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a b s t r a c t 

Deep learning models are a class of approximate models that are proven to have strong predictive ca- 

pabilities for representing complex phenomena. The introduction of deep learning models into an opti- 

mization formulation provides a means to reduce the problem complexity and maintain model accuracy. 

Recently it has been shown that deep learning models in the form of neural networks with rectified linear 

units can be exactly recast as a mixed-integer linear programming formulation. However, developing the 

optimal solution of problems involving mixed-integer decisions in online applications remains challeng- 

ing. Multiparametric programming alleviates the online computational burden of solving an optimization 

problem involving bounded uncertain parameters. In this work, a strategy is presented to integrate deep 

learning and multiparametric programming. This integration yields a unified methodology for develop- 

ing accurate surrogate models based on deep learning and their offline, explicit optimal solution. The 

proposed strategy is demonstrated on the optimal operation of a chemostat. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Deep learning is a method to approximate complex systems

nd tasks by exploiting copious amounts of data to develop rig-

rous mathematical models. These approximate models are based

n neural networks which are popular in the chemical engineer-

ng literature ( Himmelblau, 20 0 0; Shang and You, 2019 ). As data-

riven modeling techniques are seeing increased value and are be-

ng adopted by industry ( Tran et al., 2018 ), the incorporation of

eep learning into optimization formulations is paramount. 

Surrogate modeling for optimization, both as a tool ( Beykal

t al., 2018; Kim and Boukouvala, 2019 ) and as a means for

pproximate model development ( Tso et al., 2019 ) is an estab-

ished field. In the chemical engineering literature, the use of neu-

al networks as surrogate models has found success in a vari-

ty of contexts ( Chiang et al., 2017 ), such as (i) modeling ( Shokry

t al., 2018; Hough et al., 2017 ), (ii) optimization and control

 Schweidtmann et al., 2019; Himmelblau, 2008; Wu et al., 2019b;

019c ), (iii) regression ( Himmelblau, 20 0 0 ), and (iv) classification

 Himmelblau, 20 0 0 ). In all of these applications, the developed ar-

ificial neural network (ANN) model is used to represent a complex

onlinear process. However obtaining the global solution for the

orresponding optimization problem incorporating a neural net-

ork poses a significant computational burden due to the inherent
∗ Corresponding author at: Artie McFerrin Department of Chemical Engineering, 

exas A&M University, College Station, TX 77843, USA. 
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onconvexity introduced ( Rister and Rubin, 2017 ). Hence, incorpo-

ating neural networks in real-time applications remains a major

hallenge. 

The ability to use neural network models as surrogates in

n optimization formulation is contingent on utilizing a strategy

o obtain a quality optimal solution. Current literature demon-

trates an interest in obtaining ‘good’ solutions to optimization

ormulations incorporating deep learning models. Schweidtmann

t al. (2019) proposed a global optimization strategy based on

cCormick relaxations to identify the global minimum to opti-

ization problems involving ANNs. Pfrommer et al. (2018) utilized

 stochastic genetic algorithm to find the minimum for a pro-

ess involving textile draping where a neural network was uti-

ized as a surrogate model. Nagata and Chu (2003) developed

 surrogate neural network model for a fermentation process,

nd optimal operating conditions were identified using a genetic

lgorithm. 

Deep learning has a distinct advantage compared to other sur-

ogate modeling techniques, such as response surfaces, Kriging

odels, Bayesian networks, and radial basis functions ( Asher et al.,

015 ). Because of the highly connected structure of deep learning

odels, they are naturally adept at expressing complex functional

elationships. Their ability to approximate a function to an arbi-

rary level of accuracy is because there is an exponential number

f piecewise connected hyperplanes based on the size of the neu-

al network ( Chen et al., 2018; Montufar et al., 2014 ). 

Given an optimization problem with highly complex and non-

inear components, neural networks with rectified linear activation

https://doi.org/10.1016/j.compchemeng.2020.106801
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106801&domain=pdf
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units (ReLU), that have been shown to have high performance for

regression based problems ( Eckle and Schmidt-Hieber, 2019 ), are of

interest to be incorporated into optimization formulations as sur-

rogate models. In recent work, it was shown that neural networks

utilizing ReLU activation functions can be represented exactly in

a mixed-integer linear programming (MILP) formulation ( Fischetti

and Jo, 2018; Grimstad and Andersson, 2019a ). An exact recast-

ing of neural networks with ReLU activation functions as an MILP

formulations allows a new avenue for incorporating deep learning

models into optimization based formulations. With this capability,

the gap between model accuracy and computational performance

is reduced. 

