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Determining the optimal manipulated action for large scale model predictive control formulations re-
quires significant computational overhead. It has been demonstrated that the offline, explicit solution
provided by multiparametric programming has the capacity to greatly improve the online computational
performance of MPC strategies. For large scale problems, developing and deploying the full multipara-
metric solution remains an open challenge. In this work, a partial multiparametric solution is utilized to
improve the initialization procedure for a hot start strategy. The hot start strategy provides an improved
technique for determining the optimal solution of large scale MPC formulations, and the partial mul-
tiparametric solution ensures the initialization is suitable under varying conditions. The efficacy of the
proposed strategy is verified on randomly generated large scale MPC problems.
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1. Introduction

The development of control strategies for industrial applications
is a relevant and heavily researched field in the chemical engineer-
ing discipline, among others (Schafer et al., 2019; Schultz et al.,
2020; Bindlish, 2018; Dua et al., 2008). Model-based techniques,
especially model predictive control (MPC), allow for tighter oper-
ation and increased profit for more complex processes. In com-
parison to other control techniques such as proportional-integral-
derivative (PID) controllers, MPC controllers allow for a natural
representation of systems with multiple-inputs/multiple-outputs
and hard constraints (Saletovic, 2014). However, a criterion for the
widespread adoption of MPC relies on the ability to determine the
optimal solution within the time requirements of the process un-
der consideration.

A necessary challenge that must be overcome for the
widespread adoption of MPC is the development of the opti-
mal solution in real-time as the problem size grows. Examples
of large MPC formulations include processes with fast time
scales (Chen et al., 2019; Xi et al., 2013), robust control design
(Ning and You, 2019), distributed control architectures
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(Maxeiner and Engell, 2020), and processes that require sur-
rogate models with correspondingly expanded prediction horizons
(Narasingam and Kwon, 2018; 2017). The development of algo-
rithmic strategies to solve these problems in an online setting
gatekeep the selection of MPC in modern control design.

One technique to translate solving a large optimization prob-
lem into an offline cost is multiparametric programming. Multi-
parametric programming transforms an implicit optimization for-
mulation involving bounded uncertain parameters into an offline,
explicit solution, such that the optimization variables are affine
functions of these uncertain parameters. The benefit of the ex-
plicit solution has been shown in both online and offline appli-
cations. It was demonstrated by Bemporad et al. (2002) that the
multiparametric solution has the capacity to improve the online
computational performance of MPC by transforming the implicit
MPC formulation to an explicit, offline solution. The challenging
problem of integrating hierarchical decisions is another avenue
involving large scale optimization formulations (Li and Swartz,
2019; Albalawi et al., 2018; Chu and You, 2015). In these formu-
lations, the explicit solution offered by multiparametric program-
ming has demonstrated its applicability and effectiveness (Burnak
et al., 2019; Charitopoulos et al., 2019; Burnak et al., 2018; Diange-
lakis et al., 2017).

Because of the success of multiparametric programming, signif-
icant research effort has been mounted to advance relevant the-
ory and develop novel algorithms to tackle larger multiparametric
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model predictive control problems (Gupta et al., 2011; Wittmann-
Hohlbein and Pistikopoulos, 2013; Tendel et al., 2003; Spjetvold
et al., 2006; Sakizlis et al., 2005; Ahmadi-Moshkenani et al., 2018;
Oberdieck et al., 2016). However, there are three inherent issues as-
sociated with multiparametric programming, (i) the point location
problem, (ii) the memory requirement to store the full multipara-
metric solution, and (iii) algorithms to obtain the full parametric
solution as the problem size increases. Promising research is be-
ing conducted in these aforementioned topics (Gupta et al., 2011;
Ahmadi-Moshkenani et al., 2018; Xiu and Zhang, 2018; Kvasnica
et al., 2015; Oberdieck et al., 2017), but as the problem size grows,
these pitfalls will persist.

With increasing problem sizes, developing and utilizing the full
multiparametric solution for online applications may not be the
correct research direction to move in. Instead, an approach that
utilizes either fundamental multiparametric programming theory,
or a partial multiparametric solution, to improve online strategies
may prove to be more palatable.

