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Fitting a machine learning model often requires presetting parameter values (hyperparameters) that con-
trol how an algorithm learns from the data. Selecting an optimal model that minimizes error and gen-
eralizes well to unseen data becomes a problem of tuning or optimizing these hyperparameters. Typi-
cal hyperparameter optimization strategies involve discretizing the parameter space and implementing
an iterative search procedure to approximate the optimal hyperparameter and model selection through
cross-validation. Instead, for machine learning algorithms that are formulated as linear or quadratic pro-
gramming (LP/QP) models, an exact solution to the hyperparameter optimization problem is obtainable
through parametric programming without any approximation. First, the hyperparameter optimization
problem is posed more naturally as a bilevel optimization. Second, using parametric programming theory,
the bilevel optimization is reformulated into a single level problem. Exact solutions to the hyperparame-
ter optimization problem for LASSO regression and LP L;-norm support vector machine (SVM) are derived
and validated on example data.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a i x j data matrix, and Y be a i x 1 response vec-
tor, where i is the sample size and j is the number of predictors or
features. In supervised learning (regression or classification) prob-
lems, it is assumed that there exists a function f that maps the
relationship between a set of input predictors X = (X1, X3, ..., X;),
where X; is the jth column vector of X, and output responses Y.

Y=fX)+e€ (1)

f represents the learnable information that X provides about Y,
while € is a random error term containing information that is
unmeasured or unavailable in the data for the learning process.
Because f is not exactly known, machine learning algorithms are
needed to estimate f and predict Y.

Y = fx) (2)

f represents the estimate for f, and ¥ is the resulting prediction.
€ is not included in the prediction because it averages out to be
zero.
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The accuracy of this estimation and prediction is the squared
error between Y and Y. Assuming f is fixed, the expected error of
a single predicted point y, from one observation xg, a given row
vector of X, is decomposed into reducible and irreducible quanti-
ties (James et al., 2013).

E[yo — JoI* = Elyo — f(xo)]2
= [f(xo) + € — Fixo)]

= [f(x0) — fxo)] + Var(e) (3)
—_— ) —
reducible irreducible

Because f is not a perfect estimate for f, this inaccuracy introduces
some error. This error is reducible because it is possible to im-
prove the fit of f by using a better performing algorithm. Even if
f were to exactly match f, the prediction of Y still has some er-
ror associated with it due to €. This error is irreducible because a
model cannot account for information that is not contained in the
data while the algorithm is learning. This provides an upper bound
(Abu-Mostafa et al., 2012) on the accuracy of any estimated f

As such, the goal of any machine learning method is to mini-
mize the reducible error in order to maximize the accuracy of f
to be closer to its upper bound. The reducible error is made up of
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Fig. 1. More complex models generally have lower bias and higher variance, while
less flexible models generally have higher bias and lower variance.

two components: bias & variance (James et al., 2013).

[f (o) — Fxo)]" = Var[f (xo)] +Bias[ f (xo) I? (4)
—_——— | e
reducible variance bias

Bias is the error introduced by approximating a real-world phe-
nomena, which is often complex, with a simpler model that has
less fidelity. Variance measures the sensitivity of f to the train-
ing data set and how much its fit would change if estimated us-
ing different data. In general, as a model becomes more compli-
cated or flexible (including more parameters to estimate), bias de-
creases and variance increases (James et al., 2013; Abu-Mostafa
et al., 2012). A flexible f fits closer to given training data set (low-
ering bias), but is more sensitive to training data variability (rais-
ing variance). The reverse of this bias & variance trade-off for f is
also generally true for a simpler model. Fig. 1 illustrates the bias &
variance trade-off with respect to model complexity.

Therefore, selecting an optimal f from a set of various can-
didate ones, ranging in complexity from simple linear to highly
nonlinear, involves balancing the bias & variance trade-off. The
ideal machine learning method is one that simultaneously achieves
low bias and low variance (Wilson and Sahinidis, 2017). Possessing
these characteristics gives the learned model a higher probability
of generalizing well to unseen data during model training and pre-
dict more accurately (Abu-Mostafa et al., 2012). Too much variance
leads to f overfitting the data, and too much bias leads to f un-
derfitting the data (Fig. 2).

The most utilized approach for finding an optimal f is to incor-
porate an additional regularization term in a machine learning al-
gorithm’s loss function formulation (Hastie et al., 2009). Typically,
the basic loss function for a supervised learning problem is the
minimization of the mean squared error (MSE) between Y and ¥,
where N is the sample size.

o1 N 1 A
min Y =713 = 1Y = FOOI3 (5)

A regularization term contains an exogenous penalty parameter
(hyperparameter) whose value is set prior to training the model.
This hyperparameter A controls the importance and weight of the
regularization term, which affects the resulting optimization so-
lution of a machine learning algorithm. A common regularization
term (Hastie et al., 2009) is A penalizing the g-norm of w, the
model weights of f (an example is f(X) = Xw), raised to the power
p.

. 1 2
min NIIY—f(X)H%'i')\”W”g (6)

In general, machine learning algorithms may have multiple
hyperparameters that are prespecified (Bengio, 2000; Foo et al.,
2008). Moreover, hyperparameters do not only exist inside a reg-
ularization term. Any external parameter that is not inferred by
the machine learning model and affects the performance, speed,

or quality of the learning process is considered a hyperparameter.
This work focuses on a hyperparameter regularizing the model fit,
but similar extensions are possible to other hyperparameters, such
as those located inside kernel functions.

In Eq. (6), the aim of regularization is to control the complexity
of f that is fitted. As the value of A varies from 0 to oo, the re-
sulting estimated f will have different reducible error realizations.
Likewise, the bias and variance values for each f are different. By
including a regularization term, the reducible errors for several f
candidates are comparable and are an implicit function of the hy-
perparameter. Finding an optimal f with low bias and low variance
amounts to correctly tuning A. However, what is the best value for
A is not known a priori. Therefore, the selection of an optimal ma-
chine learning model is really a hyperparameter optimization prob-
lem (Fig. 3).

