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Deep learning models are a class of approximate models that are proven to have strong predictive ca-
pabilities for representing complex phenomena. The introduction of deep learning models into an opti-
mization formulation provides a means to reduce the problem complexity and maintain model accuracy.
Recently it has been shown that deep learning models in the form of neural networks with rectified linear
units can be exactly recast as a mixed-integer linear programming formulation. However, developing the
optimal solution of problems involving mixed-integer decisions in online applications remains challeng-
ing. Multiparametric programming alleviates the online computational burden of solving an optimization
problem involving bounded uncertain parameters. In this work, a strategy is presented to integrate deep
learning and multiparametric programming. This integration yields a unified methodology for develop-
ing accurate surrogate models based on deep learning and their offline, explicit optimal solution. The
proposed strategy is demonstrated on the optimal operation of a chemostat.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Deep learning is a method to approximate complex systems
and tasks by exploiting copious amounts of data to develop rig-
orous mathematical models. These approximate models are based
on neural networks which are popular in the chemical engineer-
ing literature (Himmelblau, 2000; Shang and You, 2019). As data-
driven modeling techniques are seeing increased value and are be-
ing adopted by industry (Tran et al., 2018), the incorporation of
deep learning into optimization formulations is paramount.

Surrogate modeling for optimization, both as a tool (Beykal
et al, 2018; Kim and Boukouvala, 2019) and as a means for
approximate model development (Tso et al., 2019) is an estab-
lished field. In the chemical engineering literature, the use of neu-
ral networks as surrogate models has found success in a vari-
ety of contexts (Chiang et al., 2017), such as (i) modeling (Shokry
et al, 2018; Hough et al., 2017), (ii) optimization and control
(Schweidtmann et al., 2019; Himmelblau, 2008; Wu et al., 2019b;
2019c¢), (iii) regression (Himmelblau, 2000), and (iv) classification
(Himmelblau, 2000). In all of these applications, the developed ar-
tificial neural network (ANN) model is used to represent a complex
nonlinear process. However obtaining the global solution for the
corresponding optimization problem incorporating a neural net-
work poses a significant computational burden due to the inherent
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nonconvexity introduced (Rister and Rubin, 2017). Hence, incorpo-
rating neural networks in real-time applications remains a major
challenge.

The ability to use neural network models as surrogates in
an optimization formulation is contingent on utilizing a strategy
to obtain a quality optimal solution. Current literature demon-
strates an interest in obtaining ‘good’ solutions to optimization
formulations incorporating deep learning models. Schweidtmann
et al. (2019) proposed a global optimization strategy based on
McCormick relaxations to identify the global minimum to opti-
mization problems involving ANNs. Pfrommer et al. (2018) utilized
a stochastic genetic algorithm to find the minimum for a pro-
cess involving textile draping where a neural network was uti-
lized as a surrogate model. Nagata and Chu (2003) developed
a surrogate neural network model for a fermentation process,
and optimal operating conditions were identified using a genetic
algorithm.

Deep learning has a distinct advantage compared to other sur-
rogate modeling techniques, such as response surfaces, Kriging
models, Bayesian networks, and radial basis functions (Asher et al.,
2015). Because of the highly connected structure of deep learning
models, they are naturally adept at expressing complex functional
relationships. Their ability to approximate a function to an arbi-
trary level of accuracy is because there is an exponential number
of piecewise connected hyperplanes based on the size of the neu-
ral network (Chen et al., 2018; Montufar et al., 2014).

Given an optimization problem with highly complex and non-
linear components, neural networks with rectified linear activation
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units (ReLU), that have been shown to have high performance for
regression based problems (Eckle and Schmidt-Hieber, 2019), are of
interest to be incorporated into optimization formulations as sur-
rogate models. In recent work, it was shown that neural networks
utilizing ReLU activation functions can be represented exactly in
a mixed-integer linear programming (MILP) formulation (Fischetti
and Jo, 2018; Grimstad and Andersson, 2019a). An exact recast-
ing of neural networks with ReLU activation functions as an MILP
formulations allows a new avenue for incorporating deep learning
models into optimization based formulations. With this capability,
the gap between model accuracy and computational performance
is reduced.