Given the known pitfalls of multiparametric programming,
many researchers have developed strategies that maintain the
benefit of the explicit solution, while avoiding the known chal-
lenges. Ziogou et al. developed a two step strategy that in-
volves (i) the solution of a multiparametric subproblem that pro-
vides ‘tight’ bounds for (ii) for the original control formulation
(Ziogou et al, 2013). Yang and Biegler (2013) utilized sensitiv-
ity information, a theoretical cornerstone of multiparametric pro-
gramming, as a means to improve the computational performance
of nonlinear MPC. For continuous time optimal control problems,
Hartwich et al. (2011) developed a strategy to improve dynamic
optimization with sensitivity information of the given control for-
mulation.

It has been shown that active set strategies utilizing concepts
from multiparametric programming can significantly improve the
computational performance of determining the optimal control ac-
tions for MPC applications (Ferreau et al., 2008; Pannocchia et al.,
2011). The work by Ferreau et al. (2008) demonstrated significant
online computational savings is achievable by utilizing theoretical
aspects of multiparametric programming and not the multipara-
metric solution. Without adaptation, this hot start strategy pre-
sented has the potential pitfall of poor initialization resulting in
compromised online performance.

In this work an improved hot start strategy is presented based
on the work of Ferreau et al. (2008), and following the work of
Katz (2020). The key contribution is the development of a partial
mutliparametric solution to strengthen the initialization procedure.
The partial multiparametric solution is determined through ran-
dom walks with the aim of identifying relevant critical regions. A
computational study is performed involving numerically generated
state space models and their corresponding MPC formulations to
validate the proposed strategy.

2. Motivation

Developing the model predictive control formulation for a large
scale problem is readily implementable with little computational
cost. However, solving the resulting problem to optimality is chal-
lenging under time considerations. The following motivating exam-
ple is presented to demonstrate these challenges.

2.1. Large scale MPC

The MPC formulation is based on Eq. (1).

N-1 N-1
min XPRy + Y- X Q% + Y Ul Rill;
Ug,...,UN_1 i-1 i
s.t Xes1 = AgXe + Bylly,  Xo = X(0) (1)
X=X <X
u<u<u

where X; is the state of system at time t, &I; is the manipulated ac-
tion at time ¢, Q;>0 and R;>0 are weight matrices, P is the terminal
weight matrix and is the solution to the discrete time algebraic Ri-
catti equation, A; and B, define the evolution of the state space
in discrete time (e.g. the state space matrices after performing sys-
tem identification), X and x are the upper and lower bounds for the
states of the system respectively, &i and u are the upper and lower
bounds for the manipulated actions of the system respectively, and
N is the control and output horizon.

The details of the MPC are as follows. The output and control
horizon (i.e. N) are 45, the number of states are 50, and the num-
ber of manipulated actions are 40. After transforming the MPC for-
mulation to a quadratic program, the QP has 1800 variables and
8100 constraints.

It is important to point out that determining the offline, ex-
plicit solution using multiparametric programming is possible for
this problem. However, it is not practical because of the explo-
sion in critical regions defining the full multiparametric solution.
The maximum possible number of critical regions associated with
a multiparametric programming problem is exponentially bounded.
In other words, for a small increase in problem size, the possible
number of critical regions grows exponentially. This exponential
growth associated with the maximum possible number of critical
regions is the reason for the potential explosion in critical regions
for large problem sizes (Bemporad et al, 2002). While the true
number of critical regions may be far fewer than this theoretical
upper bound, the number of critical regions still grows with prob-
lem size, and has the capacity to approach this theoretical limit.

2.2. Determining the optimal solution

The computational time to determine the optimal solution of
the QP was performed on a computer running 4 cores and an Intel
i7-4770 CPU at 3.40 GHz with 16 GB of RAM. All calculations were
performed using the MATLAB environment.

Using CPLEX, the time to determine the optimal solution re-
quired approximately 45 seconds on average for an arbitrary initial
state. Therefore, under time constraints, it is expensive to directly
utilize the commercial solver CPLEX because of the large computa-
tional overhead.

To further emphasize how large a problem of this size is, as-
sume an active set strategy were employed, whereby an active set
combination was selected and the associated optimality conditions
were checked, and based on these results either (i) changed the
active set combination in an effort to satisfy the optimality crite-
ria or (ii) terminated because the optimality conditions are satis-
fied. This problem maintains a search space of active set combina-
tions which is large, (¥400). and therefore can make such an active
set approach to be impractical. If the active set strategy utilizes a
warm start procedures, the computational overhead may still ‘blow
up’ if a poor initialization is performed because of the large active
set search space. One reason for the increased computational over-
head is because a large matrix must be inverted. This large matrix
is defined by Eq. (2) and is based on the first order optimality con-
ditions.

