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Abstract
We present a novel parameter space exploration algorithm for three classes of mul-
tiparametric problems, namely linear (mpLP), quadratic (mpQP), and mixed-integer
linear (mpMILP).We construct subsets of the parameter space in the form of simplices
through Delaunay triangulation to facilitate identification of the optimal partitions that
describe the solution space. The presented exploration strategy prioritizes identifying
volumetrically larger critical regions compared to existing methods. We demonstrate
the exploration algorithm on an illustrative example, and compare the volumetrically
identified parameter space against existing solvers on randomly generated problems
in all three classes.

Keywords Multiparametric programming · Triangulation · Optimization under
uncertainty

1 Introduction

Multiparametric programming is an established tool to solve optimization problems
in the presence of uncertain parameters (Pistikopoulos 2009). The advantages of mul-
tiparametric programming lie in the offline map of optimal solutions that (i) provides
valuable insight on the behavior of the optimal decision under a range of parame-
ters prior to their realization, (ii) the burden of solving an optimization problem is
removed and replaced with evaluating an explicit function after the realization of the
parameters (Wittmann-Hohlbein and Pistikopoulos 2014), and (iii) allows for an exact
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formulation to embed the optimal solutions in the context of simulation and optimiza-
tion (Burnak et al. 2019). The range of applications for multiparametric programming
spans multiparametric/explicit Model Predictive Control (mpMPC) (Bemporad et al.
2002; Alessio and Bemporad 2009; Dua et al. 2008; Papathanasiou et al. 2017; Lee
and Chang 2018; Shokry et al. 2016), process scheduling (Wittmann-Hohlbein and
Pistikopoulos 2013; Kopanos and Pistikopoulos 2014), integration ofmulti-scale deci-
sions (Zhuge and Ierapetritou 2014; Diangelakis et al. 2017; Charitopoulos et al. 2018;
Burnak et al. 2018, 2019), bi-level programming (Köppe et al. 2010; Avraamidou and
Pistikopoulos 2018), and parameter estimation (Mid and Dua 2019).

Complete theories and solution strategies were proposed in the literature for mul-
tiparametric linear programming (mpLP), quadratic programming (mpQP) (Gal and
Nedoma 1972; Bemporad et al. 2002; Tøndel et al. 2003; Spjøtvold et al. 2006; Gupta
et al. 2011;Ahmadi-Moshkenani et al. 2018;Oberdieck et al. 2017), andmixed-integer
linear programming (mpMILP) (Oberdieck et al. 2014). A key difference in existing
approaches is their procedure to explore the parameter space to completion. Algo-
rithms proposed by Bemporad et al. (2002), Tøndel et al. (2003), and Spjøtvold et al.
(2006) rely on geometrical strategies, where the parametric solution is determined by
direct exploration of the parameter space. Strategies for multiparametric programming
proposed by Gupta et al. (2011) and Ahmadi-Moshkenani et al. (2018) develop the
parametric solution by enumerating possible active set combinations with a branch
and bound style approach. These active set strategies are inherently different from
geometrical approaches because they do not rely on the parameter space to identify
the optimal explicit expressions that are defined over the parameter space. Algorithms
that incorporate both geometric and active set strategies, by Gal and Nedoma (1972)
andOberdieck et al. (2017), rely on representing the parametric solution as a connected
graph where each node represents an optimal active set combination.

Although these approaches theoretically guarantee developing the complete solu-
tion over the parameter space, practical implementation becomes more challenging as
the number of optimization variables, constraints, and parameters grow because of the
potential exponential increase in optimal active set combinations. Managing the mem-
ory requirements of an exponential solution space has been approached by Drgoňa
et al. (2017) via the so-called regionless explicit MPC. The regionless explicit MPC
strategy saves memory by maintaining factored matrices and active set combinations,
instead of the optimal expressions defined over the parameter space. However, with a
solution space that grows combinatorially with the problem size, developing the full
parametric solution becomes impractical, and using the complete explicit solution in
offline applications becomes intractable. For instance, in multi-level optimization for-
mulations, the solution space of the follower (lower level) problems increase rapidly
in the number of variables and constraints, necessitating a strategy to account for the
potential explosion of optimal active set combinations that define the multiparametric
solution. Current theory and strategies in the open literature do not attempt to address
this potential explosion, hence the use of explicit solutions in large scale offline appli-
cations is rather limited. Therefore, the exploration of a meaningful partial solution
to these large scale problems is necessary. In other words, the question that must be
addressed is “What is a good criterion that provides meaningful insight to the multi-
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parametric solution, and how can an efficient strategy be implemented to exploit this
criterion?”.

In this work, we propose a novel parameter space exploration algorithm for mpLP,
mpQP, and mpMILP based on recursive construction of nonincreasing simplices via
Delaunay triangulation. The proposed algorithm prioritizes the volumetrically larger
partitions of the solution space, whereas the existing multiparametric programming
solvers place no priority for the size of the partitions identified. Identifying the larger
partitions is particularly important in large scale multi-level optimization problems,
where even finding a feasible solution can be challenging. In these problems, hav-
ing identified the larger partitions of the follower (lower level) optimization problem
facilitates finding a feasible overestimator of the global minimum, while keeping the
problem tractable. The proposed algorithm returns a larger portion of the parameter
space compared to the existing state-of-the-art multiparametric solvers upon early ter-
mination, which is a promising step towards using explicit optimal solutions in large
scale offline applications.

The remainder of the paper is organized as follows. A brief overview of multi-
parametric programming is presented in Sect. 2. In Sect. 3, the proposed algorithm
is described. The performance of the proposed approach is evaluated by numerical
examples and compared against state-of-the-art solvers in Sect. 4. Lastly, a summary
of the paper and directions for future work are presented in Sect. 5.

2 An overview onmultiparametric programming

We consider standard mpLP and mpQP problems, described in the following general
form given in Problem P1. Note that the discussions will be extended to mixed-integer
problems in Sect. 3.5.

z∗(θ) =min
x

(Qx + Hθ + c)T x (P1)

s.t . Ax ≤ b + Fθ, θ ∈ Θ

where x ∈ R
n is the vector of optimization variables, θ ∈ R

q is the vector of parameters
defined in a convex polytope Θ ⊂ R

q , z∗(θ) ∈ R is the optimal objective value as a
function of the parameters θ , and Q � 0 ∈ R

n×n , H ∈ R
n×q , c ∈ R

n , A ∈ R
m×n ,

b ∈ R
m , F ∈ R

m×q . Note that Q is defined for mpQP problems only. Also, let
f (x, θ)denote the objective function,N � {1, 2, . . . , n}denote the set of optimization
variables, andM � {1, 2, . . . ,m}denote the set of indices of all constraints inProblem
P1 in the following discussions.

