fuel cost, 

vehicle purchase cost and annual assurance cost, which is consistent with an existing study (Victoria 

Transport Policy Institute, 2009). Given user’s origin and destination, we use Google’s API to estimate 𝑐̂𝑠 

by considering realsitic road congestion effect given user’s departure time. User’s generalized travel cost 

𝑡𝑠𝑟 is estimated by considering walking time 𝑇𝑤𝑎𝑙𝑘 to nearest shuttle stop, waiting time 𝑇𝑤𝑎𝑖𝑡, and riding 

time 𝑇𝑟𝑖𝑑𝑒 of trip, estimated as Equation (20). 

𝑡𝑠𝑟 = 𝜏1𝑇𝑂𝑣1

𝑤𝑎𝑙𝑘 + 𝜏2𝑇𝑣1
𝑤𝑎𝑖𝑡 + 𝜏3𝑇𝑣1𝑣2

𝑟𝑖𝑑𝑒 + 𝜏1𝑇𝑣2𝐷
𝑤𝑎𝑙𝑘 (20) 

where 𝑂 and 𝐷 are user origin and destination, respectively. 𝑣1 and 𝑣2 are pickup and drop-off stops for 

user s and route 𝑟, respectively. 𝜏1, 𝜏2 and 𝜏3 are the value of walking time, value of waiting time and VOT, 

respectively. We set 𝜏1 = 1.5𝜏3 and 𝜏2 = 2𝜏3 (Wardman, Chintakayala, and de Jong., 2016). 𝜏3 is 24.21 

euro/hour as aforementioned.  

The calibration result is shown in Figure 5. We vary 𝑈𝑠
0 from 0 to 100 and solve the P1 problem to match 

users and routes. We found 𝑈𝑠
0 ≥ 45  euros fits observed user-route matches with 79.03% user-route 

matching rate on the training data based on the average of 5 runs. We retain 𝑈𝑠
0 = 45 as the calibrated 

constant user’s trip utility value. For the remaining 20% test data, its corrected prediction rate of user-route 

matches is 65.45%. The mean and standard deviation of 𝑈𝑠𝑟 is 73.39 and 3.57 for Belgium-side rides, and 

these numbers become 72.96 and 8.75, respectively, on the French-side. The standard deviation reflects the 

degrees of variation in 𝑐̂𝑠 on these two areas.  

We further test the normality assumption of 𝑈𝑠𝑟. The skewness and kurtosis test for Normality shows the 

distribution of 𝑈𝑠𝑟  for Belgium-side follows the normal distributions with p-value (𝑝 > 𝜒2) > 0.05. For 

French-side, the Normality test is unable to be conducted due to its small sample size.  

 

Figure 5. The calibration of constant part 𝑈𝑠
0 of trip utility. 
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3.4. Calibration of 𝜶 

As we only have observed rides in the data and not on other modes the users may have taken, we calibrate 

the reliability parameter 𝛼 based only on observed rides to fit model prediction and observations. The choice 

of 𝛼 depends on the platform. When observing a platform as a third-party and given a distribution for the 

utilities, one can fit a value of 𝛼 that maximizes the corrected prediction rate of the route flows matches. A 

two-stage computational procedure for calibrating the 𝛼  for an 𝛼 -stable assignment game with 

heterogeneous users is described in Algorithm 1.  

We use the training data set (first 80% rides (213 commuting periods)) for calibrating 𝛼 . For each 

commuting period ℎ ∈ 𝐻, we have observed users and flows on Kussbus routes. We solve P1H and P2H for 

a given value of 𝛼 to set up ticket price of users for each commuting period. Then we draw user’s random 

ride utilities and insert the ticket price into P1 and solve P1 again to obtain the predicted route flows. We 

measure the corrected prediction rate over the training data set based on the difference between number of 

matches from the model and that from observed in the training data set, as shown in Eq. (21). 