The rest of the paper is organized as follows. In Section 2, dif-
ferent strategies for addressing the hyperparameter optimization
problem are summarized. In Section 3, some background on para-
metric programming theory and its implications for the hyperpa-
rameter optimization problem are briefly described. In Section 4,
the conversion of K-fold cross-validation for tuning hyperparam-
eters into a bilevel optimization problem is discussed. The usage
of parametric programming to reformulate the bilevel optimization
into a single level problem is also presented. In Sections 5 and 6,
this bilevel & parametric optimization approach for hyperparame-
ter tuning (HY-POP) is applied on LASSO regression and a L;-norm
support vector machine (SVM), respectively. In the former, it is val-
idated that HY-POP leads to the same optimal A and f as previ-
ous results that developed a closed-form solution to LASSO regres-
sion. The latter extends HY-POP to achieve a new understanding
of LP L;-norm SVM. These examples highlight the ability of HY-
POP to explicitly solve the hyperparameter optimization for ma-
chine learning algorithms that are represented as linear program-
ming or quadratic programming (LP/QP) models. It is noted that
these models are chosen to demonstrate HY-POP, and an analysis
of model sensitivity is not the aim of this work. Finally, some con-
cluding remarks are made and future directions are suggested.

2. Hyperparameter optimization

Commonly used strategies for hyperparameter optimization
(Bergstra et al., 2011; Claesen and De Moor, 2015; Hutter et al.,
2015; Luo, 2016) involve dividing the parameter space into D
evenly or randomly discretized points and performing an itera-
tive optimization procedure through K-fold cross-validation (Fig. 4).
First, the data is split into K subsets. Within each subset, the data is
further separated into training and testing sets. Next, for each dis-
cretized A value, a separate optimization problem for the machine
learning model (Eq. (6)) is constructed on the training data in each
fold and solved to estimate f. The validation error %HY —?||% is

then computed using the estimated f and testing data in the same
fold to predict Y. Finally, after iterating through all the A values,
the validation errors for each A across all folds are averaged to-
gether. The optimal f is the one with the XA value that gives the
smallest mean validation error.

K-fold cross-validation with grid (Liu et al., 2006) or random
search (Bergstra and Bengio, 2012) for hyperparameter optimiza-
tion is a generalizable way to approximate optimal model selec-
tion. The advantages of K-fold cross-validation are that, in most
cases, it captures the actual test error as an implicit function of
A well-enough and calculates a f that balances bias & variance
(James et al., 2013; Abu-Mostafa et al., 2012). The disadvantages
of K-fold cross-validation are that sometimes K x D optimization
problems may become a computational burden to solve and possi-
bly lead to inexact solutions that are troublesome due to poor dis-
cretization. One way to bypass solving K x D optimization prob-
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Fig. 3. Optimal model selection amounts to determining the optimal hyperparam-
eter.

lems in K-fold cross-validation is through a bilevel optimization
approach (Bennett et al., 2006; Klatzer and Pock, 2015), where the
training and testing objectives are modeled together. This is dis-
cussed further in Section 4.

Another common method to tune hyperparameters is using
Bayesian optimization (Snoek et al, 2012; Eggensperger et al.,
2013). This approach still involves iteratively exploring the hyper-
parameter space, where a probabilistic model of the validation er-
ror as a function of A is built from prior evaluations. The proba-
bilistic model is then used to approximate the optimal hyperpa-
rameter by assigning probability values to its location and select-
ing the one with the highest probability. Gradient-based methods
for hyperparameter optimization (Bengio, 2000) pose the valida-
tion error as a nonlinear objective function, with A as the deci-
sion variable, and uses gradient descent to find a locally optimal A.
As such, there is no guarantee that the hyperparameter optimiza-
tion is solved to a global optimum. Bayesian and gradient-based
methods have been applied to many machine learning algorithms
including LASSO regression (Gao et al.,, 2010; Barratt and Sharma,
2018) and SVM (Gold et al., 2005; Keerthi et al., 2007). Most re-
cently, black-box or derivative-free optimization (Rios and Sahini-
dis, 2013), which treats the validation error as an unknown func-
tion to be interpolated from point evaluations in numerical experi-
ments and optimizes the error through iterative evaluations in the
hyperparameter space, has been applied to hyperparameter tuning
for neural networks (Diaz et al., 2017; Koch et al., 2018).

5-fold Cross-Validation

B o

B rouw

= | Fold #3

| | Fold #4

| Fold #5

Ao Aa - - - - - A

Fig. 4. An overview of K-fold cross-validation for hyperparameter optimization.

3. A parametric programming perspective

The developments in this work first translate the K-fold cross-
validation for hyperparameter optimization into a bilevel optimiza-
tion problem and then solve it through parametric programming.
This methodology gives the exact solution and does not require
any approximation, probabilistic modeling or iterative searching of
the hyperparameter space. The parametric programming approach
applies for hyperparameter optimization problems that have a ma-
chine learning algorithm that is explicitly formulated as a LP/QP
model. Moreover, for these problems, global optimality of A is
guaranteed from parametric programming theory.

Parametric programming is an optimization strategy, popular-
ized by explicit model predictive control (MPC) (Bemporad et al.,
2002), that determines the optimal solution as a function of a vary-
ing parameter 6, without exhaustively traversing the entire param-
eter space. The general form is seen in Eq. (7). The objective (loss)
function F, inequality constraints g, and equality constraints h are
all functions of the decision variables u and parameter 6. The op-
timal solution comprises a set of finite areas (critical regions in
Fig. 5), where a particular solution is valid for a given realization
of 8, along with explicit expressions relating the decision variables
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Fig. 5. An example of critical regions comprising the optimal solution to a para-
metric programming problem (Eq. (7)).

u to the 6 parameter (u =A@ + b). Using this, the objective (loss)
function is also solely expressed as a function J(8).

J@O) = muin F(u,0)

s.t. g(u,0) <0
h(u,0)=0 (7)

In the classic explicit MPC problem (Bemporad et al., 2002), de-
cision variables u are the control inputs and parameters 6 are the
system states. For the hyperparameter optimization setup, decision
variables u are the model weights w to f and parameters 6 are the

hyperparameters A. In this work, f is assumed to be linear with
respect to w.

