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a b s t r a c t 

Fitting a machine learning model often requires presetting parameter values (hyperparameters) that con- 

trol how an algorithm learns from the data. Selecting an optimal model that minimizes error and gen- 

eralizes well to unseen data becomes a problem of tuning or optimizing these hyperparameters. Typi- 

cal hyperparameter optimization strategies involve discretizing the parameter space and implementing 

an iterative search procedure to approximate the optimal hyperparameter and model selection through 

cross-validation. Instead, for machine learning algorithms that are formulated as linear or quadratic pro- 

gramming (LP/QP) models, an exact solution to the hyperparameter optimization problem is obtainable 

through parametric programming without any approximation. First, the hyperparameter optimization 

problem is posed more naturally as a bilevel optimization. Second, using parametric programming theory, 

the bilevel optimization is reformulated into a single level problem. Exact solutions to the hyperparame- 

ter optimization problem for LASSO regression and LP L 1 -norm support vector machine (SVM) are derived 

and validated on example data. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Let X be a i × j data matrix, and Y be a i × 1 response vec-

or, where i is the sample size and j is the number of predictors or

eatures. In supervised learning (regression or classification) prob-

ems, it is assumed that there exists a function f that maps the

elationship between a set of input predictors X = (X 1 , X 2 , . . . , X j ) ,

here X j is the j th column vector of X , and output responses Y . 

 = f (X ) + ε (1)

 represents the learnable information that X provides about Y ,

hile ε is a random error term containing information that is

nmeasured or unavailable in the data for the learning process.

ecause f is not exactly known, machine learning algorithms are

eeded to estimate f and predict Y . 

ˆ 
 = 

ˆ f (X ) (2) 

ˆ f represents the estimate for f , and 

ˆ Y is the resulting prediction.

is not included in the prediction because it averages out to be 
ero. 

∗ Corresponding author at: Texas A&M Energy Institute, 1617 Research Pkwy, Col- 

ege Station, TX 77843, USA. 
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The accuracy of this estimation and prediction is the squared

rror between Y and 

ˆ Y . Assuming ˆ f is fixed, the expected error of

 single predicted point ˆ y 0 from one observation x 0 , a given row

ector of X , is decomposed into reducible and irreducible quanti-

ies ( James et al., 2013 ). 

 [ y 0 − ˆ y 0 ] 
2 = E [ y 0 − ˆ f (x 0 )] 

2 

= [ f (x 0 ) + ε − ˆ f (x 0 )] 
2 

= [ f (x 0 ) − ˆ f (x 0 )] 
2 

︸ ︷︷ ︸ 
reducible 

+ V ar(ε) ︸ ︷︷ ︸ 
irreducible 

(3) 

ecause ˆ f is not a perfect estimate for f , this inaccuracy introduces

ome error. This error is reducible because it is possible to im-

rove the fit of ˆ f by using a better performing algorithm. Even if
ˆ f were to exactly match f , the prediction of Y still has some er-

or associated with it due to ε. This error is irreducible because a

odel cannot account for information that is not contained in the

ata while the algorithm is learning. This provides an upper bound

 Abu-Mostafa et al., 2012 ) on the accuracy of any estimated 

ˆ f . 

As such, the goal of any machine learning method is to mini-

ize the reducible error in order to maximize the accuracy of f̂ 

o be closer to its upper bound. The reducible error is made up of

https://doi.org/10.1016/j.compchemeng.2020.106902
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106902&domain=pdf
mailto:stratos@tamu.edu
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Fig. 1. More complex models generally have lower bias and higher variance, while 

less flexible models generally have higher bias and lower variance. 
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two components: bias & variance ( James et al., 2013 ). 

[ f (x 0 ) − ˆ f (x 0 )] 
2 

︸ ︷︷ ︸ 
reducible 

= V ar[ ̂  f (x 0 )] ︸ ︷︷ ︸ 
variance 

+ Bias [ ̂  f (x 0 )] 2 ︸ ︷︷ ︸ 
bias 

(4)

Bias is the error introduced by approximating a real-world phe-

nomena, which is often complex, with a simpler model that has

less fidelity. Variance measures the sensitivity of ˆ f to the train-

ing data set and how much its fit would change if estimated us-

ing different data. In general, as a model becomes more compli-

cated or flexible (including more parameters to estimate), bias de-

creases and variance increases ( James et al., 2013; Abu-Mostafa

et al., 2012 ). A flexible ˆ f fits closer to given training data set (low-

ering bias), but is more sensitive to training data variability (rais-

ing variance). The reverse of this bias & variance trade-off for ˆ f is

also generally true for a simpler model. Fig. 1 illustrates the bias &

variance trade-off with respect to model complexity. 

Therefore, selecting an optimal ˆ f from a set of various can-

didate ones, ranging in complexity from simple linear to highly

nonlinear, involves balancing the bias & variance trade-off. The

ideal machine learning method is one that simultaneously achieves

low bias and low variance ( Wilson and Sahinidis, 2017 ). Possessing

these characteristics gives the learned model a higher probability

of generalizing well to unseen data during model training and pre-

dict more accurately ( Abu-Mostafa et al., 2012 ). Too much variance

leads to ˆ f overfitting the data, and too much bias leads to ˆ f un-

derfitting the data ( Fig. 2 ). 

The most utilized approach for finding an optimal ˆ f is to incor-

porate an additional regularization term in a machine learning al-

gorithm’s loss function formulation ( Hastie et al., 2009 ). Typically,

the basic loss function for a supervised learning problem is the

minimization of the mean squared error (MSE) between Y and 

ˆ Y ,

where N is the sample size. 

min 

1 

N 

‖ Y − ˆ Y ‖ 

2 
2 = 

1 

N 

‖ Y − ˆ f (X ) ‖ 

2 
2 (5)

A regularization term contains an exogenous penalty parameter

(hyperparameter) whose value is set prior to training the model.

This hyperparameter λ controls the importance and weight of the

regularization term, which affects the resulting optimization so-

lution of a machine learning algorithm. A common regularization

term ( Hastie et al., 2009 ) is λ penalizing the q -norm of w , the

model weights of ˆ f (an example is ˆ f (X ) = Xw ), raised to the power

p . 

min 

w 

1 

N 

‖ Y − ˆ f (X ) ‖ 

2 
2 + λ‖ w ‖ 

p 
q (6)

In general, machine learning algorithms may have multiple

hyperparameters that are prespecified ( Bengio, 20 0 0; Foo et al.,

2008 ). Moreover, hyperparameters do not only exist inside a reg-

ularization term. Any external parameter that is not inferred by

the machine learning model and affects the performance, speed,
r quality of the learning process is considered a hyperparameter.

his work focuses on a hyperparameter regularizing the model fit,

ut similar extensions are possible to other hyperparameters, such

s those located inside kernel functions. 