𝑤𝛼 =  1 −
∑ ∑ |𝑥𝑠𝑟

ℎ − 1𝑠𝑟̅
ℎ |𝑠∈𝑆ℎℎ∈𝐻

∑ |𝑆ℎ|ℎ∈𝐻
 

 

(21) 

where 𝑆ℎ is the set of observed rides (users) in the commuting period h. 1𝑠𝑟̅
ℎ  is an indicator being 1 if user s 

uses route 𝑟̅ in period h, and 0 otherwise.  𝑥𝑠𝑟
ℎ  is the model prediction whether s uses the route 𝑟̅ or not in 

period h.  

From the average 𝑤̅𝛼 based on 𝐾 runs, we set a stable reliability parameter 𝛼 with highest 𝑤̅𝛼 . Afterwards, 

we can apply the model to other scenarios to anticipate how the platform would respond given their inferred 

𝛼.  

Note that we set up ticket prices based on the equal-share policy given the outcome obtained by P2. For 

example, consider a route 𝑟 with an operating cost of 40 euros and shared by 5 users. The portion of the 

payoff allocated to route 𝑟 from the solution of P2 is 20 euros. Under the equal-share policy, ticket prices 

for route 𝑟 are calculated as 40/5+20/5=12 euros. As aforementioned, 𝛼 represent a reliability measure for 

which matches are perceived to be stable with the probability of 1 − 𝛼. We are interested in calibrating 𝛼 

within a set of discrete values, i.e. 𝛼 ∈ (0.05, 0.1, 0.2, 0.3, 0.4, 0.5) to maximize the model prediction with 

the observed ridership. In practice, a platform or operator can further calibrate 𝛼 within the range 0<𝛼 ≤

0.5  with higher precision. The calibration result is shown in Figure 6. We found 𝛼 = 0.2 has the best-fit of 

user-route matches with the average corrected prediction rate of 63.45%.  

 

Figure 6. Corrected prediction rates of observed user-route matches for the training dataset over different 

𝛼.    
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Table 6 reports the result of the stable matching model for the training and test dataset. For the training 

dataset, 76.38% of ride requests match Kussbus’s operating routes, given 𝛼 = 0.2. For the test dataset, its 

average user-route matches are 70.11% with a 54.43% corrected prediction rate of route flows.  

Algorithm 1. Two-stage computational process of the stable matching model. 

0: Input: a set of candidate routes 𝑟 ∈ 𝑅 and a set of observed rides, 𝑠 ∈ 𝑆ℎ over |𝐻| commuting 

periods, ℎ = 1,2, … , |𝐻|. Calibrate user’s ride utility distribution (see Section 3.3) and compute 

user’s generalized travel cost 𝑡𝑠𝑟. 

1: Set iteration 𝑖 = 0, 𝛼𝑖 = 0, and step size ∆. 

2: While 𝛼𝑖 ≤ 0.5 

3:     For 𝑘 = 1: 𝐾 

4:          For ℎ = 1: |𝐻|  
5:              Solve P1H by leaving ticket price out and obtain the solution 𝒙𝑠𝑟

ℎ . 

6:        Given 𝒙𝑠𝑟
ℎ  and 𝛼𝑖, solve P2H based on user-optimal policy, i.e. 𝑍 = ∑ 𝑢𝑠𝑠∈𝑆 , to  

       maximize ridership and obtain the solution 𝑢𝑠 and  𝑣𝑟. Set up ticket price 𝑝𝑟𝑠 by (19). 

7:        Introduce 𝑝𝑟𝑠 in Eq. (1), i.e. 𝑎𝑠𝑟 = max (0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟 − 𝑝𝑠𝑟), and solve P1 again to get  

       the predicted route flows 𝒙̂𝑠𝑟
ℎ . 

8:     end 

9:     Compute the corrected prediction rate over the training data set 𝑤𝛼
𝑘 by (21). 