Previous work has demonstrated integrating neural networks
with ReLU activation functions into optimization formulations.
However, in online applications where time is a critical factor, de-
termining the optimal solution is challenging because of the inher-
ent nonconvexity of the resulting discrete optimization formula-
tion. In these time critical applications, multiparametric program-
ming is a proven methodology to alleviate the online computa-
tional burden by developing the optimal solution offline. By in-
corporating more advanced surrogate models in multiparametric
optimization formulations, the benefits of the developed paramet-
ric solution are improved, namely (i) the ability to obtain the op-
timal solution without having to solve an optimization problem
each time the uncertain parameter is identified, (ii) having the ex-
plicit map of solution a priori, and (iii) having the explicit func-
tional relationship between optimization variables and uncertain
parameters. In addition, the explicit map of solution provides ben-
efits in numerous applications including, multiparametric model
predictive control (Bemporad et al., 2002; Katz et al.,, 2018; Lee
and Chang, 2018), scheduling (Kopanos and Pistikopoulos, 2014),
bilevel programming (Avraamidou and Pistikopoulos, 2019), multi-
level decision making (Burnak et al., 2018; 2019), portfolio selec-
tion (Steuer et al., 2006), and instance-weighted support vector
machines (Karasuyama et al., 2012).

Complete algorithms regarding the development of the multi-
parametric solution is available for multiparametric linear (mpLP)
(Jones and Morrari, 2006), quadratic (mpQP) (Gupta et al., 2011;
Oberdieck et al., 2017; Ahmadi-Moshkenani et al., 2018), mixed-
integer linear (mpMILP) (Wittmann-Hohlbein and Pistikopoulos,
2013; Charitopoulos et al., 2018), and mixed-integer quadratic
programming (mpMIQP) problems (Oberdieck and Pistikopoulos,
2015). In these multiparametric model formulations, a key de-
tail is their dependence on linear or piecewise linear constraints.
Therefore, to incorporate more complex phenomena in paramet-
ric formulations surrogate modeling is required. Developing accu-
rate surrogate models to represent nonlinear functional relation-
ships is non-trivial, and deep learning models based on RelLU ac-
tivation functions bridge this gap. Given that complete theory re-
garding mpMILPs and algorithmic strategies are available in online
solvers (Oberdieck et al., 2016b; Herceg et al., 2013), the integra-
tion of neural networks involving ReLU activation functions and
multiparametric programming is a natural step.

The rest of the work is organized as follows. First an overview
of neural networks and ReLU activation functions is provided. Then
a discussion on multiparametric programming is presented, fol-
lowed by the framework for integrating neural networks and mul-
tiparametric programming. Next, a demonstration of the frame-
work is showcased on a chemostat model. Finally conclusions and
future directions are presented.

2. Key contribution
The focus of this work is to approximate nonlinear functions in

optimization formulations with neural networks composed of ReLU
activation functions. In particular, the key contribution is the inte-

gration of these deep learning models and multiparametric pro-
gramming.

Given is a nonlinear optimization formulation in the form of
Eq. (1).

mxin cTx
stt. f(6,x) <0

xe X1
0 e@m (1)

where x is the vector of optimization variables, c is the linear cost
coefficient, f is the vector of linear/nonlinear constraints, and 6 is
the vector of uncertain parameters that are known at the time of
solving the nonlinear optimization problem. The sets X9 and @™
are closed polyhedral sets of the g optimization variables and the
m uncertain parameters respectively.

Determining the optimal solution at every parameter realization
(e.g. model predictive control, reactive scheduling) for this nonlin-
ear optimization problem is computationally expensive. Multipara-
metric programming is a technique that transforms an optimiza-
tion formulation involving bounded, uncertain parameters to an
explicit functional relationship between the optimal optimization
variables and these parameters. The optimal multiparametric solu-
tion is described by the different combinations of active constraints
which can occur for every feasible uncertain parameter value, 6,
realization. Based on the various active sets, the overall parameter
space is partitioned indicating where in the parameter space each
optimal multiparametric solution holds. To realize the benefits of
multiparametric programming, a surrogate model is developed to
replace the nonlinear function in Eq. (1). The model accuracy of
the surrogate model is ensured by utilizing neural networks with
ReLU activation functions. Neural networks are inherently noncon-
vex, nonlinear functions making them difficult to incorporate into
optimization problems, however a recent reformulation technique
enables their direct use in a mixed-integer linear programming
based formulation with no information lost. Following the imple-
mentation of the neural network surrogate model, Eq. (1) is ap-
proximated by Eq. (2).