Previous work has demonstrated integrating neural networks

with ReLU activation functions into optimization formulations.

However, in online applications where time is a critical factor, de-

termining the optimal solution is challenging because of the inher-

ent nonconvexity of the resulting discrete optimization formula-

tion. In these time critical applications, multiparametric program-

ming is a proven methodology to alleviate the online computa-

tional burden by developing the optimal solution offline. By in-

corporating more advanced surrogate models in multiparametric

optimization formulations, the benefits of the developed paramet-

ric solution are improved, namely (i) the ability to obtain the op-

timal solution without having to solve an optimization problem

each time the uncertain parameter is identified, (ii) having the ex-

plicit map of solution a priori, and (iii) having the explicit func-

tional relationship between optimization variables and uncertain

parameters. In addition, the explicit map of solution provides ben-

efits in numerous applications including, multiparametric model

predictive control ( Bemporad et al., 2002; Katz et al., 2018; Lee

and Chang, 2018 ), scheduling ( Kopanos and Pistikopoulos, 2014 ),

bilevel programming ( Avraamidou and Pistikopoulos, 2019 ), multi-

level decision making ( Burnak et al., 2018; 2019 ), portfolio selec-

tion ( Steuer et al., 2006 ), and instance-weighted support vector

machines ( Karasuyama et al., 2012 ). 

Complete algorithms regarding the development of the multi-

parametric solution is available for multiparametric linear (mpLP)

( Jones and Morrari, 2006 ), quadratic (mpQP) ( Gupta et al., 2011;

Oberdieck et al., 2017; Ahmadi-Moshkenani et al., 2018 ), mixed-

integer linear (mpMILP) ( Wittmann-Hohlbein and Pistikopoulos,

2013; Charitopoulos et al., 2018 ), and mixed-integer quadratic

programming (mpMIQP) problems ( Oberdieck and Pistikopoulos,

2015 ). In these multiparametric model formulations, a key de-

tail is their dependence on linear or piecewise linear constraints.

Therefore, to incorporate more complex phenomena in paramet-

ric formulations surrogate modeling is required. Developing accu-

rate surrogate models to represent nonlinear functional relation-

ships is non-trivial, and deep learning models based on ReLU ac-

tivation functions bridge this gap. Given that complete theory re-

garding mpMILPs and algorithmic strategies are available in online

solvers ( Oberdieck et al., 2016b; Herceg et al., 2013 ), the integra-

tion of neural networks involving ReLU activation functions and

multiparametric programming is a natural step. 

The rest of the work is organized as follows. First an overview

of neural networks and ReLU activation functions is provided. Then

a discussion on multiparametric programming is presented, fol-

lowed by the framework for integrating neural networks and mul-

tiparametric programming. Next, a demonstration of the frame-

work is showcased on a chemostat model. Finally conclusions and

future directions are presented. 

2. Key contribution 

The focus of this work is to approximate nonlinear functions in

optimization formulations with neural networks composed of ReLU

activation functions. In particular, the key contribution is the inte-
ration of these deep learning models and multiparametric pro-

ramming. 

Given is a nonlinear optimization formulation in the form of

q. (1) . 

in 

x 
c T x 

s.t. f (θ, x ) ≤ 0 

x ∈ X 

q 

θ ∈ �m (1)

here x is the vector of optimization variables, c is the linear cost

oefficient, f is the vector of linear/nonlinear constraints, and θ is

he vector of uncertain parameters that are known at the time of

olving the nonlinear optimization problem. The sets X 

q and �m 

re closed polyhedral sets of the q optimization variables and the

 uncertain parameters respectively. 

Determining the optimal solution at every parameter realization

e.g. model predictive control, reactive scheduling) for this nonlin-

ar optimization problem is computationally expensive. Multipara-

etric programming is a technique that transforms an optimiza-

ion formulation involving bounded, uncertain parameters to an

xplicit functional relationship between the optimal optimization

ariables and these parameters. The optimal multiparametric solu-

ion is described by the different combinations of active constraints

hich can occur for every feasible uncertain parameter value, θ ,

ealization. Based on the various active sets, the overall parameter

pace is partitioned indicating where in the parameter space each

ptimal multiparametric solution holds. To realize the benefits of

ultiparametric programming, a surrogate model is developed to

eplace the nonlinear function in Eq. (1) . The model accuracy of

he surrogate model is ensured by utilizing neural networks with

eLU activation functions. Neural networks are inherently noncon-

ex, nonlinear functions making them difficult to incorporate into

ptimization problems, however a recent reformulation technique

nables their direct use in a mixed-integer linear programming

ased formulation with no information lost. Following the imple-

entation of the neural network surrogate model, Eq. (1) is ap-

roximated by Eq. (2) . 