10:     end 

11:     Compute 𝑤̅𝛼 = (𝑤𝛼
1 + ⋯ + 𝑤𝛼

𝐾)/𝐾. 

12: Set 𝛼𝑖+1 = 𝛼𝑖 + ∆. Set 𝑖: = 𝑖 + 1 and go to step 3. 

13: Retain best 𝛼∗ with highest average corrected prediction rate 𝑤̅𝛼.  

Remark: 0.5 reflects the fact that we are interested in cases where the solution (user-route matches) is stable 

with probability higher than 0.5.   

 

Table 6. User-route matching result of Kussbus rides for 235 periods. 

Data  Number of 

ride 

requests 

(users) 

Number of user-

route matches  

User-route 

matching 

rate 

Number of 

rides matched 

with 

observations   

Matched rate 

(observation 

v.s. 

prediction) 

Computati

onal time 

(second) 

Training dataset 

(80% obs.) 

2395 1829 0.7638 1520 0.6345 84.7 

Test dataset (20% 

obs.) 

615 431 

 

0.7011 

 

335 0.5443 29.0 

Remark: 𝛼 = 0.2. The reported result is the average based on 5 runs. 

 

4. Results 

 

4.1. Detailed breakdown of two commuting periods using the stable matching model 

We now illustrate the detailed result of the stable matching model by considering two commuting periods 

on 06/27/2018 (Luxembourg-> Arlon in the evening) and 06/28/2018 (Arlon->Luxembourg in the morning) 

(see Table 7). There are 9 and 14 rides observed during these two periods. For the first period, 5 routes are 

matched with 9 users of which four routes are observed in the data. Only one route is different (Figure 7). 

The average ridership is 1.8 users/vehicle under the buyer-optimal policy. The ticket price ranges from 18.8 

euros to 46.1 euros to ensure route operating cost could be covered from its revenue. As a comparison, when 

setting ticket prices under the seller-optimal policy, it would result in higher ticket prices for shared-ride 

users compared to that based on the buyer-optimal policy. For the second period, 4 routes are matched with 
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14 users which are observed to be identical (Figure 8). The average ridership is 3.5 users/vehicle with ticket 

price ranging from 9.2 euros for 6-users share and 28.8 euros for 2-users share. Figures 6 and 7 illustrates 

the detail of the spatial distribution of users’ origins, destination and the operated routes based on 

observation and the model prediction.  

 

Table 7. Example of detailed result of the user-route matching model. 

Period Number 

of users 

 

Route attributes Assigned routes 

06/27/2018 

Afternoon 

(Luxembourg-

> Arlon) 

9  ID 235 238 178 236 237 

  Operating cost 56.4 46.1 41.4 51.3 52.7 

  Number of users 3 1 1 2 2 

  Ticket price (𝑝𝑠𝑟):      
  →Buyer-opt. 18.8 46.1 41.4 25.7 26.4 

  →Seller-opt. 47.1 50.1 48.8 55.6 42 

06/28/2018 

Morning 

(Arlon-

>Luxembourg) 

14  ID 242 240 239 241  
  Operating cost (𝐶𝑟) 57.6 55.2 52.1 54.1  
  Number of users 2 6 3 3  

  Ticket price (𝑝𝑠𝑟):       

  →Buyer-opt. 28.8 9.2 17.4 18.0  

  →Seller-opt. 49.7 50.0 46.4 50.4  
Remark: Ticket price and profit are measured in euros.  

 

 

Figure 7. User-route match results of the stable matching model (Luxembourg to Arlon, 06/27/2018). 
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Figure 8. User-route match results of the stable matching model (Arlon to Luxembourg, 06/28/2018). 