In Eq. (6) , the aim of regularization is to control the complexity

f ˆ f that is fitted. As the value of λ varies from 0 to ∞ , the re-

ulting estimated 

ˆ f will have different reducible error realizations.

ikewise, the bias and variance values for each 

ˆ f are different. By

ncluding a regularization term, the reducible errors for several f̂ 

andidates are comparable and are an implicit function of the hy-

erparameter. Finding an optimal ˆ f with low bias and low variance

mounts to correctly tuning λ. However, what is the best value for

is not known a priori . Therefore, the selection of an optimal ma-

hine learning model is really a hyperparameter optimization prob-

em ( Fig. 3 ). 

The rest of the paper is organized as follows. In Section 2 , dif-

erent strategies for addressing the hyperparameter optimization

roblem are summarized. In Section 3 , some background on para-

etric programming theory and its implications for the hyperpa-

ameter optimization problem are briefly described. In Section 4 ,

he conversion of K -fold cross-validation for tuning hyperparam-

ters into a bilevel optimization problem is discussed. The usage

f parametric programming to reformulate the bilevel optimization

nto a single level problem is also presented. In Sections 5 and 6 ,

his bilevel & parametric optimization approach for hyperparame-

er tuning (HY-POP) is applied on LASSO regression and a L 1 -norm

upport vector machine (SVM), respectively. In the former, it is val-

dated that HY-POP leads to the same optimal λ and 

ˆ f as previ-

us results that developed a closed-form solution to LASSO regres-

ion. The latter extends HY-POP to achieve a new understanding

f LP L 1 -norm SVM. These examples highlight the ability of HY-

OP to explicitly solve the hyperparameter optimization for ma-

hine learning algorithms that are represented as linear program-

ing or quadratic programming (LP/QP) models. It is noted that

hese models are chosen to demonstrate HY-POP, and an analysis

f model sensitivity is not the aim of this work. Finally, some con-

luding remarks are made and future directions are suggested. 

. Hyperparameter optimization 

Commonly used strategies for hyperparameter optimization

 Bergstra et al., 2011; Claesen and De Moor, 2015; Hutter et al.,

015; Luo, 2016 ) involve dividing the parameter space into D

venly or randomly discretized points and performing an itera-

ive optimization procedure through K -fold cross-validation ( Fig. 4 ).

irst, the data is split into K subsets. Within each subset, the data is

urther separated into training and testing sets. Next, for each dis-

retized λ value, a separate optimization problem for the machine

earning model ( Eq. (6) ) is constructed on the training data in each

old and solved to estimate ˆ f . The validation error 1 
N ‖ Y − ˆ Y ‖ 2 

2 
is

hen computed using the estimated 

ˆ f and testing data in the same

old to predict Y . Finally, after iterating through all the λ values,

he validation errors for each λ across all folds are averaged to-

ether. The optimal ˆ f is the one with the λ value that gives the

mallest mean validation error. 

K -fold cross-validation with grid ( Liu et al., 2006 ) or random

earch ( Bergstra and Bengio, 2012 ) for hyperparameter optimiza-

ion is a generalizable way to approximate optimal model selec-

ion. The advantages of K -fold cross-validation are that, in most

ases, it captures the actual test error as an implicit function of

well-enough and calculates a ˆ f that balances bias & variance

 James et al., 2013; Abu-Mostafa et al., 2012 ). The disadvantages

f K -fold cross-validation are that sometimes K × D optimization

roblems may become a computational burden to solve and possi-

ly lead to inexact solutions that are troublesome due to poor dis-

retization. One way to bypass solving K × D optimization prob-
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Fig. 2. Finding a good ˆ f fit requires balancing bias and variance. 

Fig. 3. Optimal model selection amounts to determining the optimal hyperparam- 

eter. 
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Fig. 4. An overview of K -fold cross-validation for hyperparameter optimization. 
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ems in K -fold cross-validation is through a bilevel optimization

pproach ( Bennett et al., 2006; Klatzer and Pock, 2015 ), where the

raining and testing objectives are modeled together. This is dis-

ussed further in Section 4 . 

Another common method to tune hyperparameters is using

ayesian optimization ( Snoek et al., 2012; Eggensperger et al.,

013 ). This approach still involves iteratively exploring the hyper-

arameter space, where a probabilistic model of the validation er-

or as a function of λ is built from prior evaluations. The proba-

ilistic model is then used to approximate the optimal hyperpa-

ameter by assigning probability values to its location and select-

ng the one with the highest probability. Gradient-based methods

or hyperparameter optimization ( Bengio, 20 0 0 ) pose the valida-

ion error as a nonlinear objective function, with λ as the deci-

ion variable, and uses gradient descent to find a locally optimal λ.

s such, there is no guarantee that the hyperparameter optimiza-

ion is solved to a global optimum. Bayesian and gradient-based

ethods have been applied to many machine learning algorithms

ncluding LASSO regression ( Gao et al., 2010; Barratt and Sharma,

018 ) and SVM ( Gold et al., 2005; Keerthi et al., 2007 ). Most re-

ently, black-box or derivative-free optimization ( Rios and Sahini-

is, 2013 ), which treats the validation error as an unknown func-

ion to be interpolated from point evaluations in numerical experi-

ents and optimizes the error through iterative evaluations in the

yperparameter space, has been applied to hyperparameter tuning

or neural networks ( Diaz et al., 2017; Koch et al., 2018 ). 
. A parametric programming perspective 

The developments in this work first translate the K -fold cross-

alidation for hyperparameter optimization into a bilevel optimiza-

ion problem and then solve it through parametric programming.

his methodology gives the exact solution and does not require

ny approximation, probabilistic modeling or iterative searching of

he hyperparameter space. The parametric programming approach

pplies for hyperparameter optimization problems that have a ma-

hine learning algorithm that is explicitly formulated as a LP/QP

odel. Moreover, for these problems, global optimality of λ is

uaranteed from parametric programming theory. 

Parametric programming is an optimization strategy, popular-

zed by explicit model predictive control (MPC) ( Bemporad et al.,

002 ), that determines the optimal solution as a function of a vary-

ng parameter θ , without exhaustively traversing the entire param-

ter space. The general form is seen in Eq. (7) . The objective (loss)

unction F , inequality constraints g , and equality constraints h are

ll functions of the decision variables u and parameter θ . The op-

imal solution comprises a set of finite areas (critical regions in

ig. 5 ), where a particular solution is valid for a given realization

f θ , along with explicit expressions relating the decision variables
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Fig. 5. An example of critical regions comprising the optimal solution to a para- 

metric programming problem ( Eq. (7) ). 
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u to the θ parameter ( u = Aθ + b). Using this, the objective (loss)

function is also solely expressed as a function J ( θ ). 

J(θ ) = min 

u 
F (u, θ ) 

s.t. g(u, θ ) ≤ 0 

h (u, θ ) = 0 (7)

In the classic explicit MPC problem ( Bemporad et al., 2002 ), de-

cision variables u are the control inputs and parameters θ are the

system states. For the hyperparameter optimization setup, decision

variables u are the model weights w to ˆ f and parameters θ are the

hyperparameters λ. In this work, ˆ f is assumed to be linear with

respect to w . 

ˆ f (X, w ) = φ(X ) w (8)

w is a j × 1 vector of model weights and φ is a vector of ba-

sis functions transforming each predictor of X such that φ(X ) =
[ φ1 (X 1 ) , φ2 (X 2 ) , . . . , φ j (X j )] . ˆ f is a function of w because the

model weights are learned from training the machine learning

model. 