1<:[% "ﬂ 2)

where A is the active constraints of the associated quadratic pro-
gram. The time required to invert this matrix for this motivating
problem is approximately 0.1 seconds. Therefore if hundreds of
candidate active set combinations are tested, this strategy would
perform worse than CPLEX.
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3. Preliminaries

For completeness, multiparametric model predictive control
(Bemporad et al., 2002), the hot start strategy (Ferreau et al., 2008),
and random walks are briefly explained. These topics are the foun-
dation for the novel strategy presented in this work.

3.1. Multiparametric model predictive control

The MPC formulation given by Eq. (1) is exactly reformulated
to its multiparametric model predictive control (mpMPC) counter-
part seen by Eq. (3). This reformulation is provided to be consistent
with the multiparametric literature, and for the reader’s benefit.

mxin (QmpX + He0 +¢)Tx
s.t. Ax <b+F60 (3)
CRAG < CRb

where x is the vector of optimization variables (i.e. manipulated
variables), 6 is the vector of uncertain parameters (i.e. initial states
of the system), and the objective function matrices Qmp, H, and ¢
are defined by cost matrices of the original MPC formulation and
implementing variable aggregation on the future states of the pro-
cess (Jerez et al.,, 2011). The constraint matrices A, b, and F are
defined by the propagation through time of the state space sys-
tem, and the matrices CR4 and CR;, define the bounds of the initial
states of the system.

The multiparametric solution to Eq. (3) provides the offline, ex-
plicit solution that relates the optimal manipulated variables to
initial states of the system. The explicit solution is a set of criti-
cal regions that occupy a subset of the parameter space, and are
uniquely identified by an active set combination. Within each crit-
ical region is an associated affine relationship between the opti-
mization variables and the uncertain parameters. Eq. (4) defines
the multiparametric solution.

x*(0) = Gif* +e;, 0* eCR; (4)

where 6* is the parameter realization (i.e. the measured initial
state of the system), x* is the optimal solution at 6*, CR; is the
critical region where 6* resides, and the matrix G; and vector e;
define the control law for the ith critical region. Each critical region
is a closed and bounded convex polytope in the form of Pyx < Py
(Oberdieck et al., 2017).

Each critical region is associated with a unique active set com-
bination. However the facets of the critical region are defined by
the (i) nonredundant inactive constraints and/or (ii) the lagrange
multipliers associated with the active constraints.

During online implementation, when a parameter realization is
made, (i.e. the states of the plant are measured) the optimal solu-
tion is identified by finding (i) which critical region contains the
parameter realization and (ii) applying the associated control law
defined by the associated critical region.

3.1.1. Relevant critical region

In multiparametric programming, a critical region is uniquely
defined by an active set combination. The active set combina-
tion defines the explicit relationship between optimization vari-
ables and uncertain parameters. However, the facets of the criti-
cal region are defined by (i) the inactive constraints and (ii) the
restriction that the lagrange multipliers must be positive for the
associated active constraints. In this work, the concept of a rele-
vant critical region is defined to be a critical region that occupies
more volume compared to other critical regions. Therefore, larger
critical regions in a multiparametric solution are considered rele-
vant. Thus, the larger a critical region is the more relevant it is
considered. In other words, if all critical regions were ranked by
their respected volumes, where the critical region occupying the

most volume would be ranked first, critical regions closer to the
first rank are considered large.

Work presented in Katz (2020) demonstrates the importance
of these relevant critical regions for large multiparametric prob-
lem sizes. The work presented large, randomly generated multi-
parametric problems and showed a significant portion of the to-
tal volume of the feasible uncertain parameter space is defined by
only a select few critical regions.

3.2. Hot start strategy

The hot start strategy utilizes the previous parameter realiza-
tion, 6_1, the corresponding critical region such that 6_; € CR;, and
the current parameter realization 6;, to identify the critical region
such that 6; e CR; (Ferreau et al., 2008). Once the critical region
(or active set combination) is determined such that 6; e CR;, then
the associated control law is determined x(6) = G;6 +e; to iden-
tify the optimal solution. The procedure is summarized as follows.

