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Abstract— The complexity associated with the control of
highly-articulated legged robots scales quickly as the number of
joints increases. Traditional approaches to the control of these
robots are often impractical for many real-time applications.
This work thus presents a novel sampling-based planning ap-
proach for highly-articulated robots that utilizes a probabilistic
graphical model (PGM) to infer in real-time how to optimally
modify goal-driven, locomotive behaviors for use in closed-loop
control. Locomotive behaviors are quantified in terms of the
parameters associated with a network of neural oscillators, or
rather a central pattern generator (CPG). For the first time,
we show that the PGM can be used to optimally modulate
different behaviors in real-time (i.e., to select of optimal choice
of parameter values across the CPG model) in response to
changes both in the local environment and in the desired control
signal. The PGM is trained offline using a library of optimal
behaviors that are generated using a gradient-free optimization
framework.

I. INTRODUCTION

The highly-articulated nature of legged robots presents a

challenge as to how to reason, in real-time, over the high-

dimensional spaces that underlie their various behaviors. In

particular, the coordination of the limbs and their correspond-

ing joints quickly scales in complexity. One of the most

popular approaches for addressing this challenge employs

randomized sampling-based planning to generate a motion

plan that is subsequently executed with the help of online

feedback controllers that provide regulation around the de-

sired plan. Unfortunately, conventional techniques often do

not scale efficiently as the size of the search space increases

and requires the robot to comprise between optimality and

reaction time. Dense sampling impedes the robot’s ability

to respond to abrupt changes in the environment but allows

the sampling-based motion planner to search over a diverse

space of actions. Coarse sampling increases the cycle rate

of the sampling-based planner at the expense of selecting

from only a few (and potentially sub-optimal) actions. For

the control of a highly-articulated robot, such as the hexapod

in Figure 1, it is computationally prohibitive to search over

all possible actions for a near-optimal solution using on-

board computation. Thus, this work presents an alternative

approach for closed-loop control of highly-articulated robots

by encoding information about the environment, motion

commands, and robot kinematics in a probabilistic graphical
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Fig. 1: The hexapod robot on which the simulation-based ex-

periments of the proposed path following control architecture

are performed.

model (PGM) to infer parameterized motion primitives for

path following control.

The PGM exploits conditional independence assumptions

for efficient search in a space of parameterized central

pattern generators (CPGs). Factors in this graphical model

are conditioned upon estimates of the robot’s kinematics, the

local environment, and the desired locomotion and exploit

the natural hierarchy in the robot’s kinematic model. This

model adapts search techniques from graphical model-based

approaches to grounded language communication [1], [2]

where conditional independence assumptions improve the

efficiency of natural language symbol grounding. The outputs

of the PGM are represented in terms of CPGs parameters

that implicitly define cyclic locomotive behaviors and can

be modulated in terms of step width, step height, and the

locomotive gait pattern that reduce the number of variables

over which to reason. This model first infers step width

and height parameters for each limb and then infers param-

eters that coordinate limb behaviors conditioned on these

values. Data sets generated from gradient-free optimization

performed offline are used to derive a family of near-optimal

motion primitives for different environment conditions and

robot behaviors. These optimized primitives were used to

train factors in a probabilistic graphical model that infers

the maximum likelihood set of PGM parameters to control

robots in simulated environments.

By providing the desired locomotion from a path planner



and the environmental information from the robot’s on-board

sensors, the PGM is used as a closed-loop path following

controller for motion control through complex, unstructured

environments. This controller is the first example of this

novel framework for CPG parameter inference being applied

for path following control in real-time. Experimental results

presented later in the paper quantify the performance of

learned models for parameterized CPGs inference for follow-

ing predefined paths across flat and obstacle covered terrains.