min c’w
Xy

st. [AE]Jw <b+F6O
w =[xy’
xeXi, yeZ}
0cO™ (2)

where A € R4, E e RI" F ¢ R1*M h ¢ R+ =1 Determining the
optimal solution of a mixed-integer linear programming problem
is still computationally demanding. Unlike nonlinear programming
formulations with uncertain parameters, mixed-integer linear pro-
gram with bounded uncertain parameters are solvable using state-
of-the-art multiparametric algorithms. Therefore, the online com-
putational burden of determining the optimal solution to an MILP
at every parameter realization is eliminated. The developed explicit
solution produces a map of solutions, Fig. 1, where each region is
an affine function that relates the optimal optimization variables
to the uncertain parameters.

A summary of the novel framework followed in the work
is presented in Fig. 2. The key features include data collec-
tion and processing, neural network development, MILP refor-
mulation, and multiparametric programming. The following sec-
tions provide necessary information regarding (i) neural networks,
(ii)multiparametric programming, and (iii) their integration.
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Fig. 1. The framework for integrating deep learning and multiparametric program-
ming, adapted from Katz, 2020.
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Fig. 2. The framework for integrating deep learning and multiparametric program-
ming, adapted from Katz, 2020.

3. Neural networks

Neural networks are nonparametric mathematical models that
are an effective tool to map input data to output data with a high
degree of accuracy. The strength of neural networks is their abil-
ity to universally approximate any function (Pinkus, 1999). A neu-

Input Layer HiddenLayer 1 ~ HiddenLayer2  Output Layer

N

Input 1

>.7 Output 1

Input 2
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Fig. 3. The structure of a feedforward neural network with inputs, outputs, and
hidden layers, adapted from Katz, 2020.

ral network is defined by its structure, two of which are feed-
forward and recurrent (Ning and You, 2019). In this work, the
structure assumed is feedforward because of its proven perfor-
mance and straightforward structure, shown in Fig. 3. The feed-
forward neural network involves inputs, outputs, an input layer,
output layer, hidden layers, weighting parameters, and activation
functions. The inputs, outputs, input layer, and output layer are de-
fined by the particular process. For example, Fig. 3 has 2 inputs, 1
output, 2 hidden layers, 4 nodes in the first hidden layer, and 2
nodes in the second hidden layer. However, the number of hidden
layers and their respective sizes, weighting parameters, and acti-
vation functions are all tunable. The number of hidden layers and
their respective sizes can be determined through trial and error,
and the weighting parameters are typically defined through a lo-
cal search, such a stochastic gradient descent. Numerous activation
functions have shown to be meritous under varying circumstances.
In this work, the ReLU activation function is used throughout the
manuscript because it can be reformulated as a MILP.

3.1. Training

Training a neural network involves identifying the values for the
weights and biases, such that a performance metric is minimized.
The training step is critical because it provides the basis for how
the neural network will map inputs to outputs. Key factors that
must be addressed during training include (i) identifying a perfor-
mance metric to use, (ii) minimizing the performance metric, and
(iii) data selection and processing.

3.1.1. Performance metric

The performance metric is a measure to provide the goodness
of fit for the neural network. The metric is based on the deviation
between the output of the neural network and the dataset. There
are a myriad of performance criteria, such as mean squared error
(MSE), normalized mean squared error (NMSE), root mean squared
error (RMSE), mean absolute error (MAE), etc. Afram et al. (2017).
These metrics are different formulations for quantifying the devi-
ation between the expected output of the neural network and the
output of the dataset. Note that determining which performance
criteria should be selected to train the neural network is non-
trivial.

3.2. Validation

Model validation ensures the trained model is an accurate rep-
resentation of the dataset. There are many techniques for model
validation for data-driven models, such as (i) data partitioning, (ii)
cross-validation (Poole and Mackworth, 2010), and (iii) analyzing
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the residual plot. These techniques provide different approaches for
ensuring the regressed model is valid over the dataset.

3.3. RelU activation functions

Each node in a neural network’s hidden layer is associated with
an activation function. Common activation functions are the hy-
perbolic tangent, sigmoid, and the rectified linear unit. Selecting a
suitable activation function is problem dependant, but the rectified
linear unit has consistently displayed an ability to perform well on
numerous applications, and is the activation function assumed in
this work.

