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 
Abstract— Convolutional Neural Networks (CNN) are widely 
used in different artificial intelligence (AI) applications. Major 
part of the computation of a CNN involves 2D convolution. In this 
paper, we propose novel fast convolution algorithms for both 1D 
and 2D to remove the redundant multiplication operations in 
convolution computations at the cost of controlled increase of 
addition operations. For example, when the 2D processing block 
size is 𝟑 × 𝟑, our algorithm has multiplication saving factor as 
high as 3.24, compared to direct 2D convolution computation 
scheme. The proposed algorithm can also process input feature 
maps and generate output feature maps with the same flexible 
block sizes that are independent of convolution weight kernel size. 
The memory access efficiency is also largely improved by the 
proposed method. These structures can be applied to different 
CNN layers, such as convolution with 𝒔𝒕𝒓𝒊𝒅𝒆 >1, pooling and 
deconvolution by exploring flexible feature map processing tile 
sizes. The proposed algorithm is suitable for both software and 
hardware implementation. 

Index Terms — Convolutional neural network, Fast 
convolution, Kronecker product, Deconvolution Parallel FIR 
filter, Winograd algorithm 
 

I. INTRODUCTION 
onvolution Neural Network (CNN) is the foundation of 
state-of-the-art AI applications such as image recognition 
[1][2][3][4], text classification[5][6][7], and generative 

adversarial network (GAN) [8]. More than 90% of the 
computation in CNN is occupied by convolution layers [9]. It is 
thus beneficial if we can shorten computation time in these 
convolution layers in order to achieve good CNN acceleration. 

Computation of convolution layers has a lot of redundancy 
due to the nature of convolution especially when the 
convolution kernel size is large. Even though large kernel sizes 
are less popular as a recent trend, the CNN acceleration solution 
proposed in this paper covers both large and small kernel sizes. 

Fast convolution of short lengths have been explored to 
reduce the computational complexity of convolution in 
previous works [10][11]. However, they can be improved. For 
example, the Winograd fast convolution [10] handles 2D short 
convolution with minimal multiplications but it has three 
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issues: 1) when convolution length or kernel size gets larger 
(than 3), the number of addition or multiplication operations in 
both preprocessing and post-processing matrices increases 
dramatically; 2) when either input tile size or convolution 
kernel size changes, the preprocessing and post-processing 
matrices will change too; 3) preprocessing and post-processing 
involve left and right matrix multiplication, which makes it 
hard to expand convolution into large matrix multiplication. 
Other CNN fast convolution algorithms [11] based on short 
convolution algorithms [12], although achieve balanced and 
regular structures, exploit the redundancy only at one 
dimension of the feature map (row or column dimension) and 
thus the computation efficiency are not pushed to the limit from 
both the row and column dimensions. Furthermore, the 
sub-filter structures in the existing 1D convolution is not 
suitable for software implementation and can be improved. 

Another limitation of the previous works is the convolution 
weight kernel size is usually tied to the tile size. This makes the 
convolution layer with 𝑠𝑡𝑟𝑖𝑑𝑒 > 1 and other subsequent CNN 
operations (such as pooling layers) hard to handle. We would 
have to apply multiple memory banks or perform extra memory 
access for data rearrangement. Today’s CNN implementation 
requires higher and higher memory bandwidth. It’s very 
important that we keep memory access rate low. 

This paper focuses on improving the convolution efficiency 
by proposing a novel convolution processing algorithm in 2D 
of the input feature map. This 2D convolution core can be 
easily scaled to handle different convolution kernel sizes. The 
fact that feature map tile size is independent of the weight 
kernel size enables smooth data flow for different stride sizes in 
convolution, deconvolution and pooling and thus keeps 
memory access rate low.  

Parallel filtering algorithms in [12][13][14] can be used for 
1D CNN. We derive efficient 2D convolution algorithms and 
their general formula for 2D CNN in this paper. We show that, 
if the computation complexity saving factor of 1D convolution 
is F, then its corresponding 2D convolution can have a saving 
factor of  F2. To the best of the authors’ knowledge, this is the 
first paper to demonstrate this saving factor for 2D convolution 
with parallel filter structures. 

There are also many other published papers that cover 
different aspects of CNN implementation and acceleration 
[15][16]17]; for example, reducing data bandwidth by applying 
alternative data-reuse strategies [16] or addressing computation 
latency [17]. The proposed fast 2D algorithms in this paper are 
complementary to these existing architectures because it can 
save more computational complexity by exploiting fast 
convolution in 2D domain similar to the popular Winograd 
algorithms [10]. However we make it more convenient to 
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exploit fast 2D convolution for both hardware and software 
implementations. For example, transforming kernel and input 
feature map tiles to frequency domain would be done only by 
left matrix multiplication and no right matrix multiplication is 
needed. The pre-processing and post-processing matrices could 
have more flexible choices with only {0,1,-1} as their elements. 

This paper is organized as follows. Section II reviews 1D 
convolution structures. The proposed 2D convolution 
algorithm is then derived in Section III. Application of the 
proposed 2D convolution structure to CNN convolution layers 
is discussed with implementation examples and is generalized 
in Section IV. Computational complexity analysis is performed 
in Section V. 

II. ONE-DIMENSIONAL CONVOLUTIONAL ALGORITHMS 
We assume the input feature map has dimension 𝑀 ×𝑁, and 

weight kernel size of 𝐾 × 𝐾 . The one-dimensional (1D) 
𝐿-parallel FIR filter structure is described by (2.1) in [13]. We 
first apply it to the feature map in the row dimension. 
𝑦𝑖
𝐿(𝑡+1)−1:𝐿𝑡 = 𝑃𝑇𝐻𝐿𝑄

𝑇𝐴𝑇𝑅𝑖
𝐿(𝑡+1)−1:𝐿𝑡−𝐿+1         (2.1) 

where, t is the sample index, 𝑦𝑖
𝐿(𝑡+1)−1:𝐿𝑡 =

 (𝑦𝑖
𝐿(𝑡+1)−1 𝑦𝑖

𝐿(𝑡+1)−2 ⋯ 𝑦𝑖
𝐿𝑡)

𝑇
 are the output feature map 

(OFM) elements at 𝑖 th row and columns 𝐿(𝑡 + 1) − 1: 𝐿𝑡 , 
𝑅𝑖
𝐿(𝑡+1)−1:𝐿𝑡−𝐿+1 =

 (𝑅𝑖
𝐿(𝑡+1)−1 𝑅𝑖

𝐿(𝑡+1)−2 ⋯ 𝑅𝑖
𝐿𝑡 | 𝑅𝑖

𝐿𝑡−1 ⋯ 𝑅𝑖
𝐿𝑡−𝐿+1)

𝑇

are the input feature map (IFM) elements at 𝑖 th row and 
columns 𝐿(𝑡 + 1) − 1: 𝐿𝑡 − 𝐿 + 1,  and we have 𝑅𝑖

𝑗
= 0 for 

𝑗 < 0 or 𝑗 ≥ 𝑁; 𝐻𝐿 =  𝑑𝑖𝑎𝑔(𝑃 × (𝐻0 𝐻1 ⋯ 𝐻𝐿−1)
𝑇) 

and 𝐻𝑖 , (𝑖 =0, 1, …, 𝐿 -1), are the subfilters containing the 
coefficients 𝑤𝑖

𝐿𝑡+𝑗, which are the weight values at 𝑖th row and 
𝐿𝑡 + 𝑗 columns of a weight matrix of  size 𝐾 × 𝐾. 
𝐴𝑇  is used only when we need to factorize 𝐿  into 𝐿 =

𝐿1𝐿2⋯𝐿𝑟  and is listed here for the completeness of the 
algorithm. Since state-of-art CNN kernel sizes are usually 
small, a large 𝐿 value with factorization is not usually used and 
thus 𝐴𝑇 can be ignored. More detail about  𝐴𝑇 can be found in 
[13]. 𝑃, 𝑄 and 𝐻𝐿  matrices are from short linear convolution 
decomposition.  