II. BACKGROUND

A. Central Pattern Generators

The foundation of the planning and control framework put

forth in this paper is an offline-learned, data set of locomotive

motion primitives. The primitives are parameterized in terms

of a specific central pattern generator (CPG) model. CPGs

are neural circuits that produce cyclical patterns of neural

activity that have been observed within a variety of biological

organisms. Inspired by biologically-motivated examples, a

variety of CPGs models have been deployed as the basis for

controlling of articulated locomotive robots [3], [4], [5], [6].

The CPG model developed in this work is inspired by

Sartoretti et al. [6] and Yu et al. [7]. More specifically, we

draw on these prior works to define a CPG model in terms

of a system of coupled oscillators whose joint dynamics are

represented as a set of ordinary differential equations. We

assume that each oscillator governs the motion of one of the

3DoF legs on the hexapod robot shown in Figure 1.

More specifically, this work assumes that the integral curve

associated with the ith oscillator’s dynamics physically define

the trajectory of the foot on the ith leg in the task-space of

the system. Drawing inspiration from Sartoretti et al. [6] we

constrain the shape of these trajectories to be super-elliptical,

i.e., the trajectories are defined by
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where (cx,i, cy,i) is the geometric centre of the ellipse defined

in a frame obtained by rotating the robot’s body frame (that

is fixed to the robot’s body and located at (x, y) = (0, 0))
by 90 degrees about the x-axis; ai and bi are the lengths of

the semi-major/minor axes with di specifying the curvature

of the super ellipse.

In addition to the shape of the trajectory traced out by

each foot, locomotive motion primitives in this work are

quantified in terms of the relative phase differences between

the individual limbs on the robot. More specifically, we

define the function fi : R
2 − {0} → S1(⊂ R

2), that maps

the output of oscillator i to the unit circle,
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. Every point in

R
2 is assigned a phase corresponding to its position on

a super-ellipse concentric with and belonging to the same

family as Hi(x, y) = 0. The absolute phase of the ith

oscillator is defined as the four-quadrant tangent inverse of

fi(xi, yi). Defining ψij to be the desired phase difference

between limbs i and j, robust phase coupling between limbs

is achieved by including penalty terms that maintain specified

phase differences between oscillators such that,
[

ẋi
ẏi

]

= ωi t̂i + (1−Hi (xi(t), yi(t))) n̂i

+
∑

j

λij
[

f−1

i (R(ψij)fj(xj , yj))− [xi, yi]
T
]

, (3)

where f−1

i : S1 → {(x, y) ∈ R
2 : Hi(x, y) = 0} is the

inverse of fi restricted to the domain of points that lie on

the limit cycle Hi = 0, [λij ] quantifies the strength of the

influence of oscillator j on oscillator i, and R(ψij) ∈ SO(2)
is a rotation matrix corresponding to a counterclockwise

rotation by ψij . Additionally, n̂i is the unit vector in the

normal direction relative to the super ellipse scaled by a

constant ωi and t̂i is the unit vector in the tangent direction

relative to the super ellipse.

B. Probabilistic Graphical Models

Working in the context of unstructured terrains naturally

requires reasoning over a variety of forms of uncertainty

and one of the most common methods for decision making

under uncertainty is through the use of probabilistic graphical

models (PGMs). As these models can exploit the conditional

independence present within the task, they have found great

success in the context of natural language processing (NLP).

Methods such as Generalized Grounding Graph (G3) [1] and

variations of Distributed Correspondence Graphs (DCGs)

[2], [8], [9], [10] infer distributions of symbols that represent

objects, spatial relationships, constraints, trajectories, etc. for

the individual phrases that form a natural language utterance

in the context of the model of the perceived environment. The

DCG variations assume conditional independence across lan-

guage and symbolic constituents in order to efficiently infer

an approximation of the probability distribution of expressed

correspondences. This work directly draws inspiration from

G3 and DCG frameworks in that the mathematical framework

for efficiently inferring distributions of symbols can be

utilized to efficiently infer distributions of CPG parameters.