+ Initialization-Given an initial measurement, 6*, the optimal so-
lution at this point requires an initial active set combination.
If the mpQP is defined from an MPC formulation that contains
the origin,' then the critical region associated with no active
constraints exists (Bemporad and Filippi, 2003). The measure-
ment 6* is checked to exist in the unconstrained critical re-
gion, otherwise a point is selected in the unconstrained criti-
cal region, where the algorithm proceeds to the update step.
Another strategy to determine an initial active set combination
is to solve a deterministic optimization problem at 6*. The de-
terministic optimization problem is a result of fixing 6 to 6%,
therefore the multiparametric quadratic programming problem
is reduced to a standard quadratic programming problem. The
solution to the deterministic optimization problem provides the
active set combination that is used to construct the initial crit-
ical region, CRg, and control law, ie. the affine function re-
lating the optimization variables to the uncertain parameters,
x(0) = GO +e. The determined control law is utilized until a
new parameter realization, 6, does not belong to the initial
critical region, 6 ¢ CRo. If 6} ¢ CRy, proceed to the update step.
Update-The update corresponds to determining the new critical
region, CR;, and associated control law where the current pa-
rameter realization exists, 6; € CR;. First, a direction vector, d
that points from the previous parameter realization, 6* € CRy,
to the new parameter realization, 6, is determined. Then,
given the current critical region, CRy, the previous parameter
realization, #*, and the direction vector, d, the intersection of
the facet of CRy and the line segment joining 0* and 6 is iden-
tified. The active set corresponding to the critical region that is
adjacent to CRy along the identified facet is then determined.
This procedure is run iteratively until the critical region identi-
fied is found such that 6; € CR;. Performing the update strategy
in this way allows for a fast computational online performance,
as demonstrated in Ferreau et al. (2008).

Fig. 1 provides a visualization of the proposed algorithm in the
parameter space. The white arrows indicate the direction vector,
the numbers indicate the parameter realizations and the order in
which they were revealed, and the white ‘X’ indicates where the
direction vector passed through a critical region. The parameter
space is defined in two dimensions by xp; and X 5.

T An MPC formulation is said to contain the origin if the initial state vector, xo,
leads to a feasible and optimal solution.
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Fig. 1. Visualization of the hot start strategy on the associated multiparametric solution, adapted from Katz (2020).

Step 1

Step 5

Fig. 2. Adapted from Katz (2020), Step 1) Start with an interior point. Step 2) Ran-
domly choose a direction. Step 3) The distance from the point to the edge of the
space is determined. Step 4) Randomly select a random point between the point
and the distance determined along the chosen direction, this is the updated point.
Step 5) Repeat until termination.

3.3. Random walks

Random walks provide an efficient strategy (i.e. in polynomial
time) for a random distribution of samples to be produced that
exist in the interior of a polytope defined by its halfspace repre-
sentation (i.e. Ax < b). The computational complexity for a random
walk to produce a distribution of random samples scales with the
dimensionality and the number of facets defining the polytope and
is termed the mixing time. Many random walks exist in the liter-
ature with varying mixing times (Chen et al., 2017), however the
hit and run sampling algorithm is a simple and effective strategy
(Smith, 1996). A schematic representation of hit and run sampling
is presented in Fig. 2 (Yao and Kane, 2017).

4. Methodology

As demonstrated in Section 2, identifying the optimal solution
using a commercial solver such as CPLEX for large scale MPC for-

mulations is computationally demanding. In addition, an active set
strategy such as the hot start strategy is computationally demand-
ing if a poor initialization is made during real time implemen-
tation. To improve the hot start strategy, a two phase approach
is performed. The first phase is an offline phase involving (i) hit
and run sampling on the feasible domain of the parameter space
for the multiparametric model predictive controller, (ii) defining a
partial multiparametric solution based on the sampled points, and
(iii) identifying a feasible point within each of the defined critical
regions. The second phase of the procedure is during online im-
plementation, where an improved initialization procedure is per-
formed. This initialization procedure provides a strategy to mini-
mize the possibility of a poor initialization of the hot start strategy.

