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Fast 2D Convolution Algorithms for
Convolutional Neural Networks

Chao Cheng and Keshab K. Parhi, Fellow, [EEE

Abstract— Convolutional Neural Networks (CNN) are widely
used in different artificial intelligence (AI) applications. Major
part of the computation of a CNN involves 2D convolution. In this
paper, we propose novel fast convolution algorithms for both 1D
and 2D to remove the redundant multiplication operations in
convolution computations at the cost of controlled increase of
addition operations. For example, when the 2D processing block
size is 3 X 3, our algorithm has multiplication saving factor as
high as 3.24, compared to direct 2D convolution computation
scheme. The proposed algorithm can also process input feature
maps and generate output feature maps with the same flexible
block sizes that are independent of convolution weight kernel size.
The memory access efficiency is also largely improved by the
proposed method. These structures can be applied to different
CNN layers, such as convolution with stride >1, pooling and
deconvolution by exploring flexible feature map processing tile
sizes. The proposed algorithm is suitable for both software and
hardware implementation.

Index Terms — Convolutional neural network, Fast
convolution, Kronecker product, Deconvolution Parallel FIR
filter, Winograd algorithm

I. INTRODUCTION

Convolution Neural Network (CNN) is the foundation of
state-of-the-art Al applications such as image recognition
[17[2][3][4], text classification[5][6][7], and generative
adversarial network (GAN) [8]. More than 90% of the
computation in CNN is occupied by convolution layers [9]. It is
thus beneficial if we can shorten computation time in these
convolution layers in order to achieve good CNN acceleration.
Computation of convolution layers has a lot of redundancy
due to the nature of convolution especially when the
convolution kernel size is large. Even though large kernel sizes
are less popular as a recent trend, the CNN acceleration solution
proposed in this paper covers both large and small kernel sizes.
Fast convolution of short lengths have been explored to
reduce the computational complexity of convolution in
previous works [10][11]. However, they can be improved. For
example, the Winograd fast convolution [10] handles 2D short
convolution with minimal multiplications but it has three
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issues: 1) when convolution length or kernel size gets larger
(than 3), the number of addition or multiplication operations in
both preprocessing and post-processing matrices increases
dramatically; 2) when either input tile size or convolution
kernel size changes, the preprocessing and post-processing
matrices will change too; 3) preprocessing and post-processing
involve left and right matrix multiplication, which makes it
hard to expand convolution into large matrix multiplication.
Other CNN fast convolution algorithms [11] based on short
convolution algorithms [12], although achieve balanced and
regular structures, exploit the redundancy only at one
dimension of the feature map (row or column dimension) and
thus the computation efficiency are not pushed to the limit from
both the row and column dimensions. Furthermore, the
sub-filter structures in the existing 1D convolution is not
suitable for software implementation and can be improved.

Another limitation of the previous works is the convolution
weight kernel size is usually tied to the tile size. This makes the
convolution layer with stride > 1 and other subsequent CNN
operations (such as pooling layers) hard to handle. We would
have to apply multiple memory banks or perform extra memory
access for data rearrangement. Today’s CNN implementation
requires higher and higher memory bandwidth. It’s very
important that we keep memory access rate low.

This paper focuses on improving the convolution efficiency
by proposing a novel convolution processing algorithm in 2D
of the input feature map. This 2D convolution core can be
easily scaled to handle different convolution kernel sizes. The
fact that feature map tile size is independent of the weight
kernel size enables smooth data flow for different stride sizes in
convolution, deconvolution and pooling and thus keeps
memory access rate low.

Parallel filtering algorithms in [12][13][14] can be used for
1D CNN. We derive efficient 2D convolution algorithms and
their general formula for 2D CNN in this paper. We show that,
if the computation complexity saving factor of 1D convolution
is F, then its corresponding 2D convolution can have a saving
factor of F2. To the best of the authors’ knowledge, this is the
first paper to demonstrate this saving factor for 2D convolution
with parallel filter structures.

There are also many other published papers that cover
different aspects of CNN implementation and acceleration
[15][16]17]; for example, reducing data bandwidth by applying
alternative data-reuse strategies [16] or addressing computation
latency [17]. The proposed fast 2D algorithms in this paper are
complementary to these existing architectures because it can
save more computational complexity by exploiting fast
convolution in 2D domain similar to the popular Winograd
algorithms [10]. However we make it more convenient to
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exploit fast 2D convolution for both hardware and software
implementations. For example, transforming kernel and input
feature map tiles to frequency domain would be done only by
left matrix multiplication and no right matrix multiplication is
needed. The pre-processing and post-processing matrices could
have more flexible choices with only {0,1,-1} as their elements.

This paper is organized as follows. Section II reviews 1D
convolution structures. The proposed 2D convolution
algorithm is then derived in Section III. Application of the
proposed 2D convolution structure to CNN convolution layers
is discussed with implementation examples and is generalized
in Section IV. Computational complexity analysis is performed
in Section V.