FX,w) = pX)w (8)

w is a j x 1 vector of model weights and ¢ is a vector of ba-
sis functions transforming each predictor of X such that ¢(X) =
[1(X1), 92(X2), ..., ¢;(Xj)]. f is a function of w because the
model weights are learned from training the machine learning
model.

By viewing Eq. (6) as an optimization problem in the form of
Eq. (7), a new understanding of the hyperparameter optimization
problem is reached. From this parametric programming perspec-
tive, a different affine expression w = A;A + b, governs each criti-
cal region r of A and the learned model is redefined as f(X,A) =
d (X)ArA + ¢ (X)b;. Having f as an explicit function of A has impor-
tant ramifications for the bilevel optimization approach to K-fold
cross-validation discussed later in Section 4.

The algorithmic procedure (graph, geometrical, combinatorial)
for computing the critical regions and affine expressions for
Eq. (7) depends on the optimization problem structure (linear,
nonlinear, convex, differentiable) and the nature of the variables
& parameters (continuous or binary). All algorithms employ an ac-
tive set strategy, where each identified critical region has a unique
combination of active constraints that represent the optimal solu-
tion. In general, parametric programming is also extendable to the
case of multiple varying parameters (multi-parametric program-
ming). The reader is referred to several review papers and books
for further discussion on multi-parametric programming theory
(Pistikopoulos, 2009; 2012; Oberdieck et al., 2016a; Pistikopoulos
et al., 2011; 2020) and its applications (Diangelakis et al., 2017;
2018; Burnak et al., 2019; Ogumerem and Pistikopoulos, 2019; Onel
et al., 2019a; Tian et al., 2020).

4. Bilevel optimization of K-fold cross-validation
Within each kth fold of cross-validation for hyperparameter op-

timization, there are two different objectives. On the training set
level, the goal is to minimize the training error in Eq. (6), where

Y is the output response from the training data. On the testing set
level, the validation error %HY - Y||% is evaluated using the learned

f from model training to predict the output response Y from the
testing data. After model training and recording the validation er-
rors across all A values for every fold, the goal is to select the op-
timal f that minimizes the mean validation error across all folds.
Overall, K-fold cross-validation seeks A such that when the optimal
training is solved for each training set, the validation error over the
test errors is minimized.

In this setup, the dual objectives are captured using a bilevel
optimization (Colson et al., 2007; Sinha et al., 2017) formulation
(Eg. (9)). Note this is an example formulation, and modifications
may be necessary depending on the particular machine learning
algorithm, as seen later in Section 6. However, the general con-
cepts described in this section remain valid. In the inner level, the
objective is to minimize each kth fold’s training error with a reg-
ularization penalty, the decision variables are the model weights
Wy, and the parameter is A. In the outer level, the objective is to
minimize the mean squared validation error across |K| folds, the
decision variable is A, and the parameters are wy.

1

min - tst _ 5 12

A |I<| kgl: Nlt(st ”yk J’k”z
1

st min N 1™ = fill5 + Al l§ Vk e K 9)
K

K is the set of all data folds. For each kth fold, N,‘{r” is the train-
ing set size, Ni is testing set size, yi™ is a NJ"" x 1 vector of out-
put responses in the training set, y}* is a N;* x 1 vector of out-
put responses in the testing set, fk is the trained machine learn-
ing model of form fk(X, wy) = p(X)wy, and Jj is a NI x 1 vector
of predicted responses from fk using the testing set. Again, ¢(X)
is vector of basis functions transforming the columns of X and
wy is a j x 1 vector. Note that fk is estimated using X from the
training set, fk(Xlgr”,wk) =@ (X™)wy, and then X from the test-
ing set is inputted with wj, fixed to predict the output response,
Ve = [ X wi) = pXEFHwy.

This observation of K-fold cross-validation as a bilevel optimiza-
tion problem has also been noted by earlier works (Bennett et al.,
2006; Klatzer and Pock, 2015; Pedregosa, 2016; Franceschi et al.,
2018; MacKay et al., 2019). Some of these authors (Bennett et al.,
2006; Klatzer and Pock, 2015) attempted to solve the bilevel opti-
mization by replacing the inner level optimization problem with its
Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions are La-
grangian and complementarity constraints that represent the opti-
mality of the inner level problem, reducing the bilevel optimization
into a single level constrained optimization problem after reformu-
lation. However, even if both levels are LPs, nonlinear terms con-
taining Lagrange multipliers and decision variables arise within the
complementarity constraints from reformulating the bilevel opti-
mization using the KKT approach. This renders the single level op-
timization to be a mixed-integer nonlinear programming (MINLP)
problem, which is a very difficult to solve to global optimality.
Sometimes, even achieving a feasible solution is also challenging.
This becomes more difficult when the optimization problems on
the two levels are nonlinear programs (NLP) since the Lagrangian
constraints may also now be nonlinear.

If the original machine learning algorithm with regularization
penalty in the inner level of Eq. (9) is well-posed as a LP (p=1
& g=1) or QP (p=2 & q=2), parametric programming is an-
other viable strategy for reformulating the bilevel optimization into
a single level optimization that is a mixed-integer quadratic (MIQP)
problem. Although both methods will give the same optimal A, the
advantage of parametric programming is that it preserves useful
information about the optimal solution profile that the KKT ap-
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proach does not. The KKT approach only provides a single opti-
mal solution, and a MINLP is more difficult to solve than a MIQP.
Through parametric programming, the model weights are derived
as explicit affine functions of the hyperparameter (wj, = Ay A + by,)
for each kth fold and critical region r of A. As such, fk is express-
ible as a function of A, and the machine learning model becomes
feX. 1) = ¢(X)Ah + ¢ (X)by,. Note that exactly one critical re-
gion is active (one corresponding pair of Ay and by, coefficients
are nonzero) for each kth fold. This is because A is the single deci-
sion variable in the outer optimization in Eq. (9).

This new form of f is important because the training error
(inner level objective in Eq. (9)) and the mean validation error
(outer level objective in Eq. (9)) are both now explicit functions
of just A. This is easily seen through substituting the affine func-
tion of wy(A) into the inner and outer objectives. For the train-
ing error, fAk(XIET",wk) = fk(XIET”,)L), and for the validation error,
P = fXE wy) = fk(XIff,)\). The affine function of wy(A), captur-
ing the optimal solution in the inner optimization, passes informa-
tion between the two levels of Eq. (9) to reduce the bilevel opti-
mization into a single level.