By viewing Eq. (6) as an optimization problem in the form of

Eq. (7) , a new understanding of the hyperparameter optimization

problem is reached. From this parametric programming perspec-

tive, a different affine expression w = A r λ + b r governs each criti-

cal region r of λ and the learned model is redefined as ˆ f (X, λ) =
φ(X ) A r λ + φ(X ) b r . Having ˆ f as an explicit function of λ has impor-

tant ramifications for the bilevel optimization approach to K -fold

cross-validation discussed later in Section 4 . 

The algorithmic procedure (graph, geometrical, combinatorial)

for computing the critical regions and affine expressions for

Eq. (7) depends on the optimization problem structure (linear,

nonlinear, convex, differentiable) and the nature of the variables

& parameters (continuous or binary). All algorithms employ an ac-

tive set strategy, where each identified critical region has a unique

combination of active constraints that represent the optimal solu-

tion. In general, parametric programming is also extendable to the

case of multiple varying parameters (multi-parametric program-

ming). The reader is referred to several review papers and books

for further discussion on multi-parametric programming theory

( Pistikopoulos, 2009; 2012; Oberdieck et al., 2016a; Pistikopoulos

et al., 2011; 2020 ) and its applications ( Diangelakis et al., 2017;

2018; Burnak et al., 2019; Ogumerem and Pistikopoulos, 2019; Onel

et al., 2019a; Tian et al., 2020 ). 

4. Bilevel optimization of K -fold cross-validation 

Within each k th fold of cross-validation for hyperparameter op-

timization, there are two different objectives. On the training set

level, the goal is to minimize the training error in Eq. (6) , where
 is the output response from the training data. On the testing set

evel, the validation error 1 
N ‖ Y − ˆ Y ‖ 2 2 is evaluated using the learned

ˆ f from model training to predict the output response Y from the

esting data. After model training and recording the validation er-

ors across all λ values for every fold, the goal is to select the op-

imal ˆ f that minimizes the mean validation error across all folds.

verall, K -fold cross-validation seeks λ such that when the optimal

raining is solved for each training set, the validation error over the

est errors is minimized. 

In this setup, the dual objectives are captured using a bilevel

ptimization ( Colson et al., 2007; Sinha et al., 2017 ) formulation

 Eq. (9) ). Note this is an example formulation, and modifications

ay be necessary depending on the particular machine learning

lgorithm, as seen later in Section 6 . However, the general con-

epts described in this section remain valid. In the inner level, the

bjective is to minimize each k th fold’s training error with a reg-

larization penalty, the decision variables are the model weights

 k , and the parameter is λ. In the outer level, the objective is to

inimize the mean squared validation error across | K | folds, the

ecision variable is λ, and the parameters are w k . 

min 

λ

1 

| K| 
| K| ∑ 

k =1 

1 

N 

tst 
k 

‖ y tst 
k − ˆ y k ‖ 

2 
2 

s.t. min 

w k 

1 

N 

trn 
k 

‖ y trn 
k − ˆ f k ‖ 

2 
2 + λ‖ ̂

 w k ‖ 

p 
q ∀ k ∈ K (9)

 is the set of all data folds. For each k th fold, N 

trn 
k 

is the train-

ng set size, N 

tst 
k 

is testing set size, y trn 
k 

is a N 

trn 
k 

× 1 vector of out-

ut responses in the training set, y tst 
k 

is a N 

tst 
k 

× 1 vector of out-

ut responses in the testing set, ˆ f k is the trained machine learn-

ng model of form 

ˆ f k (X, w k ) = φ(X ) w k , and ˆ y k is a N 

tst 
k 

× 1 vector

f predicted responses from 

ˆ f k using the testing set. Again, φ( X )

s vector of basis functions transforming the columns of X and

 k is a j × 1 vector. Note that ˆ f k is estimated using X from the

raining set, ˆ f k (X trn 
k 

, w k ) = φ(X trn 
k 

) w k , and then X from the test-

ng set is inputted with w k fixed to predict the output response,

ˆ  k = 

ˆ f k (X tst 
k 

, w k ) = φ(X tst 
k 

) w k . 

This observation of K -fold cross-validation as a bilevel optimiza-

ion problem has also been noted by earlier works ( Bennett et al.,

006; Klatzer and Pock, 2015; Pedregosa, 2016; Franceschi et al.,

018; MacKay et al., 2019 ). Some of these authors ( Bennett et al.,

006; Klatzer and Pock, 2015 ) attempted to solve the bilevel opti-

ization by replacing the inner level optimization problem with its

arush-Kuhn-Tucker (KKT) conditions. The KKT conditions are La-

rangian and complementarity constraints that represent the opti-

ality of the inner level problem, reducing the bilevel optimization

nto a single level constrained optimization problem after reformu-

ation. However, even if both levels are LPs, nonlinear terms con-

aining Lagrange multipliers and decision variables arise within the

omplementarity constraints from reformulating the bilevel opti-

ization using the KKT approach. This renders the single level op-

imization to be a mixed-integer nonlinear programming (MINLP)

roblem, which is a very difficult to solve to global optimality.

ometimes, even achieving a feasible solution is also challenging.

his becomes more difficult when the optimization problems on

he two levels are nonlinear programs (NLP) since the Lagrangian

onstraints may also now be nonlinear. 

If the original machine learning algorithm with regularization

enalty in the inner level of Eq. (9) is well-posed as a LP ( p = 1

 q = 1 ) or QP ( p = 2 & q = 2 ), parametric programming is an-

ther viable strategy for reformulating the bilevel optimization into

 single level optimization that is a mixed-integer quadratic (MIQP)

roblem. Although both methods will give the same optimal λ, the

dvantage of parametric programming is that it preserves useful

nformation about the optimal solution profile that the KKT ap-
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Fig. 6. HY-POP solves for the explicit solutions for the training optimization through parametric programming and passes along this information to solve for the optimal 

hyperparameter in a single optimization. 
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roach does not. The KKT approach only provides a single opti-

al solution, and a MINLP is more difficult to solve than a MIQP.

hrough parametric programming, the model weights are derived

s explicit affine functions of the hyperparameter ( w k = A kr λ + b kr )

or each k th fold and critical region r of λ. As such, ˆ f k is express-

ble as a function of λ, and the machine learning model becomes
ˆ f k (X, λ) = φ(X ) A kr λ + φ(X ) b kr . Note that exactly one critical re-

ion is active (one corresponding pair of A kr and b kr coefficients

re nonzero) for each k th fold. This is because λ is the single deci-

ion variable in the outer optimization in Eq. (9) . 