II. ONE-DIMENSIONAL CONVOLUTIONAL ALGORITHMS

We assume the input feature map has dimension M X N, and
weight kernel size of K X K. The one-dimensional (1D)
L-parallel FIR filter structure is described by (2.1) in [13]. We
first apply it to the feature map in the row dimension.
Lt+D-1:LE _ PTHLQTATRiL(t+1)-1;Lt—L+1 .1

L
where, t is the index, yiL(t+1)—1:Lt _

T
(yiL(t“)_l iL(t“)_z ykt)" are the output feature map

(OFM) elements at ith row and columns L(t + 1) — 1: Lt,
RL(t+1)—1:Lt—L+1 _
; =
(RiL(r+1)—1 RiL(r+1)—z . R | RE1
are the input feature map (IFM) elements at ith row and
columns L(t + 1) —1:Lt —L + 1, and we have R} = 0 for
j<O0orj=N;H, = diag(Px(Hy H; H_)N
and H;, (i=0, 1, ..., L -1), are the subfilters containing the

sample

coefficients WiL ] which are the weight values at ith row and
Lt + j columns of a weight matrix of size K X K.

AT is used only when we need to factorize L into L =
LyL, L, and is listed here for the completeness of the
algorithm. Since state-of-art CNN kernel sizes are usually
small, a large L value with factorization is not usually used and
thus AT can be ignored. More detail about AT can be found in
[13]. P, Q and H; matrices are from short linear convolution
decomposition.

Assume consuming as input and producing as output L = 3
columns of pixels of a feature map without loss of generality.
Here we can apply a 3-parallel FIR filter structure as follows:

/ wf \ R3t+2
1 i
Wi | /R?t+1\

3t+2
Vi | o
. i
yit*t | = Pidiag 2 L |Q3| R (2.2)
3t wit + w; R3t-1
Vi 2 4 0 i
wi + w; R3t-2
1 0 i
w; +w;

where, Rij is the IFM element on i-th row and j-th column,
the 1D kernel coefficients are {w?, w}, w?} (kernel size here is
K=3). P; and Q3 are defined as follows,

RiLt—L+1)T

/é (1’ 8\ 1 0 0 00 0
Lo 0 11 -1 -1 0 1 0 O
Py=|] 0|,Q3=|—1 1 =101 0]
\101/ \0—1—1001/
0 1 1 0 0 1 0 0 O
H, = dlag(P3 X(Ho Hy Hz)T) with  H, —Wiz ,
H; = w! and H, = w).
There is another 3-parallel FIR filter structure:
1
EWiZ R3t+2
1
y3ee? ;Wi +wi+w) Rf‘”l\l
yi | = Pidiag | Z(w? + 2w} + w?) IQ3T| R [
vit 61 2 1 0 R}
i \E(Wl _Wi +WL)/ \Rgt_Z/
w? '
(2.3)
1 0 O
1 1 1
Where, P, =| 1 2 4 |,
\1 -1 1/
0 0 1
2 0 0 0

0 0 0 0 1
H, = diag(diag(1/2 1/2 1/6 1/6 1)x
P3 X (HO H1 Hz)T) Wlth HO = Wl'z, Hl = Wll and H2 = W,F)

Since the row size of the feature map is N, 1D convolution
would conventionally need to perform KN multiplications and
(K — 1)N additions. 3-parallel structures in (2.2) and (2.3)
require %-6-[K/3]) ~2KN and  3-5-[K/3]) ~ZKN
multipliers, respectively. Therefore, compared to conventional
1D convolution computation, (2.2) and (2.3) can save 1.5 and
1.8 times of the multiplication operations, respectively.

We continue our discussion based on fast convolution in
(2.2) without loss of generality.

For kernel size K>3, for example, K=9, a 1D 3-parallel FIR
filter implementation can be represented as:

3t+2
Vi
3t+1 —
Vi =
3t
Vi
8 5.2
{Wi y Wi, Wi } R3t+2
7 4 1 i
w/,wi,w;'} /R3t+1\
T , {wf, wi, w} T i3t
P; +diag * Q R:
3 W +w/, wp +wtw? +w}l} 3 .
i i Wi i Wi i R_31:—1
W+ wl, wp +wd,w? +wl} :
i i 1" i R3t—2
7 6 .4 3 .1 0 i
W/ +w2,wi +wi,wi +w;'}
(2.4)

Where, {(w?,wi, wi}, (w/,wi,w'}, (wl,wi,wi}, (wf +
w/, wP +wtw? +wil,
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W +w/, wp +whw?+wl!}  and (W +wlw!+
wi, wl +w?} are subfilters, and w] is row i and column j of
the 2D filter kernel. “*” is the 1D convolution operator.