Assume consuming as input and producing as output 𝐿 = 3 
columns of pixels of a feature map without loss of generality. 
Here we can apply a 3-parallel FIR filter structure as follows: 

(

𝑦𝑖
3𝑡+2

𝑦𝑖
3𝑡+1

𝑦𝑖
3𝑡

) = 𝑃3
𝑇𝑑𝑖𝑎𝑔

(

 
 
 
 

𝑤𝑖
2

𝑤𝑖
1

𝑤𝑖
0

𝑤𝑖
2 + 𝑤𝑖

1

𝑤𝑖
2 + 𝑤𝑖

0

𝑤𝑖
1 +𝑤𝑖

0)

 
 
 
 

𝑄3
𝑇

(

 
 
 

𝑅𝑖
3𝑡+2

𝑅𝑖
3𝑡+1

𝑅𝑖
3𝑡

𝑅𝑖
3𝑡−1

𝑅𝑖
3𝑡−2)

 
 
 

           (2.2) 

where, 𝑅𝑖
𝑗 is the IFM element on i-th row and j-th column, 

the 1D kernel coefficients are {𝑤𝑖0, 𝑤𝑖1, 𝑤𝑖2} (kernel size here is 
K=3).  𝑃3 and  𝑄3 are defined as follows, 

𝑃3 =

(

  
 

1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1)

  
 

, 𝑄3 =

(

 
 

1 0 0 0 0 0
−1 −1 0 1 0 0
−1 1 −1 0 1 0
0 −1 −1 0 0 1
0 0 1 0 0 0)

 
 

, 

𝐻𝐿 =  𝑑𝑖𝑎𝑔(𝑃3 × (𝐻0 𝐻1 𝐻2)
𝑇)  with 𝐻0 = 𝑤𝑖

2 , 
𝐻1 = 𝑤𝑖

1 and 𝐻2 = 𝑤𝑖0. 
There is another 3-parallel FIR filter structure: 

(

𝑦𝑖
3𝑡+2

𝑦𝑖
3𝑡+1

𝑦𝑖
3𝑡

) = 𝑃3
𝑇𝑑𝑖𝑎𝑔

(

 
 
 
 
 

1

2
𝑤𝑖
2

1

2
(𝑤𝑖

2 + 𝑤𝑖
1 + 𝑤𝑖

0)

1

6
(𝑤𝑖

2 + 2𝑤𝑖
1 + 𝑤𝑖

0)

1

6
(𝑤𝑖

2 − 𝑤𝑖
1 + 𝑤𝑖

0)

𝑤𝑖
0 )

 
 
 
 
 

𝑄3
𝑇

(

 
 
 

𝑅𝑖
3𝑡+2

𝑅𝑖
3𝑡+1

𝑅𝑖
3𝑡

𝑅𝑖
3𝑡−1

𝑅𝑖
3𝑡−2)

 
 
 

            

                                                                                             
(2.3) 

Where, 𝑃3 =

(

 
 

1 0 0
1 1 1
1 2 4
1 −1 1
0 0 1)

 
 

, 

𝑄3 =

(

 
 

2 0 0 0 0
−1 2 −1 −2 2
−2 1 0 3 −1
1 −1 1 −1 −2
0 0 0 0 1 )

 
 

 and 

𝐻𝐿 =  𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(1/2 1/2 1/6 1/6 1) ×
𝑃3 × (𝐻0 𝐻1 𝐻2)

𝑇) with 𝐻0 = 𝑤𝑖2, 𝐻1 = 𝑤𝑖1 and 𝐻2 = 𝑤𝑖0. 
 
Since the row size of the feature map is N, 1D convolution 

would conventionally need to perform 𝐾𝑁 multiplications and 
(𝐾 − 1)𝑁  additions. 3-parallel structures in (2.2) and (2.3) 
require 𝑁

3
∙ 6 ∙ ⌈𝐾/3⌉) ≈

2

3
𝐾𝑁  and  𝑁

3
∙ 5 ∙ ⌈𝐾/3⌉) ≈

5

9
𝐾𝑁 

multipliers, respectively. Therefore, compared to conventional 
1D convolution computation, (2.2) and (2.3) can save 1.5 and 
1.8 times of the multiplication operations, respectively. 

We continue our discussion based on fast convolution in 
(2.2) without loss of generality. 

For kernel size K>3, for example, K=9, a 1D 3-parallel FIR 
filter implementation can be represented as: 

(

𝑦𝑖
3𝑡+2

𝑦𝑖
3𝑡+1

𝑦𝑖
3𝑡

) = 

𝑃3
𝑇 ∗ 𝑑𝑖𝑎𝑔

(

 
 
 
 

{𝑤𝑖
8, 𝑤𝑖

5, 𝑤𝑖
2}

{𝑤𝑖
7, 𝑤𝑖

4, 𝑤𝑖
1}

{𝑤𝑖
6, 𝑤𝑖

3, 𝑤𝑖
0}

{𝑤𝑖
8 + 𝑤𝑖

7, 𝑤𝑖
5 + 𝑤𝑖

4, 𝑤𝑖
2 + 𝑤𝑖

1}

{𝑤𝑖
8 + 𝑤𝑖

6, 𝑤𝑖
5 + 𝑤𝑖

3, 𝑤𝑖
2 + 𝑤𝑖

0}

{𝑤𝑖
7 + 𝑤𝑖

6, 𝑤𝑖
4 + 𝑤𝑖

3, 𝑤𝑖
1 + 𝑤𝑖

0})

 
 
 
 

∗ 𝑄3
𝑇

(

 
 
 

𝑅𝑖
3𝑡+2

𝑅𝑖
3𝑡+1

𝑅𝑖
3𝑡

𝑅𝑖
3𝑡−1

𝑅𝑖
3𝑡−2)

 
 
 

               

(2.4) 
Where, {𝑤𝑖8, 𝑤𝑖5, 𝑤𝑖2} , {𝑤𝑖7, 𝑤𝑖4, 𝑤𝑖1} , {𝑤𝑖6, 𝑤𝑖3, 𝑤𝑖0} , {𝑤𝑖8 +

𝑤𝑖
7, 𝑤𝑖

5 + 𝑤𝑖
4, 𝑤𝑖

2 + 𝑤𝑖
1}, 
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{𝑤𝑖
8 + 𝑤𝑖

7, 𝑤𝑖
5 + 𝑤𝑖

4, 𝑤𝑖
2 + 𝑤𝑖

1}  and {𝑤𝑖
7 +𝑤𝑖

6, 𝑤𝑖
4 +

𝑤𝑖
3, 𝑤𝑖

1 +𝑤𝑖
0} are subfilters, and 𝑤𝑖

𝑗 is row 𝑖  and column 𝑗 of 
the 2D filter kernel. “*” is the 1D convolution operator. 

Note that the length of subfilters in (2.4) is ⌈𝐾/𝐿⌉ = 3. These 
subfilter taps are embedded inside subfilters multiplied by 
delayed versions of their input sources. This is equivalent to 
convolving these subfilter taps to their preprocessed IFM tile by 
𝑄3
𝑇 . To remove these subfitler convolution operations and 

achieve fully-controlled pipeline flow in the convolution 
engine, we expand these subfilter taps and move their input to 
the IFM side by concatenating IFM elements of size (2𝐿 −
1) × 1 with their delayed versions. This 1D subfilter expansion 
by removing the 1D convolution operator * is shown in (2.5). 

(

𝑦𝑖
3𝑡+2

𝑦𝑖
3𝑡+1

𝑦𝑖
3𝑡

) =

𝑃3
𝑇[𝐼6 𝐼6 𝐼6]𝑑𝑖𝑎𝑔

(

 
 
 

(𝐼3⨂𝑃3)

(

  
 

𝑤𝑖
8

𝑤𝑖
7

⋮
𝑤𝑖
1

𝑤𝑖
0)

  
 

)

 
 
 

(𝐼3⨂𝑄3
𝑇)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅𝑖
3𝑡+2

𝑅𝑖
3𝑡+1

⋮
𝑅𝑖
3𝑡−2

− − − −

𝑅𝑖
3(𝑡−1)+2

𝑅𝑖
3(𝑡−1)+1

⋮

𝑅𝑖
3(𝑡−1)−2

− − − −

𝑅𝑖
3(𝑡−2)+2

𝑅𝑖
3(𝑡−2)+1

⋮

𝑅𝑖
3(𝑡−2)−2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

                                                                                            (2.5) 
where ⨂ is the Kronecker product. 𝐼𝑖  is the identity matrix of 

size i. 
The proposed 1D fast convolution algorithm can be 

generalized and summarized as (2.6). 

(

 

𝑦𝑖
𝐿𝑡+𝐿−1

𝑦𝑖
𝐿𝑡+𝐿−2

⋮
𝑦𝑖
𝐿𝑡 )

 = 𝑃𝑇𝑑𝑖𝑎𝑔

(

 
 
 

𝐷

(

  
 

𝑤𝑖
𝐾−1

𝑤𝑖
𝐾−2

⋮
𝑤𝑖
1

𝑤𝑖
0 )

  
 

)

 
 
 

𝑄𝑇

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅𝑖
𝐿𝑡+𝐿−1

𝑅𝑖
𝐿𝑡+𝐿−2

⋮
𝑅𝑖
𝐿𝑡−𝐿+1

− − − −

𝑅𝑖
𝐿(𝑡−1)+𝐿−1

𝑅𝑖
𝐿(𝑡−1)+𝐿−2

⋮

𝑅𝑖
𝐿(𝑡−1)−𝐿+1

− − − −

𝑅𝑖
𝐿(𝑡−2)+𝐿−1

𝑅𝑖
𝐿(𝑡−2)+𝐿−2

⋮

𝑅𝑖
𝐿(𝑡−2)−𝐿+1

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

                                                                                         (2.6) 
where,  𝐷 = 𝐼 (⌈𝐾

𝐿
⌉)⨂(ℎ𝐿𝑃𝐿)  and ℎ𝐿  is part of 𝐿 × 𝐿 

convolution decomposition; for example, ℎ𝐿  is 
𝑑𝑖𝑎𝑔([

1

2
,
1

2
,
1

6
,
1

6
, 1]) and 𝐼6 in (2.3) and (2.2), respectively;  

𝑃𝑇 = 𝑃𝐿
𝑇 (𝑜𝑛𝑒𝑠 (1, ⌈

𝐾

𝐿
⌉)⨂𝐼(𝑃𝐿

𝑟𝑜𝑤𝑠#)) , 𝑄𝑇 =  𝐼 (⌈𝐾
𝐿
⌉)⨂𝑄𝐿

𝑇  

and 𝐼(𝑥)  is the identity matrix of size 𝑥.  𝑃𝐿𝑟𝑜𝑤𝑠# is the number 
of rows of matrix 𝑃𝐿 . 