 

4.2. Comparison of the Kussbus pricing policy to the buyer-optimal and seller-optimal policies  

We compare the result of the stable matching model based on buyer-optimal (i.e. 𝑍 = ∑ 𝑢𝑠𝑠∈𝑆  in (9)) and 

seller-optimal (i.e. 𝑍 = ∑ 𝑣𝑟𝑟∈𝑅  in (9)) cost allocation policies using calibrated 𝛼 and the test dataset. The 

CDFs under different pricing policies are shown in Figure 9. For the buyer-optimal policy, the 50- percentile 

of the ticket price is 10.98 euros, and the 75- percentile is 13.18 euros. However, for the seller-optimal 

policy, a user’s ticket price becomes 49.91 euros and 52.02 euros for the 50- and 75- percentiles, respectively. 

Compared to taxi fare3 in Luxembourg (i.e. 2.5 euros for the initial charge and 2.6 euros per kilometer 

traveled), a single-ride Kussbus price is much cheaper compared to the current taxi fare. Note that Kussbus 

operated pricing policy gave 6 free rides to users and then charge around 5 euros per ride. Given no subsidy, 

the total revenue from its service operation is unable to compensate its total operating cost. 

The total revenue, route cost and profit of the operator over the test dataset is shown in Table 8. The result 

is obtained from solving the stable matching model based on the four pricing schemes: Kussbus-operated 

ticket price, buyer-optimal ticket price, seller-optimal ticket price, and taxi fare. We find that Kussbus’ 

operated policy would accumulate a financial loss up to -4135 euros for 465 matched users due to its lower 

ticket price compared to its route operating cost. By setting ticket prices based on the buyer-optimal policy, 

426 users should match with the routes with a positive profit of 187 euros. By contrast, setting ticket prices 

based on the seller-optimal policy results in a relatively high ticket price (see Figure 9) due to the high 

operating cost (i.e. 61.0 euros/route on average, see Table 4). Consequently, only 6 users are matched with 

routes with a positive profit of 128 euros. Note that the counter intuitive result of why the seller-optimal 

case ends up with lower net profit is due to integrating the higher seller-optimal ticket price in the disutility 

function as explained in Section 2. Again, applying a taxi tariff results in no rides, given the high taxi fare 

for the long commuting distances of users in the studied area (i.e. average taxi fare is 114.3 euros , given an 

average travel distance of users is 43 km, see Table 4). We conclude that the buyer-optimal cost allocation 

policy is preferred to maximizing ridership and keeping the service at a minimum profitable level over the 

long term. 

 
3 https://www.bettertaxi.com/taxi-fare-calculator/luxemburg/ 

https://www.bettertaxi.com/taxi-fare-calculator/luxemburg/
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Figure 9. The cumulative probability distribution of user’s ticket prices under different pricing policy for 

the test dataset. 

 

Table 8. Revenue, operating cost and profit of different pricing policies for the test dataset. 

Policy Ridership Revenue 

Operating 

cost 

Net 

profit 

    

Kussbus’s tariff 465 (75.54%) 1266 5401 -4135 

Buyer-optimal ticket price 426 (69.24%) 4831 4644 187 

Seller-optimal ticket price 6 (0.98%) 231 103 128 

Taxi  0 (0.00%) 0 0 0 

Remark: Measured in euros. The reported result is the average of 5 runs.  

 

4.3. Sensitivity analysis of policy  

We further evaluate different system parameters to provide useful information for the operator to improve 

its operating policy design in the future. The considered decision parameters and the test scenarios are as 

follows. 

− Scenarios 1: Route operating cost reduction: -10%,-30%,-30%,-40%,-50%. Examples of route 

operating cost changes include improvements in routing, repositioning, and matching algorithms that 

save idle time of vehicles, setting of common meeting points to streamline routes serving passengers, 

or reduction in congestion that leads to improvements in travel speed. 

− Scenarios 2: In-vehicle travel time reduction: -10%,-30%,-30%,-40%,-50%. Examples include 

reduction in congestion leading to improvements in travel times for passengers. 

− Scenarios 3: Access distance to bus stops reduction: -10%,-30%,-30%,-40%,-50%. Examples include 

algorithms that bring vehicles closer to travellers and reduce their access time.  