Note that the length of subfilters in (2.4) is [K /L] = 3. These
subfilter taps are embedded inside subfilters multiplied by
delayed versions of their input sources. This is equivalent to
convolving these subfilter taps to their preprocessed IFM tile by
QY. To remove these subfitler convolution operations and
achieve fully-controlled pipeline flow in the convolution
engine, we expand these subfilter taps and move their input to
the IFM side by concatenating IFM elements of size (2L —
1) x 1 with their delayed versions. This 1D subfilter expansion
by removing the 1D convolution operator * is shown in (2.5).

yi3t+2
yi3t+1 —
it
¢ R3t+2
l
R_3L'+1
L
R_3.L'—2
L
ngs RiS(t—1)+2
w? 3(t-1)+1
T ) i .l i T Ri
Pl I Isldiag (13®P3)| : | (Is®0Q53) :
wi R3E-D-2
w S
RiS(t—2)+2
RiS(t—2)+1
Ris(t;z)—z
2.5)

where @ is the Kronecker product. I; is the identity matrix of
size i.
The proposed 1D fast convolution algorithm can be
generalized and summarized as (2.6).
RlLt+L—1

Lt+L-2
Ri

Lt—-L+1
Ri

L(t-1)+L-1
R;

Lt+L-1 / / \\
L'Lt+L—2 | Wi | RLE-D+L-2
{7 = P diag D\ : ))QT a

L(t—i)—L+1
R;

y;“
L(t=2)+L-1
Ri
L(t—2)+L-2
Ri

Rl{l(t—é)—L+1
(2.6)

K .
where, D =I([z])®(hLPL) and h; is part of L XL
convolution  decomposition;  for  example, h; is

diag([%,i, %, %, 1]) and I in (2.3) and (2.2), respectively;

pT = pf (ones (L[5]) ®I(P[°""S#)), Q" = 1([7]) ®ar
and I(x) is the identity matrix of size x. PJ°"$* is the number
of rows of matrix P, .

(2.6) can be used as a computation engine for feature map
tiles of size 1 X L in 1D convolution applications, such as text
classification. For example, when L = 3, the number of
required multiplication operation can be reduced by a factor of
1.5 and 1.8, respectively, using (2.2) and (2.3).

III. 2D CONVOLUTION ALGORITHMS

Input could be a feature map for convolutional neural
network. A 2D filter could be a CNN kernel of size K X K. We
target processing an input feature map and producing an output
feature map of a tile size of L X L in one operation time unit,
where L can be read as parallelism level of the 2D parallel FIR
filter engine. It can be chosen from a number set, such as {2,3},
and the numbers that can be factorized into the same number
set. More discussion about parallelism level can be found in
[13]. To make the following presentation easier, we proceed
with L=3 in this section.

A. Weight kernel size K = 3 and feature map tile size L = 3
Define the 3 X 3 kernel as,
wo wg wh
w wi wi |andw; = (WP, wi, w?}
wy wy wi
We can present the 2-D convolution which processes L=3
rows of feature map as (3.1).

(o) o

V3s+2 | Rigiq
_ PT * di Wo + OT x
Y3s+1 | = I3 lagl | Q3 R3s
Vs R34
w, +wy
R3s—2
w; +wy

3.1)

Where, as defined in section 1II, y; , w, and R; are row
vectors from OFM, weigh kernel and IFM, respectively. y; ,
wy and R; are zero vectors wheni <Oori =N,k <0 or

k>K,andj < O0orj >N, respectively. We also define the
following 1D convolution operation over * operator.
> }’)*(g;>=x*Ri+y*Rj

The computational complexity saving of parallel filter
structures are from decomposition of the original 1D/2D
convolution into many 1D sub-filter structures with smaller
sizes and aggregation of these sub-filter outputs. 1D
convolution operators are used to simplify the representation of
these decomposition and aggregation procedures in the
sub-filter structures.

We next discuss how to remove the 1D convolution operator
* from (3.1).

We define,
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() (o)
|

7 R3t+1
2 = ;; * R3L’
Z |
* R3t—2
Zs

where Z; is a vector of intermediate results, after applying
1D convolution between IFM rows and Q. We then carry out
the deduction shown in (3.2) to help understand how to remove
1D convolution at subfilter level.

W2
W1
= P] «diag W *

| |

| |

Vst | |
w, +wg \24 /

/ w, *Z,
w, *Z

Wy *Z,

V3t+2

YV3t+1

— T .
_P3*dlag| W, +wy )2,

(W2 +W0)*Z4
(W1 +W0)>s<Z5

[N

\
! PS x (Is®P3) *
)

diag(P; wy ) 1.®0T Zy

d diag(P, (W, +w; ) [ Z,
\diag(% w, +w, ) Zy
diag(P; (wy +wp ) Zs

(3.2)

We can thus get the 2D subfilter expansion by removing the

1D convolution operator * in (3.1). The obtained OFM of block
size 3x3 is given in (3.3).

3t+2:3t
V3s+2

3t+2:3t
V3s+1

3t+2:3t

V3s
(
w3
(Is®P3) (P, ®1) | ™2
wo
wo
R'gti% :3t-2
S
(ritioe)
S
(I6®Q3)(QI®Is) | R332

3t+2:3t-2
R35—1

= (PT®I3;)(I,®P)diag

NN

(3.3)

R3t+23t-2
il

Where, 3s + i and 3t + j are the row and column indices of
feature maps, respectively.

