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ABSTRACT
Many modern parallel applications, such as desktop software and

cloud-based web services, are service-oriented, long running, and

perform frequent interactions with the external world (e.g., respond-

ing to user input). We want such interactive applications to provide

fast response times because typically at the other end of the ex-

ternal interaction there is a user waiting for a response. Existing

parallel platforms designed for multicore hardware do not work

well for such interactive applications, because they are designed to

maximize throughput (rather than responsiveness). Interactive ap-

plications may have a mixture of interactive and compute-intensive

tasks occurring concurrently, and the scheduler must be able to dis-

cern and prioritize tasks so that tasks which require faster response

are prioritized over background tasks.

We present Interactive Cilk, or I-Cilk for short, a task parallel

platform designed to schedule such parallel interactive applica-

tions. I-Cilk supports a C++-based templated library that allows

the programmer to specify priorities for task-parallel code, and the

underlying runtime schedules the computation so as to optimize for

the response time of high-priority tasks. We show that the schedul-

ing algorithm used by I-Cilk provides provably efficient response

times for tasks at all levels of priorities, with better response time

to high-priority tasks. We also empirically demonstrate that the

scheduling algorithm can be implemented efficiently in practice

with low scheduling overhead and provides fast response times for

high-priority tasks.

CCS CONCEPTS
• Theory of computation→ Sharedmemory algorithms; Par-
allel computing models; • Software and its engineering→ Soft-
ware performance.
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1 INTRODUCTION
Manymodern parallel applications have a mixture of different types

of tasks occurring concurrently that may have different require-

ments for responsiveness: interactive tasks that interact with the

external world (e.g., the user) and therefore must provide fast re-

sponse; and other (possibly compute intensive) tasks that run in the

background to support these interactive tasks, but may not need to

be quite as responsive. We want such interactive applications to be

able to effectively utilize commodity multicore hardware because

multicore processors are widely deployed from personal computers

to mobile devices to cloud platforms.

In order for the application to be responsive, the scheduler must

be able to discern and prioritize tasks that require faster response

time over tasks with looser or no responsiveness requirements.

Consider for example a modern desktop application such as an

email client application; it likely has a graphical user interface (GUI)

component that interacts with the user by continuously listening

to keyboard or mouse inputs and reacting to them. The user may

type in a search string; the email client reacts by performing a

compute-intensive search across all the emails in the inbox. From

time to time, the email client may trigger background tasks such

as compressing existing emails as an archive to save storage space.

In this example, the GUI component generates high-priority tasks,

since they need to be most responsive. The search constitutes a

medium priority task, as it needs to be done to respond to the user

but is not as latency-sensitive as the GUI component. Finally, the

compression is a low-priority task, as it does not directly interact

with the user.

Most scheduling algorithms used by existing task-parallel plat-

forms for multicore hardware do not work well for such interactive

applications, because they are designed for throughput-oriented
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applications, as opposed to applications with latency-sensitive com-

ponents that must be responsive. Thus, the scheduler has no notion

of priorities and treats all ready tasks as equal — in the above exam-

ple, if the archiving is ongoing and occupying the entire machine,

a GUI task may not get to execute at all. If these schedulers are

used for interactive applications, the interactive latency-sensitive

components may not execute as promptly as we would wish.

Researchers have begun to address how to best support such

interactive parallel applications in task-parallel platforms. Muller et

al. [17, 18, 20] describe language extensions to parallel ML [25, 26]

to express priorities of tasks. The languages are accompanied by a

cost semantics that allows one to bound the response time of high-

priority tasks, provided that the computation is well-formed and

does not contain any priority inversions, where a high-priority
task may wait for a low-priority task to complete to make progress.

For well-formed computations, Muller et al. show that a “prompt”

scheduler can provide provably efficient response times for high-

priority tasks and bounded execution times for low-priority tasks.

The accompanying type system checks for the well-formed-ness of

programs; if a program type checks, the resulting computation is

guaranteed to be well-formed and the corresponding cost semantics

hold.

A shortcoming of the prior work by Muller et al. [17, 18, 20] is

that the performance guarantees provided by its cost semantics

hold only if a scheduler adheres to the prompt scheduling prin-
ciple which requires that the scheduler is both greedy or work-
conserving — no core is idle as long as some work is available to

be done — and prompt — strict prioritization such that no core

does low-priority work if high-priority work is available.

No prior work has developed a scheduler that strictly main-

tains, or even provably approximates, prompt scheduling in all

cases, however, and doing so is challenging in practice. For example,

strict adherence to the protocol would require extremely frequent

preemption (so that high-priority work can immediately preempt

lower-priority work) and a global queue (so that priority determi-

nations can be made over all the work in the system). The context

switching and contention in such an approach would result in un-

acceptable overhead. Thus, a practical system must approximate

a prompt schedule using coarser-grained preemption and decen-

tralized queues, much like approaches such as randomized work

stealing [7–10] approximate work-conserving schedules [11, 13].

The most recent work by Muller et al. [20] describes an implemen-

tation based on distributed load balancing that aims to approximate

prompt scheduling in common cases, but it does not formally ana-

lyze the algorithm. Indeed, in certain cases, their implementation

can be shown not to match the theoretical bounds provided by the

cost semantics.

In this paper, we present Adaptive Priority Scheduling (APS
for short), a scheduling algorithm that approximates the prompt

scheduling principle for scheduling computations with priorities.

APS takes inspiration from A-GREEDY [3], an online two-level

scheduling algorithm originally designed for scheduling multiple

independent parallel jobs on a single multicore. Like in A-GREEDY,

APS assumes that time is broken into a sequence of scheduling
quanta consisting of L time steps and utilizes an adaptive sched-

uling strategy with two-level scheduling. The top level is a pro-

cessor allocator that determines how to best assign cores to each

priority level for the next quantum. For each priority-level, a work-
conserving scheduler [11, 13] maps available work within the pri-

ority level onto the assigned cores during the quantum. APS can

be implemented efficiently because it does not follow the prompt

scheduling principle strictly and the resource allocator changes

the allocation of cores between different priority levels at the gran-

ularity of the scheduling quantum of length L and not at every

timestep. Quantum length L can be large enough to amortize the

scheduling and preemption overheads while approximating prompt

scheduling.

Even though APS does not follow the prompt scheduling princi-

ple strictly, we show that APS provides provably efficient response

time for tasks at all priority levels. To formally state the bounds, we

use a cost model similar to the one based on work and span from

prior work [7–10]. Wemodel the computation as a directed acyclic
graph (or DAG) where a node denotes a unit-time instruction

1
and

an edge denotes the dependence between a pair of nodes. Like most

prior work, we assume that each node has out-degree at most two.

Since interactive applications can be long running, we are con-

cerned with bounding the execution time of each task as opposed

to the overall execution time, where a task τ is defined as a sub-

DAG with a single source (source(τ )) and a single sink (sink(τ ))
and consists of nodes with the same priority level. Given a task

τ at priority level ℓ, we define the competitive workWτ of τ as

the number of nodes in τ and the nodes logically parallel with

τ that have the same or higher priority as τ . We say that an in-
duced sub-DAG for a given task τ is the sub-DAG consisting of

τ and all nodes that have a directed path to sink(τ ) and that are

not proper ancestors of source(τ ). Then, the span Sτ of τ is de-

fined as the length of a longest path in the induced sub-DAG of τ .
Given the competitive workWτ and span Sτ of task τ with priority

level ℓ, APS with scheduling quantum length L executes τ in time

T (τ ) = O(Wτ
P + Sτ + (ℓ + k)L lg P), where k is the number of edges

between two nodes with different priority levels in the induced

sub-DAG of τ and P is the total number of cores in the system. Here,

the highest priority level has ℓ = 1, and lower priorities take on a

higher value for ℓ. Thus, a highest-priority task τ has a response

time of T (τ ) = O(Wτ
P + Sτ + L lg P), since ℓ = 1 and k = 0 (in a

well-formed DAG with no priority inversion, the induced sub DAG

of a task with priority level ℓ has only nodes with priority level ℓ

or smaller).

To put these bounds into perspective, work by Muller et al.

bounds the execution time of a task τ at any priority level on

a “prompt” system with P cores to be O(Wτ /P + Sτ ).
2
Therefore,

theoretically, APS incurs an additive overhead of O((k + ℓ)L lg P),
which is typically small.

We implemented APS in a Cilk-based task-parallel platform [14]

called Interactive Cilk (or I-Cilk for short). Even though APS is

analyzed assuming a work-conserving scheduler for each priority

level, a strict work-conserving scheduler is difficult to implement

efficiently. Thus, I-Cilk instead implements a distributed, approxi-

mately work-conserving scheduler based on work-stealing [10] to

schedule tasks within a priority level. To provide provable bounds,

1
This assumption is without loss of generality since a larger node can be represented

by a chain of unit-work nodes.

