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Abstract—The complexity associated with the control of
highly-articulated legged robots scales quickly as the number of
joints increases. Traditional approaches to the control of these
robots are often impractical for many real-time applications.
This work thus presents a novel sampling-based planning ap-
proach for highly-articulated robots that utilizes a probabilistic
graphical model (PGM) to infer in real-time how to optimally
modify goal-driven, locomotive behaviors for use in closed-loop
control. Locomotive behaviors are quantified in terms of the
parameters associated with a network of neural oscillators, or
rather a central pattern generator (CPG). For the first time,
we show that the PGM can be used to optimally modulate
different behaviors in real-time (i.e., to select of optimal choice
of parameter values across the CPG model) in response to
changes both in the local environment and in the desired control
signal. The PGM is trained offline using a library of optimal
behaviors that are generated using a gradient-free optimization
framework.

I. INTRODUCTION

The highly-articulated nature of legged robots presents a
challenge as to how to reason, in real-time, over the high-
dimensional spaces that underlie their various behaviors. In
particular, the coordination of the limbs and their correspond-
ing joints quickly scales in complexity. One of the most
popular approaches for addressing this challenge employs
randomized sampling-based planning to generate a motion
plan that is subsequently executed with the help of online
feedback controllers that provide regulation around the de-
sired plan. Unfortunately, conventional techniques often do
not scale efficiently as the size of the search space increases
and requires the robot to comprise between optimality and
reaction time. Dense sampling impedes the robot’s ability
to respond to abrupt changes in the environment but allows
the sampling-based motion planner to search over a diverse
space of actions. Coarse sampling increases the cycle rate
of the sampling-based planner at the expense of selecting
from only a few (and potentially sub-optimal) actions. For
the control of a highly-articulated robot, such as the hexapod
in Figure 1, it is computationally prohibitive to search over
all possible actions for a near-optimal solution using on-
board computation. Thus, this work presents an alternative
approach for closed-loop control of highly-articulated robots
by encoding information about the environment, motion
commands, and robot kinematics in a probabilistic graphical
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Fig. 1: The hexapod robot on which the simulation-based ex-
periments of the proposed path following control architecture
are performed.

model (PGM) to infer parameterized motion primitives for
path following control.

The PGM exploits conditional independence assumptions
for efficient search in a space of parameterized central
pattern generators (CPGs). Factors in this graphical model
are conditioned upon estimates of the robot’s kinematics, the
local environment, and the desired locomotion and exploit
the natural hierarchy in the robot’s kinematic model. This
model adapts search techniques from graphical model-based
approaches to grounded language communication [1], [2]
where conditional independence assumptions improve the
efficiency of natural language symbol grounding. The outputs
of the PGM are represented in terms of CPGs parameters
that implicitly define cyclic locomotive behaviors and can
be modulated in terms of step width, step height, and the
locomotive gait pattern that reduce the number of variables
over which to reason. This model first infers step width
and height parameters for each limb and then infers param-
eters that coordinate limb behaviors conditioned on these
values. Data sets generated from gradient-free optimization
performed offline are used to derive a family of near-optimal
motion primitives for different environment conditions and
robot behaviors. These optimized primitives were used to
train factors in a probabilistic graphical model that infers
the maximum likelihood set of PGM parameters to control
robots in simulated environments.

By providing the desired locomotion from a path planner



and the environmental information from the robot’s on-board
sensors, the PGM is used as a closed-loop path following
controller for motion control through complex, unstructured
environments. This controller is the first example of this
novel framework for CPG parameter inference being applied
for path following control in real-time. Experimental results
presented later in the paper quantify the performance of
learned models for parameterized CPGs inference for follow-
ing predefined paths across flat and obstacle covered terrains.

II. BACKGROUND

A. Central Pattern Generators

The foundation of the planning and control framework put
forth in this paper is an offline-learned, data set of locomotive
motion primitives. The primitives are parameterized in terms
of a specific central pattern generator (CPG) model. CPGs
are neural circuits that produce cyclical patterns of neural
activity that have been observed within a variety of biological
organisms. Inspired by biologically-motivated examples, a
variety of CPGs models have been deployed as the basis for
controlling of articulated locomotive robots [3], [4], [5], [6].