This new form of ˆ f is important because the training error

inner level objective in Eq. (9) ) and the mean validation error

outer level objective in Eq. (9) ) are both now explicit functions

f just λ. This is easily seen through substituting the affine func-

ion of w k ( λ) into the inner and outer objectives. For the train-

ng error, ˆ f k (X trn 
k 

, w k ) = 

ˆ f k (X trn 
k 

, λ) , and for the validation error,

ˆ  k = 

ˆ f k (X tst 
k 

, w k ) = 

ˆ f k (X tst 
k 

, λ) . The affine function of w k ( λ), captur-

ng the optimal solution in the inner optimization, passes informa-

ion between the two levels of Eq. (9) to reduce the bilevel opti-

ization into a single level. 

By utilizing parametric programming, the implicit function of

rror versus λ discussed in Sections 1 and 2 is no longer unknown

nd now has a closed-form expression. This is a huge advantage

or parametric programming over using KKT conditions for hyper-

arameter optimization because, in addition to the optimal λ, the

omplete training & validation error versus λ profiles are given.

aving these profiles makes it easier to understand the trained

achine learning model and visualize the prediction results. Ef-

ective data visualization helps to build more interpretable and

parse models, which are important for improved surrogate mod-

ling of highly complex systems and increased understanding of

hich predictors most influence the outcome. 

The model formulation of the HY-POP approach for the hy-

erparameter optimization example in Eq. (9) is formally de-

cribed below. Bilevel optimization through parametric program-

ing (B-POP) ( Avraamidou and Pistikopoulos, 2019a ) for other ap-

lications have also been demonstrated in previous works ( Faísca

t al., 2007; Domínguez and Pistikopoulos, 2010; Oberdieck et al.,

017; Avraamidou and Pistikopoulos, 2017; 2019b ). Fig. 6 shows

n overview of the HY-POP strategy for hyperparameter optimiza-

ion. Multi-parametric quadratic programming models (mpQP) is

he general form of machine learning models that are allowed for

he inner level optimization problem. 

The first step is to replace the inner level optimization in

q. (9) with constraints that define the optimal solution profile

rom the critical regions. Since there are | K | folds, there are | K |

a  
raining optimization problems to replace with parametric pro-

ramming. The critical regions for each k th training optimization

re separately calculated, and then they are all combined together

nto the appropriate constraint set. These constraints control the

ffine expressions of w k ( λ) and restrict only one critical region

o be active for each fold to represent the optimal training. This

s conveyed through introducing Big-M constraints ( Eq. (10) ), crit-

cal region bound constraints ( Eq. (11) ), and a SOS1 constraint

 Eq. (12) ). 

 k ≤ A kr λ + b kr + M(1 − y CR 
kr ) ∀ k ∈ K, ∀ r ∈ R 

k 

 k ≥ A kr λ + b kr + M(y CR 
kr − 1) ∀ k ∈ K, ∀ r ∈ R 

k (10) 

M is an appropriately large-enough constant value. For each k th

old, R k is the set of all critical regions that comprise the optimal

raining solution, w k is a j × 1 vector of model weights to the

rained machine learning model, A kr and b kr are j × 1 coefficient

ectors in the affine expression for w k from a critical region r , and

 

CR 
kr 

are binary variables fixing/relaxing w k for active/inactive criti-

al regions. The Big-M constraints determine which critical region

 in each fold k defines w k for the machine learning model ˆ f k . 

| R k | 
 

r=1 

LB 

CR 
kr y 

CR 
kr ≤ λ ≤

| R k | ∑ 

r=1 

UB 

CR 
kr y 

CR 
kr ∀ k ∈ K (11)

| R k | 
 

r=1 

y CR 
kr = 1 ∀ k ∈ K (12)

To ensure that only one critical region is active for each fold,

q. (12) enforces this discrete decision. The lower ( LB CR 
kr 

) and upper

 UB CR 
kr 

) bounds to λ in a critical region r from fold k define the

ange of values for λ such that a particular affine expression for

 k and an resulting optimal solution apply. The upper bound of a

ritical region is the lower upper bound of the next critical region

n the same fold. Overall, the bounds from each fold span the same

yperparameter range. To enforce that the same λ value is utilized

cross all folds, when selecting an active critical region in each fold

o represent the optimal training, Eq. (11) defines that the lower

nd upper bounds of λ from these | K | critical regions must overlap

ach other. Together, Eqs. (10) –(12) replace the inner optimization

n Eq. (9) . 

The second step is to substitute ˆ y k = φ(X tst 
k 

) w k into the objec-

ive (loss) function of the outer level in Eq. (9) . Since the inner

evel decision variable w k is a function of the outer level decision

ariable λ from parametric programming, the bilevel optimization

s converted into a single level optimization. Eq. (13) constitutes

he HY-POP reformulation of the hyperparameter optimization ex-

mple in Eq. (9) , assuming the machine learning algorithm is a LP
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Table 1 

Model statistics for training LASSO pQPs ( Eq. (15) ). 

Fold # X trn 
k 

( i × j ) # Constraints × # Variables # Critical regions 

1 23 × 7 14 × 14 5 

2 23 × 7 14 × 14 6 

3 23 × 7 14 × 14 6 

4 23 × 7 14 × 14 6 

5 24 × 7 14 × 14 6 
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( p = 1 & q = 1 ) or QP ( p = 2 & q = 2 ) and 

ˆ f k is linear with respect

to its model weights w k . Because the outer validation error objec-

tive is in MSE form and binary variables y CR 
kr 

are added for the crit-

ical regions, this single level optimization is also a MIQP. 

min 

λ,w k ,y 
CR 
kr 

1 

| K| 
| K| ∑ 

k =1 

1 

N 

tst 
k 

‖ y tst 
k − φ(X 

tst 
k ) w k ‖ 

2 
2 

s.t. w k ≤ A kr λ + b kr + M(1 − y CR 
kr ) ∀ k ∈ K, ∀ r ∈ R 

k 

w k ≥ A kr λ + b kr + M(y CR 
kr − 1) ∀ k ∈ K, ∀ r ∈ R 

k 

| R k | ∑ 

r=1 

LB 

CR 
kr y 

CR 
kr ≤ λ ≤

| R k | ∑ 

r=1 

UB 

CR 
kr y 

CR 
kr ∀ k ∈ K 

| R k | ∑ 

r=1 

y CR 
kr = 1 ∀ k ∈ K (13)

Depending on the actual machine learning algorithm, the ex-

ample formulations of Eqs. (9) and (13) may need some modifi-

cations. One instance of this is the LP L 1 -norm SVM in Section 6 .

However, the general concept shown here of using parametric pro-

gramming to connect the two levels of a bilevel optimization prob-

lem (assuming LP or QP) through affine expressions relating model

weights to the hyperparameter remains valid. In Section 6 , similar

steps, as performed for Eqs. (9) and (13) , are taken to formulate the

K -fold cross-validation for LP L 1 -norm SVM hyperparameter opti-

mization through a HY-POP approach. Nevertheless, the example

formulations of Eqs. (9) and (13) are useful for LASSO regression in

the next section. 

5. LASSO regression 

LASSO ( Tibshirani, 1996 ) is a popular regression technique that

performs model selection through regularization. It introduces a

L 1 -norm penalty on β , a vector of regression coefficients (model

weights), to the ordinary least squares (OLS) model. This attempts

to improve the regression fit by reducing the variance observed in

the OLS estimation for β and better balance the bias & trade-off.