2
WorkWτ and span Sτ are defined similarly.
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APS necessarily assumes that the DAG is well-formed, which is

checked by I-Cilk’s C++-template based type system [19]. Finally,

to support applications that perform I/O operations, I-Cilk provides

a library that allows the scheduler to overlap computations with

I/O.

With I-Cilk, we empirically demonstrate the following. First,

I-Cilk can provide practically efficient response times for highest-

priority tasks and bounded execution times for lower-priority tasks.

Second, APS can be implemented efficiently as I-Cilk incurs neg-

ligible overhead for utilizing the two-level adaptive scheduling

algorithm. Finally, when compared to a vanilla scheduler that does

not account for priorities, I-Cilk provides better response times for

highest-priority tasks and more stable running times for all tasks.

2 BACKGROUND
In this section we explain how interactive applications which con-

tain tasks with different priorities are modeled and also explain the

relationship of APS to A-GREEDY.

Modeling I-Cilk Computations. I-Cilk supports both fork-

join parallelism (using spawn/sync keywords) and futures (using
create/get keywords) to generate parallel tasks. In particular,

when a function F invokes another function G with the keyword

spawn, G may execute in parallel with the continuation of F ; how-
ever, once F invokes sync, control cannot pass beyond it until all

locally spawned functions have returned. On the other hand, if

F creates a future by invoking a function H preceded by create,
create returns a future handle which represents the execution of

H . H may similarly execute in parallel with the continuation of F ,
but a sync does not act as a barrier for future tasks — one must

explicitly invoke get on the future handle to wait forH to complete

and retrieve its return value.

We now relate these language constructs to the computation

DAG model discussed in Section 1. Upon executing a spawn or

create the current node terminates with two outgoing edges: one

to the spawned function and one to the continuation of the caller.

Upon executing a sync, the current node terminates and a new node

is generated to represent the continuation after the sync. This new
node has multiple incoming edges: one from the node terminated

with sync and one from each previously spawned function. Upon

executing a get, the current node terminates and a new node is gen-

erated to represent the continuation after the get. This new node

has two incoming edges: one from the last node of the joined future

task, and one from the node terminated by get. With only spawn
and sync, the execution generates a series-parallel (SP) DAG [28].

With the addition of futures, the DAG can be thought of as a set of

SP DAGs connected with additional non-series-parallel edges that

arise due to create and get [1, 27].

In a program written using I-Cilk, tasks have priorities. When

one invokes create, the future function is always considered a

separate task from its caller and has its own priority (potentially

different from the caller). This may or may not be the case for

spawn— the spawned function is considered as a separate task only

if it has a different priority than its caller. In terms of the DAG

model, one can think of a task being a SP DAG with a single source

and a single sink whose nodes all have the same priority.

I-Cilk incorporates a type checking module that statically checks

for priority inversions [19]. For scheduling analysis, we assume that

there are no priority inversions — namely, a node (a sync or get)
with higher priority never waits for a node with lower-priority to

finish. Recall that in the bound presented in Section 1, the running

time of a high-priority task does not depend on the work of any

lower-priority task. However, if a high-priority task can block on

a lower-priority task, then the latency of the high-priority task

necessarily depends on the latency (and therefore, work) of the

low-priority task — therefore, the no priority inversion assumption

is essential to prove these bounds.

3 ADAPTIVE PRIORITY SCHEDULING
This section describes APS, the algorithm for running an interactive

application with multiple priority levels on a multicore machine

with P processors. As mentioned in Section 1, APS takes inspiration

from A-GREEDY, an adaptive scheduling algorithm designed for

scheduling multiple parallel jobs on a shared platform. Like A-

GREEDY, APS uses a two-level scheduler. The top level processor
allocator operates at the granularity of a scheduling quantum

L, and decides how many processors to allocate to each priority

level for the next quantum. This allocation does not change for the

duration of the quantum.

At the second level, each priority level has its own scheduler for

mapping its ready nodes onto its currently allocated cores. This

scheduler is a work-conserving scheduler — given p allocated

processors for the current quantum, at each step, if at least p nodes

are ready, it arbitrarily picks any p and schedules them. Such steps

are called complete steps since all allocated processors are being

used to do work. If fewer than p nodes are ready, then it schedules

all ready nodes. Such steps are called incomplete steps since not
all processors may be used to do work.

To aid the processor allocation, APS also consists of a desire-
calculationmodule for each priority level ℓ. This module monitors

the scheduler of each priority ℓ during each quantum and calculates

the desire dℓq — the number of cores to request for priority ℓ tasks

(all together) for the next quantum q. Given the desires from each

priority, the processor allocator assigns cores to each priority level

— it simulates promptness by always assigning available cores to the

highest priority-level (up to the limit of its desire) before assigning

cores to the lower priority levels.

This desire-calculation algorithm is similar to A-GREEDY [3].

The algorithm uses two performance parameters which can be used

to make trade-offs. The first is called the efficiency parameter δ
and the second is a responsiveness parameter ρ. If the priority ℓ
scheduler achieved at least δL complete steps in quantum q − 1, it
decides that the quantum was efficient for the priority ℓ scheduler;
otherwise it declares that the quantum was inefficient. In addition,

if the quantum q−1was allocated pℓq−1 = d
ℓ
q−1 processors, then the

quantum is said to be satisfied, otherwise, it is a deprived quantum.

Thus, each scheduler classifies each quantum as 4 possible classifi-

cations: efficient-satisfied, efficient-deprived, inefficient-satisfied

and inefficient-deprived. As done by A-GREEDY, we use three of

these: efficient-satisfied, efficient-deprived and inefficient — we do

not care if an inefficient quantum is satisfied or deprived.

Based on this classification and the desire of quantum q − 1, the
desire of quantum q is calculated using the algorithm described in
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1 if no ready nodes of priority ℓ then d ℓ
q = 0 return

2 if d ℓ
q−1 = 0 then d ℓ

q ← 1 return
3 if more than (1 − δ )L incomplete steps in q − 1
4 then d ℓ

q ← d ℓ
q−1/ρ return ✄ inefficient

5 if pℓ
q−1 = d

ℓ
q−1 ✄ efficient and satisfied

6 then d ℓ
q ← ρd ℓ

q−1 return
7 d ℓ

q ← d ℓ
q−1 return ✄ efficient and deprived

Figure 1: The desire calculation algorithm for quantum q
and priority level ℓ.

Figure 1. The idea is simple. When the previous quantum is ineffi-

cient, then we assume that the desire was too high and reduce it.

When the previous quantum is efficient and satisfied, we speculate

and ask for more processors. When the previous quantum was

efficient, but deprived, we used the allocated processors efficiently,

but since the allocation was smaller than what we asked, we don’t

know if our calculation of desire was too low or too high. Therefore,

we do not change our demand.

There is one important difference from the original A-GREEDY

algorithm. A-GREEDY doesn’t consider the possibility of a program

having no ready nodes as an unfinished job has at least one ready

node. However, in APS, there may be no ready nodes of a particular

priority level at certain times. In this case, the scheduler makes its

desire 0 and restarts the desire at 1 when new ready nodes appear.

Based on the desire of all the schedulers, the processor allocator

allocates pℓq processors to the scheduler at priority level ℓ for quan-

tum q. The processor allocator gives p1q = min{d1q , P} processors
to the highest-priority scheduler since this scheduler is scheduling

the most latency-sensitive tasks. It then gives p2q = min{d2q , P −p
1}

processors to the priority 2 scheduler, p3q = min{d3q , P − (p
1

q + p
2

q )}

processors to the priority 3 scheduler, and so on.
3
In other words,

it satisfies the desire of the priority 1 scheduler first, then tries to

satisfy the desire of the priority 2 scheduler, and so on until it runs

out of processors.

4 RESPONSE GUARANTEES OF APS
This section describes the analysis of the response time provided

by APS. We will consider an individual task τ at priority level ℓ,

and we want to show a bound on the responsiveness or latency of

the task — the amount of time that the task can be active or, in
other words, the time that can pass between when the source node

of the task becomes ready and its sink node is executed by APS .
Although APS’s desire calculation algorithm is almost identical

to A-GREEDY, there are significant differences in the analysis and

the results. First, A-GREEDY does not dictate anything about how

the processor allocator behaves and provides guarantees for indi-

vidual jobs based on the behavior of the processor allocator. On

the other hand, in APS, the processor allocator tries to simulate

promptness by preferentially giving processors to higher priority

levels. More significantly, A-GREEDY is designed for independent

jobs sharing a multicore — these jobs do not interact and can be

analyzed independently. APS is designed for a single interactive

application where each second level scheduler is scheduling nodes

3
In practice, if the total desire of all levels is smaller than P , the remaining cores can

be allocated arbitrarily — it does not impact the analysis.

of a particular priority. Tasks at different priority levels are not

independent; for instance, a low-priority task may wait for the

completion of a high-priority task. Thus, the performance of these

tasks cannot be analyzed independently.