in 

x,y 
c T ω 

s.t. [ A E] ω ≤ b + F θ

ω = [ x T y T ] T 

x ∈ X 

q , y ∈ Z 

n 
2 

θ ∈ �m (2)

here A ∈ R 

1 ×q , E ∈ R 

1 ×n , F ∈ R 

1 ×m , b ∈ R 

(q + n ) ×1 . Determining the

ptimal solution of a mixed-integer linear programming problem

s still computationally demanding. Unlike nonlinear programming

ormulations with uncertain parameters, mixed-integer linear pro-

ram with bounded uncertain parameters are solvable using state-

f-the-art multiparametric algorithms. Therefore, the online com-

utational burden of determining the optimal solution to an MILP

t every parameter realization is eliminated. The developed explicit

olution produces a map of solutions, Fig. 1 , where each region is

n affine function that relates the optimal optimization variables

o the uncertain parameters. 

A summary of the novel framework followed in the work

s presented in Fig. 2 . The key features include data collec-

ion and processing, neural network development, MILP refor-

ulation, and multiparametric programming. The following sec-

ions provide necessary information regarding (i) neural networks,

ii)multiparametric programming, and (iii) their integration. 
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Fig. 1. The framework for integrating deep learning and multiparametric program- 

ming, adapted from Katz, 2020 . 

Fig. 2. The framework for integrating deep learning and multiparametric program- 

ming, adapted from Katz, 2020 . 
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Fig. 3. The structure of a feedforward neural network with inputs, outputs, and 

hidden layers, adapted from Katz, 2020 . 
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. Neural networks 

Neural networks are nonparametric mathematical models that

re an effective tool to map input data to output data with a high

egree of accuracy. The strength of neural networks is their abil-

ty to universally approximate any function ( Pinkus, 1999 ). A neu-
al network is defined by its structure, two of which are feed-

orward and recurrent ( Ning and You, 2019 ). In this work, the

tructure assumed is feedforward because of its proven perfor-

ance and straightforward structure, shown in Fig. 3 . The feed-

orward neural network involves inputs, outputs, an input layer,

utput layer, hidden layers, weighting parameters, and activation

unctions. The inputs, outputs, input layer, and output layer are de-

ned by the particular process. For example, Fig. 3 has 2 inputs, 1

utput, 2 hidden layers, 4 nodes in the first hidden layer, and 2

odes in the second hidden layer. However, the number of hidden

ayers and their respective sizes, weighting parameters, and acti-

ation functions are all tunable. The number of hidden layers and

heir respective sizes can be determined through trial and error,

nd the weighting parameters are typically defined through a lo-

al search, such a stochastic gradient descent. Numerous activation

unctions have shown to be meritous under varying circumstances.

n this work, the ReLU activation function is used throughout the

anuscript because it can be reformulated as a MILP. 

.1. Training 

Training a neural network involves identifying the values for the

eights and biases, such that a performance metric is minimized.

he training step is critical because it provides the basis for how

he neural network will map inputs to outputs. Key factors that

ust be addressed during training include (i) identifying a perfor-

ance metric to use, (ii) minimizing the performance metric, and

iii) data selection and processing. 

.1.1. Performance metric 

The performance metric is a measure to provide the goodness

f fit for the neural network. The metric is based on the deviation

etween the output of the neural network and the dataset. There

re a myriad of performance criteria, such as mean squared error

MSE), normalized mean squared error (NMSE), root mean squared

rror (RMSE), mean absolute error (MAE), etc. Afram et al. (2017) .

hese metrics are different formulations for quantifying the devi-

tion between the expected output of the neural network and the

utput of the dataset. Note that determining which performance

riteria should be selected to train the neural network is non-

rivial. 

.2. Validation 

Model validation ensures the trained model is an accurate rep-

esentation of the dataset. There are many techniques for model

alidation for data-driven models, such as (i) data partitioning, (ii)

ross-validation ( Poole and Mackworth, 2010 ), and (iii) analyzing
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the residual plot. These techniques provide different approaches for

ensuring the regressed model is valid over the dataset. 

3.3. ReLU activation functions 

Each node in a neural network’s hidden layer is associated with

an activation function. Common activation functions are the hy-

perbolic tangent, sigmoid, and the rectified linear unit. Selecting a

suitable activation function is problem dependant, but the rectified

linear unit has consistently displayed an ability to perform well on

numerous applications, and is the activation function assumed in

this work. 