Unlike those works, however, this work represents factors

using neural networks in place of log-linear models to more

efficiently and effectively model real-valued quantities.

This work also represents an expansion on the work

presented by Chavali et al. [11]. Whereas the previous

framework utilized a joint-space CPG in order to execute

an open-loop controller, this work utilizes a new Cartesian-

space CPG formulation and utilizes the on-board sensors

to close the control loop. Additionally, this work is novel

in its use of neural networks to model the conditional

probability distributions whereas the work done by Chavali



et al. adapted log-linear models used in natural language

symbol grounding.

The remainder of this paper is organized as follows. In

Section III a high-level overview of the full closed-loop

controller is provided, detailing the proposed modifications

to the previous framework. Section IV specifies the experi-

mental setup used to evaluate the proposed system with the

results being presented in Section V. Current limitations and

future work will be discussed in Section VI.

III. TECHNICAL APPROACH

The framework we propose involves two main compo-

nents. First, we formulate a model for inferring task-space

CPG parameter distributions to control the limbs of highly

articulated robots from variables representing the robot’s en-

vironment, model, and desired behavior. Second, we present

an architecture for path following control that uses the task-

space CPG parameter inference model for motion control of

a hexapod robot.

A. CPG Parameter Inference

To infer a distribution of CPG parameters for execut-

ing behaviors in the closed-loop controller, we extend the

framework described in [11] to infer the optimal set of

eighteen parameters P∗ for the new CPG model from the

environment model (E), behavior (B), and robot model (M).

This approach deviates from the method outlined in [11] in

two ways. First, this approach does not assume that all CPG

parameters are conditionally independent. Specifically, this

approach makes the assumption that a level of symmetry

can be exploited in the model, such that the ai values of all

the right legs can be represented by a single a1 (with left

legs being a2) and all the bi values can be modeled as a

single uniform step height b. Additionally, the desired phase

differences ψij are restricted to only the phase difference

from the preceding limb and are expressed as k1 . . . k6.

The offset of the body frame from the ground is defined

in a single parameter h. Second, the model explored in

this paper models the conditional probabilities in the factor

graph using neural networks instead of log-linear models that

utilized human engineered features. Weights for the neural

network are trained from a set of examples generated using

the genetic algorithm-based training procedure described in

[11] but adapted for the operational space CPG parameters

defined in the prior section. We formulate inference now as

the search for the most probable CPG parameters given the

behavior, environment, and robot model:

P∗ = argmax
ki,a1,a2,b,h∈R

6
∏

i=1

p (ki) p (h) p (a2) p (a1) p (b) (4)

First, we define the probability distributions for each of

these parameters as a function of their dependent variables.

In this formulation of the model, we assume that probability

distribution of CPG parameters a1 and b depend only on

the environment, behavior, and robot model. We apply the

theory of total probability to formally define the resulting

probability distributions in Equations 5 and 6.

p (a1) =

∫ ∫ ∫

p (a1|E ,B,M) p (B|E ,M)

p (E|M) p (M) dB dE dM

(5)

p (b) =

∫ ∫ ∫

p (b|E ,B,M) p (B|E ,M)

p (E|M) p (M) dB dE dM

(6)

We can also define the probability distributions for CPG

parameters a2 and h using the same approach. This model

assumes that a2 and h depend on the environment, behavior,

robot model, and the probability distributions of a1 and b.