LASSO regression is one useful method to build sparse surrogate

models for data-driven optimization ( Beykal et al., 2018b; 2018a ).

The LASSO regression form is shown in Eq. (14) . 

min 

β

1 
2 N 

‖ Y − φ(X ) β‖ 

2 
2 + λ‖ ̂

 β‖ 1 (14)

Eq. (14) is a parametric programming problem in the form of

Eq. (7) and fits the problem structure shown in the inner level

of Eq. (9) . Because the L 1 -norm regularization term is nonlinear,

‖ β‖ 1 = 

∑ 

j | β j | , Eq. (14) is first reformulated before it is solved

through parametric programming. It is observed that β j is piece-

wise linear. After substituting α j = | β j | and adding two constraints

to describe the piecewise behavior, the parametric quadratic pro-

gramming (pQP) model for LASSO regression is the following. 

min 

β,α

1 

2 N 

‖ Y − φ(X ) β‖ 

2 
2 + λ

∑ 

j 

α j 

s.t. α j ≥ β j ∀ j ∈ J 

α j ≥ −β j ∀ j ∈ J (15)

To optimize λ in Eq. (15) and select an optimal LASSO model,

the bilevel optimization depiction of K -fold cross-validation from

Eq. (9) is implemented. Eq. (15) is the inner optimization problem,

and the outer level objective still is to minimize the validation MSE

across all folds. The critical regions representing the optimal solu-

tion profile to Eq. (15) for each k th fold are the similar to those in

Eqs. (10) –(12) , with the only difference being the parametric pro-

gramming solution now accounts for the two added constraints for
he reformulation of | β j |. The final HY-POP formulation (MIQP) of

he LASSO hyperparameter optimization is in Eq. (16) . βk is a j × 1

ector of regression coefficients. 

min 

λ,βk ,y 
CR 
kr 

1 

| K| 
| K| ∑ 

k =1 

1 

N 

tst 
k 

‖ y tst 
k − φ(X 

tst 
k ) βk ‖ 

2 
2 

s.t. βk ≤ A kr λ + b kr + M(1 − y CR 
kr ) ∀ k ∈ K, ∀ r ∈ R 

k 

βk ≥ A kr λ + b kr + M(y CR 
kr − 1) ∀ k ∈ K, ∀ r ∈ R 

k 

| R k | ∑ 

r=1 

LB 

CR 
kr y 

CR 
kr ≤ λ ≤

| R k | ∑ 

r=1 

UB 

CR 
kr y 

CR 
kr ∀ k ∈ K 

| R k | ∑ 

r=1 

y CR 
kr = 1 ∀ k ∈ K (16)

Eq. (16) is a new structure for the hyperparameter optimization

f LASSO regression through K -fold cross-validation. Next, this HY-

OP formulation is validated on an ammonia reactor data example

nd against a coordinate descent algorithm (with grid search) from

he glmnet package in R . 

.1. Ammonia reactor data example 

A dataset of 29 samples are collected from different sources on

he performance of an industrial ammonia synthesis reactor ( Tso

t al., 2018; Demirhan et al., 2019 ). The exact data values are in-

luded in the supplementary material. These values are normalized

nd centered before training. Reactor temperature T & pressure P ,

nlet molar concentration of hydrogen x H 2 , nitrogen x N 2 , ammonia

 NH 3 
& inert species x Inert , and the molar ratio between hydrogen

 nitrogen 

x H 2 
x N 2 

are 7 predictors for the reactor conversion y X . It

s assumed that the predictors are linear, φ(X ) = X . Therefore, the

roposed LASSO model that is trained has the following form in

q. (17) . An intercept term is not included because the data is cen-

ered. 

 X = β1 T + β2 P + β3 x H 2 + β4 x N 2 + β5 x NH 3 + β6 x Inert + β7 

x H 2 
x N 2 

(17)

While this is a small dataset, the goal is not a comprehensive

omputation study, but to validate that the HY-POP approach cor-

ectly identifies the optimal λ & β , compared to an established co-

rdinate descent algorithm. The data is randomly divided into 5

olds for cross-validation. The fold identification of the data points

s also provided in the supplementary material. Each training op-

imization problem ( Eq. (15) ) is formulated in MATLAB 2019b .

n in-house developed and state-of-the-art software, the Paramet-

ic Optimization (POP) toolbox ( Oberdieck et al., 2016b ), is then

sed to solve for the critical regions, using the built-in QP solver

rom MATLAB and the geometrical algorithm. A geometrical al-

orithm is selected over a graph or combinatorial approach since

q. (15) only has one hyperparameter. Because of this, the former

s more efficient at identifying the active set of constraints for each

ritical region than the latter two. The model statistics for each

raining optimization problem ( Eq. (15) ) is depicted in Table 1 . An

xample result of the critical regions for fold #2 is shown in Fig. 7 .
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Fig. 7. LASSO regularization path for the ammonia reactor data in fold #2 from the 

training pQP ( Eq. (15) ) solved using POP ( Oberdieck et al., 2016b ). 

Fig. 8. LASSO regularization path for the ammonia reactor data in fold #2 solved 

using a coordinate descent algorithm from glmnet in R. 
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Fig. 9. Validation error for the ammonia reactor data in fold #2 from the training 

pQP ( Eq. (15) ) solved using POP ( Oberdieck et al., 2016b ). 

Table 2 

Optimal values and CPU times for 5-fold cross-validation on am- 

monia reactor data. 

Method Optimal MSE Optimal λ CPU time a (s) 

pQP + MIQP 0.0479 0.0140 1.44 ± 0.06 

cv.glmnet b 0.0478 0.0137 0.19 ± 0.01 

a Averaged over 10 runs. 
b Grid of 10 3 points. 
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The piecewise linear relationship between β & λ is referred to

s the LASSO regularization path ( Hastie et al., 2009 ). This path

elps to visualize the importance of each feature on the model

rediction and interpret the model through selecting the features

ith more influence toward this prediction. Less important fea-

ures typically have β values that approach 0 faster as λ gets

arger. For fold #2 in Fig. 7 , it appears that pressure is the most

nfluential feature on the model’s prediction since its β value is

he last one to reach 0. 

We expected this piecewise behavior from the affine expres-

ions β( λ) provided by the parametric programming solution to

q. (15) . Each line segment piece represents a critical region, where

 unique β( λ) function is valid for the values of λ. Having the β
hange in a piecewise linear fashion has also been previously ob-

erved in least angle regression (LAR) ( Efron et al., 2004 ) and coor-

inate descent ( Friedman et al., 2010 ), the first efficient algorithms

eveloped to solve LASSO regression. While these methods were

pecifically tailored for LASSO regression ( Efron et al., 2004; Fried-

an et al., 2010 ), parametric programming is the general theory of

olving problems in the form presented in Eq. (7) . Therefore, both

AR and coordinate descent algorithms can actually be viewed as

pecialized parametric programming approaches. In Fig. 8 , it ob-

erved that the coordinate descent algorithm (with 10 3 evenly dis-

retized points for λ ∈ [10 −3 , 1] ) gives exactly same regularization
ath as Fig. 7 . This verifies that the critical regions for each fold ex-

ctly represent the optimal solution profile for the pQP ( Eq. (15) ). 

