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ABSTRACT: We propose a novel active fault-tolerant
control strategy that combines machine learning based process
monitoring and explicit/multiparametric model predictive
control (mp-MPC). The strategy features (i) data-driven
fault detection and diagnosis models by using the support
vector machine (SVM) algorithm, (ii) ranking via a nonlinear,
kernel-dependent, SVM-based feature selection algorithm,
(iii) data-driven regression models for fault magnitude
estimation via the random forest algorithm, and (iv) a
parametric optimization and control (PAROC) framework for
the design of the explicit/multiparametric model predictive
controller. The resulting explicit control strategies correspond
to affine functions of the system states and the magnitude of the detected fault. A semibatch process, an example for penicillin
production, is presented to demonstrate how the proposed framework ensures smart operation for which rapid switches
between a priori computed explicit control action strategies are enabled by continuous process monitoring information.

■ INTRODUCTION

Achieving high process reliability and availability is of utmost
importance and one of the major growing demands in process
systems engineering.1 As automation increases in industry with
initiatives such as Smart Manufacturing and Industrie 4.0,
process systems become more vulnerable to faults.2 Deficiencies
in sensors, actuators, controllers or disturbances in a process
may cause fault, which can be amplified within a closed-loop
control system and lead to a serious failure unless faulty
operation is detected, recovered, and returned back to its normal
condition.3 Subsequently, rapid detection and diagnosis of faults
play a key role in defining the necessary corrective actions in
order to prevent fault propagation and further development of
simple faults into failure. One way to approach this challenging
problem is to build “fault-aware” control systems, which would
understand the existence of faults in a process and adjust the
controller actions accordingly, and rapidly to guarantee stability
and satisfactory performance. Such control systems are referred
as fault-tolerant control (FTC) systems in the literature and
have been studied extensively for the last 40 years.
FTC has become an emerging research field in automatic

control in the late 70s in order to overcome the limitations posed
by conventional feedback control, in cases in which conven-
tional feedback control design may end up performing poorly
and lead to instabilities in the event of actuator, sensor, or
another system component malfunctions.4 The motivation in
designing fault-tolerant systems has been driven by problems
observed in aircraft control systems, for which particular
automatic fault accommodation strategies are needed to guide

pilots, and prevent the development of simple faults into severe
failures which may lead to accidents.5,6 FTC has been studied
extensively in the literature;7−10 however, interest spiked
especially in the late 90s and early 2000s,3,11−13 with
applications starting to become prevalent especially in safety-
critical systems with the increase in computational power and
advancements in sensor technology.14,15 Today, fault-tolerant
systems are widely used in numerous fields including air-
crafts,6,16,17 mechatronics,18 power plants,19,20 spacecrafts,21−24

and industrial plants producing hazardous materials such as
nuclear plants.25,26 The number of application areas is further
increasing as the demand for higher process availability and
profitability grows, and tolerance for process failures decreases
in industries under smart manufacturing initiatives.10

The objective of constructing FTC systems is to increase
process resilience by building a tolerance for unexpected events
causing faults. FTC enables recovery to the original system
performance by using the same control objective of the
controlled system.4,27 There are two different approaches in
building a FTC system: one with active and the other one with
passive fault-tolerance strategies (Figure 1). Passive approaches
use robust control techniques to protect the system from
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instabilities and ensure the closed-loop control system remains
insensitive to certain faults by using the existing controller
parameters. On the other hand, active fault-tolerant strategies do
not necessarily use existing controller parameters. They use
online fault detection and identification (FDI) mechanisms to
monitor the process and collect information on faults when they
occur for further accommodation. Active approaches are further
grouped under two categories: (i) projection-based and (ii)
online reconfiguration/adaptation. For projection-based FTC
approaches, in addition to an accurate and robust FDI
mechanism for getting online fault information, a priori
knowledge on expected fault types is required to design
controllers prior to possible faults that can be observed in the
process. Hence, this technique necessitates offline calculation
and storage of control laws. Once the information is received on
a certain fault from an online FDI system, the corresponding
projected controller actions are activated via one of three
approaches: (i) model switching or blending, (ii) scheduling,
and (iii) prediction.2 Online reconfiguration/adaptation
approaches benefit from adaptive control and reconfiguration/
restructuring of the control signal distribution (i.e control
allocation). Regardless of the active FTC category, reliability of

online FDI mechanisms play a significant role in determining
their effectiveness and robustness.
In this work, we integrate multiparametric model predictive

control (mp-MPC) with a data-driven process monitoring
framework28,29 to introduce a novel parametric fault-tolerant
control (FTC) design framework. The developed framework
can replace the conventional approach, online controller
parameter retuning, and be used as a novel corrective
maintenance strategy that significantly minimizes the process
downtime spent under faulty conditions by storing precalculated
control laws. By usingmultiparametric programming,30,31 we are
able to establish the control actions for the faulty state explicitly
and generate a priori, offline, maps of approximate control
actions to be implemented in the online phase. This is an active
fault-tolerant control strategy, specifically model-switching-
based active FTC, where we need to use an online fault
detection and identification (FDI) mechanism to monitor the
process and get information on faults for further fault
accommodation. Although switching-based active fault-tolerant
control strategies that use multiparametric programming have
been introduced in the literature,32−34 the major challenge has
remained to have a reliable and robust FDI system which can

Figure 1. Categorization of fault-tolerant control strategies.

Figure 2. Fed-batch penicillin production flow diagram. (Adapted with permission from ref 28. Copyright 2018 Elselvier).
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provide accurate fault information and minimize the number of
false alarms. Thus, we build data-driven fault detection and
diagnosis models via the support vector machine (SVM)-based
feature selection algorithm28,35,36 and develop data-driven
models for fault magnitude estimation via the random forest
algorithm. The developed control strategies are affine functions
of the system states and the magnitude of the detected fault
which are transferred to the controller via the built machine
learning-based fault detection and identification (i.e., magnitude
estimation) mechanism. The premise of the presented frame-
work is to increase process resilience and minimize process
downtime while maintaining a safe and profitable operation by
enabling rapid switches between a priori mapped control action
strategies. The results are presented through a semibatch
process for penicillin production. The paper is organized as
follows: Section 1 introduces the adopted benchmark semibatch
process. Section 2 describes the details of the parametric fault-
tolerant control design framework. Section 3 reports the
application of the framework on two distinct fault types. Finally
Section 4 provides the conclusion of the presented work.