Definition 1 (Linear Independence Constraint Qualification (LICQ) Spjøtvold et al.
2006). Let A indicate the index of active constraints at any parameter realization θ̄ .
LICQ holds if the set of active constraint gradients is linearly independent, i.e. AA
has full row rank.

Definition 2 (StrictComplementarity Slackness (SCS) Spjøtvold et al.2006).Let x∗(θ̄)

be the optimal solution, and λ∗(θ̄) be the set of Lagrange multipliers for a parameter
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realization θ̄ . SCS holds if either the i th constraint in Problem P1 is active (Ai x∗(θ̄) =
bi + Fi θ̄ ) or the corresponding Lagrange multiplier is zero (λ∗

i (θ̄) = 0) for each
i ∈ M.

Theorem 1 (Basic Sensitivity Theorem Fiacco 1983; for mpLP Gal and Nedoma
1972). Let x∗(θ̄) be the optimal solution of an mpQP or mpLP (P1) and λ∗(θ̄) be the
set of Lagrangemultipliers at any parameter realization θ̄ .Also assume that LICQand
SCS hold. Then, there exists a unique, once differentiable function [x∗T (θ), λ∗T (θ)]T
satisfying the Karush–Kuhn–Tucker (KKT) optimality conditions in the neighborhood
of θ̄ , and

[
x∗(θ)

λ∗(θ)

]
= −M−1N (θ − θ̄ ) +

[
x∗(θ̄)

λ∗(θ̄)

]
(1)

where

M =

⎡
⎢⎢⎢⎣

∇2
xxL ∇x g1 · · · ∇x gm

λ1∇T
x g1 g1
...

. . .

λm∇T
x gm gm

⎤
⎥⎥⎥⎦

N = [∇2
θ,xL, λ1∇T

θ g1, λm∇T
θ gm]T

L(x, λ, θ) = f (x, θ) + λT g(x, θ)

g(x, θ) = Ax − b − Fθ

Definition 3 (Piecewise affine Bemporad et al. 2002). A function x(θ) : Θ ⊂ R
q →

R
n is piecewise affine if it is possible to partition Θ into full dimensional polytopic

regions, such that

x(θ) = K jθ + r j ,∀θ ∈ Ω j , j ∈ J (2)

where Ω j is defined as the j th polytopic region, and J is the index set. Note that
piecewise quadratic is defined analogously.

Theorem 2 (Properties of mpQP solution Bemporad et al. 2002; Dua et al. 2002).
Consider the mpQP problem presented in Problem P1, where Q � 0. Then, the
set of feasible parameters Θ f ⊆ Θ is convex, the optimizer x∗(θ) is continuous and
piecewise affine, and the optimal objective function z∗(θ) is continuous and piecewise
quadratic.

Remark 1 Without loss of generality, Theorem 2 holds for mpLP An analogous theo-
rem holds for mpLP solutions except the optimal objective function z∗(θ) is piecewise
affine (Gal and Nedoma 1972; Gal 1995; Bemporad et al. 2002).

Definition 4 (Critical region) A polytopic region Ω j is a critical region, denoted by
CR j , if Eq. 2 describes the optimal solution to Problem P1.

Lemma 1 Each critical region CR j is uniquely defined by the optimal active set asso-
ciated with it (Gupta et al. 2011).
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3 Parameter space exploration strategy

We propose a systematic sampling strategy via Delaunay triangulation for the param-
eter search space that prioritizes the volumetrically large critical regions. We begin
the discussion by defining “candidate subset” and “candidate simplex”, which are the
building blocks of the proposed algorithm.

Definition 5 (Candidate subset and candidate simplex). Any full-dimensional poly-
tope that is a subset of Θ ⊂ R

q is a candidate subset, Θc ⊆ Θ . If the subset has q + 1
vertices, the candidate subset is a candidate simplex.

The proposed strategy relies on (i) constructing candidate simplices in a non-
increasing sequence, (ii) identifying the candidate simplices that are subsets of the
optimal partitions in the parameter space, and (iii) selecting a new sampling point if
the candidate simplex is not a subset of an optimal partition. The critical region around
the sampled parameter realization is constructed based on the Basic Sensitivity Theo-
rem (Fiacco 1983). The procedure to explore the parameter space and developing the
optimal partitions is summarized in Algorithm 1. We describe the detailed steps of the
exploration algorithm in Sect. 3.1.

Algorithm 1 Parameter space exploration procedure

1: Get Problem P1 and the parameter space Θ . Let Θh
c ← Θ .

2: Solve Problem P1 at all the vertices of Θh
c .

3: If the set of strongly active constraints,
−→A , is identical for all vertices, eliminate Θh

c from the parameter
search space. Else, proceed to Step 5.

4: Check
−→A for dual degeneracy. If it is non-degenerate, construct CR j based on the Basic Sensitivity

Theorem (see Theorem 1) (Also see Sect. 3.4 for degenerate cases), and proceed to Step 7.

5: Let pc be the center of mass of
−→
θ h , 〈−→θ h〉.

6: Determine the child simplices of the point set
−→
θ h ∪ pc via Delaunay triangulation (see de Berg et al.

2008 for the details on Delaunay Triangulation). Include the child simplices in the set of candidate
convex subsets.

7: Go back to Step 2. Repeat for all parent candidate convex subsets.
8: Increment h.

3.1 Parameter space exploration

Assume the solutions to Problem P1 are feasible at all vertex points ofΘ . Note that this
assumption will be relaxed in Sect. 3.3, where an initialization strategy is presented.

The exploration procedure is initialized (h = 0) by defining a candidate convex
subset,Θh

c equal to the parameter spaceΘ . The initial candidate convex subset dictates
the boundaries of the search space throughout the rest of the procedure, because the
algorithm explores the space by creating new candidate simplices in a non-increasing
sequence in the subsequent iterations. Therefore, it is guaranteed that the algorithm
never explores outside the parameter bounds.

Problem P1 is solved at the vertex points of Θh
c to find the corresponding active

sets,
−→A . Lemma 1 suggests that if all active set combinations in

−→A are identical at
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the set of vertex points
−→
θ h , then

−→A uniquely defines the critical region bounded
by Θh

c . Therefore, knowing that the parameter space is explored to completion (i.e.
Θ \ Θh

c = ∅), the exploration algorithm is terminated by eliminating Θh
c from the

parameter search space, since it comprises only one optimal active set combination.
Note that this is a trivial case where Θ is feasible for all parameter realizations and
has one critical region.

