
Solving bitvectors with MCSAT:
explanations from bits and pieces

Stéphane Graham-Lengrand, Dejan Jovanović, and Bruno Dutertre

SRI International, USA

Abstract. We present a decision procedure for the theory of fixed-
sized bitvectors in the MCSAT framework. MCSAT is an alternative
to CDCL(T) for SMT solving and can be seen as an extension of CDCL
to domains other than the Booleans. Our procedure uses BDDs to record
and update the sets of feasible values of bitvector variables. For explain-
ing conflicts and propagations, we develop specialized word-level inter-
polation for two common fragments of the theory. For full generality,
explaining conflicts outside of the covered fragments resorts to local bit-
blasting. The approach is implemented in the Yices 2 SMT solver and
we present experimental results.

1 Introduction

Model-constructing satisfiability (MCSAT) [21, 22, 26] is an alternative to the
CDCL(T) scheme [30] for Satisfiability Modulo Theories (SMT). While CDCL(T)
interfaces a CDCL SAT solver [25] with black-box decision procedures, MCSAT
integrates first-order reasoning into CDCL directly. Like CDCL, MCSAT alter-
nates between search and conflict analysis. In the search phase, MCSAT assigns
values to first-order variables and propagates unit consequences of these assign-
ments. If a conflict occurs during search, e.g., when the domain of a first-order
variable is empty, MCSAT enters conflict analysis and learns an explanation,
which is a symbolic representation of what was wrong with the assignments
causing the conflict. As in CDCL, the learned clause triggers backtracking from
which search can resume. Decision procedures based on MCSAT have demon-
strated strong performance in theories such as non-linear real [26] and integer
arithmetic [21]. These theories are relatively well-behaved and provide features
such as quantifier elimination and interpolation—the building blocks of conflict
resolution in MCSAT.

We describe an MCSAT decision procedure for the theory of bitvectors (BV).
In contrast to arithmetic, the complexity of BV in terms of syntax and semantics,
combined with the lack of word-level interpolation and quantifier elimination,
makes the development of BV decision procedures (MCSAT or not) very difficult.
The state-of-the art BV decision procedures are all based on a “preprocess and
bitblast” pipeline [14,24,27]: they reduce the BV problems to a pure SAT problem
by reducing the word-level semantics to bit-level semantics. Exceptions to the
bitblasting approach do exist, such as [5,18], which generally do not perform as

Approved for Public Release, Distribution Unlimited 1

well as bitblasting except on small classes of crafted examples, and the MCSAT
approach of [32], which we discuss below and in the conclusion.

An MCSAT decision procedure must provide two theory-specific reasoning
mechanisms.

First, the procedure must maintain a set of values that are feasible for each
variable. This set is updated during the search. It is used to propagate variable
values and to detect a conflict when the set becomes empty. Finding a suitable
representation for domains is a key step in integrating a theory into MCSAT. We
represent variable domains with Binary Decision Diagrams (BDDs) [6]. BDDs
can represent any set of bitvector values. By being canonical, they offer a simple
mechanism to detect when a domain becomes a singleton—in which case MCSAT
can perform a theory propagation—and when a domain becomes empty–in which
case MCSAT enters conflict analysis. In short, BDDs offer a generic mechanism
for proposing and propagating values, and for detecting conflicts. In contrast,
previous work by Zeljić et al. [32] represents bitvector domains using intervals
and patterns, which cannot represent every set of bitvector values precisely; they
over-approximate the domains.

Second, once a conflict has been detected, the procedure must construct a
symbolic explanation of the conflict. This explanation must rule out the par-
tial assignment that caused the conflict, but it is desirable for explanations to
generalize and rule out larger parts of the search space. For this purpose, pre-
vious work [32] relied on incomplete abstraction techniques (replace a value by
an interval; extend a value into a larger set by leaving some bits unassigned),
and left open the idea of using interpolation to produce explanations. Instead
of aiming for a uniform, generic explanation mechanism, we take a modular ap-
proach. We develop efficient word-level explanation procedures for two useful
fragments of BV, based on interpolation. Our first fragment includes bitvector
equalities, extractions, and concatenations where word-level explanations can
be constructed through model-based variants of classic equality reasoning tech-
niques (e.g., [5, 11, 12]). Our second fragment is a subset of linear arithmetic
where explanations are constructed by interval reasoning in modular arithmetic.
When conflicts do not fit into either fragment, we build an explanation by bit-
blasting and extracting an unsat core. Although this fallback produces theory
lemmas expressed at the bit-level, it is used only as a last resort. In addition, this
bitblasting-based procedure is local and limited to constraints that are relevant
to the current conflict; we do not apply bitblasting to the full problem.