By utilizing parametric programming, the implicit function of
error versus A discussed in Sections 1 and 2 is no longer unknown
and now has a closed-form expression. This is a huge advantage
for parametric programming over using KKT conditions for hyper-
parameter optimization because, in addition to the optimal A, the
complete training & validation error versus A profiles are given.
Having these profiles makes it easier to understand the trained
machine learning model and visualize the prediction results. Ef-
fective data visualization helps to build more interpretable and
sparse models, which are important for improved surrogate mod-
eling of highly complex systems and increased understanding of
which predictors most influence the outcome.

The model formulation of the HY-POP approach for the hy-
perparameter optimization example in Eq. (9) is formally de-
scribed below. Bilevel optimization through parametric program-
ming (B-POP) (Avraamidou and Pistikopoulos, 2019a) for other ap-
plications have also been demonstrated in previous works (Faisca
et al., 2007; Dominguez and Pistikopoulos, 2010; Oberdieck et al.,
2017; Avraamidou and Pistikopoulos, 2017; 2019b). Fig. 6 shows
an overview of the HY-POP strategy for hyperparameter optimiza-
tion. Multi-parametric quadratic programming models (mpQP) is
the general form of machine learning models that are allowed for
the inner level optimization problem.

The first step is to replace the inner level optimization in
Eq. (9) with constraints that define the optimal solution profile
from the critical regions. Since there are |K| folds, there are |K|

training optimization problems to replace with parametric pro-
gramming. The critical regions for each kth training optimization
are separately calculated, and then they are all combined together
into the appropriate constraint set. These constraints control the
affine expressions of wy(A) and restrict only one critical region
to be active for each fold to represent the optimal training. This
is conveyed through introducing Big-M constraints (Eq. (10)), crit-
ical region bound constraints (Eq. (11)), and a SOS1 constraint
(Eq. (12)).

Wi < A + by + M(1 = yif Vk e K. Vr e R¥

Wi > Agh + by + MR — 1) Vk e K, Vr e R (10)

M is an appropriately large-enough constant value. For each kth
fold, R is the set of all critical regions that comprise the optimal
training solution, wy is a j x 1 vector of model weights to the
trained machine learning model, Ay, and by, are j x 1 coefficient
vectors in the affine expression for wy from a critical region r, and
yif are binary variables fixing/relaxing w; for active/inactive criti-
cal regions. The Big-M constraints determine which critical region
r in each fold k defines w; for the machine learning model fk.

IR L
LBy < & < ) UBTyS

r=1 r=1

Yk e K (11)

IR¥|

yR=1 Vk e K (12)
r=1

To ensure that only one critical region is active for each fold,
Eq. (12) enforces this discrete decision. The lower (LBgf) and upper
(UBSR) bounds to A in a critical region r from fold k define the
range of values for A such that a particular affine expression for
wj, and an resulting optimal solution apply. The upper bound of a
critical region is the lower upper bound of the next critical region
in the same fold. Overall, the bounds from each fold span the same
hyperparameter range. To enforce that the same A value is utilized
across all folds, when selecting an active critical region in each fold
to represent the optimal training, Eq. (11) defines that the lower
and upper bounds of A from these |K| critical regions must overlap
each other. Together, Eqs. (10)-(12) replace the inner optimization
in Eq. (9).

The second step is to substitute y; = ¢ (X{*)w, into the objec-
tive (loss) function of the outer level in Eq. (9). Since the inner
level decision variable wy, is a function of the outer level decision
variable A from parametric programming, the bilevel optimization
is converted into a single level optimization. Eq. (13) constitutes
the HY-POP reformulation of the hyperparameter optimization ex-
ample in Eq. (9), assuming the machine learning algorithm is a LP
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(p=1&qg=1)orQP (p=2 & q=2)and fk is linear with respect
to its model weights w;. Because the outer validation error objec-
tive is in MSE form and binary variables yCR are added for the crit-
ical regions, this single level optimization is also a MIQP.

IK|
3 tst tst 2
A,mw:?g,ﬁ |1<| Z W Iy — o (XEHwill3
s.t. . < Aer + by + M1 - yF) Vk e K,Vr e R
¢ = A + b + MR — 1) Vk e K, Vr e R
|R'< IR
ZL Ve <A < Y UBFyE Vk e K
r=1
Rk
ZyCR_l Vk e K (13)

Depending on the actual machine learning algorithm, the ex-
ample formulations of Egs. (9) and (13) may need some modifi-
cations. One instance of this is the LP Ly-norm SVM in Section 6.
However, the general concept shown here of using parametric pro-
gramming to connect the two levels of a bilevel optimization prob-
lem (assuming LP or QP) through affine expressions relating model
weights to the hyperparameter remains valid. In Section 6, similar
steps, as performed for Eqgs. (9) and (13), are taken to formulate the
K-fold cross-validation for LP L{-norm SVM hyperparameter opti-
mization through a HY-POP approach. Nevertheless, the example
formulations of Egs. (9) and (13) are useful for LASSO regression in
the next section.

5. LASSO regression

LASSO (Tibshirani, 1996) is a popular regression technique that
performs model selection through regularization. It introduces a
L{-norm penalty on f, a vector of regression coefficients (model
weights), to the ordinary least squares (OLS) model. This attempts
to improve the regression fit by reducing the variance observed in
the OLS estimation for S and better balance the bias & trade-off.
LASSO regression is one useful method to build sparse surrogate
models for data-driven optimization (Beykal et al., 2018b; 2018a).
The LASSO regression form is shown in Eq. (14).

min Y = )BIE + Al Bl (14)

Eq. (14) is a parametric programming problem in the form of
Eq. (7) and fits the problem structure shown in the inner level
of Eq. (9). Because the Li-norm regularization term is nonlinear,
1Bll1 =318l Eq. (14) is first reformulated before it is solved
through parametric programming. It is observed that B8; is piece-
wise linear. After substituting «; = | 8;| and adding two constraints
to describe the piecewise behavior, the parametric quadratic pro-
gramming (pQP) model for LASSO regression is the following.