In the case where
−→A at

−→
θ h are not all identical, there exist at least two critical

regions withinΘh
c by Lemma 1. Therefore, we generate new non-increasing child can-

didate simplices for the next iteration (Θh+1
c ) to explore the parameter space in higher

resolution. Although it is possible to generate any finite number of non-overlapping
candidate simplices Grünbaum 2003, we propose a systematic and efficient proce-
dure to construct the child subsets iteratively. In the proposed algorithm, these child
subsets are generated such that (i) they are non-overlapping simplices, and (ii) each
child subset has q vertices that belong to the point set

−→
θ h and share one vertex at an

arbitrary point, pc ∈ Θh
c . An effective methodology to construct such subsets is to

utilize computational geometry tools such as triangulation algorithms. In this study,
we employ Delaunay triangulation to generate child subsets from the parent subsets
(the interested reader is referred to de Berg et al. (2008) for details on Delaunay tri-
angulation). Although this step can be replaced by any other triangulation algorithm,
Delaunay triangulation provides twomain benefits. First, due to the empty circle prop-
erty, it yields well-distributed simplices compared to other algorithms (de Berg et al.
2008), which promotes sparse sampling in the parameter space and thus targets volu-
metrically larger critical regions. Second, Delaunay triangulation is a well-established
technique in the field of computational geometry, and its software implementation is
readily available in most of the widely used programming languages.

The procedure to generate child subsets Θh+1
c from a given parent subset Θh

c
is depicted in Fig. 1, where the center of mass of the vertex points is assigned as
pc = 〈−→θ h〉, where 〈·〉 represents the center of mass of a point set. The triangulation

step is executed for each parent subset of which the active sets,
−→A , are different at

the vertex points. On the other hand, if the subset
−→A is identical at the vertex points,

we know that the simplex is a subset of a critical region (i.e. Θh
c ⊆ CR j ) by Lemma

1. Therefore, Θh
c can be eliminated from the parameter search space since there is no

need for further exploration.
The point set

−→
θ h is checked for dual degeneracy based on its corresponding active

sets,
−→A . Handling dual degeneracy is omitted in this section to focus on exploration

of the parameter space, and will be discussed in Sect. 3.4. For the non-degenerate

case, the unique combinations of
−→A and the corresponding parameter realizations

θ ∈ −→
θ h are used to construct the critical regions by the Basic Sensitivity Theorem.

We derive the parametric expressions for the optimal solution x∗(θ) and optimal
Lagrange multipliers λ∗(θ) for all θ ∈ −→

θ h by Eq. 1. The bounds of the critical
regions and optimal objective function z∗(θ) are determined by direct substitution of
x∗(θ) and λ∗(θ) into Problem P1 and λ∗(θ) ≥ 0.

The points sampled from the parent subset Θh
c in iteration h comprise the point

set
−→
θ h+1 = −→

θ h ∪ pc for the next iteration. The generated child subsets, Θh+1
c ,
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Fig. 1 The proposed procedure to generate child candidate simplices from a given parent subset by using
Delaunay triangulation

are subjected to the same exploration procedure, until all candidate simplices are
eliminated from the parameter search space. Therefore, the presented parameter space
exploration algorithm can be summarized as follows.

i. Solve an optimization problem at the vertex points of each candidate subset to
determine the minimum number of unique active sets (i.e. critical regions) in the
corresponding subsets.

ii. Develop the critical regions around the vertex points by Eq. 1.
iii. If there exists one unique active set in a candidate subset, eliminate the subset

from the parameter search space. Else, select the center of mass of the candidate
subset as the new point of exploration and generate child subsets by Delaunay
triangulation.

iv. Repeat until all candidate subsets are eliminated from the parameter search space.

Remark 2 One major iteration consists of two main loops to (i) solve the optimization
problem at the sampled points,

−→
θ h , and (ii) eliminate the fully explored subsets from

the parameter search space and triangulate into finer simplices if necessary. Note that
the cycles in these loops are completely independent, i.e. they can be evaluatedwithout
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requiring the output of another cycle. Therefore, both loops can be executed in parallel
if multi-core processors are available.

Remark 3 The active set
−→A is determined by checking for the positive Lagrange

multipliers (λi > 0), rather than the classical definition (gi = 0) to exclude the weakly
active constraints from the active set. Distinguishing theweakly and the strongly active
constraints alleviates the dual degeneracy problem during the exploration step.

Remark 4 The point set
−→
θ h may include parameter realizations sampled from an

already explored critical region. In that case, solving the optimization problem at
these corresponding points is redundant, since we know that the solution will not
reveal any new active set combinations by Lemma 1. Therefore, we can benefit from
the previously explored critical regions to decide if the solution of the optimization
problem at the parameter realization is required.

The presented parameter space exploration strategy provides a structured method-
ology to sample the solution space. A key benefit of the sampling strategy employed is
the ability to prioritize identifying volumetrically larger critical regions. Large critical
regions are prioritized because the likelihood a vertex associated with a triangulated
child simplex exists within a larger critical region is proportional to its volume. In other
words, larger critical regions are likely to be identified compared to smaller critical
regions due to the proposed sampling method.

The presented parameter space exploration strategy provides a structured method-
ology to sample the solution space. The structured strategy provides the ability to
know where the next sampling will take place in the parameter space. Note that an
unstructured sampling strategy, such as uniform sampling, could be implemented to
identify volumetrically large critical regions without the need for developing candi-
date convex subspaces. However, such a strategy performs poorly when (i) developing
the full map of solutions in a timely manner and (ii) identifying where the next set
of samples should be taken from in the uncertain parameter space. Therefore, the
resolution of the solution space depends on the number of sampling points. Further-
more, to minimize the number of optimization problems that need to be solved during
each iteration, triangulation is performed. As oppose to using hyperboxes to create the
candidate convex subspaces which requires 2n vertices, triangulation is performed to
minimize the number of vertices to n + 1, and therefore minimizing the number of
optimization problems solved for each candidate convex subspace.

A key benefit of the triangulation sampling strategy employed is the ability to
prioritize identifying volumetrically larger critical regions. Large critical regions are
prioritized because the likelihood a vertex associated with a triangulated child simplex
exists within a larger critical region is proportional to its volume. In other words, larger
critical regions are likely to be identified compared to smaller critical regions due to
the proposed sampling method.
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3.2 Illustrative example

Ademonstration ofAlgorithm1 is provided via anmpQPexamplewith twoparameters
for visualization, 10 optimization variables, and 15 constraints1. Here, we also intro-
duce the concept of accumulated volume, which will be discussed further in Sect. 4.2.
The problem structure is based on Problem P1, and the defining matrices are provided
in the “Appendix”. The steps below are illustrated in Fig. 2.