The ReLU activation function is defined in Eq. (3). It is a piece-
wise linear function alternatively represented by Eq. (4). The al-
ternative representation gives rise to a formalism for introducing
a neural network with RelLU activation functions into a mixed-
integer optimization formulation.

y = max{0, x} (3)

S 8 1, if0<x (@)
= 0X, =
Y 0, otherwise

The ReLU activation functions approximates a function by de-
constructing the original function into a set of piecewise hyper-
planes. The number of piecewise hyperplanes that define the ReLU
neural network scales exponentially with the number of hidden
layers of the neural network, shown in Eq. (5) (Chen et al., 2018;
Montufar et al., 2014).

-1
Q((”) n”") (5)
no

where L is the number of hidden layers, ng is the number of in-
puts, and n is the number of nodes. The exponential scaling of
the number of piecewise hyperplanes is the reason ReLU activation
functions in deep learning models are successful. This complexity
is demonstrated with Eq. (5). In other words, a deep neural net-
work with ReLU activation functions expresses an arbitrary func-
tion with an exponential number of piecewise affine hyperplanes.
Fig. 4 shows the connected piecewise affine hyperplane structure
for an arbitrary neural network, with two inputs, x and y, and one
output, z. Leveraging the deep neural networks ability for accu-
rate function approximation makes it an ideal candidate surrogate
model for optimization studies.

ReLU Neural Network

0.25 -

0.2

0.15

0.1+

0.05 -

Fig. 4. A neural network with ReLU activation functions and the representative con-
nected hyperplanes, adapted from Katz, 2020.

4. Multiparametric programming

Optimization formulations involving bounded uncertain param-
eters are defined as a multiparametric programming problem. The
multiparametric solution provides a means to derive analytic ex-
plicit functional relationships between the optimization variables
and these uncertain parameters. Developing the multiparametric
solution has several benefits including (i) determining the opti-
mal solution faster in real time as the uncertainty is revealed,
(ii) deriving fundamental knowledge of the optimization formula-
tion via the offline map of solution, and (iii) providing the explicit
expressions relating optimization variables to uncertain parame-
ters that can be embedded in multi-level optimization frameworks
(Burnak et al., 2019). In this work, we focus on mpMILPs, which
are used as the exact reformulation of deep neural networks main-
taining ReLU activation functions. Because the solution strategy for
mpMILPs is based on continuous mpLPs, a comprehensive discus-
sion on the fundamentals and solution strategies for mpLPs is pro-
vided in the subsequent sections. Discussions regarding developing
the full multiparametric solution for mpMILPs is then presented in
Section 4.2.

4.1. Fundamental concepts

A generic mpLP has the following form
min cfx
s.t. Ax<b;+FEf0, Viel
Ax=Dbj+Fb, VjeJ
0 € ©® :={0 e R™"|CR40 < CRy}
X eR" (6)

where the matrices A; € R4, F; e RI*™ A; e R1¢, F; e RI*™ and
the scalars b;, b; correspond to the ith and jth inequality and equal-
ity constraints of the sets T and J respectively.

The multiparametric solution of Eq. (6) returns a list of critical
regions, and each critical region defines affine functions relating
the bounded uncertain parameters to the optimal continuous deci-
sion variables, Eq. (7).

x* =K0* +1;, 0" e CR = {CR}0 < CR!} (7)

where x* is the optimal solution at the parameter realization 6*,
CR! define the ith critical region, and K; and r; define the affine
expression for the ith critical region.

The development of the multiparametric solution has been ad-
dressed using three types of algorithmic approaches (i) geometric-
based strategies (Bemporad et al., 2002), (ii) active set-based
strategies (Gupta et al., 2011), and (iii) combinations of geometric
and active set methodologies (Oberdieck et al., 2017).

Geometric-based algorithms are founded on the following no-
tion: given a critical region, the neighborhoods area is explored to
identify adjacent critical regions, Fig 5. These identified critical re-
gions are subsequently utilized to explore their neighboring critical
regions, until the full parametric solution is determined.

On the other hand, combinatorial approaches aim to implic-
itly explore the parameter space through enumeration and efficient
pruning criteria of all possible active set which can yield an op-
timal solution for a feasible parameter realization, Fig 6. Because
each optimal active set yields a critical region, the identification of
the complete map of solutions is achieved.