1. BENCHMARK SEMIBATCH PROCESS: PENICILLIN
PRODUCTION

We adopt a fed-batch penicillin production process based on the
PenSim benchmark model37 (Figure 2). The process operates in
two modes. First, it starts in batch mode with high substrate
(glucose) concentrations stimulating biomass growth. After the
initial glucose level is depleted in the bioreactor, the process
switches to fed-batch mode where low but nonzero glucose
concentration is provided. Then, under these stressful
conditions penicillin production is triggered via biomass.37,38

In this work, we simulate process data for fed-batch penicillin
production by using the RAYMOND simulation package.39 We
produce 25 simulations for each fault magnitude and onset
combinations in addition to the 200 simulations of normal
operating condition (NOC) by using the RAYMOND software.
Of note, fault direction is defined as measured value − real value
within the RAYMOND simulator. In this work, a nominal feed
rate of 0.06 L/h is chosen for the fed-batch phase of the

simulations. A batch is terminated after a total of 30 L of
substrate has been added. This corresponds to a total batch
duration of approximately 549 h. The initial fermenter volume
V0, biomass concentration Cx,0, and substrate concentration Cs,0
are all independently sampled from normal distributions with
mean μ and standard deviation σ. Values are limited to μ ± 2.5σ
in order to avoid outliers in the initial conditions. Measurements
are collected from 20 process variables, where white noise is
included into each of them (Table 1). Sensors are sampled every
0.2 h which has generated an average of 2745 sample points per
batch. Please note that only a subset of these 20 process variables
can be readily measured online in real-life and these are marked
with an asterisk in Table 1. In fact, biomass, penicillin, and
substrate concentrations are indicated to be measured only
offline usually every 8−10 h.37,38 We have utilized all 20 process
variables in this work in order to demonstrate the capability of
our FTC framework in handling large set of process variables.
In this work, we control the reactor temperature via fault-

tolerant mp-MPC by manipulating water flow rate. We have
studied two distinct fault types: (i) sensor fault, which
introduces a bias in reactor temperature measurements, and
(ii) actuator fault, which creates bias in water flow rate.

2. PARAMETRIC FAULT-TOLERANT CONTROL
FRAMEWORK

To develop a parametric fault-tolerant control system, we design
a fault-tolerant mp-MPC where we achieve offline optimal
control strategies to be implemented for online control of the
process, and build a mechanism for fault detection and
magnitude estimation in the offline phase. The perspective is
to obtain information on fault existence as well as magnitude of
the detected fault in order to inform the mp-MPC with the
corrected measurements. Fault is defined as the unpermitted
deviation in at least one observed variable or computed
parameter of the system where controllers cannot reverse it.28

In this work, we assume that once a fault arises in the system, it
does not fade out, therefore we need to inform the controller
about the deviation in order to ensure smooth control actions.

Table 1. List of Process Variables. Online Measured Variables Are Marked with an Asterisk

variable name initial condition measurement noise (σ) type

1. substrate concentration [mg/L] 17.5 ± 1 0.01 state variable
2.* dissolved O2 concentration [mg/L] 1.1601 0.004 state variable
3. biomass concentration [g/L] 0.1250 ± 0.030 0.5 state variable
4. pencillin concentration [g/L] 0 0.02 state variable
5.* fermentation volume [m3] 102.5 ± 5 0.002 state variable
6*. dissolved CO2 concentration [mg/L] 0.4487 0.12 state variable
7.* pH [-] 5 0.02 state variable
8.* reactor temperature [K] 298 0.01 state variable (controlled)
9. reaction heat [cal] 0 state variable
10.* feed rate [L/h] 0.01 input variable
11. aeration rate [L/h] 0.01 input variable
12.* agitator power [W] 0.01 input variable
13.* feed temperature [K] 0.1 input variable
14.* water flow rate [L/h] 0.01 input variable (manipulated)
15. hot/cold switch [−] input variable
16.* base flow rate [mL/h] 0.01 input variable
17.* acid flow rate [mL/h] 0.01 input variable
18. feed substrate concentration [mg/L] input variable
19. cooling medium temperature [K] 0.1 input variable
20. heating medium temperature [K] 0.05 input variable
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The common first step is data acquisition. Data can be
achieved via either historical operation data or process data
simulations based on the dynamic model of the system, which is
often readily available in industrial applications. For the offline
design of the fault-tolerant mp-MPC, we use normal operation
data. We collect both normal and faulty operation data for
building fault detection, and diagnosis and magnitude
estimation models.
For fault detection, we develop two-class classification models

by following simultaneous fault detection and diagnosis (s-
FDD) framework.28,36 The major advantage of the s-FDD
framework compared to the other fault detection and diagnosis
(FDD) frameworks in the literature is the increased process
monitoring efficiency by having one model that can detect and
diagnose a fault. This creates a significant advantage during
online process monitoring in terms of time efficiency where both
detection and diagnosis can be achieved simultaneously with a
unique function evaluation. In other words, s-FDD framework
yields a classification model which recognizes process
abnormalities, and marks them as process faults while it lists
the major contributing process variables causing the detected
fault, thus providing diagnosis. Furthermore, fault magnitude
estimation models are achieved by developing regression
models.
2.1. Offline Fault-Tolerant mp-MPC Design via PAROC

Framework. We build a fault-tolerant mp-MPC by using the
parametric optimization and control (PAROC) framework30

(Figure 3), which provides a systematic methodology to design

advancedmodel-based controllers via multiparametric program-
ming. The PAROC framework presents an extensive environ-
ment for designing chemical processes, building controllers, and
performing parameter estimation based on high-fidelity models
while benefiting from the most recent advances in the field of
multiparametric programming. Numerous applications of the
PAROC framework are demonstrated in the literature for the
integration of (i) process design and control,40−42 (ii) process
scheduling and control,43 and (iii) process design, control, and
scheduling.44

The initial step of the PAROC framework is high fidelity
modeling and analysis in order to acquire a mathematical model
that can describe the system of interest accurately. However,
oftentimes the derived mathematical models are highly
dimensional with a large number of variables and/or complex
in nature posing a significant challenge during their optimization
in terms of computational expense. This further hinders the
direct use of these models for the development of model-based
strategies and necessitates model approximation or reduction

steps prior to the controller design. The reduced model is then
used to build a model predictive control (MPC) scheme, and
solved via multiparametric programming to obtain mp-MPC,
which produces the offline map of optimal control actions under
both normal and faulty operations. Here, the fault-tolerant
control scheme is achieved by introducing the mismatch (fault)
information as an additional dimension during the mp-MPC
design. The final step is “closed-loop validation”, where we
implement the extracted offline map of fault-tolerant control
actions to the original mathematical model of the process to
observe the closed-loop behavior of the system. The PAROC
framework has been applied to numerous fields success-
fully.40−44 The details of each step are provided below.