(2.6) can be used as a computation engine for feature map 
tiles of size 1 × 𝐿 in 1D convolution applications, such as text 
classification. For example, when 𝐿 = 3 , the number of 
required multiplication operation can be reduced by a factor of 
1.5 and 1.8, respectively, using (2.2) and (2.3). 

 
  
 

III. 2D CONVOLUTION ALGORITHMS 
Input could be a feature map for convolutional neural 

network. A 2D filter could be a CNN kernel of size 𝐾 × 𝐾. We 
target processing an input feature map and producing an output 
feature map of a tile size of 𝐿 × 𝐿 in one operation time unit, 
where L can be read as parallelism level of the 2D parallel FIR 
filter engine. It can be chosen from a number set, such as {2,3},  
and the numbers that can be factorized into the same number 
set. More discussion about parallelism level can be found in 
[13]. To make the following presentation easier, we proceed 
with L=3 in this section. 

A. Weight kernel size 𝑲 = 𝟑 and feature map tile size 𝑳 = 𝟑 
Define the 3 × 3 kernel as, 

(

𝑤0
0 𝑤0

1 𝑤0
2

𝑤1
0 𝑤1

1 𝑤1
2

𝑤2
0 𝑤2

1 𝑤2
2

) and 𝑤𝑖 = {𝑤𝑖0, 𝑤𝑖1, 𝑤𝑖2} 

We can present the 2-D convolution which processes 𝐿=3 
rows of feature map as (3.1). 

(

𝑦3𝑠+2
𝑦3𝑠+1

𝑦3𝑠

) = 𝑃3
𝑇 ∗ 𝑑𝑖𝑎𝑔

(

 
 
 
 
 

𝑤2
𝑤1
𝑤0

𝑤2 + 𝑤1
𝑤2 + 𝑤0
𝑤1 + 𝑤0 )

 
 
 
 
 

∗ 𝑄3
𝑇 ∗

(

 
 
 

𝑅3𝑠+2

𝑅3𝑠+1
𝑅3𝑠

𝑅3𝑠−1
𝑅3𝑠−2)

 
 
 

   

     (3.1) 
Where, as defined in section II, 𝑦𝑖 , 𝑤𝑘  and 𝑅𝑗  are row 

vectors from OFM, weigh kernel and IFM, respectively. 𝑦𝑖 , 
𝑤𝑘  and 𝑅𝑗  are zero vectors when 𝑖 < 0 or 𝑖 ≥ 𝑁 , 𝑘 < 0 or 
𝑘 ≥ 𝐾, and 𝑗 < 0 or 𝑗 ≥ 𝑁, respectively.  We also define the 
following 1D convolution operation over * operator. 

(𝑥 𝑦) ∗ (
𝑅𝑖
𝑅𝑗
) = 𝑥 ∗ 𝑅𝑖 + 𝑦 ∗ 𝑅𝑗 

The computational complexity saving of parallel filter 
structures are from decomposition of the original 1D/2D 
convolution into many 1D sub-filter structures with smaller 
sizes and aggregation of these sub-filter outputs. 1D 
convolution operators are used to simplify the representation of 
these decomposition and aggregation procedures in the 
sub-filter structures. 

We next discuss how to remove the 1D convolution operator 
* from (3.1). 

We define, 
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(

 
 
 
 
 

𝑍0
𝑍1
𝑍2
𝑍3

𝑍4

𝑍5 )

 
 
 
 
 

= 𝑄3
𝑇 ∗

(

 
 
 

𝑅3𝑡+2

𝑅3𝑡+1
𝑅3𝑡

𝑅3𝑡−1
𝑅3𝑡−2)

 
 
 

 

where 𝑍𝑖  is a vector of intermediate results, after applying 
1D convolution between IFM rows and 𝑄3𝑇 . We then carry out 
the deduction shown in (3.2) to help understand how to remove 
1D convolution at subfilter level. 

 

(

𝑦3𝑡+2
𝑦3𝑡+1

𝑦3𝑡

) = 𝑃3
𝑇 ∗ 𝑑𝑖𝑎𝑔

(

 
 
 
 
 

𝑤2
𝑤1
𝑤0

𝑤2 + 𝑤1
𝑤2 + 𝑤0
𝑤1 + 𝑤0 )

 
 
 
 
 

∗

(

 
 
 
 
 

𝑍0
𝑍1
𝑍2
𝑍3

𝑍4

𝑍5 )

 
 
 
 
 

 

= 𝑃3
𝑇 ∗ 𝑑𝑖𝑎𝑔

(

 
 
 
 
 

𝑤2 ∗ 𝑍0

𝑤1 ∗ 𝑍1
𝑤0 ∗ 𝑍2

(𝑤2 + 𝑤1 ) ∗ 𝑍3

(𝑤2 + 𝑤0 ) ∗ 𝑍4

(𝑤1 + 𝑤0 ) ∗ 𝑍5 )

 
 
 
 
 

= 𝑃3
𝑇 ∗ (𝐼6⨂𝑃3

𝑇) ∗

𝑑𝑖𝑎𝑔

(

 
 
 
 
 

𝑑𝑖𝑎𝑔(𝑃3 𝑤2 )

𝑑𝑖𝑎𝑔(𝑃3 𝑤1 )

𝑑𝑖𝑎𝑔(𝑃3 𝑤0 )

𝑑𝑖𝑎𝑔(𝑃3 (𝑤2 + 𝑤1 ))

𝑑𝑖𝑎𝑔(𝑃3 (𝑤2 + 𝑤0 ))

𝑑𝑖𝑎𝑔(𝑃3 (𝑤1 + 𝑤0 )))

 
 
 
 
 

(𝐼6⨂𝑄3
𝑇)

(

 
 
 
 
 

𝑍0
𝑍1
𝑍2
𝑍3

𝑍4

𝑍5 )

 
 
 
 
 

    

(3.2) 
We can thus get the 2D subfilter expansion by removing the 

1D convolution operator * in (3.1). The obtained OFM of block 
size 3x3 is given in (3.3). 

(

𝑦3𝑠+2
3𝑡+2:3𝑡

𝑦3𝑠+1
3𝑡+2:3𝑡

𝑦3𝑠
3𝑡+2:3𝑡

)

= (𝑃3
𝑇⨂𝐼3)(𝐼6⨂𝑃3

𝑇)𝑑𝑖𝑎𝑔

(

 
 
 
 

(𝐼6⨂𝑃3)(𝑃3⨂𝐼3)

(

 
 
 
 

𝑤2
2

𝑤2
1

𝑤2
0

⋮
𝑤0
1

𝑤0
0)

 
 
 
 

)

 
 
 
 

 

                (𝐼6⨂𝑄3
𝑇)(𝑄3

𝑇⨂𝐼5)

(

  
 

𝑅3𝑠+2
3𝑡+2:3𝑡−2

𝑅3𝑠+1
3𝑡+2:3𝑡−2

𝑅3𝑠
3𝑡+2:3𝑡−2

𝑅3𝑠−1
3𝑡+2:3𝑡−2

𝑅3𝑠−2
3𝑡+2:3𝑡−2)

  
 

                        (3.3) 

Where, 3𝑠 + 𝑖 and 3𝑡 + 𝑗 are the row and column indices of 
feature maps, respectively. 
 

B. Weight kernel size 𝑲 = 𝟗 for 𝑲 > 𝟑 and feature map tile 
size 𝑳 = 𝟑. 

Let us define 9x9 kernel as follows, 

(

 
 
 
 

𝑤0
0 𝑤0

1 𝑤0
2 … 𝑤0

7 𝑤0
8

𝑤1
0 𝑤1

1 𝑤1
2 … 𝑤1

7 𝑤1
8

𝑤2
0 𝑤2

1 𝑤2
2 … 𝑤2

7 𝑤2
8

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑤7
0 𝑤7

1 𝑤7
2 ⋯ 𝑤7

7 𝑤7
8

𝑤8
0 𝑤8

1 𝑤8
2 ⋯ 𝑤8

7 𝑤8
8)

 
 
 
 

  

Where, 𝑤𝑖 = {𝑤𝑖0, 𝑤𝑖1, 𝑤𝑖2, ⋯ , 𝑤𝑖8} 
We can present the 2-D convolution which processes 𝐿=3 

rows of feature map as (3.4). 