The ReLU activation function is defined in Eq. (3) . It is a piece-

wise linear function alternatively represented by Eq. (4) . The al-

ternative representation gives rise to a formalism for introducing

a neural network with ReLU activation functions into a mixed-

integer optimization formulation. 

y = max { 0 , x } (3)

y = δx, δ = 

{
1, if 0 < x 

0, otherwise 
(4)

The ReLU activation functions approximates a function by de-

constructing the original function into a set of piecewise hyper-

planes. The number of piecewise hyperplanes that define the ReLU

neural network scales exponentially with the number of hidden

layers of the neural network, shown in Eq. (5) ( Chen et al., 2018;

Montufar et al., 2014 ). 

�

((
n 

n 0 

)L −1 

n 

n 0 

)
(5)

where L is the number of hidden layers, n 0 is the number of in-

puts, and n is the number of nodes. The exponential scaling of

the number of piecewise hyperplanes is the reason ReLU activation

functions in deep learning models are successful. This complexity

is demonstrated with Eq. (5) . In other words, a deep neural net-

work with ReLU activation functions expresses an arbitrary func-

tion with an exponential number of piecewise affine hyperplanes.

Fig. 4 shows the connected piecewise affine hyperplane structure

for an arbitrary neural network, with two inputs, x and y , and one

output, z . Leveraging the deep neural networks ability for accu-

rate function approximation makes it an ideal candidate surrogate

model for optimization studies. 
Fig. 4. A neural network with ReLU activation functions and the representative con- 

nected hyperplanes, adapted from Katz, 2020 . 
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. Multiparametric programming 

Optimization formulations involving bounded uncertain param-

ters are defined as a multiparametric programming problem. The

ultiparametric solution provides a means to derive analytic ex-

licit functional relationships between the optimization variables

nd these uncertain parameters. Developing the multiparametric

olution has several benefits including (i) determining the opti-

al solution faster in real time as the uncertainty is revealed,

ii) deriving fundamental knowledge of the optimization formula-

ion via the offline map of solution, and (iii) providing the explicit

xpressions relating optimization variables to uncertain parame-

ers that can be embedded in multi-level optimization frameworks

 Burnak et al., 2019 ). In this work, we focus on mpMILPs, which

re used as the exact reformulation of deep neural networks main-

aining ReLU activation functions. Because the solution strategy for

pMILPs is based on continuous mpLPs, a comprehensive discus-

ion on the fundamentals and solution strategies for mpLPs is pro-

ided in the subsequent sections. Discussions regarding developing

he full multiparametric solution for mpMILPs is then presented in

ection 4.2 . 

.1. Fundamental concepts 

A generic mpLP has the following form 

in 

x 
c T x x 

s.t. A i x ≤ b i + F i θ, ∀ i ∈ I 

A j x = b j + F j θ, ∀ j ∈ J 

θ ∈ � := { θ ∈ R 

m | CR A θ ≤ CR b } 
x ∈ R 

n (6)

here the matrices A i ∈ R 

1 ×q , F i ∈ R 

1 ×m , A j ∈ R 

1 ×q , F j ∈ R 

1 ×m and

he scalars b i , b j correspond to the i th and j th inequality and equal-

ty constraints of the sets I and J respectively. 

The multiparametric solution of Eq. (6) returns a list of critical

egions, and each critical region defines affine functions relating

he bounded uncertain parameters to the optimal continuous deci-

ion variables, Eq. (7) . 

 

∗ = K i θ
∗ + r i , θ

∗ ∈ C R 

i = { C R 

i 
A θ ≤ C R 

i 
b } (7)

here x ∗ is the optimal solution at the parameter realization θ ∗,

R i define the i th critical region, and K i and r i define the affine

xpression for the i th critical region. 

The development of the multiparametric solution has been ad-

ressed using three types of algorithmic approaches (i) geometric-

ased strategies ( Bemporad et al., 2002 ), (ii) active set-based

trategies ( Gupta et al., 2011 ), and (iii) combinations of geometric

nd active set methodologies ( Oberdieck et al., 2017 ). 

Geometric-based algorithms are founded on the following no-

ion: given a critical region, the neighborhoods area is explored to

dentify adjacent critical regions, Fig 5 . These identified critical re-

ions are subsequently utilized to explore their neighboring critical

egions, until the full parametric solution is determined. 