The CPG model developed in this work is inspired by
Sartoretti et al. [6] and Yu et al. [7]. More specifically, we
draw on these prior works to define a CPG model in terms
of a system of coupled oscillators whose joint dynamics are
represented as a set of ordinary differential equations. We
assume that each oscillator governs the motion of one of the
3DoF legs on the hexapod robot shown in Figure 1.

More specifically, this work assumes that the integral curve
associated with the i oscillator’s dynamics physically define
the trajectory of the foot on the i leg in the task-space of
the system. Drawing inspiration from Sartoretti et al. [6] we
constrain the shape of these trajectories to be super-elliptical,
i.e., the trajectories are defined by
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where (¢ 4, Cy,i) is the geometric centre of the ellipse defined
in a frame obtained by rotating the robot’s body frame (that
is fixed to the robot’s body and located at (z,y) = (0,0))
by 90 degrees about the x-axis; a; and b; are the lengths of
the semi-major/minor axes with d; specifying the curvature
of the super ellipse.

In addition to the shape of the trajectory traced out by
each foot, locomotive motion primitives in this work are
quantified in terms of the relative phase differences between
the individual limbs on the robot. More specifically, we
define the function f; : R? — {0} — S*(C R?), that maps
the output of oscillator ¢ to the unit circle,
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where r = ( ) . Every point in

R? is assigned a phase corresponding to its position on
a super-ellipse concentric with and belonging to the same
family as H;(z,y) = 0. The absolute phase of the i
oscillator is defined as the four-quadrant tangent inverse of
fi(zi, ;). Defining 1;; to be the desired phase difference
between limbs ¢ and j, robust phase coupling between limbs
is achieved by including penalty terms that maintain specified
phase differences between oscillators such that,
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where f;' : S' — {(z,y) € R? : Hi(z,y) = 0} is the
inverse of f; restricted to the domain of points that lie on
the limit cycle H;, = 0, [\;;] quantifies the strength of the
influence of oscillator j on oscillator 4, and R(%;;) € SO(2)
is a rotation matrix corresponding to a counterclockwise
rotation by ;;. Additionally, 7; is the unit vector in the
normal direction relative to the super ellipse scaled by a
constant w; and #; is the unit vector in the tangent direction
relative to the super ellipse.

B. Probabilistic Graphical Models

Working in the context of unstructured terrains naturally
requires reasoning over a variety of forms of uncertainty
and one of the most common methods for decision making
under uncertainty is through the use of probabilistic graphical
models (PGMs). As these models can exploit the conditional
independence present within the task, they have found great
success in the context of natural language processing (NLP).
Methods such as Generalized Grounding Graph (G®) [1] and
variations of Distributed Correspondence Graphs (DCGs)
[2], [8], [9], [10] infer distributions of symbols that represent
objects, spatial relationships, constraints, trajectories, etc. for
the individual phrases that form a natural language utterance
in the context of the model of the perceived environment. The
DCG variations assume conditional independence across lan-
guage and symbolic constituents in order to efficiently infer
an approximation of the probability distribution of expressed
correspondences. This work directly draws inspiration from
G3 and DCG frameworks in that the mathematical framework
for efficiently inferring distributions of symbols can be
utilized to efficiently infer distributions of CPG parameters.
Unlike those works, however, this work represents factors
using neural networks in place of log-linear models to more
efficiently and effectively model real-valued quantities.

This work also represents an expansion on the work
presented by Chavali et al. [11]. Whereas the previous
framework utilized a joint-space CPG in order to execute
an open-loop controller, this work utilizes a new Cartesian-
space CPG formulation and utilizes the on-board sensors
to close the control loop. Additionally, this work is novel
in its use of neural networks to model the conditional
probability distributions whereas the work done by Chavali



et al. adapted log-linear models used in natural language
symbol grounding.