2.1.1. High Fidelity Dynamic Modeling. A detailed and
accurate representation of the system dynamics based on first
principle dynamics and empirical correlations is used to simulate
the open loop characteristics of the fed-batch penicillin
production process. In this work, we employ the differential
algebraic model (DAE) model presented by Birol et al.37 as
generalized below.

̇ =x f x u( , ) (1)

where x is the states of the system, u is the manipulated variables
given in Table 1, and f is a generic function.

2.1.2. Model Approximation. The detailed model repre-
sented by eq 1 features complex and highly nonlinear dynamics
among the manipulated variables and the observed outputs,
rendering it inappropriate to develop advanced parametric
controllers. Therefore, we develop an affine approximate model
that accurately represents the high fidelity dynamics by model
reduction or subspace identification techniques. In this work, we
use the MATLAB System Identification Toolbox to capture the
dynamics of eq 1 by the discrete time state space model, given by
the equation below.

= + +

̂ = + +
+x Ax Bu Cd

y Dx Eu Fd
t t t t

t t t t

1

(2)

where subscript t denotes the discretized time step, and ŷ is the
output prediction. The state space matrices are developed based
on the simulated process outputs y under randomized input
profiles for u and d. The state space model used in this study is
provided in eq 3. Note that C, E, and F are zero matrices since
there are no measured disturbances or zeroth order inputs in the
system.
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B

D

1.003 0.3722
0.009187 0.1688

6.81 5
1.52 4

4658 2069 (3)

Note the following remarks:

(i) The identified states x do not represent the real system
states.

(ii) The input−output data are generated without any sensor
or actuator faults. The two fault types are accounted for
analytically in the mp-MPC design phase, described in
section 2.1.3.

(iii) The process faults directly affect the process dynamics,
hence they are considered as added disturbances in the dt

Figure 3. PAROC framework.
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term. However, we only present the sensor and actuator
faults in this study.

Acquiring satisfactory closed-loop performance relies heavily
on developing accurate approximate models. Katz et al.45

investigated the effects of approximating the high fidelity models
by simpler models in the context of multiparametric
programming, and introduced novel error metrics to evaluate
open and closed-loop performances. In this work, we use the
open and closed loop metrics introduced in Katz et al. to
increase the confidence of the developed approximate models.
Specifically, we evaluate the performance of the candidate
approximate models in open loop via the standard integral time
absolute error (ITAE) technique that shows the cumulative
error against the high fidelity model, as well as the decision space
volume comparison introduced by Katz et al.45 After building
the controller based on the developed approximate model, we
further use ITAE to evaluate the tracking capacity of the
developed controller for a given set point. These open loop and
closed loop metrics provide relative criteria to assess the
reliability of the developed approximate models. The details
regarding the candidate approximate models and their
evaluation are omitted here for brevity and to focus on the
fault-tolerant explicit control scheme.
2.1.3. Designing the mp-MPC. The offline control strategy is

designed to (i) track the output set points determined prior to
the operation, and (ii) acquire smooth control actions to
maintain the longevity of the processing equipment. Therefore,
the objective function of the control problem is given by the
following equation.

∑ ∑ θ|| − || + ∥Δ − ||
= =

N
y y

M
u

t
t t QR

t
t

a
R

1

sp 2

0
1

2

(4)

whereN is the prediction horizon,M is the control horizon, θa is
the magnitude of the fault acting on the corresponding actuator,
∥·∥ψ denotes a weighted vector normwith a weight matrix ψ,QR
and R1 are the corresponding weight matrices, and the
superscript sp denotes the set point. Hence, the quadratic
objective function is minimized only if the process outputs track
the designated set points ysp, and the consecutive control actions
are smooth in the existence of faulty actuators θa.
The developed objective function is subjected to the

approximated process model, given by eq 2. However, using
an approximate model to achieve closed-loop control creates a
mismatch between the real process outputs, y, and the predicted
output values, ŷ. We address this mismatch by including eq 5 in
the mp-MPC formulation.

= − ̂ =e y y t, 0t t (5)

where the error term e denotes the mismatch magnitude
between the real and predicted output values at the time of
measurement, t = 0. The error term is carried over the entire
prediction horizon, as given by the equation below.

θ= ̂ + − ∀ ∈ { }y y e t N, 1,2, ...,t t
s

(6)

Note that apart from themismatch term, we also incorporate a
sensor bias term θs to account for the sensor faults in the mp-
MPC. The path constraints are formulated as box constraints for
the process variables to maintain certain product specifications,
as presented by the equation shown below.

θ

̲ ≤ ≤ ̅
̲ ≤ ≤ ̅
̲ ≤ ≤ ̅

Δ ≤ Δ − ≤ Δ

x x x

y y y

u u u

u u u

t

t

t

t
a

(7)

Lastly, we define the set of parameters in the control problem
as following:

θ θ θ= [ ]= =− = =x u y y d: , , , ( ) , , ,t t t t
sp

t
a s

0
T

1
T

0
T T

0
T T

(8)

where θ is the vector of parameters. Therefore, we postulate the
explicit control strategy described by eq 9.

θ =

−

u ( ) argmin eq 4

s.t. eqs 2, 5 8
t

(9)

Note that the control strategy formulated by eq 9 is a
multiparametric optimization problem with a quadratic
objective function and a set of linear constraints. This class of
problems can be solved exactly by using the Parametric
Optimization (POP) toolbox,46 and the solution to these
problems are expressed as a single piecewise affine function of
the parameters. Therefore, the explicit control law is derived as
given by the equation below.

θ θ θ

θ θ

= + ∀ ∈ { } ∀ ∈

= { ∈ Θ| ≤ }

u K r t M CR

CR CR CR

( ) , 1,2, ..., ,

:

t i i i

i i
A

i
b

(10)

where CR denotes a polyhedral partition of the feasible
parameter space, and Θ is a closed and bounded set.
Remark 1. Equation 10 explicitly maps the exact optimal

control actions for any parameter realization in Θ, if a feasible
solution exists. Therefore, inclusion of the monitored faults as
parameters in the explicit control law identifies the range of
recovery in the existence of faulty sensors and/or actuators prior
to the operation.