Each of the approaches offers its own advantages and draw-
backs in regards to developing the solution of the multipara-
metric optimization problem, and the selection of the algorith-
mic strategy depends on the structure of each particular prob-
lem (Oberdieck et al., 2016a). Such algorithms are provided in
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Fig. 5. Illustrative representation of the exploration of the parameter space using a
geometrical algorithm for multiparametric programming, adapted from Katz, 2020.

the state-of-the-art software, Parametric OPtimization (POP) Tool-
box (Oberdieck et al.,, 2016b) and Multiparametric Toolbox (MPT)
(Herceg et al., 2013).

4.2. Multiparametric mixed-integer linear programming

A vital element for the integration of multiparametric pro-
gramming and deep learning using ReLU activation functions are
mpMILPs, which are represented by Eq. (2). Developing the full
multiparametric solution for mpMILPs is significantly more com-
putationally taxing than for mpLPs or mpQPs. However, there
exists full theory and algorithms to solve these challenging
problems.

An overview of the solution procedure is as follows. Given the
mpMILP, a candidate set of critical regions is determined for a
particular combination of binary variables. In an iterative manner,
each critical region is examined to identify if an improved solu-
tion exists for a different binary combination. The comparison pro-
cedure is performed by introducing integer cuts into the original
mpMILP within the confines of the critical region under examina-
tion. The resulting map of solutions provides the optimal critical
regions, the optimization variables as functions of the uncertain
parameters, and the optimal integer variables, (8).

x* =Ko0* +r;,
Y =VYi

(8)

} 0" e CRi = {CRi0 < CR}.

Note that improving mpMILP algorithms is accomplished via
strengthening the comparison procedure, with the goal of identi-
fying fewer candidate critical regions.

5. Framework for integration

Current theory regarding multiparametric programming indi-
cates the optimization formulation must have linear or piece-
wise linear constraints with a linear or convex quadratic objec-
tive function. Hence, the description of nonlinear constraints or
objective functions that naturally appear in real processes cannot
be achieved directly in multiparametric programs. Therefore, surro-
gate models are a necessity to capture such complex relationships.
Because of their strong predictive capabilities, deep learning mod-
els using ReLU functions are ideal candidates to be incorporated
into mpP formulations.

In the remaining of this section, the framework for integrating
deep learning models and multiparametric programming is pre-
sented. First the multiparametric nonlinear programming (mpNLP)
problem is formulated. The nonlinear equations are then approxi-
mated using a deep neural network with ReLU activation functions.
The neural network is then recast as a MILP. The mpNLP is refor-
mulated to incorporate the MILP representation of the neural net-
work, yielding a mpMILP. With the developed mpP problem formu-
lated, the problem is solved using the POP toolbox. Further details
are provided in the subsequent sections.

5.1. Optimization formulation

Eq. (9) defines a mpNLP with a linear objective and bounded
uncertain parameters, 6. In addition, it is assumed the objective
function is linear for clarity purposes only, and is not a restriction
of the proposed integration strategy.

min cx
st. h(x,0)=0
g(x,0) <0
xe X!
0 ec®™ (9)

where c is a cost vector, x € R? is the vector of optimization vari-
ables, 8 € R™ is the vector of uncertain parameters, and h and g are
nonlinear relationships between optimization variables and uncer-
tain parameters. Some examples of the nonlinear constraints de-
fined by h and g are thermodynamic relations, disturbance models,
or path constraints. The nonlinear constraints defined by h and g
are considered to be complex, nonlinear, and nonconvex ensuring
the development of the solution for a given parameter realization

8

\\Int'ea.aii)le //
-

Pruned

Fig. 6. Illustrative representation of the exploration of the parameter space using a geometrical algorithm for multiparametric programming, adapted from Katz, 2020.
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of the resulting NLP is challenging. Reducing the complexity of h
and g improves the computational performance of determining the
optimal solution for a given parameter realization.

5.2. Neural network model development

The nonlinear functions h and g in Eq. (9) are approximated us-
ing deep neural networks with ReLU activation functions. The neu-
ral network is developed through data sampling, training, and val-
idation. Note that each nonlinear function can be represented as
a deep neural network. However, it may be advantageous to group
functions that are related to reduce the total number of neural net-
works used in the final formulation.