The remainder of this paper is organized as follows. In
Section III a high-level overview of the full closed-loop
controller is provided, detailing the proposed modifications
to the previous framework. Section IV specifies the experi-
mental setup used to evaluate the proposed system with the
results being presented in Section V. Current limitations and
future work will be discussed in Section VI.

III. TECHNICAL APPROACH

The framework we propose involves two main compo-
nents. First, we formulate a model for inferring task-space
CPG parameter distributions to control the limbs of highly
articulated robots from variables representing the robot’s en-
vironment, model, and desired behavior. Second, we present
an architecture for path following control that uses the task-
space CPG parameter inference model for motion control of
a hexapod robot.

A. CPG Parameter Inference

To infer a distribution of CPG parameters for execut-
ing behaviors in the closed-loop controller, we extend the
framework described in [11] to infer the optimal set of
eighteen parameters P* for the new CPG model from the
environment model (&), behavior (1), and robot model (M).
This approach deviates from the method outlined in [11] in
two ways. First, this approach does not assume that all CPG
parameters are conditionally independent. Specifically, this
approach makes the assumption that a level of symmetry
can be exploited in the model, such that the a; values of all
the right legs can be represented by a single a; (with left
legs being a9) and all the b; values can be modeled as a
single uniform step height b. Additionally, the desired phase
differences 1;; are restricted to only the phase difference
from the preceding limb and are expressed as k... kg.
The offset of the body frame from the ground is defined
in a single parameter h. Second, the model explored in
this paper models the conditional probabilities in the factor
graph using neural networks instead of log-linear models that
utilized human engineered features. Weights for the neural
network are trained from a set of examples generated using
the genetic algorithm-based training procedure described in
[11] but adapted for the operational space CPG parameters
defined in the prior section. We formulate inference now as
the search for the most probable CPG parameters given the
behavior, environment, and robot model:
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First, we define the probability distributions for each of
these parameters as a function of their dependent variables.
In this formulation of the model, we assume that probability
distribution of CPG parameters a; and b depend only on
the environment, behavior, and robot model. We apply the

theory of total probability to formally define the resulting
probability distributions in Equations 5 and 6.

(a1) /// @lEBMpBEM)

(EIM) p (M) dB dE dM
/// (b€, B, M) p (BIE, M) ©
(EIM) p (M) dB dE dM

We can also define the probability distributions for CPG
parameters ay and h using the same approach. This model
assumes that as and h depend on the environment, behavior,
robot model, and the probability distributions of a; and b.
These expressions are defined in Equations 7 and 8.
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Lastly, we assume that the probability distribution of
CPG parameters k; ...kg depend on the the environment,
behavior, robot model, and the probability distributions of a1,
as, b, and h. This model assumes that each k; is dependent
on all k; where j < i. The probability of k; is defined in
Equation 9 with the values of all other k; following a similar
pattern but also expressing conditional dependence on the k;
values expressed in the graphical model.
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We simplify these expressions first by assuming that the
probability of behavior B is conditionally independent from
the probabilities of the environment model £ and robot model
M and the probability of environment £ is conditionally
independent of the robot model M. We approximate the
inference procedure defined in Equation 4 by performing
beam search in a factor graph that expresses the conditional
dependencies of our model. This model is illustrated in
Figure 2. Beam search is used to efficiently generate a
distribution of effective CPG parameter sets. The resulting
distribution is passed onto the path following controller
where the parameters would be used to control CPGs with
a priority towards parameter distributions that are most
probable.