(

𝑦3𝑠+2
𝑦3𝑠+1

𝑦3𝑠

) = 𝑃3
𝑇 ∗

𝑑𝑖𝑎𝑔

(

 
 
 
 
 

{𝑤8 , 𝑤5 , 𝑤2 }

{𝑤7 , 𝑤4 , 𝑤1 }

{𝑤6 , 𝑤3 , 𝑤0 }

{𝑤8 + 𝑤7 , 𝑤5 + 𝑤4 , 𝑤2 +𝑤1 }

{𝑤8 + 𝑤6 , 𝑤5 + 𝑤3 , 𝑤2 +𝑤0 }

{𝑤7 + 𝑤6 , 𝑤4 + 𝑤3 , 𝑤1 +𝑤0 })

 
 
 
 
 

∗ 𝑄3
𝑇 ∗

(

 
 
 

𝑅3𝑠+2

𝑅3𝑠+1
𝑅3𝑠

𝑅3𝑠−1
𝑅3𝑠−2)

 
 
 

             

(3.4) 
After applying subfilter expansion to (3.4), we get (3.5). 

(

𝑦3𝑠+2
𝑦3𝑠+1

𝑦3𝑠

) = 𝑃3
𝑇 ∗ [𝐼6 𝐼6 𝐼6] ∗ 𝑑𝑖𝑎𝑔

(

 
 
 
 

(𝐼3⨂𝑃3)

(

  
 

𝑤8

𝑤7
⋮
𝑤1
𝑤0 )

  
 

)

 
 
 
 

∗

                   (𝐼 3⨂𝑄3
𝑇) ∗

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅3𝑠+2

𝑅3𝑠+1
⋮

𝑅3𝑠−2
−− − −

𝑅3(𝑠−1)+2

𝑅3(𝑠−1)+1
⋮

𝑅3(𝑠−1)−2
−− − −

𝑅3(𝑠−2)+2

𝑅3(𝑠−2)+1
⋮

𝑅3(𝑠−2)−2)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                    (3.5) 

 
After removing 1D convolution operator *, we get (3.6) to 

process IFM of tile size 3x3 and generate OFM of the same tile 
size. 
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(

𝑦3𝑠+2
3𝑡+2:3𝑡

𝑦3𝑠+1
3𝑡+2:3𝑡

𝑦3𝑠
3𝑡+2:3𝑡

) = 𝑃𝑇𝑑𝑖𝑎𝑔

(

 
 
 
 
 
 
 
 
 
 
 

𝐷

(

 
 
 
 
 
 
 
 
 
 

𝑤8
8

𝑤8
7

⋮
𝑤8
0

𝑤7
8

𝑤7
7

⋮
𝑤7
0

𝑤6
8

⋮
𝑤0
1

𝑤0
0)

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

𝑄𝑇

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅3𝑠+2
3𝑡+2:3𝑡−2

𝑅3𝑠+1
3𝑡+2:3𝑡−2

⋮
𝑅3𝑠−2
3𝑡+2:3𝑡−2

− −− −
𝑅3(𝑠−1)+2
3𝑡+2:3𝑡−2

𝑅3(𝑠−1)+1
3𝑡+2:3𝑡−2

⋮
𝑅3(𝑠−1)−2
3𝑡+2:3𝑡−2

− −− −
𝑅3(𝑠−2)+2
3𝑡+2:3𝑡−2

𝑅3(𝑠−2)+1
3𝑡+2:3𝑡−2

⋮
𝑅3(𝑠−2)−2
3𝑡+2:3𝑡−2

)

 
 
 
 
 
 
 
 
 
 
 
 
 

    

(3.6) 
Where, 𝐷 = (𝐼18⨂𝐼3⨂𝑃3)(𝐼3⨂𝑃3⨂𝐼9), 
𝑃𝑇 = (𝑃3

𝑇⨂𝐼3)([𝐼6 𝐼6 𝐼6]⨂𝐼3)(𝐼18⨂(𝑃3
𝑇[𝐼6 𝐼6 𝐼6])), 

and 𝑄𝑇 = (𝐼18⨂𝐼3⨂𝑄3𝑇)(𝐼3⨂𝑄3𝑇⨂𝐼15). 
 
The Proposed 2D fast convolution algorithm can be 

generalized and summarized as (3.7). 
 

(

𝑦𝐿𝑠+𝐿−1
𝐿𝑡+𝐿−1:𝐿𝑡

𝑦𝐿𝑠+1
𝐿𝑡+𝐿−1:𝐿𝑡

⋮
𝑦𝐿𝑠
𝐿𝑡+𝐿−1:𝐿𝑡

) =

𝑃𝑇𝑑𝑖𝑎𝑔

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐷

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑤𝐾−1
𝐾−1

𝑤𝐾−1
𝐾−2

⋮
𝑤𝐾−1
0

−− −
𝑤𝐾−2
𝐾−1

𝑤𝐾−2
𝐾−2

⋮
𝑤𝐾−2
0

−− −
⋮

− − −
𝑤0
𝐾−1

⋮
𝑤0
1

𝑤0
0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑄𝑇

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅𝐿𝑠+𝐿−1
𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

𝑅𝐿𝑠+𝐿−2
𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

⋮
𝑅3𝑠−𝐿+1
𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

− − −− − −
𝑅𝐿(𝑠−1)+𝐿−1
𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

𝑅𝐿(𝑠−1)+𝐿−2
𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

⋮
𝑅𝐿(𝑠−1)−𝐿+1
𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

− − −− − −
⋮

− − −− − −
𝑅
𝐿(𝑠−⌈

𝐾

𝐿
⌉)+𝐿−1

𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

𝑅
3(𝑠−⌈

𝐾

𝐿
⌉)+𝐿−2

𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

⋮
𝑅
𝐿(𝑠−⌈

𝐾

𝐿
⌉)−𝐿+1

𝐿𝑡+𝐿−1:𝐿𝑡−𝐿+1

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             (3.7) 

Where,  

 𝐷 = (𝐼 (𝑃𝐿𝑟𝑜𝑤𝑠# ⌈
𝐾

𝐿
⌉)⨂𝐼 (⌈

𝐾

𝐿
⌉)⨂(ℎ𝐿𝑃𝐿)) 

(𝐼 (⌈
𝐾

𝐿
⌉)⨂(ℎ𝐿𝑃𝐿)⨂𝐼 (𝐿 ⌈

𝐾

𝐿
⌉)) 

ℎ𝐿 is part of 𝐿 × 𝐿 convolution decomposition, for example, 
ℎ𝐿  is 𝑑𝑖𝑎𝑔([1

2
,
1

2
,
1

6
,
1

6
, 1])  and 𝐼6  in (2.3) and (2.2), 

respectively; 

𝑃𝑇 = (𝑃𝐿
𝑇⨂𝐼(𝐿)) (𝑜𝑛𝑒𝑠 (1, ⌈

𝐾

𝐿
⌉)⨂𝐼(𝑃𝐿

𝑟𝑜𝑤𝑠#𝐿)) 

      (𝐼 (𝑃𝐿𝑟𝑜𝑤𝑠# ⌈
𝐾

𝐿
⌉)⨂(𝑃𝐿

𝑇 (𝑜𝑛𝑒𝑠 (1, ⌈
𝐾

𝐿
⌉)⨂𝐼(𝑃𝐿

𝑟𝑜𝑤𝑠#)))) 

and  

𝑄𝑇 =  (𝐼 (𝑃𝐿
𝑟𝑜𝑤𝑠# ⌈

𝐾

𝐿
⌉)⨂𝐼 (⌈

𝐾

𝐿
⌉)⨂𝑄𝐿

𝑇) 

       (𝐼 (⌈
𝐾

𝐿
⌉)⨂𝑄𝐿

𝑇⨂𝐼 (𝑄𝐿
𝑟𝑜𝑤𝑠# ⌈

𝐾

𝐿
⌉)), 

𝐼(𝑥)  is the identity matrix of size 𝑥. 𝑄𝐿  and 𝑃𝐿  are the Q 
and P matrix for 𝐿 × 𝐿  1D fast convolution, respectively. 
𝑃𝐿
𝑟𝑜𝑤𝑠#  and 𝑄𝐿𝑟𝑜𝑤𝑠# are the number of rows of matrices 𝑃𝐿  and 
𝑄𝐿 , respectively. 

We can see that the decomposition and computation of the 
proposed (3.7) does not depend on dimension size of IFM. 

If we compare the derived 1D (2.6) and the 2D convolution 
algorithm (3.7), we can see that they have unified structure. 
This allows the proposed convolution to enable easy switch 
among 1D/2D applications, for example, text classification 
(1D) and image classification (2D).  

(3.7) is used as a computation engine for feature map tiles of 
size 𝐿 × 𝐿. We will discuss how to use it in the whole data flow 
via implementation examples in the next section. 