Definitions. There are a few important parameters that play a

role in a task’s response time: Competitive workWτ includes the

work of the task itself and any work of the same or higher priority

that may execute in parallel with the task. This is all the work that

the schedulers at the same or higher priority level can be executing

while τ is active. The second is the span Sτ which is the longest

chain of nodes that can hold up the completion of the task. Note

that the longest chain may not contain only the nodes of the task

itself since nodes of this task may wait on nodes of other tasks

especially in the presence of futures. Formally, to define the span,

we will define an induced DAG Gτ for task τ , which consists of

all nodes that have a path to the sink node of τ , but do not have a

(non-empty) path to the source node of τ . The span Sτ is the longest

path in the induced DAG Gτ .

We will assume that our interactive application has no priority
inversions — formally, this means that the induced DAG Gτ of

task τ at priority level ℓ has no nodes of lower priorities (priorities

with levels > ℓ). Therefore, higher priority tasks do not wait for the

completion of lower priority nodes. In addition, we will define k
as the number of edges that go between nodes of different priority

levels in Gτ . For tasks with ℓ = 1 (highest priority), k = 0 by

definition since their induced DAGs can only contain nodes with

ℓ = 1. Using these definitions, we will prove the following theorem:

Theorem 4.1. A task τ with priority level 1 (the highest priority
level) has a response time of at most Wτ

δP +O(
Sτ
(1−δ ) +L lg P). A task τ

with priority level ℓ > 1 (a lower priority level) has a response time
of at most (1 + ρ) · Wτ

δP +O(
Sτ
(1−δ ) + (ℓ + k)L lg P).

Potential Function.We will prove the theorem using an amor-

tized analysis with a potential function. For every node u ∈ Gτ , we

define the weight w(u) of the node u as the length of the longest

path from u to the sink of τ . We say that a ready node u has a

potential Φ(u) = 2
2w (u)

; nodes which are not ready or have already

executed have no potential.
4
For task τ , the potential of the task at

time t is Φτ (t) =
∑
u ∈Gτ Φ(u).

The following Lemma follows from the fact that the longest path

in the induced DAG Gτ is of length Sτ .

Lemma 4.2. The total potential of the task when the task becomes
active is at most 23Sτ ; the final potential when the task ends is 0 and
the potential of a task never increases.

Proof. A task becomes active when its source node becomes

active. The potential of the source node is at most 2
2Sτ

since the

source is part Gτ and thus can have weight at most Sτ . In addition,

some other nodes u which are part of the induced subdag Gτ may

be ready when the source becomes active and all of these can have

potential at most 2
2Sτ

for the same reason. However, all these nodes

must be part of other futures which will eventually (recursively,

possibly) join with τ — otherwise, there cannot be a path from u

4
Since we consider a single task τ at a time, we omit it from the definition, even though

the same node may be part of induced DAGs of multiple tasks and have potential with

respect to all those tasks.
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to the sink of τ . Since only two futures can participate in a join

at a time, and the joins must eventually occur on some chain of

length at most Sτ , the total number of such nodes that can join

before sink of τ is 2
Sτ
. Therefore, the total potential of all these

nodes together is at most 2
3Sτ

when the task becomes active. When

the task completes, all of the nodes in its induced subdag have

completed — therefore, the potential is 0.

At any point, the potential only changes when a node, say u
finishes executing, and enables either 0, 1 or 2 children. It is easy to

check that even if it enables two children, sayv andv ′, the reduction

in potential is 2
2w (u) − 2

2w (v) − 2
2w (v ′) ≥ 2

2w (u) − 2
2w (u)−1 −

2
2w (u−1) ≥ Φ(u)/2. Therefore, the potential always reduces. □

Counting Efficient-Satisfied and Inefficient Quanta. We

want to amortize certain quanta against others during certain time

intervals, but we first need the following Lemma which is indirectly

proved for A-GREEDY; here we state and prove it directly.

Lemma 4.3. Each inefficient quantum q with desire dq can be
mapped to a prior efficient and satisfied quantum with desire dq/ρ
for the same scheduler such that no two inefficient quanta are mapped
to the same efficient and satisfied quantum.

Proof. Consider any inefficient quantum q with desire dq . We

go backward in time to find the nearest efficient and satisfied quan-

tum q′ with desire dq/ρ and we say that inefficient quantum q is

mapped to efficient and satisfied quantum q′. We can always find

such a quantum since the desire cannot increase to dq without

there being a prior efficient and satisfied quantum with desire dq/ρ.
The only way another quantum q′′ could be mapped to the same

quantum q′ is if q′′ had desire dq and was between q and q′, so that
q′ is the closest efficient and satisfied quantum for both q and q′′.
However, if such a q′′ existed, then the desire would have reduced

to dq/ρ after q′′ and we would need another efficient and satisfied

quantum q′′′ after q′′ with desire dq/ρ so that the desire can in-

crease to dq again, which is a contradiction since q′′′ is closer to
dq than q′. □

We now show how to amortize certain quanta against others

during certain time intervals in the following lemma. Consider

a period of time from t1 to t2 and say I ℓ(t1, t2) is the number of

inefficient quantawithin this period for priority ℓ and say ESℓ(t1, t2)
is the number of efficient-satisfied quanta.

Lemma 4.4. Consider a scheduler at priority ℓ and say that the
desire of this scheduler is never 0 between time t1 and t2. Say
I ℓ(t1, t2) is the number of inefficient quanta between time t1 and
t2 and ESℓ(t1, t2) is the number of efficient and satisfied quanta
within the same time. (We ignore partial quanta at the beginning
and end of the period). Then, I ℓ(t1, t2) ≤ ESℓ(t1, t2) + lgρ P and
ESℓ(t1, t2) ≤ I ℓ(t1, t2) + lgρ P .

Proof. The two statements are somewhat symmetric — we con-

sider the first one. From Lemma 4.3, we can find a mapping from

inefficient quanta to efficient and satisfied quanta. There are two

cases: Either q’s mapped quantum q′ is after time t1 and therefore

within the interval t1 to t2 — there can be only ESℓ(t1, t2) such
quanta. Or this mapped quantum is before t1 and we will now ar-

gue that there can be at most logρ P such quanta. We know that

there were no other inefficient quanta with desire dq between q′

and q and therefore, no other inefficient quanta with desire dq be-

tween t1 and quantumq. Therefore, there can be only one inefficient

quantum with desire dq which cannot be mapped to an efficient

and satisfied quantum after time t1. There are only logρ P different

possibilities of desire since desire increases and decreases multi-

plicatively by factor ρ. Hence there can only be logρ P inefficient

quanta that cannot be mapped. Considering both cases, we have

I ℓ(t1, t2) ≤ ESℓ(t1, t2) + lgρ P .

We can do a similar sort of mapping from efficient and satisfied

quanta to inefficient quanta. We can uniquely map an efficient

and satisfied quantum q with desire dq to the closest inefficient

quantum q′ later in time with desire ρdq— unless q is the last

quantum with desire dq in the time period (or ever). Again there are

only logρ P quanta that cannot be mapped, giving us ESℓ(t1, t2) ≤

I ℓ(t1, t2) + logρ P . □

4.1 Response time of tasks with priority 1
To build intuition, we will begin by analyzing the response time

of highest priority tasks (level 1). We first bound the number of

efficient-deprived quanta for the priority 1 scheduler while prior-

ity 1 task τ is running. Note that the priority 1 scheduler is only

deprived when it has a desire larger than P .

Lemma 4.5. The total number of efficient and deprived quanta for
priority 1 scheduler during the execution of τ is at mostWτ /(δLP)

Proof. During deprived quanta, the priority 1 scheduler has

P processors. Since they are also efficient, at least δL steps are

complete steps where all P processors are doing ready work. Thus,

the work done during these quanta is at least δLP . Since all work
done by the priority 1 scheduler while τ is executing is part of

competitive workWτ , we can have at mostWτ /(δLP) such quanta.

□

Wenext show that each inefficient quantum reduces the potential

of task τ .

Lemma 4.6. During any incomplete step of the priority 1 scheduler,
the potential of all currently active priority 1 tasks decreases by a factor
of 2. Thus, during an inefficient quantum for priority 1 scheduler, the
potential of a currently active priority 1 task τ decreases by a factor
of 2(1−δ )L .

Proof. While a task τ is active, some node(s) in its Gτ must be

ready and these nodes are priority 1 nodes (there are no priority

inversions). During an incomplete step for the priority 1 scheduler,

all priority 1 ready nodes and, therefore, all ready nodes u ∈ Gτ are

executed. A particular ready node u enables at most two children,

say v and v ′. After u executes, the potential due to v and v ′ is

Φ(v) + Φ(v ′) = 2
2w (v) + 2

2w (v ′) ≤ 2 × 2
2w (u)−2 = Φ(u)/2. Thus,

after an incomplete step, the potential due to all ready nodesu ∈ Gτ
reduces by at least a factor of 2, reducing Φτ by at least a factor of

2. The potential decrease for inefficient quanta follows since they

contain at least (1 − δ )L incomplete steps. □

The following lemma follows from Lemmas 4.6 and 4.2.