B. Weight kernel size K = 9 for K > 3 and feature map tile
size L = 3.
Let us define 9x9 kernel as follows,

wd wi owgooowl owd
wd wi wi o o.ow! wd
w) wi wi .. ow] wd |
\Wg wr wi o wlowy /
wg wg wg owg o wy

Where, w; = {(w?, w}, w2, -, wf
We can present the 2-D convolution which processes L=3
rows of feature map as (3.4).

V3s+2
Vis+1 | = P «
y3s
/ {wg ,ws ,w; } \ R
3s+2
{w; ,wy ,wy }
{W Wa W } R3s+1
diag 6730 *QF *| Ry
fwg +w; ,ws +w, ,w, +w; } R
{wg +wg ,ws +wy ,w, +w, } R3S_1
w, +wg ,wy +ws,w; +wgy} 3572
(3.4)

After applying subfilter expansion to (3.4), we get (3.5).

(o)
. P W7o
V3s+1 «[le Is Is]*diag| (I®P5)| i |

=PI :
V3s \Wl /
Wo

V3s+2

R3(s—1)+2

R3(s—1)+1

(I13®Q3) * (3.5)

R3-1)-2

R3(s—2)+2

R3(s—2)+1

R3(-2)-2

After removing 1D convolution operator *, we get (3.6) to
process IFM of tile size 3x3 and generate OFM of the same tile
size.
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R3t+2:3t—2
3s+2
wi\\ [ R
wg :
: R3t+23t-2
wy -———-
p R3t+2:3t-2
i
" 7 R _: -
ygsti%:gt = PTdiag D W:'7 QT 3(s :1)+1
3t+2:3t : :
Y3s wy R?,f;-zi?i‘zz
wg -————
f Stitey
wi ||| R
we :
R
(3.6)
Where, D = (I;3®1;QP;)(13QP;Q1,),
P" = (PI®L)([Is Is Ll®L)I1s®(PIls Is I6])),

and QT = (118®I3®Q3T)(13®Q3T®115)~

The Proposed 2D fast convolution algorithm can be
generalized and summarized as (3.7).

Lt+L—1:Lt
Yis+L-1
Lt+L—1:Lt
Vis+1 —
Lt+L—1:Lt
yLs
RLt+L—LiLt-L+1
Ls+L—1
K-1 Lt+L—1:Lt—L+1
Wg_1 Risii—3
wk=2 :
K-1 RLt+L—1:Lt-L+1
: 3s—L+1
we |l | ——====
k=1 RLt+L-LLt—L+1
- L(s—1)+L-1
WII((—_Zl RLt+L=1:Lt-L+1
K2 L(s—1)+L-2
Wk _2 :
T 5. : T Lt+L—1:Lt—L+1
P'diag| D 0 Q" | Ris—n-L+1 (3.7
WK_Z ______
_— RLEHL=L:Lt=L+1
K
wk-1 L(s-[7])+1-1
: Lt+L=LiLt=L+1
i (s[5
0 H
Wo RLt+L-1ilt-L+1
L(s—[%])—L+1
Where,

o =(1(rr ) @ ([F]) @ur)

([N ecwromr (1 [3])

h; is part of L X L convolution decomposition, for example,

h, is diag([F,=,=,=,1]) and I, in (2.3) and (2.2),

. 2’2’6’6
respectively;

P" = (PI®I(L)) <0nes (1, [g]) ®1(P{°WS#L))

(15 ) (7 oes (1. £ )

and

= (e Ho () o)
(1) eater (e [2])).

I(x) is the identity matrix of size x. @, and P, are the Q
and P matrix for L X L 1D fast convolution, respectively.
Prows# and Qr°"s* are the number of rows of matrices P, and
Q,, , respectively.

We can see that the decomposition and computation of the
proposed (3.7) does not depend on dimension size of [FM.

If we compare the derived 1D (2.6) and the 2D convolution
algorithm (3.7), we can see that they have unified structure.
This allows the proposed convolution to enable easy switch
among 1D/2D applications, for example, text classification
(1D) and image classification (2D).

(3.7) is used as a computation engine for feature map tiles of
size L X L. We will discuss how to use it in the whole data flow
via implementation examples in the next section.

IV. IMPLEMENTATION AND EXAMPLES

To compute (3.7), we first slice input feature map into L X L
tiles; each tile is then transformed into a vector with the order
from right to left and bottom to top. We consume these tiles
from IFM in the order of left to right and then top to bottom. We
use Example 4.1 and Example 4.2 to illustrate how this is done,
where IFM is processed and consumed in (3.3) and (3.6) for
K = L and K > L. Both examples share an original IFM of size
7x7. It’s represented as IFMSF, in (4.1).

1 2 3 . 6 7
/8 9 10 .. 13 14\
eyt — |15 16 17 .20 210
g Coor i
36 37 38 - 41 42
43 44 45 - 48 49

where, the superscript c# is the IFM channel index

A. Example 4.1 L = 3, kernel size K = 3 and 7 X 7 IFM

After slicing IFMS}; into tiles of size L X L, we get (4.2).
Note that we pad zeros to the right and bottom of IFM to make
sure all tiles have the same size.