Step 1 Given the upper and lower bounds of the hypercube defined by the polytope
Θ , the initial vertices are located, seen by Fig. 2a,

−→
θ h=0 = {(10, 10), (10,−10, ),

(−10,−10), (−10, 10)}. For the presented problem, the total volume of the parametric
solution is 400 magnitude units (m.u.).

Step 2 An optimization problem is solved at each vertex point defined in Step
1. The solution to these optimization problems provides the optimal active set

combination for each vertex. The active set for the vertices are defined as
−→A =

{{12}, {7, 13}, {7, 14}, {3, 14}}. These active sets are not all identical, and by Lemma
1,multiple critical regionsmust exist. The critical regions developed in this step occupy
an accumulated volume of 104.9 m.u. These critical regions account for 26.2% of the
volume of the total solution.

Step 3The polytope defined byΘ needs further exploration because of the active set
discrepancies found in Step 2. First, the center of mass of the vertices is determined,
〈−→θ h=0〉 = (0, 0), and added to the vertex list pc = −→

θ h=1 = 〈−→θ h=0〉. The initial
vertices together with pc are used to perform Delaunay triangulation, Fig. 2c, which
provides the union of child simplices to be explored, Θh=1

c .
Step 4 Each child simplex is treated as a convex polytope, similar to the initial

set of vertices defined in Step 1. An optimization problem is solved for each newly
defined vertex. In this case, the only new vertex added was 〈−→θ h=0〉 = {(0, 0)}, and
therefore only a single optimization problem is solved in this step. The optimal active
set combination is {∅}. The critical region identified has a volume of 97.9 m.u., and
the accumulated volume is 202.8 m.u. The accumulated volume accounts for 50.7%
of the total volume of the multiparametric solution.

Step 5 Each generated triangle determined in Step 3 is then analyzed. For a given
generated triangle,Θh=1

c , if all of the active set combinations associated with its vertex
list are identical, the simplex Θh=1

c is eliminated from the parameter search space,
otherwise further exploration is needed. For instance, Θh=1

1 has an active set list of−→A = {{∅}, {7, 13}, {7, 14}}, and thus further exploration is needed. Each generated
triangle requires further exploration, and therefore a new set of points are defined−→
θ h=2 = {(0,−6.67), (−6.67, 0), (0, 6.67), (6.67, 0)}
Step 6 Repeat Steps 2–5 until the termination criterion is met.

1 The example problem and its exact solution can be downloaded at http://paroc.tamu.edu/Examples/.
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Fig. 2 Illustration of the proposed algorithm

3.3 Initialization

In Sect. 3.1, we assumed that the solutions to Problem P1 are feasible at all vertex
points of Θ . However, this is rarely the case, and we need an effective initialization
procedure when this assumption does not hold.

Algorithm 1 can be initialized by labeling the infeasible vertex points of Θ as

infeasible to distinguish from the feasible
−→A . However, if there exists at least one

infeasible parameter realization in the points set
−→
θ h for h = 0, the proposed algorithm

cannot guarantee exploration of the full solution. The complement of the feasible
parameter space is nonconvex in the general case. Therefore, we cannot effectively
use Algorithm 1 to eliminate the infeasible parameter space.
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Hence, we propose a slight modification on the elimination criteria to maintain an
exact algorithm, as outlined in Algorithm 2, that guarantees the acquisition of the full
solution when there exists at least one infeasible vertex in Θ .

For a given candidate simplex Θh
c , we compare the active set combination

−→A as
discussed in Algorithm 1. If all the vertex points are labeled as infeasible, we need
to check if there exists a feasible solution in the parameter space bounded by Θh

c .
This would be a trivial exercise if we had the closed half-space representation of Θh

c ,
however we only collect the vertex points of the simplices during the exploration of
the parameter space. Therefore, we define a point p, which is a convex combination
of the vertex points of the given candidate simplex by Theorem 3.

Algorithm 2Modified parameter space elimination procedure

1: Get Problem P1, active set
−→A , and candidate convex subset Θh

c .

2: If
−→A is identical at all the vertices of Θh

c and a feasible combination, eliminate Θh
c from the parameter

search space and terminate Algorithm 2. Else, proceed to Step 3.

3: If
−→A is identical at all the vertices of Θh

c and an infeasible combination, let p be a point in Θh
c . Else,

proceed to Step 5.
4: If a p exists such that Problem P1 is feasible, then pc ← p. Else, eliminate Θh

c from the parameter
search space and terminate Algorithm 2.

5: Assign the center of mass of the vertex points to pc . Terminate Algorithm 2.

Theorem 3 (Convex combination Floudas 1995) The convex hull of set S, H(S) is
defined as the set of all convex combinations of S. Then p ∈ H(S) if and only if p
can be represented as follows.

p =
r∑

i=1

μi pi

r∑
i=1

μi = 1

μi ≥ 0, pi ∈ S

(3)

where r is the cardinality of point set S.

We know that there exists at least one critical region if Problem P1 can yield
a feasible solution for p ∈ H(

−→
θ h

k ). One can simply formulate an LP problem with
arbitraryweights on the optimization variables andparameters, subject to the constraint
set g(x, θ) and Eq. 3. However, the solution of this problem may return a point on a
facet ofΘh

c , provided the constructedLP is non-degenerate.Although any p ∈ H(
−→
θ h

k )

is suitable to be assigned as pc, selecting a point on a facet reduces the dimensionality
of the search space to n − 1, ergo increases the number of triangulations in the future
iterations.

Therefore, the feasibility problem is addressed by finding the Chebyshev center2

of the constraint set g(x, θ) and Eq. 3. The Chebyshev center ensures that the located

2 The Chebyshev center is defined as the center of the largest “ball” that can fit in a polytope. The interested
reader is refered to Boyd and Vandenberghe (2004) for details regarding the Chebyshev center.
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point pc (i) is feasible for Problem P1, (ii) belongs to Θh
c , and (iii) does not lie on a

facet of Θh
c . Note that finding the Chebyshev center can be replaced by any technique

that finds a feasible point in Θh
c .

3.4 Handling degeneracy

The discussion hitherto has focused on non-degenerate parametric problems. How-
ever, degeneracy in multiparametric optimization problems has been reported as a
significant complication that needs to addressed (Akbari and Barton 2018). Two types
of degeneracy are encountered in the literature, namely primal and dual.

3.4.1 Primal degeneracy

Let A1 and A2 be the active sets of two adjacent critical regions CR1 and CR2,
respectively. Then, the active set at θ̄ = {θ | θ ∈ CR1 ∩CR2} isA1 ∪A2. If the rows
of AA1∪A2 are linearly dependent, the LICQ conditions are violated at θ̄ . Problem P1
is primal degenerate at such conditions. A detailed discussion on primal degeneracy
is provided by Tøndel et al. (2003).