2.1.4. Closed-Loop Validation. The proposed control
problem is developed based on an approximate model.
Therefore, the closed-loop strategy should be validated against
the high-fidelity model by observing the set point tracking
performance and path constraint violation by exhaustive
simulations under numerous uncertainty scenarios. Note that
due to the explicit nature of the closed-loop strategy, the control
law can be embedded in the high-fidelity model exactly.
Therefore, the closed-loop profiles can be simulated without
the necessity of solving any online optimization problems.
In the case of insufficient or poor closed-loop performance,

one can (i) adjust the weight matrices QR and R1 in the
objective function given by eq 4, (ii) develop a new approximate
model using a different technique, or (iii) develop multiple
discrete time state space models that are used to govern different
operating regions.

2.2. Offline Fault Detection and Reconstruction
Mechanism Development. The fault detection and recon-
struction mechanism is responsible for two main tasks: (i)
precise and rapid fault detection and diagnosis, and (ii) accurate
fault direction and magnitude estimation (a.k.a. fault recon-
struction). We follow the main steps of the s-FDD framework to
build fault and time-specific classification models for fault
detection and diagnosis. Additionally, in order to predict the
magnitude of the detected fault, we develop regression models
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by adopting the random forest algorithm.47 Specifically, we
regress the water flow rate measurements for the actuator fault,
and reactor temperature measurements for the sensor fault. The
modeling procedure for both analyses is summarized in three
main steps. The initial step is data preprocessing which includes
targeted data collection, unfolding of 3-dimensional (3D) batch
process data into 2D, extracting additional process descriptors
when necessary, and data scaling, respectively. This is followed
by parameter tuning and model building steps.
2.2.1. Data Preprocessing. Data preprocessing steps are

necessary prior to model building in order to prevent bias and
improve the performance of the model. Generally, data
preprocessing comprises data formatting, scaling, and cleaning
steps, where data cleaning includes both outlier removal and
missing data handling. Below, we describe these three main
pillars of data preprocessing in four steps: Data formatting,
where we collect targeted process data; unfolding the 3D data
into 2D; extracting further features when necessary to enrich the
data set; and data scaling and cleaning.
Targeted Data Collection.We are building (i) fault and time

specific two-class C-SVM classification models for fault
detection and diagnosis, and (ii) regression models for fault
magnitude estimation after fault onset time. Therefore, we need
to gather process data around the fault onset time for both
models. In this work, we have selected four different fault onset
times, 100, 200, 300, and 400 h, where we introduce two
different faults in various magnitudes. The details on the fault
types and their magnitude are provided in section 2. In each
batch, we consider the time periods that encompass the fault
onset time and 10 h (50 sensor samples) afterward, where the
sensor sampling frequncency is every 0.2 h.
During fault detection classifier building, we extract process

data by following a sliding window approach in which we receive
five samples per hour (sensor sampling frequency of every 0.2
h). At each sensor sample, we collect historical data in 10 h
blocks. For instance, to build a classifier around 100 h, we
consider the time period of 100−110 h of a batch. Next, starting
from the fault onset time 100 h until the 110th h, we obtain
process data in 10 h blocks: At hour 100, we collect data from the
90th to the 100th h. Similarly at the next sensor sample time,
100.2 h, we collect data from 90.2 to 100.2 h. We obtain the
process data iteratively until the end of the considered time
period, 110 h. The schematic representation of the targeted data
collection is presented in Figure 4, wherein the gray boxes mark
the fault onset time of the classification models being built. The
blue line indicates the first and the red line indicates the last 10 h
data block extracted from the 90−110 h time period for the 100
h fault detection classifier. Each data collection from the selected
window adds a new instance in the data set. This approach yields
a 3-dimensional (3D) data set with a size of 2500× 20× 50. The
first dimension of the data set is obtained with 50 sliding window
iterations in 50 batches (25 faulty and 25 normal operating).

Furthermore, we observe 20 process variables that include both
state and manipulated variables 1 in 50 sensor sample periods
(i.e., 100−110 h for 100 h classifier building). The data set size is
consistent for each fault and time-specific fault detection model
building.
On the other hand, during fault magnitude regression

development, we consider solely the process variables and do
not extract any further process descriptors. Here, we collect a 10
h block for actuator fault, and 1 h for sensor fault magnitude
estimation model development. We also combine all faulty
operation data with varying fault magnitudes. Specifically, we
have simulated six distinct fault magnitudes for sensor fault and
eight for actuator faults. For each magnitude, we have simulated
25 batches. This yields 150 faulty batches with sensor fault and
200 faulty batches with actuator fault. Next, we include equal
amounts of normal operating batches to our data sets. Thus, the
size of the obtained data set is 300× 20× 5 for regression model
development for sensor fault magnitude estimation, whereas the
data set size for regression model development for actuator fault
magnitude estimation becomes 400 × 20 × 50. Here, the first
dimension belongs to the total number of batches (with equal
number of faulty and normal operating batches), the second
dimension is the 20 process variable measurements, and the last
dimension indicates the 10 h (50 sensor sample) block, and 1 h
(5 sensor sample) block examined after the fault onset time of
actuator and sensor faults, respectively.

Unfolding 3D Batch Process Data into 2D. The collected
3D data needs to be unfolded into 2D prior to model building
steps. The 3D data set can be unfolded in three ways by placing
one out of three dimensions as rows, and grouping the other two
dimensions as columns. In this work, we perform batch-wise
unfolding for classification and measurement-wise unfolding for
regression analysis.48 In batch-wise unfolding, batches are the
instances which are provided in the rows of the 2D data set,
whereas in measurement-wise unfolding, we keep the process
variable measurements as the features and place them to the
columns of the 2D data set for regression analysis. The features
that constitute the columns of the 2D data sets are time-specific
process variable measurements for classification and time-
specific-batch ID for regressionmodels. After the unfolding step,
the data set size becomes 2500× 1000 for classification analysis.
On the other hand, the unfolded data set size becomes 20000 ×
20 for actuator fault and 1500 × 20 for sensor fault magnitude
estimation.