On the other hand, combinatorial approaches aim to implic-

tly explore the parameter space through enumeration and efficient

runing criteria of all possible active set which can yield an op-

imal solution for a feasible parameter realization, Fig 6 . Because

ach optimal active set yields a critical region, the identification of

he complete map of solutions is achieved. 

Each of the approaches offers its own advantages and draw-

acks in regards to developing the solution of the multipara-

etric optimization problem, and the selection of the algorith-

ic strategy depends on the structure of each particular prob-

em ( Oberdieck et al., 2016a ). Such algorithms are provided in
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Fig. 5. Illustrative representation of the exploration of the parameter space using a 

geometrical algorithm for multiparametric programming, adapted from Katz, 2020 . 
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he state-of-the-art software, Parametric OPtimization (POP) Tool-

ox ( Oberdieck et al., 2016b ) and Multiparametric Toolbox (MPT)

 Herceg et al., 2013 ). 

.2. Multiparametric mixed-integer linear programming 

A vital element for the integration of multiparametric pro-

ramming and deep learning using ReLU activation functions are

pMILPs, which are represented by Eq. (2) . Developing the full

ultiparametric solution for mpMILPs is significantly more com-

utationally taxing than for mpLPs or mpQPs. However, there

xists full theory and algorithms to solve these challenging

roblems. 

An overview of the solution procedure is as follows. Given the

pMILP, a candidate set of critical regions is determined for a

articular combination of binary variables. In an iterative manner,

ach critical region is examined to identify if an improved solu-

ion exists for a different binary combination. The comparison pro-

edure is performed by introducing integer cuts into the original

pMILP within the confines of the critical region under examina-

ion. The resulting map of solutions provides the optimal critical

egions, the optimization variables as functions of the uncertain

arameters, and the optimal integer variables, (8) . 

x ∗ = K i θ
∗ + r i , 

y ∗ = y i , 

}
θ ∗ ∈ CR 

i = { CR 

i 
A 
θ ≤ CR 

i 
b 
} . (8) 
Fig. 6. Illustrative representation of the exploration of the parameter space using a ge
Note that improving mpMILP algorithms is accomplished via

trengthening the comparison procedure, with the goal of identi-

ying fewer candidate critical regions. 

. Framework for integration 

Current theory regarding multiparametric programming indi-

ates the optimization formulation must have linear or piece-

ise linear constraints with a linear or convex quadratic objec-

ive function. Hence, the description of nonlinear constraints or

bjective functions that naturally appear in real processes cannot

e achieved directly in multiparametric programs. Therefore, surro-

ate models are a necessity to capture such complex relationships.

ecause of their strong predictive capabilities, deep learning mod-

ls using ReLU functions are ideal candidates to be incorporated

nto mpP formulations. 

In the remaining of this section, the framework for integrating

eep learning models and multiparametric programming is pre-

ented. First the multiparametric nonlinear programming (mpNLP)

roblem is formulated. The nonlinear equations are then approxi-

ated using a deep neural network with ReLU activation functions.

he neural network is then recast as a MILP. The mpNLP is refor-

ulated to incorporate the MILP representation of the neural net-

ork, yielding a mpMILP. With the developed mpP problem formu-

ated, the problem is solved using the POP toolbox. Further details

re provided in the subsequent sections. 

.1. Optimization formulation 

Eq. (9) defines a mpNLP with a linear objective and bounded

ncertain parameters, θ . In addition, it is assumed the objective

unction is linear for clarity purposes only, and is not a restriction

f the proposed integration strategy. 

in 

x 
c T x 

s.t. h (x, θ ) = 0 

g(x, θ ) ≤ 0 

x ∈ X 

q 

θ ∈ �m (9) 

here c is a cost vector, x ∈ R 

q is the vector of optimization vari-

bles, θ ∈ R 

m is the vector of uncertain parameters, and h and g are

onlinear relationships between optimization variables and uncer-

ain parameters. Some examples of the nonlinear constraints de-

ned by h and g are thermodynamic relations, disturbance models,

r path constraints. The nonlinear constraints defined by h and g

re considered to be complex, nonlinear, and nonconvex ensuring

he development of the solution for a given parameter realization
ometrical algorithm for multiparametric programming, adapted from Katz, 2020 . 
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of the resulting NLP is challenging. Reducing the complexity of h

and g improves the computational performance of determining the

optimal solution for a given parameter realization. 