Prior to model development, it is critical to develop a suitable
dataset. The input space to the functions h and g are sampled to
construct the input/output dataset. The relationship between the
inputs of the functions to the outputs is important to understand
prior to invoking a sampling procedure. For instance, if the func-
tions being approximated are probability distributions, the sam-
pling procedure should follow Monte Carlo techniques or Markov
Chain Monte Carlo methods (van Ravenzwaaij et al.,, 2018). In the
case h and g are defined by a dynamic model, system identifica-
tion techniques are used to properly sample and excite the system
to achieve the desired relationship between the inputs and out-
puts (Ljung, 1999). Following sampling the space of the nonlinear
functions, the dataset is normalized to improve training the neural
network model.

Once a suitable input/output dataset is constructed, the neural
network is defined by specifying the number of hidden layers and
the number of nodes in each hidden layer. Determining the opti-
mal number of hidden layers and nodes is not trivial, and in many
cases heuristically searching for a suitable size is sufficient.

5.3. Reformulation

As demonstrated in the literature (Fischetti and Jo, 2018; Grim-
stad and Andersson, 2019a), a neural network involving ReLU acti-
vation functions can be exactly recast as a MILP following a big M
formulation. A big M formulation, as shown in Eq. (11), is a strat-
egy to activate or deactivate constraints based on the value of the
binary variable y, either 0 or 1. The value of the M parameter is a
large number and it is selected depending on the application. Us-
ing a MILP formulation allows the neural network to be embedded
into an optimization problem directly without the associated diffi-
culty of a composite function with the nonlinear max operator. The
procedure is presented as follows.

For an arbitrary layer with n nodes, the output takes the form
of Eq. (10), where k is the layer, Wk is the matrix of weights for
layer k, b¥ is the vector of biases for layer k, x*~1 € R" is the output
of the previous layer, and x¥ € R" is the output of the current layer.
The max operator is taken element-wise.

XK = max{0, Wkxk-1 4 bk} (10)

The importance of the ReLU activation function is its piecewise
linear nature. Therefore, Eq. (10) can be exactly recast in an opti-
mization formulation via the inclusion of binary variables. Eq. (11)
is the reformulation of the k" hidden layer in an MILP structure’.
Eq. (11) represents the neural network structure and not the over-
all optimization problem. The final optimization problem formula-

1 The final layer, or the output layer, does not require the modification presented
in (11) because the activation function in the final layer is linear

tion has the form of Eq. (2).

Whxk=T L bk = xk — gk (11a)
Xk < Myy (11b)
sk < —Ma(1-y) (11c)
x>0 (11d)
sk>0 (11e)
ye{o,1)" (11f)

In (11), y is a vector of binary variables, s € R is the vector of
slack variables, and M; is a large scalar value. To improve the com-
putational performance of identifying the optimal solution, the big
M values, M; and M,, are defined to tightly bound the optimiza-
tion variables x¥ and sk (Grimstad and Andersson, 2019b). If the
big M values are well defined, an unnecessary computational bur-
den is avoided. After recasting, the total number of binary variables
is equal to the total number of nodes that constitute the hidden
layers. Note that the recasted neural network with ReLU activation
function is an exact reformulation. The binary variables enable the
activation function to output a value of 0 or x, via the constraints
(11b) and (11c). Incorporating the recasted neural network into an
optimization formulation provides an effective strategy to maintain
high accuracy with a surrogate model, and obtaining the global op-
timum does not require specialized global optimization techniques.
Instead, standard mixed-integer linear programming methods are
utilized such as cutting planes and branch and bound techniques
which are readily available in existing software.

During training, the number of active nodes (nodes that take a
value other than 0) can be reduced using regularization techniques.
Minimizing the number of active nodes directly corresponds to a
reduction in the number of binary variables needed during the
recasting procedure. By reducing the number of binary variables
needed to define the neural network, the computational burden
of solving the final optimization problem is significantly dimin-
ished. After training, postprocessing the neural network model also
has the potential to minimize unnecessary binary variables. For in-
stance, a node in a hidden layer that is always positive is rep-
resented by a linear activation function. Hence, that node does
not require a slack variable and a binary variable. Because of the
mixed-integer nature of the optimization formulation, any reduc-
tion in the number of binary variables made have the potential for
impacting the computational performance notably.