These expressions are defined in Equations 7 and 8.

p (a2) =

∫

· · ·

∫

5

p (a2|a1, b, E ,B,M)

p (a1|b,B, E ,M) p (b|B, E ,M)

p (B|E ,M) p (E|M) p (M) da1 db dB dE dM

(7)

p (h) =

∫

· · ·

∫

5

p (h|a1, b, E ,B,M)

p (a1|b,B, E ,M) p (b|B, E ,M)

p (B|E ,M) p (E|M) p (M) da1 db dB dE dM

(8)

Lastly, we assume that the probability distribution of

CPG parameters k1 . . . k6 depend on the the environment,

behavior, robot model, and the probability distributions of a1,

a2, b, and h. This model assumes that each ki is dependent

on all kj where j < i. The probability of k1 is defined in

Equation 9 with the values of all other ki following a similar

pattern but also expressing conditional dependence on the kj
values expressed in the graphical model.

p (k1) =

∫

· · ·

∫

7

p (k1|a1, a2, b, h, E ,B,M)

p (a1|a2, b, h, E ,B,M) p (a2|b, h, E ,B,M)

p (b|h, E ,B,M) p (h|E ,B,M) p (B|E ,M)

p (E|M) p (M) da1 da2 db dh dB dE dM

(9)

We simplify these expressions first by assuming that the

probability of behavior B is conditionally independent from

the probabilities of the environment model E and robot model

M and the probability of environment E is conditionally

independent of the robot model M. We approximate the

inference procedure defined in Equation 4 by performing

beam search in a factor graph that expresses the conditional

dependencies of our model. This model is illustrated in

Figure 2. Beam search is used to efficiently generate a

distribution of effective CPG parameter sets. The resulting

distribution is passed onto the path following controller

where the parameters would be used to control CPGs with

a priority towards parameter distributions that are most

probable.

B. Feedback Control

Following arbitrary paths in non-trivial environments with

underactuated robots is difficult because of the challenges
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Fig. 2: An illustration of the factor graph used to in-

fer a distribution of parameters for this CPG model. The

model exploits conditional independence assumptions to

efficiently infer the most likely set of CPG parameter values

k1 . . . k6, a1, a2, b, h from models of the environment (E),

behavior (B), robot (M).

of balancing safety and stability and minimizing cross-track

error. We propose the block diagram illustrated in Figure 3

for path following control with underactuated robots using a

learned model of CPG parameters that depend on estimates

of the environment, robot, and behavior. In this architecture

the robot provides an estimate of the current pose (x,y,ψ)

and a pointcloud from LiDAR and/or RGB-D cameras.

The terrain estimator compresses this information into a

parametric representation of terrain roughness encapsulated

in the random variable E . The path following controller uses

the robot’s current pose and a path that is either defined a

priori or continuously updated by a path planning module

to estimate a probability distribution for the robot’s desired

behavior B. The robot may also provide an estimate of it’s

internal configuration M in order to model degraded mobil-

ity or intrinsic deformations. The CPG parameter inference,

which is constructed from neural networks trained offline

from data sets synthesized from genetic algorithm-based

search, estimates the most likely set of CPG parameters

P∗ from this information using the beam search method

described in Section III-A and transmits those parameters

to the central pattern generator module. That process then

converts the parameters into the Cartesian position of the n

limbs (x1:n,y1:n,z1:n). The inverse kinematics module then

converts these values into the m joint angles (θ1:m) defined

by the robot’s kinematic model. The robot subscribes to these

angles and drives each actuator to follow the desired joint

angle profiles.

IV. EXPERIMENTAL DESIGN

To experimentally validate the performance of the pro-

posed model, we designed, implemented, and experimented
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Fig. 3: The block diagram for path following control using

the CPG parameter inference.

with the graphical model-based approach to CPG parameter

inference on a simulated model of the hexapod robot illus-

trated in Figure 1. In order to learn pairs of CPG param-

eters with environment, robot, and behaviors, we adapted

the genetic algorithm procedure described in [11] for task-

space CPG parameters and new environments, behaviors,

and kinematic model. The obstacle heights were one of

0.0m (flat ground), 0.01m, 0.025m, 0.035m, 0.05m, and

0.1m and were scattered through the terrain using a Poisson

Random Process. Illustrations of the non-zero obstacle height

environment models are shown in Figure 4. Commands were

also provided to have the robot locomote with curvatures of

0m−1, 0.2m−1, 0.286m−1, 0.4m−1, and 1.0m−1. Individ-

uals were scored via the line integral of their path through

the vector field resulting from normalizing F :