 

Two ticket-pricing policies based on the buyer-optimal (𝑍 = ∑ 𝑢𝑠𝑠∈𝑆 ) and seller-optimal (𝑍 = ∑ 𝑣𝑟𝑟∈𝑅 ) 

setting are evaluated. The aim is to demonstrate the sensitivity of the model to the impact of different 

decision parameters on the ridership and profit of the operator.  
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We run the stable matching model based on the test dataset for different scenarios. The ticket price changes 

under different scenarios as shown in Table 9. For scenario 1, we find reducing route cost is most beneficial 

for users with lower ticket prices under the buyer-optimal policy. When reducing from -10% to -50% of the 

route cost, the ticket price would reduce from -6.9% to -37.9%. However, under the seller-optimal policy, 

the ticket price would keep stable with less than 1% variation.  

For scenario 2, we find there is little change (less than 5%) observed for ticket prices based on the buyer-

optimal policy. This is because the operator’s route cost estimation depends on vehicle travel distance only. 

More elaborate route cost estimation that considers vehicle travel time can be integrated in the future. 

However, under the seller-optimal policy, reducing in-vehicle travel time between -10% to -50% would 

increase ticket prices between 3.7% to 13%. This is because the savings in travel time are absorbed by the 

operator in a seller-optimal policy.  

For scenario 3, only a marginal variation (less than 3%) of the ticket price is observed for both pricing 

policies. As more than 95% of access distance to Kussbus bus stops is less than 1 km, it is expected that 

reducing the access distance further would have an insignificant impact on ticket prices. Figure 10 shows 

the cumulative probability distributions of ticket prices for different scenarios based on the buyer-optimal 

and seller-optimal policies.  

 

Table 9. Ticket price variation based on different scenarios. 

 Route cost reduction scenario 
In-vehicle travel time reduction 

scenario 

Access distance to bus 

stops reduction scenario 

Scenario 

(Reduction) 
BO SO BO SO BO SO 

  € ±%    € ±%    € ±%    € ±%    € ±%    € ±% 

0% 11.6  49.1  11.7  49.3  11.6  49.6  

-10% 10.8 -6.9  49.4 0.6  11.7 0.0  51.1 3.7  11.7 0.9  49.4 -0.4  

-20% 10 -13.8  49.4 0.6  11.8 0.9  52.7 6.9  11.8 1.7  49.9 0.6  

-30% 9 -22.4  49.3 0.4  11.8 0.9  53.9 9.3  11.4 -1.7  49.9 0.6  

-40% 8.2 -29.3  49.1 0.0  12.2 4.3  55.1 11.8  11.6 0.0  50.0 0.8  

-50% 7.2 -37.9  48.9 -0.4  11.9 1.7  55.7 13.0  11.3 -2.6  50.3 1.4  

Remark: BO: Buyer-optimal; SO: Seller –optimal. The result is based on the average of 5 runs. 

 

Figure 10. Influence of route cost reduction on ticket prices based on the buyer-optimal (on the left) and 

the seller-optimal policies (on the right). 
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4.4. Discussion  

In this section, we interpret and discuss a) the result of the impact of different scenarios on ridership and the 

operator's profit under the buyer-optimal ticket price, b) the policy implications and c) methodological 

limitations. 

a. The result of the impact of buyer-optimal ticket price is shown in Table 10 and Figure 11. We found 

that reducing route cost is more effective to increase the ridership (up to +10% when 50% reduction of 

route cost) compared to reducing in-vehicle travel time and access distance to bus stops. However, it is 

not beneficial for the operator. For scenario 2, reducing in-vehicle travel time would slightly increase 

user-route matches (less than 2%) given fixed ride requests. However, it significantly increases the profit 

of the operator (i.e. +151.5% profit for 50% in-vehicle travel time reduction). For scenario 3, a marginal 

impact on ridership and operator’s profit is observed due to the short access distance to bus stops. For 

the seller-optimal policy, we find reducing route cost and in-vehicle travel time could significantly 

increase both the ridership and profit of the operator compared to its benchmark as shown in Table 11 

and Figure 12. Low ridership for the benchmark results from higher ticket prices. Under scenario 1 and 