4.1. Phase I

Phase I is performed once and offline. During this phase, a par-
tial multiparametric solution is developed using hit and run sam-
pling. Note that it is possible to develop the full multiparametric
solution, but for large problem sizes such as the ones considered
in this work, even after 30 minutes the full solution may not be
identified (Katz, 2020).

To begin, the model predictive control formulation is recast in
its multiparametric counterpart, Eq. (3). This recasting is exact and
the associated manipulated actions of the MPC formulation are
defined by the vector x, and the associated state measurements
are defined by the uncertain parameter vector 6. The constraints
in Eq. (3) define a high dimensional polytope in the optimization
and uncertain parameter space (i.e. R™* ). Hit and run sampling
is performed on this polytope to obtain a random distribution
of points. From this distribution of points, a random subset is
chosen to formulate the partial multiparametric solution. Note, it
is possible that many of the chosen points belong to the same
critical region because of the random sampling. However, this
is not an issue, and is actually preferred because it provides a
good indication that the developed critical region is volumetrically
significant. By increasing the number of randomly selected points,
it is possible to increase the number of critical regions defining the
partial multiparametric solution. However, as more critical regions
are stored, the inherent issues of a large scale multiparametric
solution become apparent. Therefore a balance is needed between
selecting all sample points and selecting a single sample point. In
addition, a feasible point is determined for each critical region (i.e.
the Chebyshev center) to be used during Phase II.
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4.1.1. Hit and run sampling

The hit and run sampling strategy is implemented on the con-
vex polytope defined by the feasible region of the multiparametric
programming problem, Eq. (5).

o all) [

where the polytope is defined in the optimization space x, and
the uncertain parameter space 6. To perform the hit and run sam-
pling, first a feasible point is chosen po = [x],6[]". Then, a ran-
dom direction is chosen, d. The maximum distance from the initial
point po to the boundary of the polytope is determined. In other
words, find the smallest positive t satisfying [A, —F](po +dt) = b
and [0, CR4](po + dt) = CRy,. The next point is sampled from the
polytope by selecting a random number between (0,t] and moving
in the direction d by this amount. This procedure is repeated until
enough sample points have been collected. The amount of sample
points needed depends on the dimensionality of the polytope, but
scales favorably (i.e. polynomially).

The presented hit and run sampling procedure is the standard
approach for sampling from a convex polytope. However, because
the objective is to determine a random sampling of points in the
parameter space, it is not necessary to consider the full dimen-
sional space of the polytope. By performing the random walk only
in the parameter space, the offline computational time is reduced.
To perform the hit and run sampling in the parameter space, a
slight adjustment is needed for the original strategy. The major
components of the strategy remain the same except the step of de-
termining the largest distance that can be traversed while remain-
ing within the feasible space. The reason the largest distance can-
not be readily determined is because the feasible parameter space
is explicitly defined by the constraint set CR4 < CR, but implicitly
defined by the constraint set Ax < b + F6. Therefore, to identify the
largest distance that can be traversed (i.e. t), the following opti-
mization problem is solved, Eq. (6), where the initial point is now
defined as 6.

(5)

max t

s.t. Ax < b+F(0y + dt) (6)
CRA(00 + dt) =< CRb
t>0

With this adjustment to the hit and run strategy, the main steps
become as follows. Identify an initial point py =6y to initialize
the algorithm. Then randomly select a direction d. Determine the
maximum distance, t, p, can move along the direction d while re-
maining feasible in the parameter space. Select a random point be-
tween (0, t], and move from py along the direction vector d by this
amount. Repeat until enough sample points have been collected
(i.e. the mixing time).

. Current measurement
CR1 L @ Feasible points
*
6;
*CR3
6;

Fig. 3. The steps of Phase II using a partial solution of three critical regions, Step
1) Identify the distance from the current measurement to all feasible points. Step
2) The feasible point that is closest to the current measurement defines the starting
critical region to use. Step 3) From the starting critical region, proceed to implement
the hot start strategy using the determined critical region as the starting point.

4.2. Phase Il

Phase II is performed during online implementation. During this
phase, the developed critical regions and associated feasible points
are used in real time to initialize the hot start procedure.