1 .
min S5 lY - ¢COBI3 +)~Zj:aj

s.t. aj > B; Vjie]
oj = —p; Viel (15)

To optimize A in Eq. (15) and select an optimal LASSO model,
the bilevel optimization depiction of K-fold cross-validation from
Eq. (9) is implemented. Eq. (15) is the inner optimization problem,
and the outer level objective still is to minimize the validation MSE
across all folds. The critical regions representing the optimal solu-
tion profile to Eq. (15) for each kth fold are the similar to those in
Eqgs. (10)-(12), with the only difference being the parametric pro-
gramming solution now accounts for the two added constraints for

Table 1
Model statistics for training LASSO pQPs (Eq. (15)).

Fold #  X{™ (i x j)  # Constraints x # Variables  # Critical regions
1 23 x 7 14 x 14 5
2 23 x 7 14 x 14 6
3 23 x 7 14 x 14 6
4 23 x 7 14 x 14 6
5 24 x 7 14 x 14 6

the reformulation of |8;|. The final HY-POP formulation (MIQP) of
the LASSO hyperparameter optimization is in Eq. (16). B, isaj x 1
vector of regression coefficients.

K|

. tst xtst 2
,min, |I<| ZNfo Iyt — &) Bell3

s.t. IBk = Akr)L + bkr + M(l —J’if)
ﬂk = Akr)L +bkr +M(yCR - 1)

Vk e K,Vr e R*
Vk € K, Vr € R¥

|R" \Rk

ZLBifygf <A< ZU CRycR Vk e K

Rk

ZyCR =1 Vk e K (16)

Eq. (16) is a new structure for the hyperparameter optimization
of LASSO regression through K-fold cross-validation. Next, this HY-
POP formulation is validated on an ammonia reactor data example
and against a coordinate descent algorithm (with grid search) from
the glmnet package in R.

5.1. Ammonia reactor data example

A dataset of 29 samples are collected from different sources on
the performance of an industrial ammonia synthesis reactor (Tso
et al., 2018; Demirhan et al., 2019). The exact data values are in-
cluded in the supplementary material. These values are normalized
and centered before training. Reactor temperature T & pressure P,
inlet molar concentration of hydrogen xy,, nitrogen xy,, ammonia
XNH, & Inert species Xjper, and the molar ratio between hydrogen

. X . .
& nitrogen % are 7 predictors for the reactor conversion yy. It
2

is assumed that the predictors are linear, ¢(X) = X. Therefore, the
proposed LASSO model that is trained has the following form in
Eq. (17). An intercept term is not included because the data is cen-
tered.

Yx = PiT + BoP + B3Xu, + Baxn, + BsXnu, + BoXinert + ,37 X (17)
2

While this is a small dataset, the goal is not a comprehensive
computation study, but to validate that the HY-POP approach cor-
rectly identifies the optimal A & 8, compared to an established co-
ordinate descent algorithm. The data is randomly divided into 5
folds for cross-validation. The fold identification of the data points
is also provided in the supplementary material. Each training op-
timization problem (Eq. (15)) is formulated in MATLAB 2019b.
An in-house developed and state-of-the-art software, the Paramet-
ric Optimization (POP) toolbox (Oberdieck et al., 2016b), is then
used to solve for the critical regions, using the built-in QP solver
from MATLAB and the geometrical algorithm. A geometrical al-
gorithm is selected over a graph or combinatorial approach since
Eq. (15) only has one hyperparameter. Because of this, the former
is more efficient at identifying the active set of constraints for each
critical region than the latter two. The model statistics for each
training optimization problem (Eq. (15)) is depicted in Table 1. An
example result of the critical regions for fold #2 is shown in Fig. 7.
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Fig. 7. LASSO regularization path for the ammonia reactor data in fold #2 from the
training pQP (Eq. (15)) solved using POP (Oberdieck et al., 2016b).
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Fig. 8. LASSO regularization path for the ammonia reactor data in fold #2 solved
using a coordinate descent algorithm from glmnet in R.

The piecewise linear relationship between § & X is referred to
as the LASSO regularization path (Hastie et al., 2009). This path
helps to visualize the importance of each feature on the model
prediction and interpret the model through selecting the features
with more influence toward this prediction. Less important fea-
tures typically have B values that approach O faster as A gets
larger. For fold #2 in Fig. 7, it appears that pressure is the most
influential feature on the model's prediction since its 8 value is
the last one to reach 0.

We expected this piecewise behavior from the affine expres-
sions B(XA) provided by the parametric programming solution to
Eq. (15). Each line segment piece represents a critical region, where
a unique B(X) function is valid for the values of A. Having the
change in a piecewise linear fashion has also been previously ob-
served in least angle regression (LAR) (Efron et al., 2004) and coor-
dinate descent (Friedman et al., 2010), the first efficient algorithms
developed to solve LASSO regression. While these methods were
specifically tailored for LASSO regression (Efron et al., 2004; Fried-
man et al., 2010), parametric programming is the general theory of
solving problems in the form presented in Eq. (7). Therefore, both
LAR and coordinate descent algorithms can actually be viewed as
specialized parametric programming approaches. In Fig. 8, it ob-
served that the coordinate descent algorithm (with 103 evenly dis-
cretized points for A € [1073, 1]) gives exactly same regularization

Fold #2 Validation Error vs. )\ - pQP
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Fig. 9. Validation error for the ammonia reactor data in fold #2 from the training
pQP (Eq. (15)) solved using POP (Oberdieck et al., 2016b).

Table 2
Optimal values and CPU times for 5-fold cross-validation on am-
monia reactor data.

Method Optimal MSE ~ Optimal A CPU time?® (s)
pQP + MIQP 0.0479 0.0140 144 + 0.06
cv.glmnet" 0.0478 0.0137 0.19 + 0.01

2 Averaged over 10 runs.
b Grid of 103 points.

path as Fig. 7. This verifies that the critical regions for each fold ex-
actly represent the optimal solution profile for the pQP (Eq. (15)).