2, the number of rides would increase from initial 2 rides (over 615 requests) to 61 (scenario 1) and 72 

(scenario 2). For scenario 3, its effect on the ridership and profit of the operator is less significant 

compared to the other two scenarios. 

b. Our sensitivity analysis shows how the operator can apply this methodology to set up ticket prices by 

considering the price ranges from buyer-optimal and seller-optimal policies. In conclusion, if Kussbus 

were to operate on its own without government intervention, it can seek a seller-optimal policy and 

invest in algorithms that improve operating cost and/or in-vehicle travel time for passengers. For the 

government, the subsidy can be provided in support of scenario 1 while requiring Kussbus to operate 

under a buyer-optimal policy, as funding improvements in routing algorithms can significantly improve 

the consumer surplus of travellers. 

c. Our study shows the proposed stable matching model is suitable to evaluate the impacts of different 

operation policy designs, fleet configuration, fare settings, and subsidies on the ridership and revenue 

of the operator (Brake et al., 2007; Mulley et al., 2012). However, the analysis of governance and 

regulation issues of microtransit service with the interplays of the government, operators, and users can 

consider other more suitable approaches (Sharmeen and Meurs, 2019). Our study provides a benchmark 

under fixed demand. For the future extension, it would be interesting to consider flexible travel demand 

under a multimodal transport market setting. In this study, a static multi-period model is used to fit to 

the data; a more realistic model would be a dynamic model that considers dynamic cost allocations (e.g. 

Furuhata et al., 2014) or dynamic ridesharing system with stochastic customer arrivals (Berbeglia et al. 

2010). 

 

Table 10. Influence of different scenarios on the ridership and profit of the operator based on 

the buyer-optimal ticket price.  

 

 

Scenario 

(Reduction) 

Ridership Profit 

S1 S2 S3 S1 S2 S3 

# ±% # ±% # ±% Euro ±% Euro ±% Euro ±% 

0%   431  430  430  202  196  214  

-10% 428 -0.7 419 -2.6 431 0.2 199 -1.5 142 -27.6 187 -12.6 

-20% 436 1.2 431 0.2 447 4.0 129 -36.1 276 40.8 236 10.3 

-30% 460 6.7 458 6.5 436 1.4 113 -44.1 304 55.1 92 -57.0 

-40% 467 8.4 433 0.7 434 0.9 148 -26.7 373 90.3 119 -44.4 

-50% 474 10.0 438 1.9 436 1.4 12 -94.1 493 151.5 161 -24.8 

Remark: S1: Route operating cost reduction scenario, S2: In-vehicle travel time reduction scenario, 

S3: Access distance to bus stops reduction scenario. The result is based on the average of 5 runs. 
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Table 11. Influence of different scenarios on the ridership and profit of the operator based on the 

seller-optimal ticket price. 

Scenario 

(Reduction) 

Ridership Profit 

S1 S2 S3 S1 S2 S3 

# ±% # ±% # ±% Euro ±% Euro ±% Euro ±% 

0% 2   2   3   81   71   85   

-10% 2 0 4 100 6 100 84 3.7 145 104.2 160 88.2 

-20% 12 500 15 650 6 100 441 444.4 590 731.0 190 123.5 

-30% 24 1100 33 1550 7 133.3 966 1092.6 1284 1708.5 229 169.4 

-40% 38 1800 39 1850 5 66.7 1549 1812.3 1610 2167.6 151 77.6 

-50% 61 2950 72 3500 10 233.3 2594 3102.5 3063 4214.1 394 363.5 

Remark: S1: Route operating cost reduction scenario, S2: In-vehicle travel time reduction scenario, S3: 

Access distance to bus stops reduction scenario. The result is based on the average of 5 runs. 