Extracting Additional Features. This step is optional. We
apply this step only during classification analysis. The aim of this
step is to enrich the data set by including additional process
descriptors to capture the process nonlinearity, which can then
improve classification model performances. To do this, we
calculate the (i) mean, (ii) standard deviation, and (iii) slope of
20 process measurements within each sliding time window and

Figure 4. Schematic representation of targeted data collection for fault detection and diagnosis classifier development.
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incorporate them into the unfolded data set. This increases the
classification data set sizes to 2500 × 1060.
Data Normalization and Reduction. The final data-

preprocessing step is scaling of the reconfigured data set and a
priori dimensionality reduction to remove redundant features.
This procedure is common to both classification and regression
analysis. Each column of the 2D data set is scaled by a z-score
calculation, in which the mean of the column is extracted from
each value and then divided into the standard deviation of the
column. Redundant features, where the standard deviation is less
than 10−8, are removed in order to decrease the computational
cost during the offline model building phase.
2.2.2. Parameter Tuning. We are training (i) C-SVM (two-

class) classification models by using the Gaussian radial basis
function (RBF) as the nonlinear kernel function for fault
detection and diagnosis, and (ii) regression models via random
forest algorithm for fault magnitude estimation after fault
detection. Note that any regression model can be used for fault
magnitude estimation, yet nonlinear regression techniques are
expected to be superior than linear techniques in terms of
providing more accurate fault magnitude estimations due to the
nonlinear relationship between the process variables. In this
work, we investigated two advanced regression techniques,
namely random forest regression and C-parametrized support
vector regression (C-SVR). Specifically, we have trained C-SVR
models by using the introduced feature selection algorithm in
Onel et al.28,36 The results from the C-SVRmodels are tabulated
in Table S1 for actuator fault and Table S2 for sensor fault in the
Supporting Information. The results provided in Tables S1 and
S2 show that dimensionality reduction does not necessarily
improve the model R2 values. This is mainly due to there being a
low ratio of the number of features to the number of instances in
the process data set. Therefore, we use the entire process
variables that remain after the data preprocessing step during
regressor training. In this work, we prefer random forest
algorithm over C-SVR due to the added benefit of the bagging
technique of the random forest algorithm, which allows us to
train more accurate regressors with the entire process variables
for fault magnitude estimation. Regardless of the analysis, the
initial step is parameter tuning which is required to achieve the
optimal model performance.
Parameter Tuning for C-SVM Models. Here, we have two

parameters to tune: (i) C (cost) parameter of C-SVM, and (ii) γ
parameter of the Gaussian radial basis kernel function. The first
parameter acts as a regularization parameter that controls the
trade-off between low training error and low test error. In other
words, this parameter regulates the balance between model
complexity and model generalization. When the training error is
lower, the model complexity is higher and the model
generalizability is lower. On the other hand, when the testing
error is lower, the model complexity is lower and the model
generalizability is higher but with a higher training error. Finding
an optimal balance is crucial to the development of an accurate
classifier. Furthermore, the γ parameter determines the
complexity of the Gaussian RBF kernel and affects the radius
of influence of the samples selected as support vectors by the
model.
In LIBSVM, the default value for the RBF kernel parameter, γ,

is 1/n, where n is the number of features. Thus, we tune
parameter γ̂ where

γ =
γ ̂

n
2

(11)

Moreover, we tune parameter Ĉ, where the relation between Ĉ
and C is

= ̂C 2C (12)

According to the described iterative feature selection algorithm
in our previous papers,28,36 γ̂ can be retuned after each feature
elimination step with the available set of features:

γ =
γ ̂

z
2

1T (13)

We have performed the parameter tuning via a grid search and
10-fold cross-validation. In particular, we have used the values
between −1:1 for Ĉ, and −10:10 for γ̂. We have performed the
parameter tuning once in the beginning where we have the entire
features in the data set. Although repeating the grid search for
parameters tuning after each feature elimination would be ideal,
we avoid the computational cost since the attained model
performance has been observed to be satisfactory. If one obtains
a poor-performing model, tuning can be repeated with each
available feature subsets. Finally, the parameters that produce
the highest average testing accuracy are chosen for the next
steps. The optimal parameters for the fault-and-time specific C-
SVM models are provided in Table 2.

Parameter Tuning for Random Forest Regression Models.
In regression analysis, we have one parameter to tune, which is
the number of features that can be used in the training of each
decision tree of the random forest model, mtry. This is
performed via a grid search among the total number of features
until 1 while training random forest models via 10-fold cross-
validation. The optimal mtry parameters are obtained by using
the “trainControl” function of the “caret” package of the R
statistical software. The optimal mtry values for each time-
specific regressor are provided in Table 3.

2.2.3. Model Building. Here, we address the model building
steps separately for classification and regression analysis. We

Table 2. Optimal C and γ Parameters of the C-SVM
Classifiers

fault type fault onset time optimal Ĉ optimal γ̂

actuator 100 h 1 0
actuator 200 h 1 0
actuator 300 h 1 0
actuator 400 h 1 0
sensor 100 h 1 −2
sensor 200 h −1 0
sensor 300 h 1 −2
sensor 400 h 1 −2

Table 3. Optimal mtry Parameters of the Random Forest
Regressors

fault type fault onset time optimal mtry

actuator 100 h 12
actuator 200 h 11
actuator 300 h 11
actuator 400 h 11
sensor 100 h 16
sensor 200 h 16
sensor 300 h 12
sensor 400 h 14
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follow the s-FDD framework28,36 to build the C-SVM classifiers
for fault detection and diagnosis. The application of the
framework and data-specific details are provided below.
Furthermore, we describe the model building steps for
regression analysis via random forest algorithm.
Training C-SVM Models. The overall procedure for fault

detection model development is summarized in Figure 5.
Step-1. Feature Ranking via C-SVM Modeling. The tuned

parameters are incorporated into a simultaneous model-
informed feature selection and classification algorithm via C-
SVMs.28,35,36 C-SVM binary classification models with the
Gaussian radial basis function (RBF) kernel are trained
iteratively with each feature subset as features being eliminated
one by one. Features are eliminated based on the Lagrangian
sensitivity of the dual objective function of the built C-SVM
model with respect to the feature subset size at each iteration.
This iterative process is performed with each of the 10 train−test
data set pairs which produces 10 separate feature ranking lists.
Next, we create an average feature rank list based on the
statistical distribution of the feature ranks among the 10 ranking
lists.
Step-2. Developing C-SVM Models for each Feature

Subset. Here, we rebuild C-SVM models by using the optimal
parameters and 10-fold cross validation, where we use the
average feature rank list to guide the iterative feature elimination
process. We start with the whole set of features and eliminate
them one by one based on this final ranking list. This process
produces 10 C-SVM classifiers for each feature subset due to the
10-fold cross-validation. The performance of each model is
assessed via accuracy, area under the curve (AUC), fault
detection rate, and false alarm rate. We average the performance
of 10 classifiers and obtain one C-SVM model performance per
feature subset. At the end of this step, we tabulate the
performance of C-SVM models with each feature subset.
Specifically, in this work, we have generated 1060 C-SVM
models.
Step-3. Choosing the C-SVM Model with Optimal Feature

Subset. This step determines the final C-SVM models to be
implemented in the online phase for process monitoring. Here,
we select the classifier that has provided the highest model
accuracy and area under the curve with minimum number of
features among the 1060 C-SVM models produced in Step 2.
The selected feature subset is used in analyzing the root-cause of
the detected fault. Therefore, selecting the minimum number of
features is significant in order to facilitate the interpretation of

the fault diagnosis. The performance of the selected fault-and-
time specific C-SVM models are tabulated in Table 4.