In the proposed algorithm, we address the primal degeneracy by perturbing the
point of exploration pc in a random direction such that the new point remains in the
parent candidate simplex (i.e. p′

c ∈ Θh
c ). The perturbed point is replaced with the

original point in all sibling subsets.

3.4.2 Dual degeneracy

Let A be the active set of Problem P1 at an arbitrary parameter realization θ̄ . If there
exists any j ∈ A such that g j = 0 and λ j = 0 (weakly active constraints), then the
SCS condition is violated, and Problem P1 is dual degenerate at θ̄ . Note that dual
degeneracy can occur in mpLP problems, whereas the mpQP problem is guaranteed
to have a unique solution to its dual counterpart in the feasible parameter space, since
Problem P1 is defined as strictly convex (Q � 0). Therefore, the remaining discussion
in this subsection focuses on dual degeneracy in mpLP problems.

Various strategies have been proposed in the literature to address the dual degener-
acy problem (Borrelli et al. 2003; Akbari and Barton 2018). In this study, we follow a
procedure summarized in Algorithm 3, based on the procedure described by Borrelli
et al. (2003).

The goal of Algorithm 3 is to force the LICQ condition to hold when it fails, by
considering all of the proper combinations of the weakly active constraints. The cardi-

nality of an active set combination, |−→A j |, gives the number of optimization variables
that can be uniquely determined for an mpLP problem at an arbitrary parameter real-

ization3. Therefore, we know that the active set combination
−→A j is dual degenerate

at point pc if the number of optimization variables exceeds the number of strongly
active constraints.

3 Recall
−→A only includes the strongly active set.
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Algorithm 3 Handling dual degeneracy in mpLP

1: Get Problem P1,
−→A j , pc .

2: Assign
−→A j as the strongly active constraint set at pc .

3: If |−→A j | is equal to the number of optimization variables, n, Problem P1 has a uniquely defined critical

region at pc , and return
−→A j .

4: If |−→A j | is less than the number of optimization variables, n, Problem P1 has overlapping critical regions
at pc . Then, determine a full rank A by selecting constraints among the weakly active constraint set,

denoted as
−→A ′

j . Return the updated
−→A j .

If dual degeneracy exists, the pivot columns of A−→A j
indicate the variables that

can be uniquely determined, and their complement yields the index of degenerate

variables. Hence, we need to select n − |−→A j | linearly independent rows in A−→A ′
j
such

that they are (i) orthogonal to A−→A j
, and (ii) weakly active at the parameter realization.

Determining such constraints defines a critical region.
Note that the number of weakly active constraints can exceed the required number

of rows to force the LICQ conditions. In that case, all possible combinations that
yield a full rank A−→A j

should be considered. However, each combination will yield

overlapping critical regions.

Remark 5 Algorithm 3 allows for a separation between the space exploration and the
dual degeneracy checking steps. A significant benefit of complete separation of these
two steps is that the termination of the exploration algorithm is achieved regardless of
the potential dual degeneracies in the solution space.

3.5 Extension tomixed-integer problems

The discussion thus far considers strictly continuous variables in the parametric prob-
lem P1. In this section, we extend the application of the algorithm to mpMILP, given
by Problem 2 (P2).

z∗(θ) = min
ω

cTω

s.t . [A E]ω ≤ b + Fθ,

ω = [xT yT ]T , θ ∈ Θ

(P2)

where y ∈ {0, 1}p, and all the matrices are of appropriate dimensions. The most
significant challenge in this class of problems is the non-convexity of the feasible
parameter space. Nonetheless, the elimination procedure described in Algorithm 2
can handle the non-convexity of the infeasible parameter space, rendering it possible
to solve the class of problems described by Problem P2.

The solution returned by the proposed algorithmwill span the entirety of the feasible
parameter space Θ f , however the optimality of the parametric expression across a
critical region cannot be guaranteed. The reason for the loss of optimality stems from
the overlapping layers of critical regions for every combination of binary variables. The
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θ
0 2 4 6 8 10

z(
θ)

0

5

10
Integer Combination 1
Integer Combination 2

Fig. 3 The map of critical regions with respect to the objective function for an arbitrary mpMILP problem
with one parameter. Each color represents a different combination of integer variables. Notice that integer
combination 1 gives a lower objective value at θ ∈ [2, 3.25]. If the algorithm first samples a point within
this range, the solid red critical region will never be explored since it is enclosed by the solid blue critical
region

overlap signifies full dimensional intersections between the explored critical regions
and may result into overlooking the optimal critical regions, as illustrated on a one
dimensional mpMILP problem in Fig. 3.

Hence, we propose a post-processing procedure that evaluates the explored critical
regions and returns nonoverlapping optimal piecewise affine unique partitions, as
outlined by Algorithm 4. For each explored critical region CR j , we first exclude the
optimal combination of binary variables by an integer cut, defined by Eq. 8 (Dua and
Georgiadis 2011). ∑

i∈Y
yi +

∑
i∈Y ′

yi ≤ |Y| − 1,

Y = {i |yi = 1}
(8)

If P2 has a better solution in CR j after excluding the existing binary variable
combination, the optimal critical region is constructed around the new solution by
Theorem 1, and denoted by CRnew. The remainder of CR j is dissected into a set of
polytopes, CR′

j . Each polytope in CR′
j is described by the space enclosed by CR j ,

and the complement of a half plane that describes the new critical region CRnew. The
set of polytopes CR′

j are further subjected to integer cuts in the subsequent iterations.
The procedure is iterated until no feasible solution is found after including the integer
cut.

3.6 Limitations

While the proposed algorithm is effective in solving multiparametric problems with
a large number of optimization variables and constraints, it suffers handling large
number of parameters. This limitation is a direct consequence of the triangulation
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Algorithm 4 Postprocessing mpMILP solutions
1: Get Problem P2 and the set of critical regions CR determined by Algorithm 1.
2: Let gic(ω, θ) be the integer cut to the binary combination in CR j .

3: If there exists a feasible parameter realization θ in the polytope described by g ∩ gic , find the active set
of the optimal solution.

4: Construct the new critical region, CRnew , based on Theorem 1. Return the critical region as the optimal
partition.

5: Define CR′
j as the set of polytopes that comprises the relative complement of CRnew in CR j . Note

that each of these polytopes is described by the space enclosed between the critical region CR j and the
complement of the hyperplanes that bound CRnew .

6: Add CR′
j to the set of critical regions CR. Increment j . Go back to Step 2.