 

IV. IMPLEMENTATION AND EXAMPLES 
To compute (3.7), we first slice input feature map into 𝐿 × 𝐿 

tiles; each tile is then transformed into a vector with the order 
from right to left and bottom to top. We consume these tiles 
from IFM in the order of left to right and then top to bottom. We 
use Example 4.1 and Example 4.2 to illustrate how this is done, 
where IFM is processed and consumed in (3.3) and (3.6) for 
𝐾 = 𝐿 and 𝐾 > 𝐿. Both examples share an original IFM of size 
7x7. It’s represented as 𝐼𝐹𝑀𝑜𝑟𝑔𝑐#   in (4.1). 
 

𝐼𝐹𝑀𝑜𝑟𝑔
𝑐#   =  

(

  
 

1 2 3 … 6 7
8 9 10 … 13 14
15 16 17 … 20 21
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
36 37 38 ⋯ 41 42
43 44 45 ⋯ 48 49)

  
 

        (4.1) 

where, the superscript c# is the IFM channel index 

A. Example 4.1 𝐿 = 3, kernel size 𝐾 = 3 and 7 × 7 IFM 
 

After slicing 𝐼𝐹𝑀𝑜𝑟𝑔𝑐#  into tiles of size 𝐿 × 𝐿, we get (4.2). 
Note that we pad zeros to the right and bottom of IFM to make 
sure all tiles have the same size. 

 
𝐼𝐹𝑀𝑠𝑙𝑖𝑐𝑒𝑑

𝑐#  = 
1 2 3
8 9 10
15 16 17

 
4 5 6
11 12 13
18 19 20

 
7 0 0
14 0 0
21 0 0

 

22 23 24
29 30 31
36 37 38

 
25 26 27
32 33 34
39 40 41

 
28 0 0
35 0 0
42 0 0

 

43 44 45
0 0 0
0 0 0

 
46 47 48
0 0 0
0 0 0

 
49 0 0
0 0 0
0 0 0
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 (4.2) 
We convert 𝐼𝐹𝑀𝑠𝑙𝑖𝑐𝑒𝑑𝑐#  into 𝐼𝐹𝑀𝑚𝑒𝑚𝑐#  in (4.2) for efficient 

memory access. We can see that each 𝐿 × 𝐿 slice is converted 
to a column vector of the order from the lower right corner to 
upper left corner of its corresponding original slice in 
𝐼𝐹𝑀𝑠𝑙𝑖𝑐𝑒𝑑

𝑐# . For example, the upper left tile of (4.2) is converted 
to the left most column of (4.3). 

𝐼𝐹𝑀𝑚𝑒𝑚
𝑐#  = 

(

 
 
 
 
 
 

17 20 0 38 41 0 0 0 0
16 19 0 37 40 0 0 0 0
15 18 21 36 39 42 0 0 0
10 13 0 31 34 0 0 0 0
9 12 0 30 33 0 0 0 0
8 11 14 29 32 35 0 0 0
3 6 0 24 27 0 45 48 0
2 5 0 23 26 0 44 47 0
1 4 7 22 25 28 43 46 49)

 
 
 
 
 
 

                      

                                                                                             (4.3) 
𝐼𝐹𝑀𝑚𝑒𝑚

𝑐#  read from memory needs to be transformed locally 
into 𝐼𝐹𝑀4𝑐𝑜𝑛𝑣𝑐#  shown in (4.4) 
𝐼𝐹𝑀4𝑐𝑜𝑛𝑣

𝑐# =  
 
17 20 0
16 19 0
15 18 21
0 17 20
0 16 19

 

38 41 0
37 40 0
36 39 42
0 38 41
0 37 40

 05×3  

10 13 0
9 12 0
8 11 14
0 10 13
0 9 12

 

31 34 0
30 33 0
29 32 35
0 31 34
0 30 33

 05×3  

3 6 0
2 5 0
1 4 7
0 3 6
0 2 5

 

24 27 0
23 26 0
22 25 28
0 24 27
0 23 26

 

45 48 0
44 47 0
43 46 49
0 45 48
0 44 47

 

05×3  

17 20 0
16 19 0
15 18 21
0 17 20
0 16 19

 

38 41 0
37 40 0
36 39 42
0 38 41
0 37 40

 

05×3  

10 13 0
9 12 0
8 11 14
0 10 13
0 9 12

 

31 34 0
30 33 0
29 32 35
0 31 34
0 30 33

 

𝐶1
𝑐# 𝐶2

𝑐# 𝐶3
𝑐# 𝐶4

𝑐# 𝐶5
𝑐# 𝐶6

𝑐# 𝐶7
𝑐# 𝐶8

𝑐# 𝐶9
𝑐# 

                                                                                            (4.4) 
Each column 𝐶𝑖𝑐#  in (4.4) corresponds to the right-most 

column of input vector in (3.3). 
Note that, OFM would have the same format as IFM, which 

means each column of OFM represents a 𝐿 × 𝐿 tile of OFM and 
the size of OFM is the same as IFM. This means we can directly 

use OFM for next layer processing without extra memory 
access for feature map re-arrangement. 

If we represent each sliced block in (4.4) as 𝑅1𝑐#  with ‘𝑖’ 
corresponding to the 𝑖’th row of 𝐼𝐹𝑀𝑜𝑟𝑔𝑐# , for example (4.5), 

𝑅1
𝑐#  = 

(

 
 

3 6 0
2 5 0
1 4 7
0 3 6
0 2 5)

 
 

                                (4.5) 

(4.4) can then be simplified as (4.6). 

𝐼𝐹𝑀4𝑐𝑜𝑛𝑣
𝑐#  =

(

 
 
 

𝑅3
𝑐# 𝑅6

𝑐# 0

𝑅2
𝑐# 𝑅5

𝑐# 0

𝑅1
𝑐# 𝑅4

𝑐# 𝑅7
𝑐#

0 𝑅3
𝑐# 𝑅6

𝑐#

0 𝑅2
𝑐# 𝑅5

𝑐#)

 
 
 

                         (4.6) 

Interestingly, we can find that (4.5) and (4.6) have the same 
pattern. 
 

B. Example 4.2. 𝐿 = 3, 𝐾 = 9 kernel and 7 × 7 IFM. 
For 𝐾 = 9, input feature map can be arranged as (4.7), where 

each stacked layer corresponds to one subfitler tap and thus the 
pattern of one layer is the delayed (right shifted) version of the 
section right above it. Both row-wise (4.7) and pixel-wise (4.8) 
representation have this same pattern among their stacked 
layers. 
𝐼𝐹𝑀4𝑐𝑜𝑛𝑣

𝑐# = 
 
𝑅3
𝑐# 𝑅6

𝑐# 0 0 0

𝑅2
𝑐# 𝑅5

𝑐# 0 0 0

𝑅1
𝑐# 𝑅4

𝑐# 𝑅7
𝑐# 0 0

0 𝑅3
𝑐# 𝑅6

𝑐# 0 0

0 𝑅2
𝑐# 𝑅5

𝑐# 0 0

 

0 𝑅3
𝑐# 𝑅6

𝑐# 0 0

0 𝑅2
𝑐# 𝑅5

𝑐# 0 0

0 𝑅1
𝑐# 𝑅4

𝑐# 𝑅7
𝑐# 0

0 0 𝑅3
𝑐# 𝑅6

𝑐# 0

0 0 𝑅2
𝑐# 𝑅5

𝑐# 0

 

0 0 𝑅3
𝑐# 𝑅6

𝑐# 0

0 0 𝑅2
𝑐# 𝑅5

𝑐# 0

0 0 𝑅1
𝑐# 𝑅4

𝑐# 𝑅7
𝑐#

0 0 0 𝑅3
𝑐# 𝑅6

𝑐#

0 0 0 𝑅2
𝑐# 𝑅5

𝑐#

 

                                                                                  (4.7) 
Where, for example, we have 
𝑅1
𝑐# = 
3 6 0 0 0
2 5 0 0 0
1 4 7 0 0
0 3 6 0 0
0 2 5 0 0

 

0 3 6 0 0
0 2 5 0 0
0 1 4 7 0
0 0 3 6 0
0 0 2 5 0
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0 0 3 6 0
0 0 2 5 0
0 0 1 4 7
0 0 0 3 6
0 0 0 2 5

 

𝐶1
𝑐# 𝐶2

𝑐# 𝐶3
𝑐# 𝐶4

𝑐# 𝐶5
𝑐# 

                                                                                     (4.8) 
We next generalize the implementation procedure. 
 
Computation data flow of a convolution layer could be of two 
types: pointwise and depth wise. 