Section 2, is an overview of MCSAT. It also presents the BDD approach
and general considerations for conflict explanation. Section 3 describes our in-
terpolation algorithm for equality with concatenation and extraction. Section 4
presents our interpolation method for a fragment of linear bitvector arithmetic.
Section 5 presents the normalization technique we apply to conflicts in the hope
of expressing them in that bitvector arithmetic fragment. Section 6 presents an
evaluation of the approach, which we implemented in the Yices 2 solver [13].1

1 This paper extends preliminary results presented at the SMT workshop [15,16] and
includes a full implementation and experimental evaluation.

Approved for Public Release, Distribution Unlimited 2

2 A General Scheme for Bitvectors

By BV, we denote the theory of quantifier-free fixed-sized bitvectors, a.k.a.
QF_BV in SMT-LIB [1]. A first-order term u of BV is sorted as either a Boolean
or a bitvector of a fixed length (a.k.a. bitwidth), denoted |u|. Its set of variables
(a.k.a. uninterpreted constants) is denoted var(u). This paper only uses a few
BV operators. The concatenation of bitvector terms t and u is denoted t ◦ u;
the binary predicates <u, ≤u denote unsigned comparisons, and <s, ≤s denote
signed comparisons. In such comparisons, both operands must have the same
bitwidth. If n is the bitwidth of u, and l and h are two integer indices such that
0 ≤ l < h ≤ n, then u[h:l], extracts h−l bits of u, namely the bits at indices
between l and h−1 (included). We write u[:l], u[h:], and u[l] as abbreviations
for u[n:l], u[h:0], and u[l+1:l], respectively. Our convention is to have bitvector
indices start from the right-hand side, so that bit 0 is the right-most bit and
0011[2:] is 11. We use standard notations for bitvector arithmetic, which coin-
cides with arithmetic modulo 2w where w is the bitwidth. We sometimes use
integer constants e.g., 0, 1, −1 for bitvectors when the bitwidth is clear. We use
the standard (quantifier-free) notions of literal, clause, cube, and formula [31].

A model of a BV formula Φ is an assignment that gives a bitvector (resp.
Boolean) value to all bitvector (resp. Boolean) variables of Φ, in such a way that
Φ evaluates to true, under the standard interpretation of Boolean and bitvector
symbols. To simplify the presentation, we assume in this paper that there are
no Boolean variables, although they are supported in our implementation.

2.1 MCSAT Overview

MCSAT searches for a model of an input quantifier-free formula by building
a partial assignment—maintained in a trail—and extends the concepts of unit
propagation and consistency to first-order terms and literals [21,22,26]. Reason-
ing is implemented by theory-specific plugins, each of which has a partial view of
the trail. In the case of BV, the bitvector plugin sees in the trail an assignment
M of the form x1 ↦→ v1, . . . , xn ↦→ vn that gives values to bitvector variables,
and a set of bitvector literals L1, . . . , Lt, called constraints, that must be true
in the current trail. MCSAT and its bitvector plugin maintain the invariant that
none of the literals Li evaluates to false under M; either Li is true or some
variable of Li has no value in M. To maintain this invariant, they detect unit
inconsistencies: We say that literal Li is unit in y if y is the only unassigned
variable of Li, and that a trail is unit inconsistent if there is a variable y and a
subset {C1, . . . , Cm} of {L1, . . . , Lt}, called a conflict, such that every Cj is unit
in y and the formula ∃y

⋀︁m
i=1 Ci evaluates to false underM. In such a case, y is

called the conflict variable and C1, . . . , Cm are called the conflict literals.
When such a conflict is detected, the current assignment, or partial model,M

cannot be extended to a full model; some values assigned to x1, . . . , xn must be
revised. As in CDCL, MCSAT backtracks and updates the current assignment by
learning a new clause that explains the conflict. This new clause must not contain
other variables than x1, . . . , xn and it must rule out the current assignment. For

Approved for Public Release, Distribution Unlimited 3

some theories, this conflict explanation can be built by quantifier elimination.
More generally, we can build an explanation from an interpolant.
Definition 1 (Interpolant). A clause I is an interpolant2 for formula F at
model M assigning values to x1, . . . , xn, if (1) F ⇒ I is valid (in BV), (2) The
variables in I are in {x1, . . . , xn} ∩ var(F), and (3) I evaluates to false in M.
Given an interpolant I for the conjunction

⋀︁m
i=1 Ci of the conflict literals (or

equivalently, for ∃y
⋀︁m

i=1 Ci) at the current model M, the conflict explanation
is clause (

⋀︁m
i=1 Ci)⇒ I. Our main goal is constructing such interpolants in BV.