5.2. Neural network model development 

The nonlinear functions h and g in Eq. (9) are approximated us-

ing deep neural networks with ReLU activation functions. The neu-

ral network is developed through data sampling, training, and val-

idation. Note that each nonlinear function can be represented as

a deep neural network. However, it may be advantageous to group

functions that are related to reduce the total number of neural net-

works used in the final formulation. 

Prior to model development, it is critical to develop a suitable

dataset. The input space to the functions h and g are sampled to

construct the input/output dataset. The relationship between the

inputs of the functions to the outputs is important to understand

prior to invoking a sampling procedure. For instance, if the func-

tions being approximated are probability distributions, the sam-

pling procedure should follow Monte Carlo techniques or Markov

Chain Monte Carlo methods ( van Ravenzwaaij et al., 2018 ). In the

case h and g are defined by a dynamic model, system identifica-

tion techniques are used to properly sample and excite the system

to achieve the desired relationship between the inputs and out-

puts ( Ljung, 1999 ). Following sampling the space of the nonlinear

functions, the dataset is normalized to improve training the neural

network model. 

Once a suitable input/output dataset is constructed, the neural

network is defined by specifying the number of hidden layers and

the number of nodes in each hidden layer. Determining the opti-

mal number of hidden layers and nodes is not trivial, and in many

cases heuristically searching for a suitable size is sufficient. 

5.3. Reformulation 

As demonstrated in the literature ( Fischetti and Jo, 2018; Grim-

stad and Andersson, 2019a ), a neural network involving ReLU acti-

vation functions can be exactly recast as a MILP following a big M

formulation. A big M formulation, as shown in Eq. (11), is a strat-

egy to activate or deactivate constraints based on the value of the

binary variable y , either 0 or 1. The value of the M parameter is a

large number and it is selected depending on the application. Us-

ing a MILP formulation allows the neural network to be embedded

into an optimization problem directly without the associated diffi-

culty of a composite function with the nonlinear max operator. The

procedure is presented as follows. 

For an arbitrary layer with n nodes, the output takes the form

of Eq. (10) , where k is the layer, W 

k is the matrix of weights for

layer k , ˆ b k is the vector of biases for layer k , x k −1 ∈ R 

n is the output

of the previous layer, and x k ∈ R 

n is the output of the current layer.

The max operator is taken element-wise. 

x k = max { 0 , W 

k x k −1 + ̂

 b k } (10)

The importance of the ReLU activation function is its piecewise

linear nature. Therefore, Eq. (10) can be exactly recast in an opti-

mization formulation via the inclusion of binary variables. Eq. (11)

is the reformulation of the k th hidden layer in an MILP structure 1 .

Eq. (11) represents the neural network structure and not the over-

all optimization problem. The final optimization problem formula-
1 The final layer, or the output layer, does not require the modification presented 

in (11) because the activation function in the final layer is linear 

 

x  
ion has the form of Eq. (2) . 

 

k x k −1 + ̂

 b k = x k − s k (11a)

 

k ≤ M 1 y (11b)

 

k ≤ −M 2 (1 − y ) (11c)

 

k ≥ 0 (11d)

 

k ≥ 0 (11e)

 ∈ { 0 , 1 } n (11f)

In (11), y is a vector of binary variables, s k ∈ R 

n is the vector of

lack variables, and M i is a large scalar value. To improve the com-

utational performance of identifying the optimal solution, the big

 values, M 1 and M 2 , are defined to tightly bound the optimiza-

ion variables x k and s k ( Grimstad and Andersson, 2019b ). If the

ig M values are well defined, an unnecessary computational bur-

en is avoided. After recasting, the total number of binary variables

s equal to the total number of nodes that constitute the hidden

ayers. Note that the recasted neural network with ReLU activation

unction is an exact reformulation. The binary variables enable the

ctivation function to output a value of 0 or x , via the constraints

11b) and (11c) . Incorporating the recasted neural network into an

ptimization formulation provides an effective strategy to maintain

igh accuracy with a surrogate model, and obtaining the global op-

imum does not require specialized global optimization techniques.

nstead, standard mixed-integer linear programming methods are

tilized such as cutting planes and branch and bound techniques

hich are readily available in existing software. 

During training, the number of active nodes (nodes that take a

alue other than 0) can be reduced using regularization techniques.

inimizing the number of active nodes directly corresponds to a

eduction in the number of binary variables needed during the

ecasting procedure. By reducing the number of binary variables

eeded to define the neural network, the computational burden

f solving the final optimization problem is significantly dimin-

shed. After training, postprocessing the neural network model also

as the potential to minimize unnecessary binary variables. For in-

tance, a node in a hidden layer that is always positive is rep-

esented by a linear activation function. Hence, that node does

ot require a slack variable and a binary variable. Because of the

ixed-integer nature of the optimization formulation, any reduc-

ion in the number of binary variables made have the potential for

mpacting the computational performance notably. 