C. Pointwise operation 
This needs a large on-chip buffer to save the intermediate 

computational results as large as the whole feature map, while 
the weight kernel of a channel does not need to be swapped 
back and forth until next feature map input. (3.7) can be 
implemented with this scheme as shown in Fig. 4.2. Each 
shaded block is a 𝐿 × 𝐿 feature map processing tile and the 
number in it shows the order index it’s processed. We can see 
that the tiles (Fig.  4.2(a)) in the same IFM are consumed from 
upper left corner to right bottom corner and then moved on to 
the next feature map channel. Fig. 4.2(b) shows the map 
between IFM tiles and their corresponding weight kernel. 

i
:dl

W1

1
1 l:dW





1ld

ld
ld

M

N

1
1

l

l

d
:dW

Fig. 4.1. CNN convolutional layer computation from layer 𝑙 to 𝑙 + 1.  𝑑𝑙 is the feature map depth at layer 𝑙.  𝑊𝑖
𝑗 is the weight kernel for IFM channel 𝑖 and OFM 

channel 𝑗. 
 

Ei-
E+1

1

Edl-
E+1

2

Edl-
E+2

E

Edl









 Ei

Ei-
E+2

 
(a) 

𝐶1
1 𝐶2

1 … 𝐶𝐸
1 𝐶1

2 𝐶2
2 … 𝐶𝐸

2 … 𝐶1
𝑑𝑙 𝐶2

𝑑𝑙 … 𝐶𝐸
𝑑𝑙 

𝑊1
1 𝑊2

1 … 𝑊𝑑𝑙
1  

𝑑𝑖𝑎𝑔(𝐷𝑊1
1)𝑄𝑇𝐶1:𝐸

1  𝑑𝑖𝑎𝑔(𝐷𝑊2
1)𝑄𝑇𝐶1:𝐸

2  … 𝑑𝑖𝑎𝑔(𝐷𝑊𝑑𝑙
1 )𝑄𝑇𝐶1:𝐸

𝑑𝑙  

𝑂𝐹𝑀𝐶1:𝐸
1 =𝑃𝑇 ∑ 𝑑𝑖𝑎𝑔(𝐷𝑊𝑖

1)𝑄𝑇𝐶1:𝐸
𝑖𝑑𝑙

𝑖=1  

𝐶1
1 𝐶2

1 … 𝐶𝐸
1 𝐶1

2 𝐶2
2 … 𝐶𝐸

2 … 𝐶1
𝑑𝑙 𝐶2

𝑑𝑙 … 𝐶𝐸
𝑑𝑙 
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𝑊1
2 𝑊2

2 … 𝑊𝑑𝑙
2  

𝑑𝑖𝑎𝑔(𝐷𝑊1
2)𝑄𝑇𝐶1:𝐸

1  𝑑𝑖𝑎𝑔(𝐷𝑊2
2)𝑄𝑇𝐶1:𝐸

2  … 𝑑𝑖𝑎𝑔(𝐷𝑊𝑑𝑙
2)𝑄𝑇𝐶1:𝐸

𝑑𝑙  

𝑂𝐹𝑀𝐶1:𝐸
2 =𝑃𝑇 ∑ 𝑑𝑖𝑎𝑔(𝐷𝑊𝑖

2)𝑄𝑇𝐶1:𝐸
𝑖𝑑𝑙

𝑖=1  

⋮ 

𝐶1
1 𝐶2

1 … 𝐶𝐸
1 𝐶1

2 𝐶2
2 … 𝐶𝐸

2 … 𝐶1
𝑑𝑙 𝐶2

𝑑𝑙 … 𝐶𝐸
𝑑𝑙 

𝑊1
𝑑𝑙+1 𝑊2

𝑑𝑙+1 … 𝑊𝑑𝑙
𝑑𝑙+1 

𝑑𝑖𝑎𝑔(𝐷𝑊1
𝑑𝑙+1)𝑄𝑇𝐶1:𝐸

1  𝑑𝑖𝑎𝑔(𝐷𝑊2
𝑑𝑙+1)𝑄𝑇𝐶1:𝐸

2  … 𝑑𝑖𝑎𝑔(𝐷𝑊𝑑𝑙
𝑑𝑙+1)𝑄𝑇𝐶1:𝐸

𝑑𝑙  

𝑂𝐹𝑀𝐶1:𝐸
𝑑𝑙+1=𝑃𝑇 ∑ 𝑑𝑖𝑎𝑔(𝐷𝑊𝑖

𝑑𝑙+1)𝑄𝑇𝐶1:𝐸
𝑖𝑑𝑙

𝑖=1  

*𝐸 = ⌈
𝑀+𝐿⌈

𝐾

𝐿
⌉−1

𝐿
⌉ ⌈
𝑁+𝐿⌈

𝐾

𝐿
⌉−1

𝐿
⌉ 

(b) 
Fig. 4.2. IFM tile access sequence for pointwise operation to generate one channel of OFM (repeated 𝑑𝑙+1 times to get all OFM channels). 𝑪𝒋𝒊 means the j’th  tile in 
the i’th input feature map channel. 
 
 

i

1

dl

dl+1

dl+i

2dl

Edl -
dl+1

Edl










Edl -
dl+i

 
(a) 

𝐶1
1 𝐶1

2 … 𝐶1
𝑑𝑙 … 𝐶𝐸

1 𝐶𝐸
2 … 𝐶𝐸

𝑑𝑙 … 𝐶1
1 𝐶1

2 … 𝐶1
𝑑𝑙 … 𝐶𝐸

1 𝐶𝐸
2 … 𝐶𝐸

𝑑𝑙 

𝑊1
1 𝑊2

1 … 𝑊𝑑𝑙
1  … 𝑊1

1 𝑊2
1 … 𝑊𝑑𝑙

1  … 𝑊1
𝑑𝑙+1 𝑊2

𝑑𝑙+1 … 𝑊𝑑𝑙
𝑑𝑙+1 … 𝑊1

𝑑𝑙+1 𝑊2
𝑑𝑙+1 … 𝑊𝑑𝑙

𝑑𝑙+1 

𝑂𝐹𝑀𝐶1
1 = 

𝑃𝑇∑𝑑𝑖𝑎𝑔(𝐷𝑊𝑖
1)𝑄𝑇𝐶1

𝑖

𝑑𝑙

𝑖=1

 

… 𝑂𝐹𝑀𝐶𝐸
1 = 

𝑃𝑇∑𝑑𝑖𝑎𝑔(𝐷𝑊𝑖
1)𝑄𝑇𝐶𝐸

𝑖

𝑑𝑙

𝑖=1

 

 𝑂𝐹𝑀𝐶1
𝑑𝑙+1= 

𝑃𝑇∑𝑑𝑖𝑎𝑔(𝐷𝑊𝑖
𝑑𝑙+1)𝑄𝑇𝐶1

𝑖

𝑑𝑙

𝑖=1

 

… 𝑂𝐹𝑀𝐶𝐸
𝑑𝑙+1= 

𝑃𝑇∑𝑑𝑖𝑎𝑔(𝐷𝑊𝑖
𝑑𝑙+1)𝑄𝑇𝐶𝐸

𝑖

𝑑𝑙

𝑖=1

 

(b) 
Fig. 4.3. IFM tile access sequence for Depthwise operation to generate one channel of OFM (repeated 𝑑𝑙+1 times to get all OFM channels). 𝑪𝒋𝒊 means the j’th tile in 
the i’th input feature map channel. 
 
 

D. Depthwise operation 
This requires swapping weight kernel among IFM channels. 

(3.7) can be implemented with this scheme as shown in Fig. 
4.3. Each shaded block is a 𝐿 × 𝐿 feature map processing tile 
and the number in it shows the order index it’s processed. We 
can see that the tiles (Fig. 4.3(a)) in the same feature map 
position among the IFM channels are consumed first and then 
move on to next feature map position from upper left corner to 
right bottom corner. Fig. 4.3(b) shows the map between IFM 
tiles and their corresponding weight kernel. 

 

V. COMPUTATIONAL COMPLEXITY ANALYSIS 
 

The proposed 2D parallel FIR filter structures are flexible for 
both data flow types. 

For an input feature map of size 𝑀 ×𝑁 and channel depth 
𝑑𝑙 , without the loss of generality, let’s assume the output 
feature of size 𝑀 ×𝑁  and channel depth 𝑑𝑙+1 . Direct 
computation of convolution from layer 𝑙 to layer 𝑙 + 𝑖 requires 
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𝐾 ∙ 𝐾 ∙ 𝑀 ∙ 𝑁 ∙ 𝑑𝑙+1 ∙ 𝑑𝑙  multiplication and (𝐾2 − 1) ∙ 𝑀 ∙
𝑁 ∙ 𝑑𝑙+1 ∙ 𝑑𝑙 addition operations. However, with the proposed 
2D fast convolution algorithm, the required number of 
multiplications can be reduced to (5.1). 

𝑅.𝑀.= (𝑀𝐿 ⌈
𝐾

𝐿
⌉)
2

(
𝑀

𝐿
) (

𝑁

𝐿
) 𝑑𝑙𝑑𝑙+1               (5.1) 

where 𝑀𝐿  is the number of multipliers required by 𝐾 × 𝐾 
fast 1D convolution algorithm of parallelism level 𝐿 . The 
multiplication saving ratio (𝑀. 𝑆. 𝑅.) is given by (5.2). 