With β( λ) given from parametric programming, calculating the

raining and validation errors for each fold, the objectives in

qs. (15) and (16) , respectively, are simple function evaluations.

ikewise, these errors are also piecewise functions with respect to

, but they are not linear due to the squaring of the error term.

ig. 9 is an example of this nonlinear piecewise behavior for the

esting error in fold #2. With error as a function of λ, finding

he optimal λ is an easy calculation, pinpointing the minimum of

hese validation error profiles aggregated across all folds. Profiles

f the LASSO regularization path and validation error for all folds

re found in the supplementary material. 

To find this minimum mean validation error, after comput-

ng the critical regions, the MIQP for hyperparameter optimiza-

ion ( Eq. (16) ) is formulated in MATLAB 2019b and solved using

BM ILOG CPLEX Optimization Studio 12.9 . Overall, the model

as 421 constraints, 36 continuous variables, and 29 binary vari-

bles. The MIQP solution is compared to result given from us-

ng cv.glmnet , the cross-validation function included in glmnet,

ith a grid of 10 3 evenly discretized points for λ ∈ [10 −3 , 1] . Fig. 10

ighlights that the resulting mean validation error profiles calcu-

ated from these two methods. The shaded blue and gray areas

epresent one standard error above and below the mean validation

rror. 

The validation error profiles appear exactly the same, confirm-

ng that the HY-POP approach leads to the same solution as the es-

ablished coordinate descent algorithm in glmnet. Table 2 depicts

ome computational results. From minimizing the MIQP, the HY-

OP approach calculates an optimal λ of 0.140, while cv.glmnet
alculates an optimal λ of 0.1365. This slight difference in value is

ttributed to numerical sensitivity in the algorithmic computations

nd how the λ space is the discretized. 

Not controlling for programming environment, the coordinate

escent algorithm appears faster that the HY-POP approach. This is
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Fig. 10. Mean validation error for the hyperparameter optimization of LASSO re- 

gression on the ammonia reactor data through 5-fold cross-validation. (a) Error pro- 

file solved using the MIQP ( Eq. (16) ). (b) Error profile solved using cv.glmnet . 
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expected because the former is a tailored method with warm starts

for solving the pQP of LASSO regression, while the latter uses a

generic algorithm applicable to any pQP with no specializations for

LASSO regression. Moreover, the MATLAB code has not been op-

timized for speed. One potential idea for speed-up is to parallelize

the geometrical algorithm so that multiple starting points are used

to initialize. Albeit for a small example, it is promising though that

the generic POP solver is only a order of magnitude slower. For the

HY-POP approach here, about 84% of the CPU time is spent deter-

mining the critical regions for the folds. Time spent constructing

the model is included in the CPU time. 

However, depending on the size of X trn 
k 

, the number of folds,

and the granularity of how λ is discretized, these computational

conclusions may change. These are subjects for further study. There

may be corner cases where a much finer discretization of λ is

needed for a good approximation, and an effective grid search

would require more computations. The tractability of a paramet-

ric problem depends on the number of decision variables and con-

straints. In the pQP for LASSO ( Eq. (15) ), the problem size only

grows with the number of features j in X trn 
k 

. β j and αj are de-

cision variables that scale with j , and the number of constraints

also scales with j . Therefore, it is likely that Eq. (15) becomes more

difficult to solve as j grows, and the sample size i of X trn 
k 

has a

less significant impact since it only participates in the objective

function. Any active set based strategy to solve parametric prob-
ems relies on choosing n active constraints for n decision vari-

bles to square the system. Since the number of decision variables

nd constraints scale together equally, it is expected that X trn 
k 

with

 reasonably larger number of features and sample sizes will re-

ain tractable for the LASSO pQP. What is the upper bound on j

or maintaining tractability requires further investigation. 

. LP L 1 -norm support vector machine (SVM) 

SVM ( Boser et al., 1992 ) is a common classification technique

hat identifies a maximal margin hyperplane separating different

lasses of labeled responses and utilizes it as a decision boundary.

t has been applied for fault detection and process monitoring in

hemical engineering ( Onel et al., 2018; 2019b ). The standard gen-

ral form is the C -parameterized SVM, where a hyperparameter C

enalizes the slack variables εi controlling how much margin vio-

ation to tolerate for each misclassified observation i . 

min 

w,b,ε 

1 

m 

‖ w ‖ 

p 
q + C 

∑ 

i 

ε d i 

s.t. y i (φ(x i ) w + b) ≥ 1 − ε i ∀ i ∈ I 

ε i ≥ 0 ∀ i ∈ I (18)

I is the set of all training observations, w is a j × 1 vector of model

eights, b is a constant bias, and m is a constant value. For the i th

bservation, x i is a 1 × j vector of predictors, y i is the given class

abel, and εi is the slack variable. Binary classification is assumed,

here the y i is either +1 or −1 . 

The power d to which εi is raised in the objective (loss) func-

ion dictates whether Eq. (18) is the L 1 -norm ( d = 1 ) or the L 2 -

orm ( d = 2 ) SVM. When p = 1 & q = 1 , Eq. (18) is the LP SVM,

nd when p = 2 & q = 2 , it is the QP SVM. Typically, m = 1 for

he LP and m = 2 for the QP. Since LASSO regression in previous

ection is an example of the HY-POP approach applied to a QP, in

his section, LP L 1 -norm SVM ( Bradley and Mangasarian, 1998 ) is

sed as an example of the HY-POP approach implemented on a LP.

he LP L 1 -norm SVM ( Bradley and Mangasarian, 1998 ) is shown

elow. 

min 

w,b,ε 

∑ 

j 

| w j | + C 
∑ 

i 

ε i 

s.t. y i (φ(x i ) w + b) ≥ 1 − ε i ∀ i ∈ I 

ε i ≥ 0 ∀ i ∈ I (19)

Eq. (19) is a parametric programming problem in the form of

q. (7) , but does not have a squared error loss as LASSO regression

 Eq. (14) ) did. Instead, the objective is to minimize the sum of mar-

in violations, while selecting which predictors are more impor-

ant to construct the hyperplane. The C hyperparameter is associ-

ted with the slack variables ε accounting for this margin violation

um, instead of the model weights w for LASSO regression. An ab-

olute value reformulation of 
∑ 

j = | w j | is performed for Eq. (19) ,

here | w j | = p j + q j and w j = p j − q j . The parametric linear pro-

ramming (pLP) for LP L 1 -norm SVM is the following. 

min 

p,q,b,ε 

∑ 

j 

p j + q j + C 
∑ 

i 

ε i 

s.t. y i (φ(x i ) p − φ(x i ) q + b) ≥ 1 − ε i ∀ i ∈ I 

ε i ≥ 0 ∀ i ∈ I 

p j ≥ 0 ∀ j ∈ J 

q j ≥ 0 ∀ j ∈ J (20)

Eq. (20) is the inner training optimization to the bilevel prob-

em to optimize C . For each k th fold, the critical regions describing

he optimal solution profile to Eq. (20) are in the same form as
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Table 3 

Model statistics for training L 1 -norm SVM pLPs ( Eq. (20) ). 