Lemma 4.7. The total number of inefficient quanta during the
execution of a priority 1 task τ is at most 3Sτ /((1 − δ )L).
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Proof. When a task τ starts executing, the total potential of the

task is at most 2
3Sτ

. (It can be lower since some nodes u ∈ Gτ may

already have been executed before the task starts if they are part of

other tasks.) In every inefficient quantum, it reduces by a factor of

2
(1−δ )L

. Therefore, if the total number of inefficient quanta before

the task finishes is I , then 2
3Sτ /2I (1−δ )L < 1. Solving for I gives us

the number of inefficient quanta. □

Combining with Lemma 4.4 gives us the following corollary

since the priority 1 scheduler’s desire is never 0 while τ is active.

Corollary 4.8. The total number of efficient and satisfied quanta
during the execution of a high-priority task τ is at most 3Sτ /((1 −
δ )L) + logρ P .

Lemmas 4.5, 4.6 and Corollary 4.8 gives us the result stated in

Theorem 4.1 for priority 1 tasks.

4.2 Response time of tasks with priority 2
Analyzing the response time of lower priority tasks is more chal-

lenging for the following reasons.

1. Lemma 4.5 depends on the fact that when the priority 1 scheduler

has an efficient and deprived quantum, all P are allocated to it and

are doing competitive work. When a priority 2 scheduler has an

efficient and deprived quantum, its allocation is not necessarily

P since some processors may have been allocated to the priority

1 scheduler. Therefore, an analog of Lemma 4.5 does not directly

hold.

2. The induced DAGGτ of a priority 2 task τ can have both priority

1 and 2 nodes and some of the potential of τ belongs to priority 1

nodes. Therefore, an analog of Lemma 4.6 does not hold directly

— an inefficient quantum for the priority 2 scheduler does not

reduce the potential of an active priority 2 task if most of its

potential is in the priority 1 nodes (whichmay not execute during

this quantum). Therefore, we must consider both priority 1 and

2 schedulers when analyzing a priority 2 task.

When analyzing a priority 2 scheduler, we must consider the

quantum classifications of both priority 1 and 2 schedulers — giving

us 9 types of quanta. However, we will divide them into two types

of quanta. The first type — we call it type A — is when either the

priority 1 or the priority 2 scheduler is efficient and deprived. We

will bound the number of type A quanta using the competitive work

of τ . The second type — called type B — is when neither is efficient

and deprived and therefore priority 1 and 2 schedulers are either

efficient and satisfied or inefficient during these quanta. We will

bound the number of type B quanta as a function of the span Sτ .
Note that if either scheduler has desire 0, the other scheduler can

still completely classify the quantum. This covers all cases since,

while τ is active, one or the other scheduler must have ready nodes.

Lemma 4.9. The total number of type A quanta while a priority 2
task τ is executing is at most (1 + ρ)Wτ /(δLP) + logρ P .

Proof. We consider a few sub-cases of type A quanta.

Priority 1 scheduler was efficient and deprived: Say there

were X such quanta and the total priority 1 work done during these

quanta wasW1 (no lower priority work executed since the priority 1

scheduler got all cores). During each quantum, at least δLP priority

1 work was done; therefore,W1 ≥ XδLP .

Priority 1 scheduler was efficient and satisfied and prior-
ity 2 scheduler was efficient and deprived: Say there were Y
such quanta and sayW2 priority 1 and 2 work was done during

these quanta. Again all P processors were allocated jointly to the

two schedulers and both schedulers were efficient. Therefore, again,

we haveW2 ≥ YδLP .
Considering just these two cases, all the work done in these

quanta is competitive work for τ . Therefore, we haveWτ ≥W1 +

W2 ≥ (X +Y )δLP . Therefore, we have X +Y ≤Wτ /(δLP). We have

one more case.

Priority 1 scheduler was inefficient and priority 2 sched-
uler was efficient and deprived: This is the complicated case.

Consider one such quantum q and suppose the desire of the priority

1 scheduler during this quantum was d1q . The allocation for the

priority 1 scheduler during quantum q was p1q = d
1

q . Therefore, the

allocation to the priority 2 scheduler was p2q = P − d1q (since it was

deprived, it got all remaining cores). Since the priority 2 scheduler

was efficient, the total work done during that quantum was at least

W 2

q ≥ δLp2q = δL(P − d1q ).

Now we look for the previous quantum q′ when the priority

1 scheduler was efficient and satisfied with desire and allocation

exactly p1q′ = d
1

q′ = d
1

q/ρ. As argued in Lemma 4.4, we can always

find such a quantum and there is a unique mapping from q to q′. We

have two cases: First, q′ occurred after τ became active. The total

priority 1 work done during q′ is at leastW 1

q′ ≥ δLa1q′ = δLd1q/ρ

and all this work is part of competitive workWτ since it is executed

by a higher priority scheduler while τ is active. Therefore, we have

W 1

q′ +W
2

q ≥ δLd1q/ρ + δL(P −d
1

q ) ≥ δLP/ρ. All this work was part

ofWτ since it occurred while the task was active and was at a higher

or the same priority. Second, q′ may have occurred before τ started

executing — by logic similar to Lemma 4.4, there can be at most

logρ P such quanta while τ was executing. Say there were Z such

quanta (where priority 2 scheduler is efficient and deprived and

priority 1 scheduler is inefficient) — we would get Z ≤Wτ ρ/(δLP).
We get X + Y + Z ≤ (1 + ρ)Wτ /(δLP) + logρ P type A quanta. □

Now we must consider type B quanta. We will use the potential

function to bound these quanta using the span of τ . The fundamen-

tal reason this analysis is complicated is as follows: A priority 2 task

can have both priority 1 and 2 nodes in itsGτ — therefore, some of

the nodes that contain the potential of this task are being executed

by each scheduler, potentially. If both priority 1 and 2 schedulers

were inefficient in some quantum q, then we could use an argument

similar to the one in Lemma 4.6 to show that the potential decreased

for the priority 2 task τ during that quantum. However, if only one

of the two schedulers is inefficient (and the other is efficient and

satisfied) or if both schedulers are efficient and satisfied, then we

cannot say anything about the total decrease in potential.

Therefore, we divide the priority 2 task potential into two com-

ponents — one consisting of priority 1 nodes and one consist-

ing of priority 2 nodes. That is, Φ1

τ (t) =
∑
priority 1 node u ∈Gτ Φ(u)

and Φ2

τ (t) =
∑
priority 2 node u ∈Gτ Φ(u). The total potential Φτ (t) =

Φ1

t (τ ) + Φ
2

t (τ ).
Now, we hope to make an argument similar to the one in

Lemma 4.6 to say that if, for instance, the priority 1 scheduler had

an inefficient quantum, then Φ1

τ will decrease by a large fraction in
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that quantum. Unfortunately, this is not always true. Even though

Φτ always decreases (as shown in Lemma 4.2), it is not true that

either Φ1

t (τ ) or Φ
2

t (τ ) always decreases. In fact, sometimes Φ1

τ (t)
may become 0 if there are no priority 1 ready nodes fromGτ at time

t and then increase again later when some priority 2 node executes

and enables a priority 1 child. The same thing can happen to Φ2(τ ).
In other words, potential sometimes gets transferred from Φ2(τ ) to
Φ1(τ ) and vice versa, even though their sum never increases.

So, we first state a Lemma about how many times this potential

transfer can happen — in other words, how many times can Φ1

τ or

Φ2

τ increase while τ is active. The proof of the following lemma

relies on the fact that there are at most k edges between nodes of

different priority levels in Gτ and the potential of priority 1 can

increase only if a priority 2 node enables a child node of priority 1

(and vice versa).

Lemma 4.10. The total number of times Φ1

τ or Φ2

τ can increase is
at most k .

Proof. The only time Φ1

τ can increases is when a priority 2 node

u ∈ Gτ executes and enables a child node v which is a priority 1

node. By an argument similar to Lemmas 4.2 and 4.6, if a priority 1

node enables a priority 1 node, the potential only decreases since

child nodes have much lower potential than their parents. There is

a symmetric argument for priority 2 potential increase. Since there

are only k edges between nodes of different priorities in Gτ , this

increase can occur at most k times. □

The quantum during which a potential transfer occurs is called a

transfer quantum. We divide τ ’s execution into phases between
these transfer quanta — the first phase starts when τ is created

and ends when the first potential transfer happens. All subsequent

phases begin when the previous phase ends and ends at the next

potential transfer or when τ finishes executing. Therefore, there

are at most k transfer quanta while τ is executing and at most k + 1
phases.