B. Feedback Control

Following arbitrary paths in non-trivial environments with
underactuated robots is difficult because of the challenges
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Fig. 2: An illustration of the factor graph used to in-
fer a distribution of parameters for this CPG model. The
model exploits conditional independence assumptions to
efficiently infer the most likely set of CPG parameter values
ki...kg,a1,a2,b,h from models of the environment (&),
behavior (B), robot (M).

of balancing safety and stability and minimizing cross-track
error. We propose the block diagram illustrated in Figure 3
for path following control with underactuated robots using a
learned model of CPG parameters that depend on estimates
of the environment, robot, and behavior. In this architecture
the robot provides an estimate of the current pose (z,y,v)
and a pointcloud from LiDAR and/or RGB-D cameras.
The terrain estimator compresses this information into a
parametric representation of terrain roughness encapsulated
in the random variable £. The path following controller uses
the robot’s current pose and a path that is either defined a
priori or continuously updated by a path planning module
to estimate a probability distribution for the robot’s desired
behavior B. The robot may also provide an estimate of it’s
internal configuration M in order to model degraded mobil-
ity or intrinsic deformations. The CPG parameter inference,
which is constructed from neural networks trained offline
from data sets synthesized from genetic algorithm-based
search, estimates the most likely set of CPG parameters
P* from this information using the beam search method
described in Section III-A and transmits those parameters
to the central pattern generator module. That process then
converts the parameters into the Cartesian position of the n
limbs (1.5,Y1:n,21:n)- The inverse kinematics module then
converts these values into the m joint angles (61.,,) defined
by the robot’s kinematic model. The robot subscribes to these
angles and drives each actuator to follow the desired joint
angle profiles.

IV. EXPERIMENTAL DESIGN

To experimentally validate the performance of the pro-
posed model, we designed, implemented, and experimented
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Fig. 3: The block diagram for path following control using
the CPG parameter inference.

with the graphical model-based approach to CPG parameter
inference on a simulated model of the hexapod robot illus-
trated in Figure 1. In order to learn pairs of CPG param-
eters with environment, robot, and behaviors, we adapted
the genetic algorithm procedure described in [11] for task-
space CPG parameters and new environments, behaviors,
and kinematic model. The obstacle heights were one of
0.0m (flat ground), 0.01m, 0.025m, 0.035m, 0.05m, and
0.1m and were scattered through the terrain using a Poisson
Random Process. Illustrations of the non-zero obstacle height
environment models are shown in Figure 4. Commands were
also provided to have the robot locomote with curvatures of
om~t, 0.2m=1, 0.286m =1, 0.4m~1, and 1.0m . Individ-
uals were scored via the line integral of their path through
the vector field resulting from normalizing F':
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The parameter c in these expressions is the desired cur-
vature of the robot’s motion. Several example vector fields
generated using this equation are visualized in Figure 5.

Using 100 individuals evolved over 200 generations on
10 random obstacle fields, 268 data points were collected to
train the PGM. From this data we extracted pairs of environ-
ments, behaviors, robot models, and probability distributions
of CPG parameters that were used to train neural networks
that represent factors in the probabilistic graphical model. In
contrast to the log-linear model approach described in [11]
that learns a single model for all factors, individual networks
were trained for each factor representing CPG parameters
(k1 —ks, a1, as, h, and b) in the graphical model. The neural
network used in the simulation experiments consisted of 3
layers of 30 hidden units each.

To evaluate the learned models, the trained CPG parameter
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Fig. 4: Example terrains used in simulations of CPG param-
eters within the genetic algorithm.
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Fig. 5: Example vector fields used for evaluating individuals
within the genetic algorithm.

inference model was evaluated on flat terrain and non-flat
terrain across three predefined paths. Terrain information was
fed to the controller via a 2.5D height map generated using
the on-board depth camera. The non-flat terrain consists of
increasing obstacle heights placed using a Poisson Random
Process and is illustrated in Figure 6. Terrain roughness was
estimated by averaging the height of the non-empty cells
within 0.5m of the robot’s current position.

Similar to other studies that measure relative path follow-
ing controller performance [12], we quantify path tracking
performance as a function of the average distance between
the desired and executed paths. The nearest distance to the
desired path is calculated at a rate of 1 Hz during each
experiment. We adapted the Pure Pursuit algorithm [13] for
path following control with a fixed lookahead distance of 1m
from the center of the robot. The neural network model is
evaluated 10 times on 6 combinations of paths and terrains (3
paths x 2 terrains) for a total of 60 simulated experiments.