𝑀. 𝑆. 𝑅. = (
𝐾𝐿

𝑀𝐿⌈
𝐾

𝐿
⌉
)

2

~ = (
𝐿2

𝑀𝐿
)
2

                   (5.2) 

For example, in equations (2.2) and (2.3), we have 𝑀𝐿 equal 
to 6 and 5 for 𝐿 = 3 , and thus 𝑀. 𝑆. 𝑅.  is 2.25 and 3.24, 
respectively. 

The 𝑀.𝑆. 𝑅. could be estimated independent of the kernel 
size especially when 𝐾 is divisible by 𝐿. 

Although we assume the same parallelism levels at row and 
column processing dimensions as L, they do not have to be the 
same. 

The number of required addition operations can be estimated 
too. From above discussion, we can see that the addition 
operations for the convolution layers are all embedded in 
matrices 𝑃𝑇 , 𝑄𝑇  and 𝐷  in (3.7) and the required number of 
addition operations involved in these matrices are given in 
Table 5.1. We also summarize dimensions of these matrices in 
Table 5.1. 

The total number of addition operations (R.A.) is given by 
(5.3). 

  𝑅. 𝐴.  =  (𝐴(𝑃𝑇) + 𝑑𝑙(𝐴(𝑄𝑇) + 𝐴(𝐷))) (
𝑀

𝐿
) (

𝑁

𝐿
) 𝑑𝑙+1    

(5.3) 
The required number of addition operations is larger than the 

conventional convolution computation scheme. We define 
addition increase ratio (A.I.R.) to estimate the magnitude of this 
increase. 

𝐴. 𝐼. 𝑅. =  
(𝐴(𝑃𝑇)+𝑑𝑙(𝐴(𝑄

𝑇)+𝐴(𝐷)))(
𝑀

𝐿
)(
𝑁

𝐿
)𝑑𝑙+1

(𝐾2−1)∙𝑀∙𝑁∙𝑑𝑙+1∙𝑑𝑙
                     (5.4) 

𝑀. 𝑆. 𝑅. for different weight kernel size K  and feature map 
processing block size L are shown in Fig. 5.1. 
𝐴. 𝐼. 𝑅. for different weight kernel size K  and feature map 

processing block size 𝐿 are shown in Fig. 5.2. 
𝐷 matrix in (3.7) is computed from 𝑃𝐿  and thus the density 

of matrix 𝐷 relies on that of 𝑃𝐿 . The required multiplication 
operations are located in matrix 𝐷. When K is not divisible by L 
or K<L, diagonal matrix generation in (3.7) needs zero 
padding. The 𝑀. 𝑆. 𝑅. would be more sensitive to a 𝐷 matrix 
(and thus 𝑃𝐿 ) with higher density. For example, 𝑃3  in (2.3) is 
denser than (2.2), 𝑀. 𝑆. 𝑅.  values computed based on (2.2) 
shows higher 𝑀. 𝑆. 𝑅. variation if we compare Fig. 5.1(b) with 
(2.3) and Fig. 5.1(a) with (2.2). Similar higher 𝐴. 𝐼. 𝑅. variation 
trend is also observed in Fig. 5.2(b) with (2.3) than that shown 
in Fig. 5.2(a) with (2.2). 

As we can see from above discussion, the feature map 
processing block size 𝐿 is independent of weight kernel size 𝐾. 
Although so far we used 𝐿 = 3 as example to illustrate how the 
proposed algorithm works, 𝐿 could take other values too; for 
example, (5.5) shows one 1D convolution decomposition for 
𝐿 = 2.  

(
𝑦𝑖
2𝑡+1

𝑦𝑖
2𝑡 ) = 𝑃2

𝑇𝐻𝐿 𝑄2
𝑇 (

𝑅𝑖
2𝑡+1

𝑅𝑖
2𝑡

𝑅𝑖
2𝑡−1

)                                       (5.5) 

where,    𝑃2 = (
1 0
1 −1
0 1

), 𝑄2 = (
1 0 0
1 −1 1
0 0 1

), 

𝐻𝐿 =  𝑑𝑖𝑎𝑔(𝑃2 × (𝐻0 𝐻1)
𝑇). 

 
Since K=3 is the most popular weight kernel size, we 

summarize 𝑀. 𝑆. 𝑅. and 𝐴. 𝐼. 𝑅.  values with 𝐿=2, 3 and 4 in 
Table 5.2 for computation complexity comparison. 

We can see 𝐿 = 3 is most efficient. This is because 𝐿 = 3 
naturally aligns with 𝐾 = 3 and thus no zero padding is need to 
for tile size (𝐿 = 4) or kernel size (𝐿 = 2). However, 𝐿 = 4 and 
𝐿 = 2  can still flexibly support  𝐾 = 3 with fairly good 
computation efficiency. We will show later that this flexibility 
is important for other CNN computation scenarios, such as 
deconvolution and convolution with 𝑠𝑡𝑟𝑖𝑑𝑒 > 1. 

A. Other Implementation complexity Analysis 
As discussed above, the proposed algorithm can support 

different tile sizes of 𝐿 to process the same weight kernel size 
with good efficiency. This flexibility to support different 
processing block size is quite important to the overall 
processing efficiency of the proposed CNN computation 
structure. This section covers the application of the proposed 
fast 2D convolution structure to other aspects of CNN 
implementation. 

B. Different Stride Size 
When we have convolution stride size 𝑠𝑡𝑟𝑖𝑑𝑒 > 1 , it’s 

equivalent to first computing convolution of 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 and 
then down-sampling the output by 𝑠𝑡𝑟𝑖𝑑𝑒 × 𝑠𝑡𝑟𝑖𝑑𝑒 in 2D. If 
we set 𝐿 = 𝑠𝑡𝑟𝑖𝑑𝑒 and only retain the computation path that 
leads to the one (for example, the last one) out of 𝑠𝑡𝑟𝑖𝑑𝑒 ×
𝑠𝑡𝑟𝑖𝑑𝑒  OFM elements, we can achieve both structure 
consistence and computation efficiency. Since the 𝑠𝑡𝑟𝑖𝑑𝑒 ×
𝑠𝑡𝑟𝑖𝑑𝑒  OFM is represented as the 𝑠𝑡𝑟𝑖𝑑𝑒2 × 1  vector, this 
simplification starts from ignoring the processing of first 
𝑠𝑡𝑟𝑖𝑑𝑒2 − 1 rows of 𝑃𝑇  matrix. Since we only need to handle 
the last row of 𝑃𝑇  matrix, the diagonal elements in matrix 𝐷 
that correspond to the zero elements of the last 𝑃𝑇  row can be 
ignored, which means the multiplication operation at these 
positions can be removed; for the same reason, the addition 
operations in the corresponding rows in 𝑄𝑇  matrix can be 
ignored as well. This is illustrated in Fig. 5.3, where “×” 

elements are ignored, 𝑙𝑎𝑠𝑡_𝑤 = (𝑃𝐿
𝑟𝑜𝑤𝑠# ⌈

𝐾

𝐿
⌉)
2

 and 

𝑙𝑎𝑠𝑡_𝑖𝑓𝑚 = ((2𝐿 − 1) ⌈
𝐾

𝐿
⌉)
2

. 
As shown in (3.6), matrix 𝑃𝑇  and 𝑄𝑇  are pre-determined 

when 𝐿 and 𝐾 values are chosen in advance. Therefore, the 
locations of the saved multiplication in matrix 𝐷 and addition 
operations for 𝑄𝑇  are known in advance as well. 
𝐿 can be factorized into smaller values if large size of L can 

be applied for large K, for example, K=11 in the first 
convolutional layer of AlexNet. More details on this 
factorization procedure can be found in [13]. 
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C. Memory requirement 
The memory size to save 𝐼𝐹𝑀𝑚𝑒𝑚𝑐#  in (4.3) has a size of  𝐿2 ×

⌈
𝑀+𝐿⌈

𝐾

𝐿
⌉−1

𝐿
⌉ ⌈
𝑁+𝐿⌈

𝐾

𝐿
⌉−1

𝐿
⌉. 

We also need local memory of different sizes for delayed 
values for 𝐼𝐹𝑀4𝑐𝑜𝑛𝑣𝑐#  in (4.5) and (4.7) if we explore pointwise 
and depthwise opertations. For pointwise operation in Fig. 4.1, 
we need a memory size of  𝑀 × 𝑁 for intermediate results of 

OFM and (𝐿(𝐿 − 1) + (𝐿 − 1)(2𝐿 − 1) ⌈
𝑁+𝐿⌈

𝐾

𝐿
⌉−1

𝐿
⌉) × 1  for 

delayed values of IFM. For depthwise operation in Fig. 4.2, we 

need a memory size of  (𝐿(𝐿 − 1) + (𝐿 − 1)(2𝐿 −

1) ⌈
𝑁+𝐿⌈

𝐾

𝐿
⌉−1

𝐿
⌉) 𝑑𝑙 × 1 for delayed values of IFM. (3.7) needs 

input of size ((2𝐿 − 1) ∙ ⌈𝐾
𝐿
⌉ )

2

× 1, but only 𝐿2 × 1 of these 
values are from a IFM tile saved in 𝐼𝐹𝑀𝑚𝑒𝑚𝑐#  of size 𝐿 × 𝐿 and 
the rest values are from delayed IFM values as shown in 
(4.5)-(4.8). 