7: Terminate when the set of critical regions CR is empty.

step, where determining the non-empty and non-overlapping candidate simplices is
computationally taxing. The primary difficulty arises from the triangulation in the first
iteration, where the algorithm generates

(2q+1
q+1

)
child simplices, while the remaining

iterations the number reduces to
(q+2
q+1

)
, i.e. q + 2. The reason for the sharp decrease

is that the first triangulation step takes place in a q dimensional hypercube, which has
2q vertex points4. On the other hand, a simplex has q +1 vertex points, which enables
the triangulation in significantly higher dimensions. Based on this fact, our current
research focuses on alleviating the computational burden by constructing the tightest
overarching simplex to initialize the triangulation in higher dimensions.

Additionally, further improvement can be achieved by developing stronger termi-
nation criteria. For instance, the facet-to-facet property (Spjøtvold et al. 2006) can be
introduced to the proposed algorithm to avoid redundant triangulations between two
adjacent critical regions that are already explored.

4 Numerical examples

4.1 Performance against state-of-the-art solvers

The proposed algorithm is compared against state-of-the-art multiparametric solvers
that can be found in the POP toolbox (Oberdieck et al. 2016) and the Multiparametric
toolbox (MPT) (Herceg et al. 2013). In the POP toolbox, the solvers used are the
connected-graph and geometrical, which will be referred to as POP-Graph and POP-
Geo, respectively. The MPT solver used is the mpQP algorithm for the mpLP and
mpQP. MPT does not maintain a solver for mpMILP problems, and therefore is not
considered for this problem class. The numerical example problems used as a basis
of comparison for the different algorithms are randomly generated and summarized
in Table 1. All of the experiments were done on a 4 core machine using an Intel
i7-4770 CPU at 3.40 GHz and 16 GB of RAM using the MATLAB environment.
Additionally, the tests were run using the MATLAB environment. Additionally, the
problems tested do not maintain degeneracy to keep the focus on each algorithm’s
ability to identify volumetrically large critical regions. Incorporating degeneracy into

4 In most practical applications, Θ is usually described by box constraints, which yield 2q vertex points.
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Table 1 Details for the mpLP, mpQP, and mpMILP problems

n p q m

mpLP 30 N/A 5 70

mpQP 100 N/A 5 150

mpMILP 20 10 5 50

Fig. 4 Comparisons of the tested algorithms on the mpLP

the problems would not change the analysis, but would act as a means to compare
different degeneracy strategies which is not the focus of the current work. As discussed
in Sect. 3.4, the ability of the proposed algorithm to handle degeneracy is based on a
existing techniques, and more novel techniques can be incorporated on an as needed
basis.

The three problems generated for comparison are large in size and are described
in Table 1, where n is the number of optimization variables, q is the number of
parameters, m is the number of constraints, and p is the number of binary variables.
Determining the full solution to the problems generated requires a significant amount
of time, therefore the algorithms tested were allotted 30min to explore the solution
space. The results for the number of critical regions identified for each algorithm at the
intervals of 1, 5, 10, 20, and 30min are provided in Figs. 4a, 5a, and 6a. For the mpLP
and mpQP problems, the proposed strategy is able to identify the largest number of
critical regions for the entire 30min duration. However, for the mpMILP problem, the
proposed approach has identified significantly less critical regions than POP-Geo and
POP-Graph.

The algorithm identifying a large number of critical regions is promising, however,
a more promising result lies in Figs. 4b, 5b, and 6b. These figures provide details for
the total volume occupied by the identified critical regions at the specified interval.
In all of the problems considered, the proposed strategy identified the critical regions
associated with the largest volume. This phenomenon is a result of the sample based
strategy the proposed algorithm employs; a sampled point from the parameter space
is more likely to exist in a larger critical region, and thus be identified.
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Fig. 5 Comparisons of the tested algorithms on the mpQP

Fig. 6 Comparisons of the tested algorithms on the mpMILP

4.2 Accumulated volume analysis

To illustrate the concept of accumulated volume, an mpQP is generated with two
parameters for visualization. The problem has 800 constraints and 50 optimization
variables. Each algorithm is allotted 5min, and the number of identified critical regions
and accumulated volume are detailed in Table 2. From Table 2, it is evident that POP-
Graph identified the most critical regions, and the proposed algorithm determined
the largest accumulated volume. Therefore, a visual comparison is made between the
proposed approach and POP-Graph to highlight the difference in concepts of number
of critical regions identified and explored parameter space volume. The comparison
is seen in Fig. 7, where POP-Graph identified 3358 critical regions and the proposed
algorithm determined 318 critical regions. Plotting the map of solutions on the same
scale, the critical regions identified by the proposed algorithm occupy a significantly
larger volume of Θ f compared to the critical regions identified by POP-Graph. To
summarize, POP-Graph is able to identify over ten times the number of critical regions,
but the developed solution for the proposed approach accounts for 1000 times more
accumulated volume. This comparison showcases the proposed strategy prioritizes
identifying larger critical regions and the importance for a method to analyze partial
multiparametric solutions that does not rely on the number of critical regions explored.
By analyzing the accumulated volume of the partial solution, a better representation of
the developed solution is determined, because the likelihood a parameter realization
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Table 2 Summary of results for accumulated volume example

Proposed POP-Geo POP-Graph MPT

Critical regions 318 1358 3358 3340

Accumulated volume (m.u.) 20.52 18.72 0.02 0.02

Fig. 7 Map of solutions for the proposed algorithm and POP-Graph

will exist in an explored critical region is directly correlated with the total volume
identified.

4.3 Computational experiments

Acomprehensive comparison between the proposed approach and the othermultipara-
metric programming algorithms is presented on several problem instances of varying
sizes, detailed in Table 3 5. The tested problems run the gamut for what the proposed
approach has been designed to solve, namely multiparametric linear, quadratic, and
mixed-integer linear programs. The problems are randomly generated of different sizes
to perceive the strengths of the presented algorithm over a broad range of problem
classes and sizes. Note that in this computational study, the MPT algorithm is not
tested on mpMILPs because there is no inherent algorithm to tackle these problems
to the authors’ knowledge.

The results of the computational study are detailed in Table 4, where the details of
the experiment run (i.e. each row) are found in Table 3 under the corresponding label.
Each computational experiment is run for 5, 15, and 30min and is based on the average

5 Problems can be downloaded at http://paroc.tamu.edu/Examples/.
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Table 3 Summary details of the computational problems tested

Computational experiment label Problem class # Experiments n p q m

2 mpLP 50 800 0 2 3500

3 mpQP 50 20 0 2 80

4 mpQP 50 800 0 2 3500

5 mpQP 50 800 0 3 3660

6 mpMILP 50 30 10 4 130

7 mpMILP 50 158 2 2 1260

results of 50 randomly generated instances. For instance, Computational Experiment
label 1, in Table 3, corresponds to anmpLPwith 20 continuous optimization variables,
0 binary optimization variables, 80 constraints, and 2 uncertain parameters. The results
of this experiment are averaged over 50 randomly generated problems for 3 different
maximum allotted time levels and summarized in Table 4. The explored volume and
the explored number of critical regions are normalized with respect to the values of
the proposed algorithm before evaluating the averages.