Fold # X trn 
k 

( i × j ) # Constraints × # Variables # Critical regions 

1 92 × 9 202 × 111 68 

2 93 × 9 204 × 112 86 

3 93 × 9 204 × 112 80 

4 93 × 9 204 × 112 77 

5 93 × 9 204 × 112 69 
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hose in Eqs. (10) –(12) , taking into account the reformulation of

 w j |. The only difference here is there are two sets of Big-M con-

traints ( Eq. (10) ) to account for w and b . The critical regions for

q. (20) for all folds are defined using the following constraints,

here w is evaluated from p − q . 

w k ≤ A kr C + b kr + M(1 − y CR 
kr ) ∀ k ∈ K, ∀ r ∈ R 

k 

w k ≥ A kr C + b kr + M(y CR 
kr − 1) ∀ k ∈ K, ∀ r ∈ R 

k 

b k ≤ G kr C + h kr + M(1 − y CR 
kr ) ∀ k ∈ K, ∀ r ∈ R 

k 

b k ≥ G kr C + h kr + M(y CR 
kr − 1) ∀ k ∈ K, ∀ r ∈ R 

k 

| R k | ∑ 

r=1 

LB 

CR 
kr y 

CR 
kr ≤ C ≤

| R k | ∑ 

r=1 

UB 

CR 
kr y 

CR 
kr ∀ k ∈ K 

| R k | ∑ 

r=1 

y CR 
kr = 1 ∀ k ∈ K (21) 

or critical region r in the k th fold, the affine expressions for the

odel weights are w k = A kr + b kr and the constant bias is b k =
 kr + h kr . These define the decision boundary w k φ(x ik ) + b k that

lassifies each observation into either +1 or −1 class, depending

n the sign of its evaluated value (positive is +1 and negative is

1 ). 

The outer level objective in the bilevel optimization is to mini-

ize the misclassification rate across all folds. For the k th fold with

 

tst 
k 

sample points in the testing set, the misclassification rate is

efined below. 

1 

N 

tst 
k 

N tst 
k ∑ 

i =1 

F (y ik 	 = 

ˆ y ik ) (22)

ere, ˆ y ik is the predicted class label for the i th observation in the

esting set for the k th fold, and y ik is the given class label. F is

n indicator function that equals 1 if y ik 	 = ˆ y ik and 0 if y ik = ˆ y ik .

f F (y ik 	 = ˆ y ik ) = 0 , then the i th observation is correctly classified.

therwise, it is misclassified. 

To capture this discrete decision and identify a function form

or F , ˆ y ik is redefined as a binary variable equal to 1 for a prediction

elonging to the +1 class and equal to 0 for a prediction belonging

o the −1 class. During testing validation in the outer level, the +1

nd −1 class labels y ik are also redefined as 1 and 0, respectively,

o accommodate the binary variable ˆ y ik . However, during training

 Eq. (20) ) and to compute the critical regions ( Eq. (21) ), the class

abels y ik remain +1 and −1 . In this way, the misclassification rate

s rewritten as a quadratic loss function. 

1 

N 

tst 
k 

N tst 
k ∑ 

i =1 

(y ik − ˆ y ik ) 
2 (23) 

(y ik − ˆ y ik ) 
2 equals 1 for a misclassified observation, when y ik = 1

 ˆ y ik = 0 or y ik = 0 & ˆ y ik = 1 . (y ik − ˆ y ik ) 
2 equals 0 for a correctly

lassified observation, when y ik = 1 & ˆ y ik = 1 or y ik = 0 & ˆ y ik = 0 .

he reason for a redefinition of the class labels during testing val-

dation is clear in Eq. (23) . 

To connect the critical regions in the inner level describing the

rained decision boundaries ( w k φ(x ik ) + b k ) to the misclassification

ate in the outer level, two additional Big-M constraints are needed

o handle the redefinition of class labels made between the train-

ng and testing validation. 

w k φ(x ik ) + b k ≥ M( ̂  y ik − 1) ∀ k ∈ K, ∀ i ∈ I k 

w k φ(x ik ) + b k ≤ M ̂

 y ik ∀ k ∈ K, ∀ i ∈ I k (24) 

 

k is the set of all observations in the testing set in the k th fold. x ik 
re the predictors for the i th observation in the k th fold. When the

ecision boundary is positive ( +1 class), ˆ y = 1 . When the decision
ik 
oundary is negative ( −1 class), ˆ y ik = 0 . Therefore, Eq. (24) cap-

ures the binary decision of predicting a class label and connects

he learned w k & b k from the critical regions ( Eq. (21) ) to the mis-

lassification rate in Eq. (23) . 

The final HY-POP formulation (MIQP) of LP L 1 -norm SVM hyper-

arameter optimization comprises of Eqs. (21) , (23) , and (24) and

s shown below. 

min 

C,w k ,b k , ̂ y ik ,y 
CR 
kr 

1 

| K| 
| K| ∑ 

k =1 

1 

N 

tst 
k 

N tst 
k ∑ 

i =1 

(y ik − ˆ y ik ) 
2 

s.t. w k φ(x ik ) + b k ≥ M( ̂  y ik − 1) ∀ k ∈ K, ∀ i ∈ I k 

w k φ(x ik ) + b k ≤ M ̂

 y ik ∀ k ∈ K, ∀ i ∈ I k 

w k ≤ A kr C + b kr + M(1 − y CR 
kr ) ∀ k ∈ K, ∀ r ∈ R 

k 

w k ≥ A kr C + b kr + M(y CR 
kr − 1) ∀ k ∈ K, ∀ r ∈ R 

k 

b k ≤ G kr C + h kr + M(1 − y CR 
kr ) ∀ k ∈ K, ∀ r ∈ R 

k 

b k ≥ G kr C + h kr + M(y CR 
kr − 1) ∀ k ∈ K, ∀ r ∈ R 

k 

| R k | ∑ 

r=1 

LB 

CR 
kr y 

CR 
kr ≤ C ≤

| R k | ∑ 

r=1 

UB 

CR 
kr y 

CR 
kr ∀ k ∈ K 

| R k | ∑ 

r=1 

y CR 
kr = 1 ∀ k ∈ K (25) 

Eq. (25) represents a new construction for the hyperparameter op-

imization of LP L 1 -norm SVM through K -fold cross-validation. This

Y-POP formulation is next demonstrated on a breast cancer data

xample. 