H(x, y) = c2x2 + (cy − 1)2 (10)

Wx(x, y) = (1−H(x, y))
∂H

∂x
(x, y) (11)

Wy(x, y) = (1−H(x, y))
∂H

∂y
(x, y) (12)

F (x, y) =

〈

∂H

∂y
(x, y) +

Wx (x, y)

2c
,

−
∂H

∂x
(x, y) +

Wy (x, y)

2c

〉 (13)

The parameter c in these expressions is the desired cur-

vature of the robot’s motion. Several example vector fields

generated using this equation are visualized in Figure 5.

Using 100 individuals evolved over 200 generations on

10 random obstacle fields, 268 data points were collected to

train the PGM. From this data we extracted pairs of environ-

ments, behaviors, robot models, and probability distributions

of CPG parameters that were used to train neural networks

that represent factors in the probabilistic graphical model. In

contrast to the log-linear model approach described in [11]

that learns a single model for all factors, individual networks

were trained for each factor representing CPG parameters

(k1−k6, a1, a2, h, and b) in the graphical model. The neural

network used in the simulation experiments consisted of 3

layers of 30 hidden units each.

To evaluate the learned models, the trained CPG parameter





(a) path 1 (b) path 2 (c) path 3

Fig. 7: Path following performance of inferred CPG parameters across 3 path shapes on flat terrain.

(a) path 1 (b) path 2 (c) path 3

Fig. 8: Path following performance of inferred CPG parameters across 3 path shapes on non-flat terrain.

two parameters (a1 and a2) define the step width of all

six legs. In circumstances where small perturbations to the

initial state or CPG parameters cause significant deviations

in the projected motion of the robot, trajectory optimization

techniques that more carefully plan motions through complex

terrain may be needed for robust path following control.

VI. CONCLUSION

This paper describes a novel approach to control of

highly-articulated robots that exploits learning in two ways.

First, genetic algorithms are used to find task-space CPG

parameters that provide effective motion performance across

different terrain shapes, kinematic configurations, and loco-

motion behaviors. Second, weights for neural networks are

learned from these CPG parameters to represent a conditional

probability in the context of these variables. These neural

networks represent factors in a probabilistic graphical model

that is used to efficiently infer distributions of task-space

CPG parameters. In contrast to the model presented in [11],

the factor graphs implemented and experimentally validated

in this paper do not assume that all parameters are condition-

ally independent. In simulation experiments the most likely

CPG parameters inferred by the PGM are guided by a path

following controller that adjusts the desired curvature of the

robot’s current motion to follow predefined paths over flat

and non-flat terrains.

We recognize several limitations of the current approach.

First, we experimentally observed that path tracking per-

formance was dependent on hyperparameters of the neural

networks that model the conditional probabilities of CPG

parameters in the factor graph. While these models did not

require human engineered features to train log-linear models

of the natural language symbol grounding models that influ-

enced this formulation, we hypothesize that larger training

sets that better represent the conditional dependence of

CPG parameters on environment, model, and behavior would

result in more robust training performance. The current in-

vestigation also does not survey variations of the conditional

dependence assumptions of CPG parameters and evaluate the

relative performance of those graphical models. Although the

choice of model to represent the factors does not impact the

technical contribution of this paper, this model provides a

useful data point for future work as other alternative models

to learn conditional distributions of continuous variables are

explored. Additionally, we intend to expand the training data

to include more variation of learned parameters and utilize

distributions of terrain properties, behaviors, and kinematic

model parameters during training and inference. Although

the formulation enables inference of CPG parameters in en-

vironments where these random variables are represented by

Gaussian distributions or particles, the experimental results

presented here assume the most likely value for each of these

model inputs and only a single kinematic model.
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