Fig. 6: A illustration of the robot navigating the non-flat
terrain for path 1 of the path following control experiments.

V. EXPERIMENTAL RESULTS

Following the experiment design outlined in the previous
section, we recorded the average cross-track error for fol-
lowing the three predefined paths in flat and non-flat terrains
illustrated in Figures 7 and 8 in Tables I-III.

path 1 | path 2 | path 3
Flat Terrain 0.35 0.45 0.49
Non-flat Terrain 0.81 0.66 0.58

TABLE I: A comparison of average cross-track error on flat
and non-flat terrain using all evaluations, showing that the
proposed framework kept the robot within 1m on average
for all combinations of paths and terrains.

path 1 | path 2 | path 3
Flat Terrain 0.34 0.44 0.47
Non-flat Terrain 0.61 0.59 0.52

TABLE II: A comparison of the average cross-track error on
flat and non-flat terrain with the worst performing evaluation
removed.

path 1 path 2 path 3
Flat Terrain 0.35 (10) | 0.45 (10) | 0.49 (10)
Non-flat Terrain | 0.59 (5) 0.37 (1) N/A (0)

TABLE III: A comparison of the average cross-track error
on flat and non-flat terrain using only the evaluations which
reach the end goal.

As expected, we observe that the path following per-
formance of the learned CPG parameters is better in the
flat terrain than the non-flat terrain. The robot was able to
successfully navigate to the end of all predefined paths in
flat terrain but only a subset of the non-flat terrains. We
hypothesize that the robot had difficulty navigating across
the tall obstacles at the end of the non-flat course because
the terrain roughness estimate provided to the CPG parameter
inference model was too coarse and the restriction that only
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Fig. 8: Path following performance of inferred CPG parameters across 3 path shapes on non-flat terrain.

two parameters (a; and ag) define the step width of all
six legs. In circumstances where small perturbations to the
initial state or CPG parameters cause significant deviations
in the projected motion of the robot, trajectory optimization
techniques that more carefully plan motions through complex
terrain may be needed for robust path following control.

VI. CONCLUSION

This paper describes a novel approach to control of
highly-articulated robots that exploits learning in two ways.
First, genetic algorithms are used to find task-space CPG
parameters that provide effective motion performance across
different terrain shapes, kinematic configurations, and loco-
motion behaviors. Second, weights for neural networks are
learned from these CPG parameters to represent a conditional
probability in the context of these variables. These neural
networks represent factors in a probabilistic graphical model
that is used to efficiently infer distributions of task-space
CPG parameters. In contrast to the model presented in [11],
the factor graphs implemented and experimentally validated
in this paper do not assume that all parameters are condition-
ally independent. In simulation experiments the most likely
CPG parameters inferred by the PGM are guided by a path
following controller that adjusts the desired curvature of the
robot’s current motion to follow predefined paths over flat
and non-flat terrains.

We recognize several limitations of the current approach.
First, we experimentally observed that path tracking per-
formance was dependent on hyperparameters of the neural
networks that model the conditional probabilities of CPG

parameters in the factor graph. While these models did not
require human engineered features to train log-linear models
of the natural language symbol grounding models that influ-
enced this formulation, we hypothesize that larger training
sets that better represent the conditional dependence of
CPG parameters on environment, model, and behavior would
result in more robust training performance. The current in-
vestigation also does not survey variations of the conditional
dependence assumptions of CPG parameters and evaluate the
relative performance of those graphical models. Although the
choice of model to represent the factors does not impact the
technical contribution of this paper, this model provides a
useful data point for future work as other alternative models
to learn conditional distributions of continuous variables are
explored. Additionally, we intend to expand the training data
to include more variation of learned parameters and utilize
distributions of terrain properties, behaviors, and kinematic
model parameters during training and inference. Although
the formulation enables inference of CPG parameters in en-
vironments where these random variables are represented by
Gaussian distributions or particles, the experimental results
presented here assume the most likely value for each of these
model inputs and only a single kinematic model.
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