We now consider each phase individually. Consider a phase

Q that begins at time t1 and ends at time t2. We want to bound

the number of type B quanta during this phase (not counting the

transfer quanta that begin and end the phase). The potential of task

τ at time t1 is Φτ (t1) = Φ1

τ (t1) + Φ2

τ (t1) and at time t2 is Φτ (t2) =
Φ1

τ (t2) + Φ
2

τ (t2). From Lemma 4.2, we have Φτ (t2) ≤ Φτ (t1).

Lemma 4.11. Say there are I2 ≥ 0 inefficient quanta for pri-
ority 2 scheduler during the phase Q and I1 ≥ 0 inefficient
quanta for the priority 1 scheduler during the phase Q . Then
Φτ (t2) ≤ Φτ (t1)/(2

(1−δ )Lmin{I 1,I 2 }). Therefore, min{I1, I2} ≤
lgΦτ (t1)−lgΦτ (t2)

(1−δ )L .

Proof. Since there was no potential transfer during the phase,

every inefficient quantum decreased the priority 2 potential Φ2

τ by

a factor of 2
(1−δ )L

by the same logic as Lemma 4.6. Therefore, I2

inefficient quanta reduced Φ2

τ by a factor of 2
(1−δ )LI 2

— implying

Φ2

τ (t2) ≤ Φ2

τ (t1)/2
(1−δ )LI 2

. Note that in this case, the potential Φ2

τ
may become 0 at some point during the quantum — however, the

above inequality trivially holds in that case and the potential cannot

increase again during the quantum since it is not a transfer quan-

tum. Using a similar argument, we have Φ1

τ (t2) ≤ Φ1

τ (t1)/2
(1−δ )LI 1

.

Therefore, we have Φτ (t2) = Φ1

τ (t2) + Φ
2

τ (t2) ≤ Φ1

τ (t1)/2
(1−δ )LI 1 +

Φ2

τ (t1)/2
(1−δ )LI 2 ≤ (Φ1

τ (t1) + Φ
1

τ (t2))/2
(1−δ )Lmin{I 1,I 2 }

More algebra gives the bound on min{I1, I2}. □

The following lemma follows from Lemma 4.4.

Lemma 4.12. The total number of type B quanta during a phaseQ
that goes from time t1 to time t2 is at most 2 lgΦτ (t1)−lgΦτ (t2)

(1−δ )L + logρ P .

Proof. Recall that, by Lemma 4.4, we know that during the

phase, the total number of efficient and satisfied quanta is at most

ES2 ≤ I2 + logρ P for the priority 2 task and ES1 ≤ I1 + logρ P . In

addition, the total number of type B quanta is at most min{I1 +
ES1, I2 + ES2} since both schedulers have to inefficient or efficient

and satisfied during these quanta. Therefore, the total number of

type B quanta is at most 2min{I1, I2}+logρ P giving us the required

bound. □

We can now bound the type B quanta for task τ — the proof uses

Lemmas 4.2 and 4.12 to argue about initial potential and change in

potential.

Lemma 4.13. The total number of type B quanta across the entire
execution of the priority 2 task is O(Sτ /((1 − δ )L) + (k + 1) logρ P).

Proof. We know that the beginning potential of the task when

it is created is at most 2
3Sτ

and the final potential right before the

task ends is less than 2. Say that there are X ≤ k phases for task τ .
Say there are Bi type B quanta during phase i and phase i begins
at time ti−1 and ends at time ti . From Lemma 4.12, we know that

Bi ≤ 2
lgΦτ (ti−1)−lgΦτ (ti )

(1−δ )L + logρ P . Therefore, if we add Bi ’s over

all phases, we get

X∑
i=1

Bi ≤
X∑
i=1

2

lgΦτ (ti−1) − lgΦτ (ti )

(1 − δ )L
+ logρ P

≤ 2

lgΦτ (t0) − lgΦτ (tX )

(1 − δ )L
+ X logρ P

≤ 2

lg 2
3Sτ

(1 − δ )L
+ X logρ P

≤ 2

3Sτ
(1 − δ )L

+ (k + 1) logρ P

In addition, we have k+2 transfer quanta, but that term is subsumed

by the last term. □

Adding type A and type B quanta and multiplying by L gives us

the bound on response time for priority 2 tasks as stated in Theo-

rem 4.1. Intuitively, it turns out that the analysis of type B quanta

does not change at all; however, for type A quanta, we get an addi-

tional ℓ logρ P quanta for the following reason. Consider the proof

of Lemma 4.9 and look at the third case where priority 1 quanta are

inefficient and priority 2 quanta are efficient and deprived. For a

scheduler at priority ℓ, in the worst case, all schedulers of level < ℓ

may be inefficient — if all of these quanta can be mapped to prior

quanta that started after τ , then like in the proof, we can account

for them using competitive work. However, if any of them cannot

be mapped, then we get an additive factor of logρ P , giving us a

total additive factor of (ℓ − 1) logρ P .
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4.3 Generalizing to priority level ℓ
Nowwe consider some arbitrary priority level. Again, we can divide

quanta into two categories — type A quanta are those where some

scheduler with priority x ≤ ℓ is efficient and deprived and type

B quanta are quanta where all schedulers with priority x ≤ ℓ are
either inefficient or efficient and satisfied.

It turns out that the analysis of type B quanta does not change

as we increase the priority level ℓ. In particular, again, we can

divide the potential into ℓ different components and the number of

transfer quanta is still bounded by k . In each phase (time between

transfer quanta), we can easily generalize Lemma 4.12 to show the

same bound on the decrease in potential and then use it to show

Lemma 4.13. In other words, increasing priorities does not increase

the bound on type B quanta.

Type A quanta are a different beast since the bound depends on

ℓ — but only in the last term.

Lemma 4.14. The total number of type A quanta while a priority
ℓ task τ is executing is at most (1 + ρ)Wτ /(δLP) + ℓ logρ P .

Proof. Recall that if a scheduler with priority level x was effi-

cient and deprived, no scheduler with priority > x gets any pro-

cessors. First, let us consider the simple case: All schedulers which

got any processors were efficient (either satisfied or deprived). This

includes all cases where the scheduler at priority level x ≤ ℓ was
efficient and deprived and all schedulers with priority level < x
were efficient and satisfied. (In Lemma 4.9, this includes the first

two cases.) Say there were A such quanta andW1 work was done

over all these quanta on priority 1 − ℓ tasks. Since all P processors

were allocated to priorities ≤ ℓ and the quanta were efficient, we

haveW1 ≥ δLA. Since all this work is competitive work of τ , we
get A ≤Wτ /(δL).

Now we must consider the case where some quanta were ineffi-

cient and some quanta were efficient — consider one such quantum

q. By definition of type A quanta — some scheduler with priority

level x ≤ ℓ is efficient and deprived during q. All schedulers with
priority level < x are either efficient and satisfied or inefficient —

the worst case is that they are all inefficient and we will consider

that case. Consider the inefficient quantum q for priority levely < x
and say that the allotment of that quantumwasp

y
q = d

y
q (since there

were processors left over for lower priority tasks). From Lemma 4.3,

we can find a previous efficient and deprived quantum q′(y) with
allotment p

y
q′(y) = d

y
q′(y) = d

y
q /ρ. We can find a similar mapping for

all priority levels y < x with inefficient quanta (though the q′(y)
may be different for each y).

There are two cases: For all y, this q′(y) occurred after task τ be-

came active. In this case, we know that

∑
y<x p

y
q′(y) =

∑
y<x d

y
q /ρ

Therefore, the total work done by the priority 1 — x − 1 sched-

ulers during these mapped quanta (which are efficient) is at least

Wq′ ≥ δL
∑
y<x d

y
q /ρ. In addition, the work done by the scheduler

at priority level x , which is efficient and deprived, is at leastWq ≥

δL(P−
∑
y<x d

y
q ). Adding these together, we getWq +Wq′ ≥ δLP/ρ.

If there are B such quanta, and all this work is competitive work of

τ (since it was all executed by a higher or equal priority scheduler

while τ was active), we get B ≤ ρWτ /(δL).
The final case to consider is that for some y, the mapped quan-

tum q′(y) occurred before task τ became active. In this case, we

cannot argue that the work done during q′(y) was competitive

work. However, from Lemma 4.4, we know that we can find at most

logρ P such quanta for each priority level < x . Therefore, the total

number of quanta of this type is (ℓ − 1) logρ P .

Adding all cases gives us the bound on type A quanta. □

Since the bound on type B quanta does not change, combining

Lemmas 4.14 and 4.13, and multiplying with L gives us the bound

stated in Theorem 4.1.

5 EMPIRICAL EVALUATION
This section empirically evaluates I-Cilk, which implements APS.

We evaluated I-Cilk using two microbenchmarks and three moder-

ately sized application benchmarks (that range from 1.1k to 1.5k
lines of code). The microbenchmarks are written such that they

can be configured to generate different workloads to allow us to

better evaluate different aspects of the scheduler. The application

benchmarks consist of richer workloads that simulate real-world

interactive applications.