Training Random Forest Models. By using the optimal mtry
parameters, we train random forest models with 500 decision
trees. Training is performed via the “randomForest” function of
the “randomForest” package of R statistical software. The
performance of the fault-and-time specific random forest models
are tabulated in Table 5.

2.3. Closed-Loop Validation and Online Implementa-
tion. Prior to the online implementation, we have implemented
the developed fault-tolerant mp-MPC, and fault detection and
reconstruction mechanism to the RAYMOND simulator
separately in order to validate their individual performances.
The performance of fault-tolerant mp-MPC is assessed by
providing the fault onset time and magnitude information to the
controller. We have observed that the controller adapts to the
faulty condition once it is provided with accurate information on

Figure 5. Algorithmic solution procedure for simultaneous support vector machine-based feature selection and modeling.

Table 4.C-SVMModel Performances. (FDR: Fault Detection
Rate, FAR: False Alarm Rate)

fault type

fault
onset
time

accuracy
(%) AUC FDR

FAR
(%)

optimal
feature subset

size

actuator 100 h 98.29 99.84 97.35 0.77 30
actuator 200 h 98.34 99.86 97.55 0.87 35
actuator 300 h 98.37 99.83 97.52 0.77 32
actuator 400 h 98.77 99.05 98.29 0.75 45
sensor 100 h 94.92 97.34 89.85 0.00 33
sensor 200 h 98.84 99.21 97.68 0.00 59
sensor 300 h 98.03 99.39 96.06 0.00 45
sensor 400 h 99.00 99.38 98.00 0.00 7

Table 5. Random Forest Regressor Performances (RMSE:
Root Mean Square)

fault type fault onset time R2 RMSE

actuator 100 h 0.999 0.179
actuator 200 h 0.999 0.262
actuator 300 h 0.999 0.248
actuator 400 h 0.999 0.260
sensor 100 h 0.964 0.202
sensor 200 h 0.911 0.321
sensor 300 h 0.985 0.129
sensor 400 h 0.973 0.176
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the fault type, onset time, and magnitude. The accuracy of the
fault detection and reconstruction mechanism is also tested and
validated separately, where we have simulated a process with
known fault onset and magnitude without incorporating any
fault-tolerant control actions during the simulation. Finally, we
implement the fault detection and reconstruction mechanism
with the fault-tolerant mp-MPC in the RAYMOND simulator.
During the online phase, the received signals on process
variables are (i) initially collected and processed to detect the
existence of any sensor or actuator faults, (ii) then reconstructed
to determine the magnitude of the fault, and (iii) finally passed
on to the controller for the optimal control action in the
existence/absence of fault. The online procedure is illustrated in
Figure 6.

3. RESULTS
In this work, we control reactor temperature bymanipulating the
water flow rate during penicillin production. We build a fault-
tolerant control scheme that can tolerate both actuator and
sensor fault. We introduce sensor bias in water flow rate
measurements for actuator fault, whereas we introduce sensor
bias in reactor temperaturemeasurements to induce sensor fault.
Numerous fault magnitudes and onset time are simulated for
each fault type. Particularly, we select −2.5, −2.0, −1.5, +1.5,
+2.0, +2.5, and−2.0,−1.5,−1.0,−0.5, +0.5, +1.0, +1.5, +2.0 for
actuator and sensor fault magnitudes during the simulations,
respectively. We have developed highly accurate fault and time-
specific fault detection models and regression models for fault
magnitude estimation (Tables 4 and 5) and implemented them

for the fault detection and reconstruction mechanism of the
established parametric fault-tolerant control system.
Figure 7 provides a comparison of the open and closed (via

fault-tolerant mp-MPC) loop simulation, which signifies the
importance of having accurate control actions on the reactor
temperature by manipulating the water flow rate. The mp-MPC
yields an offline, a priori, map of optimal control actions for the
process. Figure 8 deliniates the distinct control laws for various

magnitudes of sensor and actuator faults at the fixed parameters.
Themajor advantage of the built fault-tolerant system is to gain a
priori knowledge on the control actions for different fault
magnitudes of actuator and sensor fault separately, as well as for
different combinations of the two distinct fault types
simultaneously. This map further draws the limits of the fault
tolerance for each fault types. These limits indicate specific fault
magnitudes for each fault type until the point at which the the
designed fault-tolerant mp-MPC can recover the process back to
the normal condition.

Figure 6. Schematic description of the integrated online process
monitoring and fault-tolerant control system.

Figure 7. Simulated reactor temperature (controlled) and water flow rate (manipulated) profiles in open and closed loop (via mp-MPC).

Figure 8. A demonstration of the offline map of the fault-tolerant
mpMPC strategy projected to the actuator and sensor fault magnitudes
at an arbitrary time in a closed-loop simulation. Each color contains a
different explicit control law as a function of the parameters. The
parameter θ1 denotes the identified state, θ2 is the normalized process
output (reacture temperature), θ4 is the output (reacture temperature)
set point, and θ6 denotes the previous control action.
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From the beginning, we monitor the process with the fault
tolerant mp-MPC and acquire information on the existence of
any fault within the system from the fault detection classifier
models. In this work, the adopted alarm policy is the generation
of three consecutive alarms. In other words, we conclude on the
fault existence when we obtain three consecutive positive
responses from the fault detection classifiers. Once the fault is
detected, we initiate to regress the magnitude and direction of
the fault. The random forest models use the online process
variable measurements to estimate the amount of deviation from
the reactor temperature of the normal operating condition.
Here, early detection of the faults is crucial to initiate the fault
estimation process. If the fault detection latency is high, that is
when fault is detected late during the operation, the controller
may not be able to return the process back to the normal
condition. The reason can be 2-fold: (i) the validity of the
regressor may expire, thus accuracy of the fault estimation
deteriorates, and (ii) there may be significant damage on the
process which is irreparable. Table 6 presents the average fault
detection latency of each fault and time specific classifier among
the entire simulations with varying fault magnitudes.