Given the parameter realization (i.e. a measurement is per-
formed) the initialization of the hot start procedure is the first
step. The developed critical regions during Phase I are utilized
for this initialization step. Ideally, the closest critical region to the
current parameter realization would be identified (i.e. solving the
nearest polytope problem). An exact calculation to determine the
closest critical region during online implementation may be too
computationally demanding. Therefore, the feasible points associ-
ated with each critical region are used to represent their associ-
ated critical regions. The distance from each feasible point to the
parameter realization is calculated by taking the L, norm. The crit-
ical region associated with point that is the shortest distance to
the parameter realization is used as the initial critical region to be
used for the hot start strategy discussed in Section 3.2. The pseu-
docode for the determination of which critical region to initialize
with is provided in Algorithm 1. A visual representation of Phase
Il is presented in Fig. 3.

It is important to note that the selection of feasible points be-
longing to each critical region determined during Phase I is critical.
Furthermore, different strategies to determine the feasible points
belonging to each critical region will lead to a change in computa-
tional performance during Phase II.

5. Results

The efficacy of the proposed approach is validated using of ran-
domly generated MPC problems, and is compared against the hot
start strategy presented in Section 3.2. The generated MPC prob-
lems are based on Eq. (1). The output and control horizon is 45
for all problem sizes, and the underlying state space model main-
tains 50 states for all problems sizes (i.e. uncertain parameters). A
single disturbance is included in the state space model that im-

Require: 6
Require: CRp;q
Require: P

1: for i =1 — |CRpix| do

2 D(i) = GETDISTANCE(f, P(i))

3: end for

4: index = argmin(D)

5: CR = CRpigq(index)

> Parameter realization

> Volumetrically significant critical regions
> Feasible point for each CR € CRyp;s

Algorithm 1. Determining critical region (Katz, 2020).
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Table 1

Comparison of a standard hot-start strategy against the proposed approach, adapted from Katz (2020).

Optimization formulation (variables, constraints)

Manipulation actions  Percent improvement

900, 6300
1350, 7200
1800, 8100

20 17%
30 21%
40 39%

pacts all of the associated states. Note, the addition of the dis-
turbance has no impact on the presented methodology because
the uncertain parameter vector is adjusted to go from 6 =xg to
6 = [xg, d]. Table 1 provides a summary of the problem sizes, and
results. Note, it is possible to develop the full multiparametric so-
lution for these problems. However, the offline computational cost
would be significant compared to the proposed strategy of deter-
mining a partial solution and associated feasible points.

The computational results are developed by starting from an ar-
bitrary state vector, Xy, and applying the optimal solution deter-
mined from the MPC formulation to the state space model. This
procedure is performed 5 times and the average time to determine
the optimal solution for each strategy is determined. This closed
loop simulation is rerun for 100 iterations. The average of the 100
trials are used as the basis to identify the percent improvement be-
tween the proposed improved hot start strategy and the standard
hot start strategy. For the largest problem size tested, the proposed
hot start strategy demonstrates a 38% improvement in the average
time to determine the optimal solution in real time. For this prob-
lem size, the average time to determine the solution for the stan-
dard hot start strategy was approximately 14 s, and the proposed
hot start strategy is approximately 8.7 s.

6. Conclusion

The use of large scale model predictive control formulations for
advanced processes requires the solution under time considera-
tions. However, with increasing problem sizes, the computational
burden rapidly increases making it challenging to determine the
optimal solution of a large scale quadratic program impractical. Re-
cently a hot start strategy was developed with the ability to im-
prove online performance significantly. This hot start strategy re-
lied on multiparametric concepts, but not in identifying a multi-
parametric solution. In this work, a partial multiparametric solu-
tion was used to improve the initialization procedure for the hot
start strategy. By utilizing random walk concepts, the partial mul-
tiparametric solution was developed offline and incorporated in
an online hot start strategy to improve the online computational
performance. A computational study incorporating large randomly
generated model predictive control formulation was used as the
basis for comparison.

The demonstrated benefit of a partial multiparametric so-
lution makes extending this work to nonlinear MPC formu-
lations a high priority. For example, it was demonstrated in
Ziogou et al. (2013) that by merely updating the bounds of a non-
linear MPC formulation, a significant computational speed up can
be found. Incorporating the proposed strategy into a nonlinear
MPC framework has its challenges however. The first hurdle that
must be surpassed is managing the nonconvex critical regions that
are known to exist in nonlinear MPC formulations (Pappas et al.,
2020; Diangelakis et al., 2018), which will play a significant role
during the update step of the presented methodology.
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