Implementation of I-Cilk. I-Cilk extends Cilk-F, a Cilk dialect
that uses proactive work stealing [24] to schedule futures. I-Cilk

incorporate latency-hiding I/O support as described in [23], a prior-

ity type system [19], and an adaptive processor allocator. We don’t

discuss the I/O support and the type system, as they are not the

focus of this work.

I-Cilk implements a two-level adaptive scheduling strategy as

described in Section 3. The top-level master scheduler adaptively

allocates workers (surrogates of processing cores) to priority levels.

The second level uses an extension of proactive work stealing to

schedule tasks within a priority level. Each worker periodically

updates its utilization based on how long it spent working versus

looking for work to do. The master is a thread that sleeps for the

duration of a quantum (L), collects utilization reported, calculates

the core utilization at each priority level, computes the desire of

each priority level, and allocates workers to each level. If there are

left-over cores not allocated based on desires, the runtime assigns

half of the left-over cores to each priority level, starting from the

highest level to the lowest until it runs out of cores. The master

alerts a worker to switch priority by setting a per-worker flag,

checked at each strand boundary (i.e., at a spawn, sync, create,
and get) or at a user-specified yield via a runtime library call,

5
and

switches to its new priority level if the flag is set.

In classic work stealing, each worker has one deque storing its

work items. In I-Cilk, since each worker may work on different

priority levels throughout execution, each worker ends up having

multiple pools of deques, one for each priority level, and like in

Cilk-F, there can be multiple deques within each pool a worker can

generate additional deques when it needs to switch level or when

it generates a new task with a different priority level from its own.

Experimental Setup. We empirically evaluate I-Cilk by com-

paring its performance against that of Cilk-F. To enable fair com-

parison, we have extended Cilk-F with the same latency-hiding

I/O support. Our experiments ran on a computer with 2 Intel Xeon

Gold 6148 processors, each with 20 2.40-GHz cores. Each core has

a 32-kB L1 data and 32-KB L1 instruction cache, and a private 1

5
This yield functionality is an optimization for programs with long strands, allowing

the programmer to indicate to the runtime when it is safe to interrupt.
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MB L2 cache. Hyperthreading was enabled, and each core had 2

hardware threads. Each processors has a 27.5 MB shared L3 cache,

and there are 768 GB of main memory. I-Cilk and all benchmarks

were compiled using the Tapir compiler [21] (based on clang 5.0.0),

with -O3 and -flto. Experiments ran in Linux kernel 4.15.

For the choices of runtime parameters, we expect δ (efficiency

parameter) to range between 0 and 1, and is likely close to 1, and ρ
(responsiveness parameter, or how fast to grow the desire) to range

between 1 and 2. For all evaluations, we have tested several sensible

configurations of runtime parameters. Unless stated explicitly (i.e.,

when testing the sensitivities to paratmers), we show the config-

uration that best benefits the high-priority tasks. We discuss how

runtime parameters may impact execution time at the end.

5.1 Evaluation of Microbenchmarks
We use two microbenchmarks to answer the following questions.

First, does I-Cilk appropriately prioritize tasks in the order of their

priorities? Second, how much overhead does the two-level adaptive

scheduling strategy incur in I-Cilk? Finally, how do the changes

in the scheduling parameters of I-Cilk (i.e., scheduling quantum

length L, responsiveveness parameter ρ, and utilization parameter

δ ) impact execution times of tasks at different priority levels? To

answer these questions, we utilized the microbenchmarks to gener-

ate different workloads and compare the average execution times

of tasks at each priority level when running on I-Cilk versus Cilk-F.

Microbenchmark. The first microbenchmark, fib-ep, com-

putes the 42nd fibonacci number with a serial base case of 2, which

has ample parallelism. The second microbenchmark, fib-rp, sim-

ilarly computes the 44th fibonacci number but with a serial base

case of 40, thus restricting the number of parallel strands to 8 for

each priority level. In both microbenchmarks, fibonacci computa-

tions are spawned for high (H), medium (M), and low (L) priority in

succession. The serial fibonacci base case in I-Cilk uses yield calls

to check if the worker needs to switch priorities.

Since fib-rp does not have much parallelism, it is an adversarial

workload for I-Cilk. Each task cannot fully utilize all the cores, so

the desire for each priority level will oscillate between two different

values, as falling slightly below the parallelism or overshooting and

causing low utilization.

Prioritization of Tasks. We compare the runtime of tasks at

each priority level running on I-Cilk and Cilk-F. Here, we choose

the optimal runtime parameters for I-Cilk (sensitivity to parameters

evaluated later). Figure 2 shows the execution times for tasks at each

level, with overhead and standard deviation shown in parentheses.

The overhead is computed by comparing to fib-ideal, a single
instance of the fib computation running on Cilk-F (as opposed

to three contending for cores). I-Cilk appears to prioritize tasks

appropriately. For fib-ep, I-Cilk across the board executes H and

M tasks faster with a slight degradation for the L task. For fib-rp,
the H task oscillates between desires that either undershoot its

parallelism level or overshoot. When it overshoots, it takes cores

away from M and L tasks yet doesn’t utilize them fully. Cilk-F does

not have the same issue as it treats all tasks equally. Consequently,

I-Cilk experiences higher degradation compared to Cilk-F, but not

by too much.

The lower overhead and standard deviation on the M task in

I-Cilk indicate that the priority relationship between M and L is also

being respected. To verify this, we ran the same I-Cilk microbench-

marks with just the H and M tasks (not shown) and saw that the

execution times for the H and M tasks were similar to that shown

in Figure 2.

Overhead of the Adaptive Scheduling Strategy.We can look

at the overhead of the H task of I-Cilk to gauge the overhead for

adaptive scheduling. From the results in Figure 2, we found the

overhead be low. For fib-ep the overhead is also minimal for M

and L tasks; they complete in the time it would take to execute 2

and 3 fib computations respectively. This reflects the fact that the

medium priority work has to wait for the high priority work to

complete, and low similarly has to wait for the medium priority

work.

Sensitivity to Responsiveness Parameter ρ. When there is

ample parallelism, as in fib-ep, larger ρ reduce the execution time

at every level because it is most efficient to be aggressive about

growing the desire; it also benefits lower priorities because the

H tasks back off their desire more quickly. When there is little

parallelism, as in fib-rp, the correct values are less obvious. For
the H task, it is important that ρ is large enough that the desire can

grow quickly; however, it is in some cases even more important that

the floor of the high priority desire can reach exactly the number

of parallel strands in the H tasks to avoid oscillating between too

many and too few processors. In Figure 3, this is the case only for

a ρ of 1.2 or 2, and the overhead on H task of fib-rp reflects this.
For M and L tasks, however, their execution times suffer with ρ of

2 because H task wastes more processing cycles (low utilization

when it overshoots the desire) and deprives the M and L tasks.

Sensitivity to Scheduling Quantum Length L. Figure 4

shows the microbenchmark execution times of I-Cilk compared to

fib-ideal with different L. As L increases there is less overhead

seen on the one core execution. For parallel executions, a longer

L means that it takes longer for a priority level to reach the de-

sired number of cores (especially evident in the H task). The M

task also suffers slightly, as it takes longer for the H task to give

up its cores once it’s done executing; this is especially evident with

fib-rp, whih has a low parallelism H task can waste cores due to

low utilization.

5.2 Evaluation of Application Benchmarks
Our application benchmarks are designed to simulate real-world

interactive applications. These benchmarks have much richer char-

acteristics compared to the microbenchmarks in that they generate

tasks of variable sizes and have different mixtures of I/O opera-

tions and computations. The first bench job most closely resemble

traditional task-parallel workloads but incorporates priorities; it

simulates a job scheduler that schedules compute-heavy workloads.

The second bench, email, simulates an email application that has a

non-negligible amount of I/O operations, but also a healthy amount

of computation. The last bench, proxy, simulates a proxy server that

has very little background computation and a high I/O-to-compute

ratio. These benchmarks are nondeterministic even when we fix

the inputs (e.g., the sequence of requests sent by a client), as inputs

arrive with nondeterministic timing.