IFMsCﬁced N
1 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21

22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42

43 44 45 46 47 48 49
0 0 0 0 0 O 0
0 0 0 0 0 O 0

O OO0 oo ooo
O OO0 oo ooo
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(4.2)

We convert IFMS:,,, into IFMSE,, in (4.2) for efficient

memory access. We can see that each L X L slice is converted

to a column vector of the order from the lower right corner to

upper left corner of its corresponding original slice in

IFME, 4. For example, the upper left tile of (4.2) is converted
to the left most column of (4.3).

17 20 0 38 41 0 0 0 O
16 19 0 37 40 0 0 O o\
15 18 21 36 39 42 0 0 O
10 13 0 31 34 0 0 0 0|
IFMEE,, =1 9 12 0 30 33 0 0 0 O
8 11 14 29 32 35 0 0 O
3 6 0 24 27 0 45 48 0
2 5 0 23 26 0 44 47 0
1 4 7 22 25 28 43 46 49
4.3)

IFMEE,,, read from memory needs to be transformed locally
into IFMS¥ . shown in (4.4)
IF MC# _

4conv—

17 20 O 38 41 0
16 19 0 37 40 O

15 18 21 | 36 39 42 Osx3
0 17 20 | 0 38 41
0 16 19 | 0 37 40
10 13 0 | 31 34 0
12 0 | 30 33 0
11 14 | 29 32 35 Osx3

10 13 0 31 34
9 12 0 30 33

S O O

0 24 27 O 45 48 0
0 23 26 0 44 47 0
7 22 25 28 43 46 49
6 0 24 27 0 45 48
5 0 23 26 0 44 47

SO L, DNW
N WS U1 O

17 20 O 38 41 0
16 19 0 37 40 O

Osxs 15 18 21 | 36 39 42
0 17 20 | 0 38 41
0 16 19 | 0 37 40
10 13 0 | 31 34 0
9 12 0 | 30 33 0
Osxs 8 11 14 | 29 32 35
0 10 13 | 0 31 34
0 9 12 | 0 30 33

o o o o o o [oF o oS

4.4)
Each column Cf* in (4.4) corresponds to the right-most
column of input vector in (3.3).
Note that, OFM would have the same format as IFM, which
means each column of OFM represents a L X L tile of OFM and
the size of OFM is the same as IFM. This means we can directly

use OFM for next layer processing without extra memory
access for feature map re-arrangement.
If we represent each sliced block in (4.4) as R{* with ‘i’

corresponding to the i’th row of IF Mgfg, for example (4.5),

3 6 0
2 5 0
REF =1 4 7 4.5)
0 3 6
0 2 5
(4.4) can then be simplified as (4.6).
RS RS0
AR
IFM{lon, =| RE* RE" RS (4.6)
0 RS$* RS
0 RS RS

Interestingly, we can find that (4.5) and (4.6) have the same
pattern.

B. Example4.2. L =3, K = 9 kernel and 7 X 7 IFM.

For K = 9, input feature map can be arranged as (4.7), where
each stacked layer corresponds to one subfitler tap and thus the
pattern of one layer is the delayed (right shifted) version of the
section right above it. Both row-wise (4.7) and pixel-wise (4.8)
representation have this same pattern among their stacked
layers.

IF Mziﬁonv=

R$* RE" 0
Rs* R 0
R{*  REY RS
0 R§" R¢
Rs*  RE

o O © © ©

o

R§* RE" 0

Rs* R 0

R{* R R§Y
0 RS RE
0 R R

O O O O oo o o o o

S ©O O ©O O o o o o

0 RS* RS 0
0 RS* RS 0
0 R* RS RSH
0 0 RS* RS
0 0 RS* RE*
4.7
Where, for example, we have
RS* =
3 6 0 0 0
2 5 0 0 0
1 4 7 0 0
0 3 6 0 0
0 2 5 0 0
0 3 6 0 0
0 2 5 0 0
0o 1 4 7 0
0 0 3 6 0
0 0 2 5 0
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0 0 3 6 0 C. Pointwise operation

0 0 2 5 0 This needs a large on-chip buffer to save the intermediate
0 0 1 4 7 computational results as large as the whole feature map, while
0 0 0 3 6 the weight kernel of a channel does not need to be swapped
0 0 0 2 5 back and forth until next feature map input. (3.7) can be
CC# CC# CC# CC# CC# . . . v .

1 2 3 4 5 implemented with this scheme as shown in Fig. 4.2. Each

(4-8) " shaded block is a L X L feature map processing tile and the

number in it shows the order index it’s processed. We can see
that the tiles (Fig. 4.2(a)) in the same IFM are consumed from
upper left corner to right bottom corner and then moved on to
the next feature map channel. Fig. 4.2(b) shows the map
between IFM tiles and their corresponding weight kernel.

We next generalize the implementation procedure.

Computation data flow of a convolution layer could be of two
types: pointwise and depth wise.