With B(A) given from parametric programming, calculating the
training and validation errors for each fold, the objectives in
Egs. (15) and (16), respectively, are simple function evaluations.
Likewise, these errors are also piecewise functions with respect to
A, but they are not linear due to the squaring of the error term.
Fig. 9 is an example of this nonlinear piecewise behavior for the
testing error in fold #2. With error as a function of A, finding
the optimal A is an easy calculation, pinpointing the minimum of
these validation error profiles aggregated across all folds. Profiles
of the LASSO regularization path and validation error for all folds
are found in the supplementary material.

To find this minimum mean validation error, after comput-
ing the critical regions, the MIQP for hyperparameter optimiza-
tion (Eq. (16)) is formulated in MATLAB 2019b and solved using
IBM ILOG CPLEX Optimization Studio 12.9. Overall, the model
has 421 constraints, 36 continuous variables, and 29 binary vari-
ables. The MIQP solution is compared to result given from us-
ing cv.glmnet, the cross-validation function included in glmnet,
with a grid of 103 evenly discretized points for A € [1073, 1]. Fig. 10
highlights that the resulting mean validation error profiles calcu-
lated from these two methods. The shaded blue and gray areas
represent one standard error above and below the mean validation
error.

The validation error profiles appear exactly the same, confirm-
ing that the HY-POP approach leads to the same solution as the es-
tablished coordinate descent algorithm in glmnet. Table 2 depicts
some computational results. From minimizing the MIQP, the HY-
POP approach calculates an optimal A of 0.140, while cv.glmnet
calculates an optimal A of 0.1365. This slight difference in value is
attributed to numerical sensitivity in the algorithmic computations
and how the A space is the discretized.

Not controlling for programming environment, the coordinate
descent algorithm appears faster that the HY-POP approach. This is
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Fig. 10. Mean validation error for the hyperparameter optimization of LASSO re-
gression on the ammonia reactor data through 5-fold cross-validation. (a) Error pro-
file solved using the MIQP (Eq. (16)). (b) Error profile solved using cv.glmnet.

expected because the former is a tailored method with warm starts
for solving the pQP of LASSO regression, while the latter uses a
generic algorithm applicable to any pQP with no specializations for
LASSO regression. Moreover, the MATLAB code has not been op-
timized for speed. One potential idea for speed-up is to parallelize
the geometrical algorithm so that multiple starting points are used
to initialize. Albeit for a small example, it is promising though that
the generic POP solver is only a order of magnitude slower. For the
HY-POP approach here, about 84% of the CPU time is spent deter-
mining the critical regions for the folds. Time spent constructing
the model is included in the CPU time.

However, depending on the size of X,ﬁ”", the number of folds,
and the granularity of how A is discretized, these computational
conclusions may change. These are subjects for further study. There
may be corner cases where a much finer discretization of A is
needed for a good approximation, and an effective grid search
would require more computations. The tractability of a paramet-
ric problem depends on the number of decision variables and con-
straints. In the pQP for LASSO (Eq. (15)), the problem size only
grows with the number of features j in X,E”‘. Bj and «; are de-
cision variables that scale with j, and the number of constraints
also scales with j. Therefore, it is likely that Eq. (15) becomes more
difficult to solve as j grows, and the sample size i of X,ﬁ'" has a
less significant impact since it only participates in the objective
function. Any active set based strategy to solve parametric prob-

lems relies on choosing n active constraints for n decision vari-
ables to square the system. Since the number of decision variables
and constraints scale together equally, it is expected that X,ﬁ’” with
a reasonably larger number of features and sample sizes will re-
main tractable for the LASSO pQP. What is the upper bound on j
for maintaining tractability requires further investigation.

6. LP L,-norm support vector machine (SVM)

SVM (Boser et al., 1992) is a common classification technique
that identifies a maximal margin hyperplane separating different
classes of labeled responses and utilizes it as a decision boundary.
It has been applied for fault detection and process monitoring in
chemical engineering (Onel et al., 2018; 2019b). The standard gen-
eral form is the C-parameterized SVM, where a hyperparameter C
penalizes the slack variables ¢; controlling how much margin vio-
lation to tolerate for each misclassified observation i.

1
min  —[[w|?+C) ¢!
min vl +C 3 el
st.  yi(p(xpw+b) >1—¢; Viel
>0 Viel (18)

I is the set of all training observations, w is a j x 1 vector of model
weights, b is a constant bias, and m is a constant value. For the ith
observation, x; is a 1 x j vector of predictors, y; is the given class
label, and ¢; is the slack variable. Binary classification is assumed,
where the y; is either +1 or —1.

The power d to which ¢; is raised in the objective (loss) func-
tion dictates whether Eq. (18) is the Li-norm (d = 1) or the L,-
norm (d =2) SVM. When p=1 & q=1, Eq. (18) is the LP SVM,
and when p=2 & q=2, it is the QP SVM. Typically, m =1 for
the LP and m = 2 for the QP. Since LASSO regression in previous
section is an example of the HY-POP approach applied to a QP, in
this section, LP L;-norm SVM (Bradley and Mangasarian, 1998) is
used as an example of the HY-POP approach implemented on a LP.
The LP Li-norm SVM (Bradley and Mangasarian, 1998) is shown
below.

?v]l:lg ;le|+C;8i

st. yi(p(xpw+b) >1—¢; Viel
& >0 Viel (19)

Eq. (19) is a parametric programming problem in the form of
Eq. (7), but does not have a squared error loss as LASSO regression
(Eq. (14)) did. Instead, the objective is to minimize the sum of mar-
gin violations, while selecting which predictors are more impor-
tant to construct the hyperplane. The C hyperparameter is associ-
ated with the slack variables ¢ accounting for this margin violation
sum, instead of the model weights w for LASSO regression. An ab-
solute value reformulation of }°; = |w;| is performed for Eq. (19),
where |wj| = pj+q; and w; = p; — q;. The parametric linear pro-
gramming (pLP) for LP L;-norm SVM is the following.

min Y pi+qi+Cy &
j i

p.q.b.e
st. Yi(@x)p—d(x)g+b) =1 —¢; Viel
& = 0 Viel
pj=0 Vjel
q;=0 Vjel (20)

Eq. (20) is the inner training optimization to the bilevel prob-
lem to optimize C. For each kth fold, the critical regions describing
the optimal solution profile to Eq. (20) are in the same form as
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those in Eqgs. (10)-(12), taking into account the reformulation of

|wj|. The only difference here is there are two sets of Big-M con-
straints (Eq. (10)) to account for w and b. The critical regions for
Eq. (20) for all folds are defined using the following constraints,
where w is evaluated from p —q.