5.3.1. Variable aggregation
Following Eq. (11), the neural network is transformed to a sys-

tem of equality constraints, inequality constraints, binary variables,
and slack variables. Because the equality constraints are linear, the
intermediate optimization variables can be eliminated via variable
aggregation. By eliminating intermediate variables, the number of
optimization variables and constraints is reduced, which is impor-
tant in developing the multiparametric solution.
X' =WIx0 4 p! 45! (12a)

1 k=1 i+1 ~ .
X=TIWRO+ Y [[W/b +5) +b*+5* k=2,....K-1

i=k i=1 j=k

(12b)
1 ) K-1i+1 . ) R

XMN=TIWxO+ > T[W/ (b +s') +b* (12c)
i=K i=1 j=K
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where W and b* define the weights of the ki hidden layer, K is
the output layer, s¥ is the vector of slack variables, x0 is the input
vector to the neural network, and xX is the vector of outputs of the
neural network. Egs. (11) and (12) are combined to provide a set
of constraints in the form of Eq. (2).

5.3.2. The importance of sparsity

Introducing sparsity into the neural network has a profound im-
pact on the resulting optimization formulation. Because sparsity
aims to minimize the active nodes in the neural network, the num-
ber of optimization variables and constraints are reduced. Further-
more, by reducing the size of the final optimization problem, the
resulting parametric solution requires less offline computational ef-
fort, and maintains fewer defining critical regions. The offline com-
putational performance is improved because the complexity of mp-
MILPs scales with the number of optimization variables and con-
straints.

5.4. Final mpMILP formulation

The final multiparametric formulation is in the form of an mp-
MILP, Eq. (2). The mpMILP contains the inherent linear components
of the optimization problem, such as box constraints, and the em-
bedded neural network. By using a neural network to approximate
the nonlinear parts of the mpNLP, the optimization formulation is
tractable and provides an optimal solution resembling the true op-
timal. Another key feature of the resulting mpMILP is that the full
parametric solution can be developed, unlike the original mpNLP,
using the POP toolbox.

6. Results

A chemostat is considered to demonstrate the effectiveness of
integrating deep learning models and multiparametric program-
ming. The aim of the chemostat is to maximize the biomass con-
centration during operation. In this work, the ability of a neural
network to accurately capture the nonlinearity of a process is not
under scrutiny. Therefore, the illustrative example used is of small
scale, and is adapted from (Eaton and Rawlings, 1992). In this pro-
cess, the chemostat is continuously operated, and the process is
substrate inhibited. It is assumed the chemostat (i) is fed with pure
substrate, (ii) has constant volume, (iii) and is temperature inde-
pendent. The differential algebraic equations defining the chemo-
stat are presented in Eq. (13).

dx

= (w-Dx (13a)
ds X

= (sf—s)D—T (13b)
M MmaxS (13¢)

- km + s + kqs?

where x is the biomass concentration in the chemostat, s is the
substrate concentration in the chemostat, sy =4 is the substrate
concentration in the feed, u is the specific growth rate, y = 0.4
is the yield of cell mass, and D is the dilution rate. The specific
growth rate is defined by the parameters pmax = 0.53, kp =0.12,
and k; = 0.4545.

The objective for the chemostat is to develop a multiparametric
model predictive control formulation, whereby the dilution rate is
manipulated in real time to maximize the biomass concentration.
The difficulty in satisfying the control objective is the nonlinearity
present from the specific growth rate. The continuous time control

formulation is provided by Eq. (14).
mDm x(tf)
s.t. x=(u—D)x, x(0) =xo
§=(s;—5)D— “7" 5(0) = 5o

_ HmaxS(t)
RO = 50 + ks (D)2

D<D<D
xeX, ses (14)

Because of the difficulty in solving the continuous time optimal
control problem, a discrete time approximate model is developed.
By utilizing the presented framework, a neural network consisting
of ReLU activation functions is used to approximate the chemostat
model.