-, ~
- Wli/lf =~

-~

Fig. 4.1. CNN convolutional layer computation from layer [ to [ + 1. d, is the feature map depth at layer [. Wij is the weight kernel for IFM channel i and OFM
channel j.

a1
HE —
1 2 E i
| [ . —
£
(a)
o .. C cZ ¢ .. C2 c et o
Wi Wi W,
diag(DW{)Q" Clg diag(DW;)Q"Cig diag(DW})QTCH,

OFM¢, =PT 3% diag(DW})Q"Clg

o . G Tz 2 . 2 L o

2
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OFMZ*1=PT 3L diag(DW,"*)Q7 Ci;
.F = [M+Ll[‘%]—1} [N+L[‘%]—1}

(b)
Fig. 4.2. IFM tile access sequence for pointwise operation to generate one channel of OFM (repeated d;, times to get all OFM channels). C ; means the j’th tile in
the i’th input feature map channel.

|‘;ﬂ; T

A
(- 1
oty AR
| CEg
: E
1| ||]a+1 ] . d,+,-_|
| [ —
1
Ed;-
N
L
(a)
¢t ¢t .. oct 2 .. ¢ ¢ ¢ .och (o B S o
W11 W21 Wdll W11 W21 Wd11 VVldl+1 VVZle dellﬂ VVldHl VVZdHl Wdlfl+1
OFM¢ = w | OFM{ = OFMg’”: OFMCdl“:
d; di 1d, Edl
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(b)

Fig. 4.3. IFM tile access sequence for Depthwise operation to generate one channel of OFM (repeated d,,, times to get all OFM channels). Cj- means the j’th tile in
the i’th input feature map channel.

D. Depthwise operation

This requires swapping weight kernel among IFM channels. V. COMPUTATIONAL COMPLEXITY ANALYSIS
(3.7) can be implemented with this scheme as shown in Fig.

4.3. Each shaded block is a L X L feature map processing tile
and the number in it shows the order index it’s processed. We
can see that the tiles (Fig. 4.3(a)) in the same feature map
position among the IFM channels are consumed first and then
move on to next feature map position from upper left corner to
right bottom corner. Fig. 4.3(b) shows the map between IFM
tiles and their corresponding weight kernel.

The proposed 2D parallel FIR filter structures are flexible for
both data flow types.

For an input feature map of size M X N and channel depth
d;, without the loss of generality, let’s assume the output
feature of size M X N and channel depth d;,, . Direct
computation of convolution from layer [ to layer [ + i requires
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K-K+M-N-d;,-d; multiplication and (K?—-1)-M:-
N - d;,, - d; addition operations. However, with the proposed
2D fast convolution algorithm, the required number of
multiplications can be reduced to (5.1).

wn= () () D

where M; is the number of multipliers required by K X K
fast 1D convolution algorithm of parallelism level L. The
multiplication saving ratio (M. S. R.) is given by (5.2).

2
KL 12\?

M.S.R.= (m[%]) ~=()

For example, in equations (2.2) and (2.3), we have M; equal
to 6 and 5 for L =3, and thus M.S.R. is 2.25 and 3.24,
respectively.

The M.S.R. could be estimated independent of the kernel
size especially when K is divisible by L.

Although we assume the same parallelism levels at row and
column processing dimensions as L, they do not have to be the
same.

The number of required addition operations can be estimated
too. From above discussion, we can see that the addition
operations for the convolution layers are all embedded in
matrices PT, QT and D in (3.7) and the required number of
addition operations involved in these matrices are given in
Table 5.1. We also summarize dimensions of these matrices in
Table 5.1.

The total number of addition operations (R.A.) is given by
(5.3).

R.A. =

(5.2)

(4™ + dy(4@") +4))) () (7) duss
(5.3)

The required number of addition operations is larger than the
conventional convolution computation scheme. We define
addition increase ratio (A.L.R.) to estimate the magnitude of this
increase.

(A(PT)+dl(A(QT)*'A(D)))(%)(%)CQH
A.L.R.= 54
(K%2-1)-MN-dj4+4-d;

M.S.R. for different weight kernel size K and feature map
processing block size L are shown in Fig. 5.1.

A.L.R. for different weight kernel size K and feature map
processing block size L are shown in Fig. 5.2.

D matrix in (3.7) is computed from P, and thus the density
of matrix D relies on that of P, . The required multiplication
operations are located in matrix D. When K is not divisible by L
or K<L, diagonal matrix generation in (3.7) needs zero
padding. The M.S.R. would be more sensitive to a D matrix
(and thus P, ) with higher density. For example, P; in (2.3) is
denser than (2.2), M.S.R. values computed based on (2.2)
shows higher M. S. R. variation if we compare Fig. 5.1(b) with
(2.3) and Fig. 5.1(a) with (2.2). Similar higher A.I. R. variation
trend is also observed in Fig. 5.2(b) with (2.3) than that shown
in Fig. 5.2(a) with (2.2).