Vk e K, Vr e R¥
Vk e K,Vr e R
Vk € K, Vr e R¥
Vk e K, Vr e R

Wi fAer+bkr +M(1 _ygf
Wy > A C + by + MOYST — 1)

bk = Gkrc+hkr+M(1 _Yif
bk z Gkrc+ hkr + M(yif - 1)

IR IR
LBfy(R < C < Y "UBRyLf Vk e K
r=1 r=1
IR
YR =1 Vk e K (21)
r=1

For critical region r in the kth fold, the affine expressions for the
model weights are wy = Ay, + b, and the constant bias is b, =
Gir + Ny These define the decision boundary wy¢(xy) + by, that
classifies each observation into either +1 or —1 class, depending
on the sign of its evaluated value (positive is +1 and negative is
-1).

The outer level objective in the bilevel optimization is to mini-
mize the misclassification rate across all folds. For the kth fold with
N,i“ sample points in the testing set, the misclassification rate is
defined below.

tst
Nk

1 ~
NET > Fic # Vi) (22)
i-1

Here, j;; is the predicted class label for the ith observation in the
testing set for the kth fold, and y; is the given class label. F is
an indicator function that equals 1 if yy # y and 0 if y; = V.
If F(yy # Vi) =0, then the ith observation is correctly classified.
Otherwise, it is misclassified.

To capture this discrete decision and identify a function form
for F, yi;, is redefined as a binary variable equal to 1 for a prediction
belonging to the +1 class and equal to O for a prediction belonging
to the —1 class. During testing validation in the outer level, the +1
and —1 class labels y;, are also redefined as 1 and O, respectively,
to accommodate the binary variable y;. However, during training
(Eq. (20)) and to compute the critical regions (Eq. (21)), the class
labels y;, remain +1 and —1. In this way, the misclassification rate
is rewritten as a quadratic loss function.

NfS[
1 < N
Nt > i — i) (23)
ki=1

ik — ¥ix)? equals 1 for a misclassified observation, when y;, =1
& i =0o0ry; =0 & i = 1. (Vix — Jix)? equals O for a correctly
classified observation, when y;, =1 & y, =1 or y;, =0 & J; =0.
The reason for a redefinition of the class labels during testing val-
idation is clear in Eq. (23).

To connect the critical regions in the inner level describing the
trained decision boundaries (wy¢ (x;) + by) to the misclassification
rate in the outer level, two additional Big-M constraints are needed
to handle the redefinition of class labels made between the train-
ing and testing validation.

Wid (Xi) + by = M(Py — 1)
wid (X) + by < My

VkeK, Viel
Vk e K, Viel (24)
I¥ is the set of all observations in the testing set in the kth fold. x;,

are the predictors for the ith observation in the kth fold. When the
decision boundary is positive (+1 class), y;, = 1. When the decision

Table 3
Model statistics for training L;-norm SVM pLPs (Eq. (20)).

Fold #  X{™ (i x j)  # Constraints x # Variables  # Critical regions
1 92 x 9 202 x 111 68
2 93 x 9 204 x 112 86
3 93 x 9 204 x 112 80
4 93 x 9 204 x 112 77
5 93 x 9 204 x 112 69

boundary is negative (-1 class), y;, = 0. Therefore, Eq. (24) cap-
tures the binary decision of predicting a class label and connects
the learned wy, & b, from the critical regions (Eq. (21)) to the mis-
classification rate in Eq. (23).

The final HY-POP formulation (MIQP) of LP L;-norm SVM hyper-
parameter optimization comprises of Eqs. (21), (23), and (24) and
is shown below.

1 kN ,
min — ) — i« — Vi
vak’bkyikx)/if |K| ; N]ESt ;(ylk .V1k)
s.t. Wi (xi) + by = M(Py — 1)
Wi (X)) + by < My,
Wy < A€+ bkr +M(@1 - Jﬁf)
Wi ZAlch+bkr+M Eﬁ - 1)
bk = Ger + hkr + M(] - yif)
by > G,.C + hy, +M(yif -1)

Vk e K, Vi e I¥
Vk e K, Vi e I¥
Vk e K,Vr ¢ R¥
Vk € K, Vr e R¥
Vk € K, Vr e R¥
Vk € K, Vr e R¥

IR IR
LBRRyeR < C <) UBRyRk Vk e K
r=1 r=1
IR
yk=1 Vk e K (25)

r=1

Eq. (25) represents a new construction for the hyperparameter op-

timization of LP L;-norm SVM through K-fold cross-validation. This
HY-POP formulation is next demonstrated on a breast cancer data
example.

6.1. Breast cancer data example

A dataset of 116 samples with 9 predictors for breast cancer
(Patricio et al., 2018) is downloaded from the UCI Machine Learn-
ing Repository. The data values are normalized and randomly di-
vided into 5 folds. The fold identification of the data points is
provided in the supplementary material. Healthy patients are la-
beled +1, and cancer patients are labeled —1. The predictors are
age, BMI, and levels of glucose, insulin, HOMA, leptin, adiponect-
inresistin, & MCP-1. It is assumed that the predictors are linear,
¢ (X) = X. Therefore, the proposed LP L;-norm SVM that is trained
is the following.