 

 

Figure 11. Influence of different scenarios on (a) ridership and (b) profit of the operator based on the 

buyer-optimal ticket price.  

 

Figure 12. Influence of different scenarios on the ridership and profit of the operator based on the seller-

optimal ticket price. 
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5. Conclusions  

We tackle the problem of evaluating and designing a microtransit service. Microtransit operators can 

allocate resources to improve upon many aspects of operation: vehicle capacities; fleet size; algorithms to 

improve routing, pricing, repositioning, matching; and more. We conduct the first empirical application of 

a model from Rasulkhani and Chow (2019) that evaluates such systems using stable matching between 

travellers and operator-routes under user stochastic utility setting. The study is conducted using a real data 

set shared by industry collaborator Kussbus covering 3010 trips made between April to October 2018 in 

Luxembourg and its French-side and Belgium-side border areas. 

We calibrated the model to the data. A separate data set from a mobility survey conducted in October to 

November 2012 covering a similar study area was used to estimate the value of time of travellers as 24.67 

euros/hour, which we found consistent with existing VOT studies in Luxembourg. A base utility constant 

was then estimated for travellers in the Kussbus data and found to be 45 Euros to obtain 79.03% matching 

rate with the training data. Validation using the 20% test data showed a user-route match rate of 65.45%. 

The value of 𝛼 was calibrated to a value of 0.20 as the best fit to the observations with a corrected prediction 

rate of 63.45% resulting in 76.38% ride matches. Validation with the 20% test set resulted in 54.43% 

corrected prediction rate with 70.11% matches. 

Our stable matching model, as illustrated with two commuting periods, shows the existence of a stable 

outcome space between buyer-optimal and seller-optimal policies. We show that Kussbus current pricing 

policy falls below the buyer-optimal policy, which is not sustainable. By increasing the ticket price to the 

buyer-optimal policy it would reduce ridership from the current 465 trips to 426 trips and changing the net 

profit from -4135 euros to 187 euros for 615 ride requests. Increasing the pricing allocation further to the 

seller-optimal policy significantly reduces the ridership and reduces net profit, while following taxi pricing 

policy would lead to zero trips. 

A sensitivity analysis is then conducted to compare the effects that equal, unilateral reductions in route 

operating cost, in-vehicle travel time, and access distance to bus stops, can have on the microtransit service. 

We find that government can intervene by offering to subsidize Kussbus to improve their routing algorithms 

and reduce operating cost while requiring operation under a buyer-optimal policy. Such an intervention can 

increase ridership by 10% with an operating cost reduction of 50%. Alternatively, an independent Kussbus 

can operate in a seller-optimal policy and invest in algorithms to improve in-vehicle travel time which can 

improve profit by 731% (bearing in mind the low ridership if operating a seller-optimal policy in the current 

baseline setting) with a 20% reduction in in-vehicle travel time. These analyses can be further conducted 

with other operational variables like fleet size, fleet mix in vehicle size, service coverage area, and more.  

New insights have been made as a first empirical study of microtransit operation using the stable matching 

modelling framework. However, more research can be done to improve this work further. A study that 

includes travellers as part of a whole market system would capture their utility preferences better, allowing 

us to specify choice models and using the utility functions for the stable matching model. Alternatively, 

methodological extensions can be made to allow us to evaluate platforms (see Chapter 3.5 in Chow, 2018) 

controlling submarkets in the presence of external operators/platforms. Evaluation of the Kussbus service 

as a potential component of a multimodal MaaS trip (see Pantelidis, Chow and Rasulkhani, 2020) would be 

a much more powerful study that can relate its operational policies to impacts to the MaaS market. Future 

extensions can also consider an integrated demand responsive transport setting (Ma et al., 2019) with 

microtransit as feeder service to evaluate the impacts of different operation policies and fare levels on the 

ridership and revenue to reduce operating costs of operators. 
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