As we can see from above discussion, the feature map
processing block size L is independent of weight kernel size K.
Although so far we used L = 3 as example to illustrate how the
proposed algorithm works, L could take other values too; for
example, (5.5) shows one 1D convolution decomposition for
L=2.

R2t+1
y2t+1 i
( Lot ) =PJH, Q]| R} (5.5)
Vi R2t-1
L

1 0 1 0 O
where, P, = (1 —1>, Q, = (1 -1 1),
0 1 0 0 1

H, = diag(P, x (Hy H)").

Since K=3 is the most popular weight kernel size, we
summarize M.S.R. and A.I.R. values with L=2, 3 and 4 in
Table 5.2 for computation complexity comparison.

We can see L = 3 is most efficient. This is because L = 3
naturally aligns with K = 3 and thus no zero padding is need to
for tile size (L = 4) or kernel size (L = 2). However, L = 4 and
L =2 can still flexibly support K = 3 with fairly good
computation efficiency. We will show later that this flexibility
is important for other CNN computation scenarios, such as
deconvolution and convolution with stride > 1.

A. Other Implementation complexity Analysis

As discussed above, the proposed algorithm can support
different tile sizes of L to process the same weight kernel size
with good efficiency. This flexibility to support different
processing block size is quite important to the overall
processing efficiency of the proposed CNN computation
structure. This section covers the application of the proposed
fast 2D convolution structure to other aspects of CNN
implementation.

B. Different Stride Size

When we have convolution stride size stride > 1, it’s
equivalent to first computing convolution of stride = 1 and
then down-sampling the output by stride X stride in 2D. If
we set L = stride and only retain the computation path that
leads to the one (for example, the last one) out of stride X
stride OFM elements, we can achieve both structure
consistence and computation efficiency. Since the stride X
stride OFM is represented as the stride? X 1 vector, this
simplification starts from ignoring the processing of first
stride? — 1 rows of PT matrix. Since we only need to handle
the last row of PT matrix, the diagonal elements in matrix D
that correspond to the zero elements of the last PT row can be
ignored, which means the multiplication operation at these
positions can be removed; for the same reason, the addition
operations in the corresponding rows in QT matrix can be
ignored as well. This is illustrated in Fig. 5.3, where “Xx”

2
elements are ignored, last.w = (P ot [ﬂ) and

2
last_ifm = ((ZL -1 [ﬂ) .

As shown in (3.6), matrix PT and QT are pre-determined
when L and K values are chosen in advance. Therefore, the
locations of the saved multiplication in matrix D and addition
operations for Q7 are known in advance as well.

L can be factorized into smaller values if large size of L can
be applied for large K, for example, K=11 in the first
convolutional layer of AlexNet. More details on this
factorization procedure can be found in [13].
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C. Memory requirement

The memory size to save IFMSF,,, in (4.3) has a size of L? X

P

We also need local memory of different sizes for delayed
values for IFMS¥ . in (4.5) and (4.7) if we explore pointwise
and depthwise opertations. For pointwise operation in Fig. 4.1,
we need a memory size of M X N for intermediate results of

OFM and (L(L — D)+ (L -1DEL-1) [%D x 1 for

delayed values of IFM. For depthwise operation in Fig. 4.2, we

nced a memory size of (L(L -D+L-1D2L-

N+L[5]—1
1) |——] ) d; X 1 for delayed values of IFM. (3.7) needs
L

. . K] \?
input of size ((ZL -1)- [f] ) x 1, but only L? X 1 of these

values are from a IFM tile saved in IFMSF,,,, of size L X L and

the rest values are from delayed IFM values as shown in
(4.5)-(4.8).

We can see the depth-wise implementation requires d;
(where d; is the IFM channels) times more local memory for
delayed values of IFM than point-wise implementation.

. L . . _MN .
However, point-wise implementation requires H.tlmes more

local memory for intermediate results of OFM than depth-wise
implementation. Therefore, local memory requirement ratio

between depth-wise and point-wise implementation is
dyLL

estimated as .
M-N

TABLE 5.1 ADDITION OPERATION ANALYSIS

Matrices dimension

Addition Operation

pr KT\>
L2 X (Prows# I_l)
t L

A(PT) = A(PD)L + PJows*], ([%l - 1)

e [7] (A(PZ) wrme (] - 1>)

(oo f]-) e

“ ] e[l < (o)

K 2
A@Q") = A@DE + ¢ []

b diagonal (PL”’WS# [ﬂ)z

2
A(D) = A(h,P)(P[*** + L) [%]

*For example, A(P]) = 6, A(P; ) = 3 and A(Q]) = 6in (2.2).

—o—L=2
—+- L=3(eq2.2)
D> L=4 (2x2)

—%—L=6 (2x3)
— <= L=9 (3x3)
- L=12(2x2x3) =

[}
T

» [¢)]
T T

multiplication saving Ratio (M.S.R.)
w
T
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15 20 25

weight kernel size K
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Addition Increase Ratio (A.l.R.)