Yeancer = W1Xage + WaXpm + W3Xgpy, + WaXingy + W5XHoMA
+ WeXjep + W7Xqgi + WeXres + WoXycp1 + b (26)

Each training LP L;-norm SVM (Eq. (20)) for each fold is formu-
lated in MATLAB 2019b. The critical regions are solved using the
POP toolbox (Oberdieck et al., 2016b) with the CPLEX LP solver
and the geometrical algorithm. Since Eq. (20) also has only one hy-
perparameter, a geometrical algorithm is chosen. The model statis-
tics for each training optimization problem (Eq. (20)) is depicted
in Table 3. An example result of the critical regions for fold #3 is
shown in Fig. 11. Like the LASSO regression, a piecewise relation-
ship between the model weights w & b with the hyperparameter
C is also observed here. We expected this piecewise behavior from
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Fig. 11. SVM regularization path for the breast cancer data in fold #3 from the
training pLP (Eq. (20)) solved using POP (Oberdieck et al., 2016b).

the affine expressions, w(C) & b(C), determined from the paramet-
ric programming solution to Eq. (20).

This piecewise relationship is referred to as the SVM regulariza-
tion path (Hastie et al., 2009) because earlier investigations (Hastie
et al., 2004; Zhu et al., 2004) noticed similarities between the algo-
rithms (LAR and coordinate descent) used to solve SVM and LASSO
regression. In general, this is expected because all these solution
methods fall under the general theory of parametric programming
(Eq. (7)). Interpretation of the SVM regularization path is differ-
ent from LASSO regression because the former does not perform
feature selection in its current formulation. Greater absolute val-
ues for w & b as C gets larger indicate more important features for
building the decision boundary between the two classes. For fold
#3 in Fig. 11, it appears that glucose level is the most significant
factor for distinguishing breast cancer patients from healthy indi-
viduals compared to the other features.

Unlike the LASSO regression, there are many more individual
line segments (critical regions) that are stitched together to repre-
sent the optimal solution profile in Fig. 11. This creates a very non-
smooth behavior in w(C) & b(C) and the resulting misclassification
error profile (Fig. 12). Profiles of the SVM regularization path and
validation error for all folds are found in the supplementary mate-
rial. The non-smoothness is expected because the objective (loss)
function in Eq. (25) is quadratic with respect to a binary variable
Vi and not a continuous variable. The shaded blue area in Fig. 12b
represent one standard error above and below the average misclas-
sification rate.

Because of this non-smooth behavior in the misclassification
error profile, characteristic of classification problems in machine
learning, it is inherently more difficult to find an accurate approxi-
mation to an optimal C from a discretized grid search. The optimal
C is more sensitive to the granularity of the discretization. This
is one advantage of having the optimal solution in explicit form
through a HY-POP approach. The overall MIQP model (Eq. (25))
for the breast cancer example has 7847 constraints, 51 continuous
variables, and 496 binary variables. From minimizing the MIQP, the
optimal C value is 1.4869 with an average misclassification error
of 0.2681. Table 4 displays the confusion matrix. The specificity is
0.75, indicating that 75% of cancer patients are accurately identi-
fied as such. The sensitivity is 0.71875, indicating that about 72%
of healthy individuals are correctly classified.
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Fig. 12. (a) Misclassification error in fold #3 (b) Misclassification error averaged
across all the folds.

Table 4
Confusion matrix for 5-fold cross-validation on breast cancer data.

Predicted class

+1 (Healthy) —1 (Cancer)
+1 (Healthy) 39 13
Actual Class 4 (cancer) 18 46

Table 5
Optimal values and CPU times for 5-fold cross-validation on breast
cancer data.

Method Optimal error ~ Optimal C

1.4869

CPU time?(s)

pLP + MIQP 0.2681 5049 + 0.61

@ Averaged over 10 runs

Table 5 shows the computational results. A longer CPU time for
this breast cancer example is observed than for the LASSO regres-
sion on the ammonia reactor data because there are many more
critical regions to compute in this instance. Even though Eq. (20) is
a pLP, it has more constraints in its problem than Eq. (15), which
causes more active set explorations for the parametric program-
ming algorithm to solve the former. pLPs are actually more diffi-
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cult to solve than pQPs as well due to degeneracy issues. Likewise,
the MIQP here is also larger than the one earlier for LASSO. About
87% of the CPU time is spent calculating the critical regions for the
folds.

The complexity of the pLP for LP L;-norm SVM (Eq. (20)) grows
with the number of samples i and features j. Therefore, it is likely
that Eq. (20) becomes more difficult to solve as Xlgr” gets larger in
size. Specifically, the number of constraints scale with 2i +2j and
the number of variables scale with i +2j+ 1 in Eq. (20). Since ac-
tive set based strategies to solve parametric problems depend on
choosing n active constraints for n variables to square the system,
the pLP becomes easier to solve when 2i + 2j is closer in value to
i+2j+1, so that there are fewer unique active set combinations
to explore. It is expected that the L;-norm SVM pLP will remain
tractable for a reasonably larger X,fr”, provided the number of vari-
ables is close to the number of constraints. The upper bound on
the computational performance of HY-POP for LP L;-norm SVM is
open for further study.

7. Conclusion

The novelty in this work is constructing hyperparameter op-
timization through K-fold cross-validation as a bilevel optimiza-
tion problem that is exactly solvable as a single level optimization
through parametric programming. We refer to this as the bilevel &
parametric optimization approach to hyperparameter optimization
(HY-POP).

This parametric programming perspective ties together previous
studies that first recognized the regularization paths of LASSO re-
gression and SVM as piecewise linear functions and extends these
results to optimize hyperparameters in K-fold cross-validation. The
HY-POP approach to hyperparameter optimization is demonstrated
on ammonia reactor data, a QP example, and breast cancer data, a
LP example.

Advantages of recognizing hyperparameter optimization as a
parametric programming problem are threefold. First, the HY-POP
approach to hyperparameter optimization is applicable to any gen-
eral machine learning algorithm that is a LP/QP model. In fact,
mixed-integer linear or quadratic (MILP/MIQP) models can also
be used because parametric programming theory exists for these
problem types. Second, when there multiple hyperparameters in a
machine learning model (a common occurrence), there is theory to
solve these problems exactly through multi-parametric program-
ming. Third, and most importantly, no discretization of the hyper-
parameter space is required for HY-POP.

Finally, the aims of this work are to lay the introductory
foundation and present an unified view to hyperparameter op-
timization of machine learning models from a parametric pro-
gramming perspective. The multi-parametric programming, mixed-
integer, and computational aspects of a HY-POP approach to hyper-
parameter optimization are subjects of further investigation.
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