Achieving low latency with the fault and time-specific C-SVM
models indicates early fault detection. When we compare the
two different fault types, the average latency is lower for the
actuator fault models. The main reason for this can be the fact
that changes in water flow rate may affect the other process
variables in a more definite way. This may lead to sudden
changes not only in one but numerous process variables, thus
facilitating the fault detection. Furthermore, the process
nonlinearity affects the detection latency in distinct ways for
different fault types. Specifically, we observe that we detect the
actuator fault more rapidly in the later stages of the batch
process, namely 300 and 400 h models. On the other hand, the
separation in the average latency is not that clear among the
sensor fault detection models. Here, the high latency can be
linked to the low number of process variables used in the fault
magnitude estimator models, which may not be adequate to
capture the process behavior in the specific process time.
We are building fault and time-specific regression models for

fault magnitude estimation. Therefore, it is crucial to assess the
accuracy of the fault reconstruction performance after the fault
onset time. During the online operation, we use the regressors
that are trained around the simulated fault onset time. As the
operation progresses after the fault onset time, where the process
is kept under normal condition thanks to the fault-tolerant mp-
MPC, the regressor model continues to use the online process
data at every new sampling point. However, as the sampling time
moves away from the fault onset time, the process data
characteristics can significantly change, which renders the

regressor inaccurate for fault estimation. Fault estimation may
not be performed as accurate as it is done near the fault onset
time, which hinders the controller’s learning about the process
condition. This, in turn, may lead to insufficient control actions
to recover the process back to the normal condition. Note that
the extended validity of the regressor accuracy heavily depends
on the amount of deviation of the process data characteristics. As
a result, it is significant and necessary to assess the time-
sensitivity of the fault estimators and identify when we need new
models for accurate fault reconstruction. Furthermore, the limit
of each regressor determines the targeted data collection
location for the next regression model training.
Tables 7 and 8 tabulate the extent of the validity of the time-

specific fault detection classifiers and magnitude estimation

regressors for two sets of thresholds around the reactor
temperature set point being ±0.5 and ±0.75 K. The complete
set of reactor temperature and water flow rate profiles with±0.5
K threshold on the set point for each time-specific model is
provided in the Supporting Information. In particular, we assess
the extent of the validity of each time-specific model until the
next time-specific model territory (i.e., the 100th h models are
tested until the 200th h, etc.). The results for the actuator fault
case show that the models that are built at the 200th and 300th h
have successfully provided necessary control actions until the
target process time is the 300th and 400th h, respectively.
Similarly, models built at the 400th h have enabled satisfactory
control actions until the end of the operation. The results for the
models built for the 100th h show that the models are valid on
average for the next 73.5 and 75.4 h for ±0.5 and 0.75 K
thresholds around the reacture temperature set point,
respectively. This highlights that we need to have additional

Table 6. Average Fault Detection Latency of the Fault and
Time-Specific C-SVM Models

fault type fault onset time average latency (h)

actuator 100 h 0.5
actuator 200 h 1.5
actuator 300 h 0.04
actuator 400 h 0.16
sensor 100 h 0.38
sensor 200 h 1.27
sensor 300 h 0.64
sensor 400 h 6.17

Table 7. Extent of Time-Specific Fault Detection and
Magnitude Estimation Model Validity for Actuator Fault

validity limit (h)

fault onset time (h) fault magnitude 0.5 K threshold 0.75 K threshold

100 −2.5 143.2 146.6
100 −2 147.3 150.7
100 −1.5 151.2 155.0
100 1.5 199.4 200.0
100 2 200.0 200.0
100 2.5 200.0 200.0
200 −2.5 200.0 200.0
200 −2 300.0 300.0
200 −1.5 300.0 300.0
200 1.5 300.0 300.0
200 2 300.0 300.0
200 2.5 300.0 300.0
300 −2.5 400.0 400.0
300 −2 400.0 400.0
300 −1.5 400.0 400.0
300 1.5 400.0 400.0
300 2 400.0 400.0
300 2.5 400.0 400.0
400 −2.5 through the end through the end
400 −2 through the end through the end
400 −1.5 through the end through the end
400 1.5 through the end through the end
400 2 through the end through the end
400 2.5 through the end through the end
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models for accurate fault detection and magnitude estimation
between the 100th and 200th h of the batch operation.
On the other hand, for the sensor fault case, we note that the

models built for the 200th and 400th h are not valid for an
extended process time when negative fault magnitudes are
observed. On average, the models are valid for another 1.3 and
1.5 h after the fault is introduced in the 200th and 400th h,
respectively, when the reactor temperature deviation threshold
is set to 0.5 K. When we increase the threshold to 0.75 K around
the set point, we observe that the models built at 200th h can
maintain a smooth operation for the entire targeted operation
range, which is the next 100 h, because the latency in fault
detection has caused a deviation that is higher than 0.5 but lower
than 0.75 K. However, this does not apply to the models for the
400th h. The threshold increase does not extend the validity of
the 400th h models since the maximum deviation observed is as
high as 2.1 K (Figure S52). The limited model validity for the
two time-specific models at 200 and 400 h is due to the high fault
detection latency. In other words, by the time we detect the fault
occurring at the 200th and 400th h, the deviation from the
reactor temperature set point already exceeds the predetermined
thresholds (Figure S34−S37 for the 200th models and Figure
S52−S55 for the 400th models). Therefore, required control
actions are not provided by the controller as it has not been

notified of the existence and magnitude of the fault. To
overcome this problem, fault detection latency must be
improved. This can be achieved by increasing the frequency of
the fault detection classifiers between 200 and 400 h of the batch
operation.
To provide a comparison between the two fault types, we

provide the reactor temperature and water flow rate profiles for
100 h models. Particularly, we display the profiles of the
simulations in which we introduce actuator faults with −2.5 and
+2.5 fault magnitude in Figures 9 and 10, respectively.