There are several points worth mentioning from this computational study. First, the
algorithm has the capacity to identify the full map of solution as seen from Experiment
1, where the proposed approach developed the full solution for over 80% of the gener-
ated problems. Second, Experiments 1 and 3 demonstrate that the existing approaches
are able to generate the full space of solutions faster. For problems with a ‘small’
number of critical regions (i.e. when the solution can be found in under 15min), the
proposed strategy’s limitation of identifying small critical regions becomes apparent.
However, when the problem size truly becomes large, Experiments 2, 4, 5, and 7, we
see the proposed approach explores the parameter space volume orders of magnitude
faster than the existing solvers. For these large problem sizes, prioritizing the volume
occupied by the developed critical regions is more apparent in the early stages of the
exploration. For instance in Experiment 2, the volume explored by the proposed algo-
rithm is about 30 times larger than the second best solver, POP-Graph, after 5min of
operation. The explored volumes start converging after 30min of operation. Similar
trends are observed Experiments 4, 5, and 7. In addition, the ability of the proposed
algorithm to identify more accumulated volume of critical regions compared to the
other algorithms is agnostic to the problem class. Therefore, if the multiparametric
program is an mpLP, mpQP, or mpMILP, the presented approach’s ability to identify
more accumulated volume for larger problems persists.

5 Conclusion

In this work, a novel space exploration was presented for mpLP, mpQP, and mpMILP
problems. We employed Delaunay triangulation to effectively partition the parameter
space into nonincreasing sets as simplices. These simplices were eliminated from the
parameter search space and excluded for further partitioning when determined to be