11

—o—L=2 Al [ /Q =]
10 — +— L=3 (eq2.3) | |
D> L=4 (2x2) ' 1 PN
—%— =6 (2x3) / o /
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(b)
Fig. 5.1. M. S.R. for different {K,L} combination, (a) with equation (2.2); (b) with equation (2.3)
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Addition Increase Ratio (A.l.R.)

T T T

—©—L=2

—+— L=3 (eq2.3)
D> L=4 (2x2) *

—— L=6 (2x3)

—©— L=9 (3x3)
O L=12(2x2x3) | -

Weight kernel Size K

Fig. 5.2. A. 1. R. for different {K,L} combination, (a) with equation (2.2); (b) with equation (2.3)

TABLES5.2 M.S.R.AND A.I.R.FOR K = 3 WITH DIFFERENT FEATURE MAP TILE

SIZE L
L 1D convolution M.S.R. A.L.R.
2 Eq(5.5) 1.5 43
3 Eq(2.2) 2.25 2.6
3 Eq(2.3)* 3.24 5
4 Eq(5.5) 2x2 2.25 44

*Assuming 1/6=1/8+1/32+1/128+1/512, 1/6 can be represented with 3 addition
operation with quantization error of -64dB, which is good for 10bit fixed point
computation.

Fig. 5.3. Multiplication and addition operation can be saved with L = stride.

Since we represent a IFM block of size of L X L as column
vector L? X 1, we would only have one non-zero value in the
IFM column of Fig. 5.3, which means only one column of Q7
matrix needs to be used. The multiplication operations in
matrix D that correspond to the zero elements in this column of
QT can be ignored. The saving of addition operations in PT can
be obtained by following the same reasoning as shown in Fig.
5.3.

The locations of the saved multiplication in matrix D and
addition operations for PT and Q7 are known for the chosen
L and K values.

X X X X xY w,
P - S ® ®
=l % ® X e S
4’-.
M - . '
f S |
oy ! I :
5 {'H- 'llf-.fr.-:.'-': 4 AT l D kl:rl i ] \ : "
L —

D. Deconvolution

Deconvolution is widely used in applications such as
generative adversarial network (GAN) [8] and feature
extraction [18]. We need to perform 2D up-sampling by
stride X stride before we apply convolution computation
with weight kernel size K X K. If we set L = stride and only
leave the computation path that starts from the only one
non-zero value of L X L. IFM elements, we can achieve both
structure consistence and computation efficiency as well.

1 1 0 1y IFM, )

e b4 4 x IF. w:
kL =16 | NIFM
E. Pooling

Pooling computation would have a window size of K X K
with a stride of usually stride > 1. Since pooling operation,
either max-pooling or average-pooling, is carried out within a
window of K X K and we represent IFM and OFM tiles in the
format of column vector L? X 1, if we can dramatically
improve memory access efficiency if choose tile size L as the
same or a factor of K at the convolution layer before pooling
layer. If this not possible, we would choose an L value that
could re-organize the output of the convolution layer output
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into this desired format. For example, The first convolution
layer of AlexNet has stride = 4, which means we would let
this layer have tile size L = 4 for easy downsampling, but its
following pooling layer has K = 3. However, this should not
be an issue, because we can choose L = 12 and stride = 4
down-sampling would naturally generate 3 X 3 tiles size as
input to max-pooling of window with the same size.

F. Fully-connected Layer

In fully-connected layer, we would not have convolution
related redundancy to explore and thus no saving on
multiplication operation. It would be pure matrix
multiplication. In this case we would bypass QT matrix and
configure the last row of PT matrix to be all 1’s for inner
product output.

G. Sparsity

If we apply weight sparsity [19][20] in the training, the
computation saving factor could be less unless we apply
sparsity in a way that is friendly to the subfilter generation
procedure in this paper. Interested readers can explore sparsity
in this direction.

H. Round-off noise

Since Winograd needs both left and right multiplications for
both preprocessing and post-processing, the proposed
algorithms in this paper only need left multiplication and thus
its round-off/quantization noise performance should be better.

VI. CONCLUSION

Unified 1D and 2D convolution algorithms are proposed in
this paper for CNN computation optimization. Multiplication
computation efficiency is largely improved with controlled
addition operation increase. Processing tile size and output
format of OFM is the same as those of IFM. Tile size is
independent of convolution kernel size. Structure regularity
and consistency are achieved among convolution layers and
other CNN processing layers. The matrix multiplication is
limited to left multiplication and is applicable for CNN
implementation based on large matrix multiplication. The
proposed algorithm with potential tweak is suitable for both
software and hardware CNN acceleration.

Since the 2D parallel convolution algorithms in this paper
can be used in a plug-and-play fashion, it is independent of the
specific convolution neural networks it is used in and the other
implementation considerations.

The sections IV and V provide only an example of possible
CNN implementation based on the proposed algorithms.
Usually, for example, to process an IFM of size LxL for K=L,
we would need to access the memory and read in a tile of size
(2L-1)x(2L-1). We reduce memory BW requirement by
reducing the memory access to LxL and saving/refreshing the
other needed pixels in local memory based on sliding widows.
This presented example does not mean the proposed algorithms
can only be implemented this way.
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