.3.1. Variable aggregation 

Following Eq. (11), the neural network is transformed to a sys-

em of equality constraints, inequality constraints, binary variables,

nd slack variables. Because the equality constraints are linear, the

ntermediate optimization variables can be eliminated via variable

ggregation. By eliminating intermediate variables, the number of

ptimization variables and constraints is reduced, which is impor-

ant in developing the multiparametric solution. 

 

1 = W 

1 x 0 + ̂

 b 1 + s 1 (12a)

 

k = 

1 ∏ 

i = k 
W 

i x 0 + 

k −1 ∑ 

i =1 

i +1 ∏ 

j= k 
W 

j ( ̂ b i + s i ) + ̂

 b k + s k , k = 2 , . . . , K − 1 

(12b)

 

K = 

1 ∏ 

i = K 
W 

i x 0 + 

K−1 ∑ 

i =1 

i +1 ∏ 

j= K 
W 

j ( ̂ b i + s i ) + ̂

 b K (12c)
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Fig. 7. The open loop performance of the chemostat and neural network. 
here W 

k and 

ˆ b k define the weights of the k th hidden layer, K is

he output layer, s k is the vector of slack variables, x 0 is the input

ector to the neural network, and x K is the vector of outputs of the

eural network. Eqs. (11) and (12) are combined to provide a set

f constraints in the form of Eq. (2) . 

.3.2. The importance of sparsity 

Introducing sparsity into the neural network has a profound im-

act on the resulting optimization formulation. Because sparsity

ims to minimize the active nodes in the neural network, the num-

er of optimization variables and constraints are reduced. Further-

ore, by reducing the size of the final optimization problem, the

esulting parametric solution requires less offline computational ef-

ort, and maintains fewer defining critical regions. The offline com-

utational performance is improved because the complexity of mp-

ILPs scales with the number of optimization variables and con-

traints. 

.4. Final mpMILP formulation 

The final multiparametric formulation is in the form of an mp-

ILP, Eq. (2) . The mpMILP contains the inherent linear components

f the optimization problem, such as box constraints, and the em-

edded neural network. By using a neural network to approximate

he nonlinear parts of the mpNLP, the optimization formulation is

ractable and provides an optimal solution resembling the true op-

imal. Another key feature of the resulting mpMILP is that the full

arametric solution can be developed, unlike the original mpNLP,

sing the POP toolbox. 

. Results 

A chemostat is considered to demonstrate the effectiveness of

ntegrating deep learning models and multiparametric program-

ing. The aim of the chemostat is to maximize the biomass con-

entration during operation. In this work, the ability of a neural

etwork to accurately capture the nonlinearity of a process is not

nder scrutiny. Therefore, the illustrative example used is of small

cale, and is adapted from ( Eaton and Rawlings, 1992 ). In this pro-

ess, the chemostat is continuously operated, and the process is

ubstrate inhibited. It is assumed the chemostat (i) is fed with pure

ubstrate, (ii) has constant volume, (iii) and is temperature inde-

endent. The differential algebraic equations defining the chemo-

tat are presented in Eq. (13). 

dx 

dt 
= (μ − D ) x (13a) 

ds 

dt 
= (s f − s ) D − μx 

y 
(13b)

= 

μmax s 

k m 

+ s + k 1 s 2 
(13c) 

here x is the biomass concentration in the chemostat, s is the

ubstrate concentration in the chemostat, s f = 4 is the substrate

oncentration in the feed, μ is the specific growth rate, y = 0 . 4

s the yield of cell mass, and D is the dilution rate. The specific

rowth rate is defined by the parameters μmax = 0 . 53 , k m 

= 0 . 12 ,

nd k 1 = 0 . 4545 . 

The objective for the chemostat is to develop a multiparametric

odel predictive control formulation, whereby the dilution rate is

anipulated in real time to maximize the biomass concentration.

he difficulty in satisfying the control objective is the nonlinearity

resent from the specific growth rate. The continuous time control
ormulation is provided by Eq. (14) . 

in 

D 
x (t f ) 

s.t. ˙ x = (μ − D ) x, x (0) = x 0 

˙ s = (s f − s ) D − μx 

y 
, s (0) = s 0 

μ(t) = 

μmax s (t) 

k m 

+ s (t) + k 1 s (t) 2 

D ≤ D ≤ D̄ 

x ∈ X, s ∈ S (14) 

Because of the difficulty in solving the continuous time optimal

ontrol problem, a discrete time approximate model is developed.

y utilizing the presented framework, a neural network consisting

f ReLU activation functions is used to approximate the chemostat

odel. 