123



B. Burnak et al.

Ta
bl
e
4

C
om

pu
ta
tio

na
lr
es
ul
ts
co
m
pa
ri
ng

th
e
pr
op
os
ed

ap
pr
oa
ch

ag
ai
ns
ts
ta
nd
ar
d
so
lv
er
s.
R
at
io
s
ar
e
pr
es
en
te
d
as

Pr
op
os
ed
:P
O
P-
G
eo
:P
O
P-
G
ra
ph
:M

PT

E
xp

tl
ab
el

T
im

e
lim

it
(m

in
)
A
vg

ex
pl
or
ed

vo
lu
m
e
ra
tio

#
E
xp

ts
w
ith

la
rg
es
tv

ol
um

e
A
vg

#
cr
iti
ca
lr
eg
io
ns

#
E
xp

ts
w
ith

m
os
tc
ri
tic

al
re
gi
on

s
C
om

pl
et
io
n

1
5

1
:1

.0
0

:0
.9
9

:1
.0
0

43
:5

0
:4

9
:5

0
1

:1
.2
5

:1
.1
0

:1
.2
5

43
:5

0
:4

9
:5

0
43

:5
0

:4
9

:5
0

1
15

1
:1

.0
0

:1
.0
0

:1
.0
0

43
:5

0
:5

0
:5

0
1

:1
.1
9

:1
.1
9

:1
.1
9

43
:5

0
:5

0
:5

0
43

:5
0

:5
0

:5
0

1
30

1
:1

.0
0

:1
.0
0

:1
.0
0

43
:5

0
:5

0
:5

0
1

:1
.1
5

:1
.1
5

:1
.1
5

43
:5

0
:5

0
:5

0
43

:5
0

:5
0

:5
0

2
5

1
:0

:0
.1
1

:0
.0
1

49
:0

:1
:0

1
:0

:0
.2
8

:0
.1
4

48
:0

:1
:1

0
:0

:0
:0

2
15

1
:2

.0
×

10
−4

:0
.5
1

:0
39

:0
:1

1
:0

1
:8

.0
×

10
−4

:4
.4
7

:0
7

:0
:4

3
:0

0
:0

:0
:0

2
30

1
:1

.3
×

10
−3

:0
.7
2

:0
26

:0
:2

4
:0

1
:×

10
−3

:3
.7
2

:0
1

:0
:4

9
:0

0
:0

:0
:0

4
5

1
:0

.5
6

:1
.0
2

:0
.8
9

1
:1

1
:4

9
:3

0
1

:0
.6
6

:2
.1
7

:1
.9
1

0
:1

0
:4

9
:3

1
0

:4
:1

:1
4

15
1

:0
.8
5

:1
.0
1

:0
.8
4

6
:2

2
:4

8
:2

7
1

:0
.9
0

:1
.8
7

:1
.6
2

4
:1

7
:4

8
:2

9
1

:4
: 1

:1
4

30
1

:0
.8
7

:1
.0
1

:0
.8
5

5
:1

7
:4

7
:2

8
1

:1
.0
6

:1
.7
9

:1
.5
8

5
:1

7
:4

7
:2

8
3

:1
7

:3
5

:2
8

3
5

1
:2

.1
×

10
−3

:0
.0
34

:0
50

:0
:0

:0
1

:0
.1
0

:0
.3
8

:9
.0

×
10

−4
50

:0
:0

:0
0

:0
:0

:0
3

15
1

:8
.0

×
10

−4
:0

.4
3

:0
.1
3

48
:0

:2
:0

1
:0

.6
4

:0
.9
4

:0
.1
6

42
:0

:8
:0

0
:0

:0
:0

3
30

1
:0

.5
4

:0
.9
97

:0
.2
5

33
:3

:1
4

:0
1

:1
.2
4

:3
.2
2

:1
.0
5

10
:4

:3
6

:0
0

:5
:5

:0
5

5
1

:0
:0

:0
48

:0
:0

:0
1

:0
:0

:0
48

: 0
:0

:0
0

:0
:0

:0
5

15
1

:1
0−

6
:1

0−
7

:0
49

:0
:0

:0
1

:1
0−

6
:1

0−
7

:0
49

:0
:0

:0
0

:0
:0

:0
5

30
1

:0
.1
4

:0
.0
9

:1
0−

4
50

:0
:0

:0
1

:0
.0
3

:2
86

:1
0−

4
33

:0
:1

7
:0

0
:0

:0
:0

6
5

1
:1

.0
2

:1
.0
2

:N
/
A

41
:5

0
:5

0
:N

/
A

1
:1

.9
8

:1
.9
8

:N
/
A

41
:5

0
:5

0
:N

/
A

41
:5

0
:5

0
:N

/
A

6
15

1
:1

.0
1

:1
.0
1

:N
/
A

42
:5

0
:5

0
:N

/
A

1
:1

.7
0

:1
.7
0

:N
/
A

42
:5

0
:5

0
:N

/
A

42
:5

0
:5

0
:N

/
A

6
30

1
:1

.0
1

:1
.0
1

:N
/
A

47
:5

0
:5

0
:N

/
A

1
:1

.0
6

:1
.0
6

:N
/
A

47
:5

0
:5

0
:N

/
A

47
:5

0
:5

0
:N

/
A

7
5

1
:0

.2
7

:0
.0
2

:N
/
A

46
:4

:0
:N

/
A

1
:0

.3
1

:0
. 1
0

:N
/
A

46
:4

:0
:N

/
A

9
:9

:1
:N

/
A

7
15

1
:0

.7
5

:0
.1
3

:N
/
A

34
:3

6
:6

:N
/
A

1
:0

.8
4

:0
.1
7

:N
/
A

33
:3

6
:6

:N
/
A

33
:3

3
:6

:N
/
A

7
30

1
:0

.9
2

:0
.8
8

:N
/
A

42
:4

7
:1

4
:N

/
A

1
:1

.0
2

:0
.3
3

:N
/
A

42
:4

7
:1

4
:N

/
A

42
:4

7
:1

4
:N

/
A

123



A space exploration algorithm for multiparametric…

a subset of an optimal unique partition. Another contribution of this paper is investi-
gating the volume occupied by the explored critical regions. Due to the nature of the
proposed exploration strategy, critical regions that occupy a larger portion of volume
in the parameter space are prioritized. The ability to prioritize larger critical regions
is a salient feature that is not exhibited by existing multiparametric algorithms. We
presented randomly generated numerical examples that are large scale in the number
of variables and constraints to showcase the proposed algorithms ability to identify the
volumetrically larger critical regions compared to the state-of-the-art solvers, espe-
cially in the early phase of the exploration. Furthermore, we presented a simplistic
procedure for the degenerate cases for the sake of completeness. However, handling
degeneracy is a major challenge in multiparametric programming problems, and thus
developing more efficient algorithms for degenerate problems is a future direction.

The developed algorithm is well suited for large scale multi-level optimization
problems, where determining a feasible solution is challenging. In these multi-
level optimization problems where multiparametric programming provides the offline
explicit expressions for operations decisions, such as scheduling and control, the inte-
grated optimization formulation is intractable for practical applications in which the
operational optimization problems are large. The proposed algorithm, by prioritizing
the large partitions of the solution space, allows for a tractable formulation for these
integrated optimization problems, and the identified critical regions provide a feasi-
ble overestimator to the global solution while maintaining tractability. Moreover, the
exploration procedure allows for efficient parallelization due to the complete indepen-
dence of the calculation cycles, which is another significant benefit to address large
scale problems.

The promising results shown in this work encourages future research utilizing the
underlying concepts of the proposed algorithm. Therefore, current research focuses on
(i) improving scalability with the number of parameters, and (ii) developing stronger
termination criteria, as well as (iii) extending the applicability of the algorithm to
multiparametric nonlinear programming problems.

Acknowledgements We acknowledge the financial support from the Texas A&M Energy Institute and the
NSF Projects SusChEM (Grant No. 1705423) and INFEWS (Grant No. 1739977). We also acknowledge
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Appendix

Details of themotivating example

The multiparametric quadratic programming problem used as the motivating example
is defined as follows.

z∗(θ) = min
x

(Qx + Hθ + c)T x

s.t . Ax ≤ b + Fθ

x ≤ x ≤ x̄
θ ≤ θ ≤ θ̄

(9)
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Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24.97 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 4.72 0 0 0 0 0 0 0
0 0 0 1.1 0 0 0 0 0 0
0 0 0 0 0.11 0 0 0 0 0
0 0 0 0 0 1.38 0 0 0 0
0 0 0 0 0 0 3.24 0 0 0
0 0 0 0 0 0 0 1.3 0 0
0 0 0 0 0 0 0 0 14.37 0
0 0 0 0 0 0 0 0 0 759.27

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 1
0 1
0 − 1
0 0

− 1 − 1
0 0

− 1 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
− 3
1

− 2
2
3
4
3
5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.14 0.21 − 0.33 0.2 0 − 0.52 − 0.24 0 − 0.5 0.26
− 0.64 − 0.05 − 0.41 − 0.24 0 − 0.3 0.3 0.14 0 0.21
− 0.57 − 0.12 0 0 0 0 0.31 0 0 − 0.54

0 0 0.07 − 0.69 0 0.36 0.44 0.17 0 0.25
0.35 0 − 0.21 0.55 0 − 0.18 0 − 0.56 0.19 0.03
0 − 0.3 − 0.59 − 0.38 0 0 0 − 0.640 0

0.08 − 0.63 − 0.45 0 − 0.33 − 0.25 0 − 0.23 0.15 0
0.24 − 0.43 − 0.17 0.28 − 0.51 − 0.23 − 0.36 0.34 0 0.28
0 0 0 − 0.17 − 0.03 0.44 0 0.22 − 0.72 0.19
0 0 − 0.61 − 0.28 0 0.3 0.41 − 0.39 − 0.37 0

− 0.14 0 − 0.53 0 0.14 0.11 0 − 0.76 − 0.29 0.026
0 − 0.44 − 0.02 0 − 0.39 0 − 0.17 0.4 − 0.51 0
0 0.21 − 0.11 − 0.66 − 0.14 0.43 0.15 0.47 − 0.05 − 0.25
0 − 0.01 − 0.37 − 0.35 − 0.29 − 0.01 0.36 0.02 0 − 0.17
0 0.32 0 0 0 − 0.55 0.34 0.44 − 0.24 0.36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.57
10.72
5.47
9.26
12.32
8.47
5.22
6.89
3.70
6.22
8.43
4.74
3.74
3.05
5.68

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 0.38 0
0 − 0.34

0.46 − 0.25
− 0.33 0
0.38 − 0.01
0 0
0 0.39

− 0.11 0
0.41 0
0 − 0.04
0 0.09
0 − 0.45
0 0.06

0.59 − 0.38
− 0.27 − 0.15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1E7
− 1E7
− 1E7
− 1E7
− 1E7
− 1E7
− 1E7
− 1E7
− 1E7
− 1E7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1E7
1E7
1E7
1E7
1E7
1E7
1E7
1E7
1E7
1E7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ =
[ − 10

− 10

]
θ̄ =

[
10
10

]
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