6.1. Open loop

Input/output data is first generated in open loop for the chemo-
stat process. The input data is generated by perturbing the dilution
rate randomly for 5 - 10* time steps. The input profile aims to ex-
cite the system to capture the nonlinear dynamics of the process,
and to ensure enough data is collected to train the neural network.
To improve the training performance, the input and output data
is normalized between [—1, 1]. During training, the possibility of
overfitting is reduced via partitioning the data set into a training,
validating, and testing set following a 70%/15%/15% split, respec-
tively. The neural network maintains 3 inputs (the dilution rate and
the initial conditions of the process) and 2 outputs (the predicted
states of the system). In addition, the neural network has 3 hidden
layers with 5 nodes in the first hidden layer, 4 in the second, and
5 in the third.

Fig. 7 presents the open loop response of the process and the
output of the neural network for a slice of the total training data
for visibility. The neural network has a mean squared error (MSE)
of 1.2-1072 indicating an acceptable open loop performance. The
developed neural network is designed to predict one step ahead
into the future. Therefore, the explicit controller predicts one step
into the future. Further time step prediction can be developed via

Open Loop Response
T T

» -0.36
©
E
=]
&
o
[}
N
= ;
£
5
Z.0.42 L L
1500 1550 1600 1650
2.0.85
[
B
Qo
3
(7]
e
(5]
N
g
2 4L w ‘
1500 1550 1600 1650
c-0.2
K]
!
0-0.4r,
o
()
N
© -0.6
E
o
Z o8 L I
1500 1550 1600 1650
Sample

Fig. 7. The open loop performance of the chemostat and neural network.
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Fig. 8. The parametric solution for the explicit model predictive controller with a
deep learning model.
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Fig. 9. The closed loop performance of the chemostat with an explicit model pre-
dictive controller.

(i) training the neural network on input/output data that repre-
sents multiple steps into the future, or (ii) feeding the output of
the one step ahead neural network back to itself.

6.2. Multiparametric solution

The neural network developed to approximate the nonlinear
dynamics in the optimal control formulation, Eq. (14), is used to
formulate the resulting mpMILP. The developed mpMILP has 62
constraints, 15 continuous optimization variables, 14 binary vari-
ables, and 2 uncertain parameters. The full solution is identified
using the POP toolbox in the Matlab environment (Oberdieck et al.,
2016b). The parametric solution has 40 critical regions, calculated
in 14.7 seconds and is presented in Fig. 8.

6.3. Closed loop performance

The developed explicit controller is validated in closed loop
against the chemostat dynamic model. Fig. 9 demonstrates the
ability of the explicit controller to maximize the biomass concen-
tration. From the closed loop response, the process has no fluctu-
ations and meets the target objective. It is important to point out
the nonlinearity displayed by the controller is a direct consequence
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Fig. 10. The states of the chemostat overlayed on the parametric solution during
the closed loop response.

of using the neural network model. The input profile is developed
in such a way to maximize the biomass concentration to a final
value of 1.6, when started from a value of 0.1. The state trajectories
are also visualized in Fig. 10, in which the closed loop performance
is overlayed on the explicit map of solution.

7. Conclusion

In online applications where time is a critical factor, determin-
ing the optimal solution with these embedded deep learning mod-
els can be a challenge. Multiparametric programming alleviates
the computational burden by developing the offline, explicit solu-
tion to the parametric optimization problem. With available online
solvers, developing the full parametric solution to the mpMILP is
manageable and permits its application for the integration of deep
learning models and multiparametric programming.

This manuscript presented the integration of deep learning
models and multiparametric programming. The deep learning
models are neural networks with a feedforward structure. Rectified
linear units defined the activation function of the neural network
due to their piecewise linear nature. Therefore, neural networks
with ReLU activation functions are suitable candidates to approx-
imate nonlinear functions because of their predictive capabilities
and ability to be embedded as a MILP in a general optimization
formulation. The ability to integrate neural networks with ReLU ac-
tivation functions into parametric optimization was demonstrated
by the optimal operation of a chemostat.

Integrating accurate surrogate models in optimization formula-
tions is a critical step in many fields. Future work includes (i) using
the presented methodology in various optimization based applica-
tions that are already formulated as MILPs such as scheduling deci-
sions, (ii) comparisons of different surrogate modeling approaches,
and (iii) reducing the time to develop the full multiparametric so-
lution.

Our future work will be focused on incorporating the proposed
approach to other multiparametric programming formulations and
in using adaptive/alternative neural network structures as a means
to enhance the ability of the network to capture nonlinear dynamic
behavior (Wu et al., 2019a; Katz, 2020).
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