We can see the depth-wise implementation requires dl 
(where dl is the IFM channels) times more local memory for 
delayed values of IFM than point-wise implementation. 
However, point-wise implementation requires 𝑴∙𝑵

𝑳∙𝑳
.times more 

local memory for intermediate results of OFM than depth-wise 
implementation.  Therefore, local memory requirement ratio 
between depth-wise and point-wise implementation is 
estimated as  𝒅𝒍∙𝑳∙𝑳

𝑴∙𝑵
. 

 
 

 
TABLE 5.1 ADDITION OPERATION ANALYSIS 

Matrices dimension Addition Operation 

𝑃𝑇 
𝐿2 × (𝑃𝐿

𝑟𝑜𝑤𝑠# ⌈
𝐾

𝐿
⌉)
2

 𝐴(𝑃𝑇) = 𝐴(𝑃𝐿
𝑇)𝐿 + 𝑃𝐿

𝑟𝑜𝑤𝑠#𝐿 (⌈
𝐾

𝐿
⌉ − 1)

+ 𝑃𝐿
𝑟𝑜𝑤𝑠# ⌈

𝐾

𝐿
⌉ (𝐴(𝑃𝐿

𝑇) + 𝑃𝐿
𝑟𝑜𝑤𝑠# (⌈

𝐾

𝐿
⌉ − 1))

= (𝐴(𝑃𝐿
𝑇) + 𝑃𝐿

𝑟𝑜𝑤𝑠# (⌈
𝐾

𝐿
⌉ − 1))(𝑃𝐿

𝑟𝑜𝑤𝑠# ⌈
𝐾

𝐿
⌉ + 𝐿) 

𝑄𝑇 
(𝑃𝐿

𝑟𝑜𝑤𝑠# ⌈
𝐾

𝐿
⌉)
2

× ((2𝐿 − 1) ⌈
𝐾

𝐿
⌉)

2

 𝐴(𝑄𝑇) = 𝐴(𝑄𝐿
𝑇)(𝑃𝐿

𝑟𝑜𝑤𝑠# + 𝑄𝐿
𝑟𝑜𝑤𝑠#) ⌈

𝐾

𝐿
⌉
2

 

𝐷 diagonal (𝑃𝐿𝑟𝑜𝑤𝑠# ⌈
𝐾

𝐿
⌉)
2

 𝐴(𝐷) = 𝐴(ℎ𝐿𝑃𝐿)(𝑃𝐿
𝑟𝑜𝑤𝑠# + 𝐿) ⌈

𝐾

𝐿
⌉
2

 

*For example, 𝐴(𝑃3𝑇) = 6, 𝐴(𝑃3 ) = 3 and 𝐴(𝑄3𝑇) = 6 in (2.2). 

 
(a) 
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(b) 

Fig. 5.1. 𝑀. 𝑆. 𝑅. for different {𝐾,𝐿} combination, (a) with equation (2.2); (b) with equation (2.3) 

 
(a) 
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(b) 

Fig. 5.2. 𝐴. 𝐼. 𝑅. for different {𝐾,𝐿} combination, (a) with equation (2.2); (b) with equation (2.3) 
 
TABLE 5.2  𝑀. 𝑆. 𝑅. AND 𝐴. 𝐼. 𝑅. FOR 𝐾 = 3 WITH DIFFERENT FEATURE MAP TILE 

SIZE 𝐿 
 
 
 
 
 
 

*Assuming 1/6=1/8+1/32+1/128+1/512, 1/6 can be represented with 3 addition 
operation with quantization error of -64dB, which is good for 10bit fixed point 
computation.   
 

D. Deconvolution 
Deconvolution is widely used in applications such as 

generative adversarial network (GAN) [8] and feature 
extraction [18]. We need to perform 2D up-sampling by 
𝑠𝑡𝑟𝑖𝑑𝑒 × 𝑠𝑡𝑟𝑖𝑑𝑒  before we apply convolution computation 
with weight kernel size 𝐾 × 𝐾. If we set 𝐿 = 𝑠𝑡𝑟𝑖𝑑𝑒 and only 
leave the computation path that starts from the only one 
non-zero value of 𝐿 × 𝐿  IFM elements, we can achieve both 
structure consistence and computation efficiency as well.

 

 
Fig. 5.3. Multiplication and addition operation can be saved with 𝐿 = 𝑠𝑡𝑟𝑖𝑑𝑒. 
 
 
Since we represent a IFM block of size of 𝐿 × 𝐿 as column 
vector 𝐿2 × 1, we would only have one non-zero value in the 
IFM column of Fig. 5.3, which means only one column of 𝑄𝑇  
matrix needs to be used. The multiplication operations in 
matrix 𝐷 that correspond to the zero elements in this column of 
𝑄𝑇  can be ignored. The saving of addition operations in 𝑃𝑇  can 
be obtained by following the same reasoning as shown in Fig. 
5.3. 

The locations of the saved multiplication in matrix 𝐷 and 
addition operations for 𝑃𝑇  and 𝑄𝑇  are known for the chosen 
𝐿 and 𝐾 values. 

E. Pooling 
Pooling computation would have a window size of 𝐾 × 𝐾 

with a stride of usually 𝑠𝑡𝑟𝑖𝑑𝑒 > 1. Since pooling operation, 
either max-pooling or average-pooling, is carried out within a 
window of 𝐾 × 𝐾 and we represent IFM and OFM tiles in the 
format of column vector 𝐿2 × 1 , if we can dramatically 
improve memory access efficiency if choose tile size 𝐿 as the 
same or a factor of 𝐾 at the convolution layer before pooling 
layer. If this not possible, we would choose an L value that 
could re-organize the output of the convolution layer output 

𝐿 1D convolution 𝑀. 𝑆. 𝑅. 𝐴. 𝐼. 𝑅. 
2 Eq(5.5) 1.5 4.3 
3 Eq(2.2) 2.25 2.6 
3 Eq(2.3)* 3.24 5 
4 Eq(5.5) 2x2 2.25 4.4 
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into this desired format. For example, The first convolution 
layer of AlexNet has 𝑠𝑡𝑟𝑖𝑑𝑒 = 4, which means we would let 
this layer have tile size 𝐿 = 4 for easy downsampling, but its 
following pooling layer has 𝐾 = 3. However, this should not 
be an issue, because we can choose 𝐿 = 12 and 𝑠𝑡𝑟𝑖𝑑𝑒 = 4 
down-sampling would naturally generate 3 × 3  tiles size as 
input to max-pooling of window with the same size. 

F. Fully-connected Layer 
In fully-connected layer, we would not have convolution 

related redundancy to explore and thus no saving on 
multiplication operation. It would be pure matrix 
multiplication. In this case we would bypass 𝑄𝑇  matrix and 
configure the last row of 𝑃𝑇  matrix to be all 1’s for inner 
product output. 

G. Sparsity 
If we apply weight sparsity [19][20] in the training, the 

computation saving factor could be less unless we apply 
sparsity in a way that is friendly to the subfilter generation 
procedure in this paper. Interested readers can explore sparsity 
in this direction.  

H. Round-off noise 
Since Winograd needs both left and right multiplications for 

both preprocessing and post-processing, the proposed 
algorithms in this paper only need left multiplication and thus 
its round-off/quantization noise performance should be better.  

 
 

VI. CONCLUSION 
Unified 1D and 2D convolution algorithms are proposed in 

this paper for CNN computation optimization. Multiplication 
computation efficiency is largely improved with controlled 
addition operation increase. Processing tile size and output 
format of OFM is the same as those of IFM. Tile size is 
independent of convolution kernel size. Structure regularity 
and consistency are achieved among convolution layers and 
other CNN processing layers. The matrix multiplication is 
limited to left multiplication and is applicable for CNN 
implementation based on large matrix multiplication. The 
proposed algorithm with potential tweak is suitable for both 
software and hardware CNN acceleration.  

Since the 2D parallel convolution algorithms in this paper 
can be used in a plug-and-play fashion, it is independent of the 
specific convolution neural networks it is used in and the other 
implementation considerations. 

The sections IV and V provide only an example of possible 
CNN implementation based on the proposed algorithms. 
Usually, for example, to process an IFM of size LxL for K=L, 
we would need to access the memory and read in a tile of size 
(2L-1)x(2L-1). We reduce memory BW requirement by 
reducing the memory access to LxL and saving/refreshing the 
other needed pixels in local memory based on sliding widows. 
This presented example does not mean the proposed algorithms 
can only be implemented this way. 
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