The Job Server. The job server generates parallel jobs using a

Poisson process at random intervals and schedules them. Priorities
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fib-ep fib-rp
T1 T4 T8 T16 T20 T16 T20

H 11.61 (1.00×, 0.0%) 5.98 (2.06×, 27.7%) 2.24 (1.54×, 35.9%) 1.27 (1.74×, 21.4%) 0.95 (1.64×, 27.2%) 0.95 (1.22×, 20.8%) 0.78 (1.00×, 0.5%)

Cilk-F M 23.22 (2.00×, 0.0%) 8.05 (2.77×, 7.1%) 3.67 (2.52×, 12.1%) 2.07 (2.84×, 7.8%) 1.73 (2.96×, 1.3%) 1.10 (1.42×, 19.9%) 1.04 (1.34×, 20.0%)

L 34.83 (3.00×, 0.0%) 8.62 (2.97×, 2.5%) 4.36 (2.99×, 0.0%) 2.18 (2.99×, 0.06%) 1.74 (2.98×, 1.1%) 1.43 (1.85×, 11.1%) 1.14 (1.47×, 14.1%)

H 12.53 (1.08×, 0.0%) 3.13 (1.08×, 0.2%) 1.57 (1.08×, 0.1%) 0.79 (1.08×, 0.4%) 0.63 (1.08×, 0.3%) 0.87 (1.13×, 0.2%) 0.87 (1.12×, 0.3%)

I-Cilk M 25.05 (2.16×, 0.0%) 6.24 (2.15×, 0.1%) 3.13 (2.15×, 0.1%) 1.57 (2.15×, 0.1%) 1.26 (2.15×, 0.1%) 1.14 (1.47×, 0.6%) 0.87 (1.12×, 0.1%)

L 37.52 (3.23×, 0.0%) 9.36 (3.22×, 0.1%) 4.69 (3.22×, 0.0%) 2.34 (3.22×, 0.0%) 1.88 (3.22×, 0.1%) 1.68 (2.17×, 2.1%) 1.27 (1.63×, 0.2%)

Figure 2: Execution times of fib-ep and fib-rp (seconds) run using vanilla Cilk-F and I-Cilk with δ = 0.9 and L = 1ms. fib-ep
was run with ρ = 2, fib-rp with ρ = 1.2. Overhead, relative to fib-ideal, and standard deviation are in parentheses.

2 Jobs/s 3 Jobs/s 4 Jobs/s 5 Jobs/s

Avg. 95% Jobs/s Avg. 95% Jobs/s Avg. 95% Jobs/s Avg. 95% Jobs/s

Cilk-F

mm 595 143 1.99 658 137 2.77 100 224 3.88 260 560 4.25

fib 71 123 2.16 77 128 3.10 102 187 3.71 227 541 4.41

sort 104 170 1.76 115 187 2.05 146 294 2.42 341 790 2.19

sw 204 400 2.27 330 732 3.16 538 1072 3.61 1462 2154 4.12

I-Cilk

mm 41 68 2.17 41 62 2.79 44 84 3.78 44 74 5.00

fib 75 109 1.82 87 178 3.11 109 253 4.24 126 268 4.88

sort 107 206 1.99 152 382 2.79 188 552 2.97 318 858 3.52

sw 328 624 2.44 492 1095 2.96 19961 35984 2.86 56881 76684 0.99

Figure 5: The average (Avg.) and 95 percentile (95%) flow time
of different types of computations running on job, listed
from highest to lowest priorities. All times are reported in
milliseconds. The Job/s reports the throughput (how many
instances per seconds executed). Times for I-Cilk were col-
lected with ρ = 2, L = 500µs, and δ = 0.9.

ρ = 1.2 ρ = 1.5 ρ = 1.75 ρ = 2

H 0.64 (1.10×) 0.63 (1.08×) 0.63 (1.08×) 0.63 (1.08×)

fib-epM 1.26 (2.15×) 1.25 (2.15×) 1.25 (2.15×) 1.25 (2.15×)

L 1.88 (3.22×) 1.88 (3.22×) 1.88 (3.22×) 1.88 (3.22×)

H 0.87 (1.12×) 1.09 (1.40×) 1.00 (1.29×) 1.04 (1.33×)

fib-rpM 0.87 (1.12×) 0.98 (1.26×) 1.16 (1.49×) 1.27 (1.63×)

L 1.27 (1.64×) 1.41 (1.82×) 1.38 (1.77×) 1.37 (1.77×)

Figure 3: Execution time of fib-ep and fib-rp, in seconds,
run in I-Cilk with various ρ values on 20 processors with
L = 1ms. Overhead (in parentheses) is relative to fib-ideal.

L = 100us L = 500us L = 1ms L = 10ms
H 13.18 (1.13×) 12.57 (1.08×) 12.53 (1.08×) 12.50 (1.08×)

fib-ep (T1) M 26.37 (2.27×) 25.13 (2.16×) 25.05 (2.16×) 24.97 (2.15×)

L 39.11 (3.37×) 37.64 (3.24×) 37.52 (3.23×) 37.40 (3.22×)

H 0.63 (1.08×) 0.63 (1.08×) 0.63 (1.08×) 0.66 (1.12×)

fib-ep (T20) M 1.26 (2.16×) 1.25 (2.15×) 1.25 (2.15×) 1.27 (2.18×)

L 1.89 (3.23×) 1.88 (3.22×) 1.88 (3.22×) 1.88 (3.24×)

H 0.87 (1.12×) 0.88 (1.13×) 0.87 (1.12×) 0.89 (1.15×)

fib-rp (T20) M 0.87 (1.13×) 0.87 (1.13×) 0.87 (1.12×) 0.92 (1.19×)

L 1.28 (1.65×) 1.27 (1.64×) 1.27 (1.64×) 1.28 (1.65×)

Figure 4: Execution times, in seconds, running with I-Cilk
using various quantum lengths (L) for fib-ep (ρ = 2) on 1
and 20 processors, and fib-rp (ρ = 1.2) when run on 20 pro-
cessors. Overhead (in parentheses) is relative to fib-ideal.

are assigned based on the smallest-work-first principle, so jobs with

the smallest work (i.e., one-core execution time) are assigned the

highest priority. Such a scheduling policy is designed to minimize

the average flow time, time elapsed between when a job is gen-

erated and when it finishes executing, of jobs [6]. Four types of

parallel jobs are used (from highest to lowest priority): a) matrix

multiplication (mm, n = 1024), b) fibonacci (fib, n = 36), c) merge

sort (sort, n = 1.1e7), and d) Smith-Waterman (sw, n = 1024).

We ran job on 20 cores with different L and ρ. At 2, 3, 4, and 5

jobs per second, the machine utilization is about 50%, 70%, 95%, and

> 95%, respectively. Compared to Cilk-F, I-Cilk prioritizes tasks

with higher priority. When the machine is not heavily loaded, I-

Cilk provides higher throughput than Cilk-F because it implements

smallest-work-first using priorities. I-Cilk compares favorably over

Cilk-F regardless of the choice of L and ρ.
As themachine getsmore loaded, I-Cilk prioritizes tasks at higher

priority at the expense of the lowest priority tasks (e.g., sw). This
generally translates to higher throughput for higher priority tasks

but lower throughput for lower priority ones, and the overall system

throughput may be lower than Cilk-F as a result. Here, the choice

of L and ρ matters, and we have shown data with paramters that

prioritize higher-priority tasks. With a longer L and/or a lower ρ,
it would take longer for the high-priority tasks to gain processing

cores and in turn benefits the lower priority tasks. Thus, a longer

L and/or a lower ρ can lead to higher flow time for high-priority

tasks but also higher overall system throughput.

The Email Client. The email bench simulates a multi-user

shared email client. It contains five priority levels (highest to lowest):

a) loop that handles user requests, b) a component to send emails,

c) a component to sort emails, d) two equal-priority components:

one to compress emails and one to uncompress and print emails,

e) a loop to periodically check if there are uncompressed emails

(due to print) that need to be compressed and trigger the compress

component.

We ran email on 10 cores, using the other 30 cores to simulate

clients connecting to email. Figure 6 shows the results with differ-

ent client configurations with each client sending 1500 requests,

except for the 30 client configuration where each client sends 2000

requests to allow for a longer execution time.

Due to space limitations, we only show data for one configuration

of runtime parameters. Based on our evaluations however, I-Cilk

uniformly provides shorter response time and send time (the two

highest priority tasks) compared to Cilk-F regardless of the choice

of L and ρ. When the number of clients are moderate (90 or less), I-

Cilk also provides better sort time. As the number of clients become

large (120), I-Cilk sacrifices the lowest priority tasks (periodic check

of compression).

That means Cilk-F may be doing more work (the two lowest

priority tasks) than I-Cilk, because email running on I-Cilk can

skip checks from time to time if the loop does not get scheduled

within the timer period. As a result, the duration of compress tasks

is also higher on I-Cilk.

Similar to the observation in job, a longer L and a lower ρ means

that it takes longer for the high-priority tasks to gain processing

cores which leads to overall longer latency for higher priority tasks

(e.g., response and send) but still outperforms that of Cilk-F.