.1. Open loop 

Input/output data is first generated in open loop for the chemo-

tat process. The input data is generated by perturbing the dilution

ate randomly for 5 · 10 4 time steps. The input profile aims to ex-

ite the system to capture the nonlinear dynamics of the process,

nd to ensure enough data is collected to train the neural network.

o improve the training performance, the input and output data

s normalized between [ −1 , 1] . During training, the possibility of

verfitting is reduced via partitioning the data set into a training,

alidating, and testing set following a 70%/15%/15% split, respec-

ively. The neural network maintains 3 inputs (the dilution rate and

he initial conditions of the process) and 2 outputs (the predicted

tates of the system). In addition, the neural network has 3 hidden

ayers with 5 nodes in the first hidden layer, 4 in the second, and

 in the third. 

Fig. 7 presents the open loop response of the process and the

utput of the neural network for a slice of the total training data

or visibility. The neural network has a mean squared error (MSE)

f 1 . 2 · 10 −5 indicating an acceptable open loop performance. The

eveloped neural network is designed to predict one step ahead

nto the future. Therefore, the explicit controller predicts one step

nto the future. Further time step prediction can be developed via
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Fig. 8. The parametric solution for the explicit model predictive controller with a 

deep learning model. 

Fig. 9. The closed loop performance of the chemostat with an explicit model pre- 

dictive controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The states of the chemostat overlayed on the parametric solution during 

the closed loop response. 
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(i) training the neural network on input/output data that repre-

sents multiple steps into the future, or (ii) feeding the output of

the one step ahead neural network back to itself. 

6.2. Multiparametric solution 

The neural network developed to approximate the nonlinear

dynamics in the optimal control formulation, Eq. (14) , is used to

formulate the resulting mpMILP. The developed mpMILP has 62

constraints, 15 continuous optimization variables, 14 binary vari-

ables, and 2 uncertain parameters. The full solution is identified

using the POP toolbox in the Matlab environment ( Oberdieck et al.,

2016b ). The parametric solution has 40 critical regions, calculated

in 14.7 seconds and is presented in Fig. 8 . 

6.3. Closed loop performance 

The developed explicit controller is validated in closed loop

against the chemostat dynamic model. Fig. 9 demonstrates the

ability of the explicit controller to maximize the biomass concen-

tration. From the closed loop response, the process has no fluctu-

ations and meets the target objective. It is important to point out

the nonlinearity displayed by the controller is a direct consequence
f using the neural network model. The input profile is developed

n such a way to maximize the biomass concentration to a final

alue of 1.6, when started from a value of 0.1. The state trajectories

re also visualized in Fig. 10 , in which the closed loop performance

s overlayed on the explicit map of solution. 

. Conclusion 

In online applications where time is a critical factor, determin-

ng the optimal solution with these embedded deep learning mod-

ls can be a challenge. Multiparametric programming alleviates

he computational burden by developing the offline, explicit solu-

ion to the parametric optimization problem. With available online

olvers, developing the full parametric solution to the mpMILP is

anageable and permits its application for the integration of deep

earning models and multiparametric programming. 

This manuscript presented the integration of deep learning

odels and multiparametric programming. The deep learning

odels are neural networks with a feedforward structure. Rectified

inear units defined the activation function of the neural network

ue to their piecewise linear nature. Therefore, neural networks

ith ReLU activation functions are suitable candidates to approx-

mate nonlinear functions because of their predictive capabilities

nd ability to be embedded as a MILP in a general optimization

ormulation. The ability to integrate neural networks with ReLU ac-

ivation functions into parametric optimization was demonstrated

y the optimal operation of a chemostat. 

Integrating accurate surrogate models in optimization formula-

ions is a critical step in many fields. Future work includes (i) using

he presented methodology in various optimization based applica-

ions that are already formulated as MILPs such as scheduling deci-

ions, (ii) comparisons of different surrogate modeling approaches,

nd (iii) reducing the time to develop the full multiparametric so-

ution. 

Our future work will be focused on incorporating the proposed

pproach to other multiparametric programming formulations and

n using adaptive/alternative neural network structures as a means

o enhance the ability of the network to capture nonlinear dynamic

ehavior ( Wu et al., 2019a; Katz, 2020 ). 
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