Table 8. Extent of Time-Specific Fault Detection and
Magnitude Estimation Model Validity for Sensor Fault

validity limit (h)

fault onset time
(h)

fault
magnitude 0.5 K threshold 0.75 K threshold

100 −2.0 187.9 200.0
100 −1.5 187.4 200.0
100 −1.0 187.2 200.0
100 −0.5 187.2 200.0
100 0.5 187.6 200.0
100 1.0 187.6 200.0
100 1.5 187.6 200.0
100 2.0 187.4 200.0
200 −2.0 201.3 300.0
200 −1.5 201.3 300.0
200 −1.0 201.3 300.0
200 −0.5 201.3 300.0
200 0.5 300.0 300.0
200 1.0 300.0 300.0
200 1.5 300.0 300.0
200 2.0 300.0 300.0
300 −2.0 358.1 358.1
300 −1.5 356.4 356.4
300 −1.0 359.9 359.9
300 −0.5 358.0 358.0
300 0.5 369.9 369.9
300 1.0 360.5 360.5
300 1.5 360.4 360.4
300 2.0 363.1 363.1
400 −2.0 401.4 401.4
400 −1.5 401.4 401.4
400 −1.0 401.4 401.4
400 −0.5 401.5 401.5
400 0.5 Through the end Through the end
400 1.0 Through the end Through the end
400 1.5 Through the end Through the end
400 2.0 Through the end Through the end

Figure 9. Reactor temperature and water flow rate profiles for a process
with actuator fault. Fault onset, 100 h; fault magnitude, −2.5.

Figure 10. Reactor temperature and water flow rate profiles for process
with actuator fault. Fault onset, 100 h; fault magnitude, +2.5.
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Additionally, Figures 11 and 12 demonstrate the profiles of the
simulations in which we introduce sensor faults with −2 and +2

fault magnitude. The profiles with actuator fault show that once
the regressormodel validity expires with the altering dynamics of
the batch process, the correction in the faulty water flow rate
disrupts and deteriorates. This leads to a significant increase in
the reactor temperature that leads to a possible system failure.
On the other hand, early capture of the sensor fault leads to rapid
and necessary changes in the water flow rate which enable a fast
process recovery back to the normal condition. Of note, in order

to ensure smooth control actions, one needs to switch to the
next valid model once the validity of the previous model expires.
This is necessary in order to capture dynamic process
characteristics and detect any possible faults. The presented
simulation profiles with actuator and sensor faults prove that the
designed fault-tolerant mp-MPC provides smooth control
actions successfully.
Finally, we perform a sensitivity analysis with the time-specific

fault detection and magnitude estimation models built at 100th
and 200th h in order to determine the perimeter of the model
effectiveness. To this end, we use the time-specific models for
±30 h perimeter of their corresponding process time.
Particularly, the C-SVM model for fault detection and random
forest model for the fault magnitude estimation are utilized for
every 5 h fault onsets between 70th and 130th h with the models
built at 100th h and between 170th and 230th h with the models
built at 200th h (Figure 13). We adopt the ±0.5 K threshold
around the reactor temperature set point and only utilize the
extreme negative and positive fault magnitudes simulated in this
work (−2.5 and +2.5 for actuator and −2 and +2 for sensor
fault) for the analysis. The results reveal that actuator fault
models have more limited range compared to sensor fault
models. In particular, the models built at 100th have successfully
been used between the 90th and 100th h of the batch operation.
The validity range for the models built at the 200th reaches to 15
and 20 h for negative and positive fault magnitudes, respectively.
On the other hand, the analysis yields that themodels built at the
100th and 200th h for the sensor fault were able to perform the
required control actions for the analyzed 30 h perimeter except
for the analysis performed with a negative fault magnitude with
models built at the 200th h. This is again due to the fact that by
the time the fault is detected the raise in the reactor temperature
exceeds the allowed region (Figure S34). When the deviation
threshold is raised to ±0.75 K, the time-specific models are
shown to be valid for the entire analyzed 30 h perimeter (Figure
14). This analysis elucidates the effectiveness limit of the time-
specific models which is required to determine the model
switching frequency during online monitoring. Overall, the
results demonstrate the need for additional models during 100−
200 h of the operation if a strict deviation threshold (i.e., 0.5 K)
is preferred during the operation. Yet for a 0.75 K deviation
threshold, the presented time-specific models have successfully
provided satisfactory control actions under faulty conditions.

4. CONCLUSIONS
As the effect of smart manufacturing revolution propagates and
influences the vision of numerous industrial operations, the
development of a fault-tolerant control system becomes one of
the major factors in achieving high process resilience. Tradi-
tional corrective maintenance strategies include controller
retuning which leads to longer process downtime that may
adverse the end-product quality and cause higher operation cost.
This work proposes a novel parametric fault-tolerant control
framework that enables rapid and accurate switches within the
offline map of control actions to eliminate process downtime
and maximize process reliability. This further enables attaining
higher product quality which leads to higher profit from the
operation.
In this work, we present a novel active fault-tolerant strategy

and corrective maintenance strategy which benefits from
multiparametric programming and machine learning-based
process monitoring. Particularly, we have designed a multi-
parametric model predictive controller by following the PAROC

Figure 11. Reactor temperature and water flow rate profiles for process
with sensor fault. Fault onset, 100 h; fault magnitude, −2.0.

Figure 12. Reactor temperature and water flow rate profiles for process
with sensor fault. Fault onset, 100 h; fault magnitude, +2.0.
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framework30 and the s-FDD framework. The s-FDD framework
is used to formulate the fault detection and reconstruction
mechanism of the fault-tolerant system, where the built
classifiers provide the information on fault existence and
regressors yield the fault magnitude and direction estimation.
The trained C-SVM models with the optimal feature subset
further enable the rapid diagnosis of the detected fault. The
average accuracy of the classifiers is 98.44%, and 97.70% for the
actuator and sensor faults, respectively. Moreover, the average
R2 of the trained regressors is 0.999 and 0.958 for the actuator
and sensor faults, respectively. The presented approach

formulates as a novel active fault-tolerant strategy in which an
accurate and robust fault detection and reconstruction
mechanism is ensured via the s-FDD framework and multi-
parametric MPC enables rapid switches between fault-tolerant
control actions. Please note that the presented fault-tolerant
strategy is agnostic to any fault types, thus it can be extended to
process faults by treating them as measured disturbances.
Finally, we note that the design of the fault-tolerant mp-MPC
can further enable the handling of simultaneous faults as it
includes the deviation in both process variables (i.e., reactor
temperature and water flow rate) as additional parameters.

Figure 13. Sensitivity analysis of time-specific models built at the 100th and 200th h for actuator and sensor faults. The set point deviation threshold is
±0.5 K. The green bars highlight that the model is satisfactorily valid. The red bars belong to limited timemodel validity cases. Note that once a red bar
is assigned, the further hours are automatically assigned with red.
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