The Proxy Server. The proxy server requests websites on be-

half of clients, hiding the requestor’s IP address, and sends the
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30 Users 60 Users 90 Users 120 Users

Avg 95% 99% Avg 95% 99% Avg 95% 99% Avg 95% 99%

Cilk-F

resp 486.00 344.58 7433.00 2248.61 3050.62 18597.10 8223.66 7649.56 31378.00 18080.90 9894.68 37980.10

send 501.84 374.74 7938.14 2287.18 3282.31 19415.30 8112.99 8113.83 33816.70 16724.80 10260.00 40010.80

sort 2.40 4.39 19.33 6.94 10.14 41.64 19.87 18.82 73.07 43.68 23.12 85.63

print 3.85 34.88 40.82 6.98 36.11 50.01 16.69 40.07 59.63 29.23 42.34 68.49

comp 13.45 13.67 40.29 13.42 13.65 39.86 13.40 13.55 39.82 13.42 13.48 40.63

I-Cilk

resp 46.91 125.11 500.72 70.53 289.13 874.64 95.65 519.80 1273.61 122.47 679.27 1552.71

send 392.37 1608.09 4893.00 497.92 1799.58 5324.97 499.97 1822.39 4714.04 502.78 1724.76 4415.29

sort 3.38 9.66 30.43 6.61 19.43 59.31 9.16 24.53 67.57 10.08 31.41 81.18

print 4.13 35.59 50.45 4.16 19.24 48.99 6.03 23.36 94.31 6.42 21.76 68.79

comp 127.36 326.18 484.74 128.84 295.28 340.15 137.72 319.51 625.98 121.99 280.24 360.99

Figure 6: Response times of email tasks, listed from highest to lowest priorities. The resp reports the times elapsed between
when a client sends a request to when email reacts to the request by generating a computation. The send, sort, and print
report the respective times elasped between when a client sends the given request to when the corresponding task completes.
The compress reports the time elapsed to perform a particular compression task. We report the average times (Avg), the 95th

percentile (95%), and the 99
th percentile (99%) for all categories. The times for resp and send are in microseconds. The times

for sort are in microseconds per message. The rest are in milliseconds. Times for I-Cilk were collected with ρ = 2, L = 500µs,
and δ = 0.9.

36 Clients 72 Clients 108 Clients 144 Clients

Avg 95% 99% Avg 95% 99% Avg 95% 99% Avg 95% 99%

Cilk-F

resp 103.78 74.61 341.17 231.44 79.61 529.18 343.11 80.69 591.68 414.18 80.69 580.92

hit 4.94 3.74 14.85 10.26 3.95 22.71 14.92 4.00 25.33 17.87 3.99 24.85

miss 2.01 2.30 60.18 2.12 3.04 67.79 1.98 1.51 66.05 1.94 1.45 60.14

stat 0.17 0.38 0.61 0.17 0.38 0.46 0.19 0.25 0.50 0.18 0.27 0.40

I-Cilk

resp 61.06 65.47 241.95 180.40 73.80 386.48 176.21 76.26 450.83 323.13 76.86 504.60

hit 3.16 3.36 10.72 8.14 3.72 16.75 7.97 3.83 19.44 14.09 3.85 21.70

miss 2.46 3.14 67.78 3.42 3.50 66.50 4.41 4.36 67.21 3.70 4.28 67.68

stat 1.05 0.55 36.20 0.11 0.25 0.33 1.31 0.32 46.90 8.24 37.55 345.85

Figure 7: Response times of proxy tasks listed from highest to lowest prorities. The resp reports the time elapsed between
when a client sends a request to when proxy reacts to the request. The hit reports µs/byte (µs is microsecond) for responding
with a website already in cache; the miss reports µs/byte for those not in cache. The stat reports µs/cacheSize for collecting
cache statistics. Times for I-Cilk were collected with ρ = 1.2, L = 500µs, and δ = 0.9.

websites back to the client. A concurrent hashtable is used to cache

the websites once it’s fetched. There are four priority levels (high-

est to lowest): a) accepting new client connections and handling

requests from clients already connected (and response immediately

if the requested site is in already the cache); b) on a cache miss,

fetching content from the site and storing it in cache; c) logging

statistics about sites requested.

Results from running proxy are shown in Figure 7. In general,

I-Cilk schedules the tasks such that it favors response time of high

priority tasks (hit) over lower priority ones. A ρ value of 1.2 seems

to work the best, as the high priority tasks in proxy have little

parallelism.

Discussion.While it is true that the optimal parameter values

will depend on the application characteristics, and the programmer

should empirically evaluate a few configurations within the range

if she wants the best performance possible, based on our empir-

ical evaluation a few default values can work well based on the

observations that follow. First, δ (the efficiency parameter) does

not seem to make much difference as long as it’s on the high-end

of the range (e.g., > 0.75) because its value is used as a threshold

to qualify whether a quantum is efficient. Second, for L (quantum

length), generally something like 500 microseconds or 1 millisec-

ond works well regardless of application characteristics because it

should be long enough to amortize the cost of adaptive scheduling,

but short enough that it can react to changes in parallelism within

each priority level. For an application that lacks parallelism, lower

ρ (responsiveness parameter) values (e.g., 1.2) seems to work well,

whereas for an application that has ample parallelism, higher values

(e.g., 2) seem to work well.

6 RELATED WORK
Priority Scheduling. Prior work by Muller et al. [17, 18, 20] pro-

vided a type system, the corresponding cost semantics, and the

principle that a well-formed computation (from a program that

type checked) can be scheduled with their stated execution time

bounds as long as the scheduler used is prompt. This prior work

does not describe a provably efficient online scheduling algorithm,

however. Even though the prior work has an implementation, their

implementation is not prompt (a strictly prompt scheduler would

not be practical due to synchronization overhead), nor do they an-

alyze the implementation to show any formal approximation of

promptness.

In this work, we remove the assumption of strict promptness

from our theoretical scheduling algorithm. Instead, our theoretical

algorithm approximates promptness while being practical to imple-

ment and we provide an analysis that explicitly bounds the waste

due to this approximation. In other words, our theoretical result

provides an online scheduling algorithm with the same asymptotic

performance bounds as Muller et al. Our scheduler approximates

promptness in the same spirit as how a work-stealing scheduler

approximates work conservation.

Beyond work byMuller et al., there is little work in the context of

task parallelism. When priorities have been studied in the context

of task parallelism, they have been used as heuristics to improve
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the throughput of computations (e.g., searches where the ordering

of branches can improve performance) [15, 29, 30], rather than for

responsiveness.

Priorities are also used for scheduling in Operating Systems (see

an overview in [22]) and real-time systems (see a survey in [12]).

In OS, the scheduling entities are usually heavy-weight persistent

threads (e.g., POSIX threads [16]) and the scheduling quantum

lengths are longer. In this work, the scheduling entity is a task,

which is much lighter weight with a shorter scheduling quantum

length. These differences necessarily lead to different mechanisms

for ensuring responsiveness. Moreover, there are seldom any theo-

retical bounds on response time within OS threads.

In real-time scheduling, priorities are used in a different manner.

Typically in a real-time system, the set of jobs is fixed a priori, with
known period (how quickly a job generates a task), known deadline

(when a task must complete), and a known upper bound on the

work of a task. These tasks tend to be independent of each other

and do not interact (although they could share resources through

the use of locks). The scheduler must provide an a priori guarantee
of meeting each deadline and priorities are used as a scheduling

mechanism to meet these deadlines.

Adaptive Scheduling. Our scheduling framework is based on

the adaptive scheduling strategy A-GREEDY [3], which is designed

for a very different context (scheduling independent parallel jobs in

a multiprogrammed environment). A-GREEDY focuses on provid-

ing an algorithm for the second-level scheduler to best determine

the desired number of cores for a job to request assuming an ad-

versarial top-level scheduler. Without considering the top-level

scheduler and how it assigns cores, our second-level scheduler es-

sentially utilizes the same algorithm as A-GREEDY to determine

the desired number of cores to request. However, the analysis of

our algorithm is very different from that of A-GREEDY due to two

key differences. First, we have a top-level scheduler that accounts

for priority when making core assignments. Second, in our context,

tasks from different priority levels are not independent, whereas

A-GREEDY considers independent parallel jobs.

A-GREEDY [3] assumes a second-level greedy scheduler. A sim-

ilar adaptive scheduling framework for scheduling independent

parallel jobs has been developed called A-STEAL [4, 5], where the

analysis considers work stealing [7–10] as the second-level sched-

uler. A similar adaptive scheduling algorithm using work-stealing

has also been used to optimize for power and energy for parallel

tasks [2]. In our framework, incorporating work stealing into the

analysis will be complex since we would need to bound the steal

overheads for different priority levels (a possible direction for future

work).

7 CONCLUSION
In this paper, we described a practically efficient and theoretically

sound algorithm for scheduling task-parallel interactive applica-

tions on multicore platforms. Experiments indicate that the algo-

rithm performs well in practice, and has low scheduling overheads

and good response times for high-priority tasks even as the load

increases. There are several directions of future work. First, our

analysis assumes a work-conserving scheduler for every priority

level, while our implementation uses an almost work-conserving

work-stealing scheduler which performs better in practice. Wewant

to analyze work-stealing directly as part of a two-level scheduling

system. Second, the scheduling overhead of our system increases

as ℓ (priority level) and k (number of edges between two nodes

with different priority levels) parameters of the task increase — it

would be nice to design a scheduler which did not depend on these

parameters. Finally, the type system we use restricts the kinds of

dependences we can have in the task in order to check for priority

inversions. We would like to generalize this type system to allow a

richer set of dependences.
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