.1. Breast cancer data example 

A dataset of 116 samples with 9 predictors for breast cancer

 Patrício et al., 2018 ) is downloaded from the UCI Machine Learn-

ng Repository. The data values are normalized and randomly di-

ided into 5 folds. The fold identification of the data points is

rovided in the supplementary material. Healthy patients are la-

eled +1 , and cancer patients are labeled −1 . The predictors are

ge, BMI, and levels of glucose, insulin, HOMA, leptin, adiponect-

nresistin, & MCP-1. It is assumed that the predictors are linear,

(X ) = X . Therefore, the proposed LP L 1 -norm SVM that is trained

s the following. 

 cancer = w 1 x age + w 2 x BMI + w 3 x glu + w 4 x insu + w 5 x HOMA 

+ w 6 x lep + w 7 x adi + w 8 x res + w 9 x MCP1 + b (26) 

Each training LP L 1 -norm SVM ( Eq. (20) ) for each fold is formu-

ated in MATLAB 2019b . The critical regions are solved using the

OP toolbox ( Oberdieck et al., 2016b ) with the CPLEX LP solver

nd the geometrical algorithm. Since Eq. (20) also has only one hy-

erparameter, a geometrical algorithm is chosen. The model statis-

ics for each training optimization problem ( Eq. (20) ) is depicted

n Table 3 . An example result of the critical regions for fold #3 is

hown in Fig. 11 . Like the LASSO regression, a piecewise relation-

hip between the model weights w & b with the hyperparameter

 is also observed here. We expected this piecewise behavior from
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Fig. 11. SVM regularization path for the breast cancer data in fold #3 from the 

training pLP ( Eq. (20) ) solved using POP ( Oberdieck et al., 2016b ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. (a) Misclassification error in fold #3 (b) Misclassification error averaged 

across all the folds. 

Table 4 

Confusion matrix for 5-fold cross-validation on breast cancer data. 

Predicted class 

+ 1 (Healthy) −1 (Cancer) 

Actual Class 
+ 1 (Healthy) 39 13 

−1 (Cancer) 18 46 

Table 5 

Optimal values and CPU times for 5-fold cross-validation on breast 

cancer data. 

Method Optimal error Optimal C CPU time a (s) 

pLP + MIQP 0.2681 1.4869 50.49 ± 0.61 

a Averaged over 10 runs 

 

t  

s  

c  

a  

c  

m  
the affine expressions, w ( C ) & b ( C ), determined from the paramet-

ric programming solution to Eq. (20) . 

This piecewise relationship is referred to as the SVM regulariza-

tion path ( Hastie et al., 2009 ) because earlier investigations ( Hastie

et al., 2004; Zhu et al., 2004 ) noticed similarities between the algo-

rithms (LAR and coordinate descent) used to solve SVM and LASSO

regression. In general, this is expected because all these solution

methods fall under the general theory of parametric programming

( Eq. (7) ). Interpretation of the SVM regularization path is differ-

ent from LASSO regression because the former does not perform

feature selection in its current formulation. Greater absolute val-

ues for w & b as C gets larger indicate more important features for

building the decision boundary between the two classes. For fold

#3 in Fig. 11 , it appears that glucose level is the most significant

factor for distinguishing breast cancer patients from healthy indi-

viduals compared to the other features. 

Unlike the LASSO regression, there are many more individual

line segments (critical regions) that are stitched together to repre-

sent the optimal solution profile in Fig. 11 . This creates a very non-

smooth behavior in w ( C ) & b ( C ) and the resulting misclassification

error profile ( Fig. 12 ). Profiles of the SVM regularization path and

validation error for all folds are found in the supplementary mate-

rial. The non-smoothness is expected because the objective (loss)

function in Eq. (25) is quadratic with respect to a binary variable

ˆ y ik and not a continuous variable. The shaded blue area in Fig. 12 b

represent one standard error above and below the average misclas-

sification rate. 

Because of this non-smooth behavior in the misclassification

error profile, characteristic of classification problems in machine

learning, it is inherently more difficult to find an accurate approxi-

mation to an optimal C from a discretized grid search. The optimal

C is more sensitive to the granularity of the discretization. This

is one advantage of having the optimal solution in explicit form

through a HY-POP approach. The overall MIQP model ( Eq. (25) )

for the breast cancer example has 7847 constraints, 51 continuous

variables, and 496 binary variables. From minimizing the MIQP, the

optimal C value is 1.4869 with an average misclassification error

of 0.2681. Table 4 displays the confusion matrix. The specificity is

0.75, indicating that 75% of cancer patients are accurately identi-

fied as such. The sensitivity is 0.71875, indicating that about 72%

of healthy individuals are correctly classified. 
Table 5 shows the computational results. A longer CPU time for

his breast cancer example is observed than for the LASSO regres-

ion on the ammonia reactor data because there are many more

ritical regions to compute in this instance. Even though Eq. (20) is

 pLP, it has more constraints in its problem than Eq. (15) , which

auses more active set explorations for the parametric program-

ing algorithm to solve the former. pLPs are actually more diffi-
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ult to solve than pQPs as well due to degeneracy issues. Likewise,

he MIQP here is also larger than the one earlier for LASSO. About

7% of the CPU time is spent calculating the critical regions for the

olds. 

The complexity of the pLP for LP L 1 -norm SVM ( Eq. (20) ) grows

ith the number of samples i and features j . Therefore, it is likely

hat Eq. (20) becomes more difficult to solve as X trn 
k 

gets larger in

ize. Specifically, the number of constraints scale with 2 i + 2 j and

he number of variables scale with i + 2 j + 1 in Eq. (20) . Since ac-

ive set based strategies to solve parametric problems depend on

hoosing n active constraints for n variables to square the system,

he pLP becomes easier to solve when 2 i + 2 j is closer in value to

 + 2 j + 1 , so that there are fewer unique active set combinations

o explore. It is expected that the L 1 -norm SVM pLP will remain

ractable for a reasonably larger X trn 
k 

, provided the number of vari-

bles is close to the number of constraints. The upper bound on

he computational performance of HY-POP for LP L 1 -norm SVM is

pen for further study. 

. Conclusion 

The novelty in this work is constructing hyperparameter op-

imization through K -fold cross-validation as a bilevel optimiza-

ion problem that is exactly solvable as a single level optimization

hrough parametric programming. We refer to this as the bilevel &

arametric optimization approach to hyperparameter optimization

HY-POP). 

This parametric programming perspective ties together previous

tudies that first recognized the regularization paths of LASSO re-

ression and SVM as piecewise linear functions and extends these

esults to optimize hyperparameters in K -fold cross-validation. The

Y-POP approach to hyperparameter optimization is demonstrated

n ammonia reactor data, a QP example, and breast cancer data, a

P example. 

Advantages of recognizing hyperparameter optimization as a

arametric programming problem are threefold. First, the HY-POP

pproach to hyperparameter optimization is applicable to any gen-

ral machine learning algorithm that is a LP/QP model. In fact,

ixed-integer linear or quadratic (MILP/MIQP) models can also

e used because parametric programming theory exists for these

roblem types. Second, when there multiple hyperparameters in a

achine learning model (a common occurrence), there is theory to

olve these problems exactly through multi-parametric program-

ing. Third, and most importantly, no discretization of the hyper-

arameter space is required for HY-POP. 

Finally, the aims of this work are to lay the introductory

oundation and present an unified view to hyperparameter op-

imization of machine learning models from a parametric pro-

ramming perspective. The multi-parametric programming, mixed-

nteger, and computational aspects of a HY-POP approach to hyper-

arameter optimization are subjects of further investigation. 
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