2.2 BDD Representation and Conflict Detection

To detect conflicts, we must keep track of the set of feasible values for every
unassigned variable y. These sets are frequently updated during search so an
efficient representation is critical. The following operations are needed:

– updating the set when a new constraint becomes unit in y,
– detecting when the set becomes empty,
– selecting a value from the set.

For BV, Zeljić et al. [32] represent sets of feasible values using both inter-
vals and bit patterns. For example, the set defined by the interval [0000, 0011]
and the pattern ???1 is the pair {0001, 0011} (i.e., all bitvectors in the interval
whose low-order bit is 1). This representation is lightweight and efficient but it
is not precise. Some sets are not representable exactly. We use Binary Decision
Diagrams (BDD) [6] over the bits of y. The major advantage is that BDDs pro-
vide an exact implementation of any set of values for y. Updating sets of values
amounts to computing the conjunction of BDDs (i.e., set intersection). Checking
whether a set is empty and selecting a value in the set (if it is not), can be done
efficiently by, respectively, checking whether the BDD is false, and performing
a top-down traversal of the BDD data structure. There is a risk that the BDD
representation explodes but this risk is reduced in our context since each BDD
we build is for a single variable (and most variables do not have too many bits).
We use the CUDD package [10] to implement BDDs.

2.3 Baseline Conflict Explanation

Given a conflict as described previously, the clause (x1 ̸≃ v1) ∨ · · · ∨ (xn ̸≃ vn),
which is falsified by modelM only, is an interpolant for

⋀︁m
i=1 Ci atM according

to Definition 1. This gives the following trivial conflict explanation:
C1 ∧ · · · ∧ Cm ⇒ (x1 ̸≃ v1) ∨ · · · ∨ (xn ̸≃ vn)

We seek to generalize modelM with a formula that rules out bigger parts of the
search space than justM. A first improvement is replacing the constraints by a
core C, that is, a minimal subset of {C1, . . . , Cn} that evaluates to false in M.3

2 This is the same as the usual notion of (reverse) interpolant between formulas if we
see M as the formula FM defined by (x1≃ v1) ∧ · · · ∧ (xn≃ vn): the interpolant is
implied by F , it is inconsistent with FM, and its variables occur in both F and FM.

3 In our implementation, we construct C using the QuickXplain algorithm [23].

Approved for Public Release, Distribution Unlimited 4

To produce the interpolant I, we can bitblast the constraints C1, . . . , Cm

and solve the resulting SAT problem under the assumptions that each bit of
x1, . . . , xn is true or false as indicated by the values v1, . . . , vn. Since the SAT
problem encodes a conflict, the SAT solver will return an unsat core, from which
we can extract bits of v1, . . . , vn that contribute to unsatisfiability. This gener-
alizes M by leaving some bits unassigned, as in [32].

This method is general. It works whatever the constraints C1, . . . , Cm, so we
use it as a default procedure. The bitblasting step focuses on constraints that are
unit in y, which typically leads to a much smaller SAT problem than bitblasting
the whole problem from the start. However, the bitblasting approach can still
be costly and it may produce weak explanations.

Example 1. Consider the constraints {x1 ̸≃ x2, x1≃ y, x2≃ y} and the assign-
ment x1 ↦→ 1001, x2 ↦→ 0101. The bitblasting approach might produce explana-
tion (x1≃ y ∧ x2≃ y)⇒ (x1[3]⇒ x2[3]). After backtracking, we might similarly
learn that (x2[3] ⇒ x1[3]). In this way, it will take eight iterations to learn
enough information to represent the high-level explanation:

(x1≃ y ∧ x2≃ y)⇒ x1≃ x2 .

A procedure that can produce (x1≃ x2) directly is much more efficient.

3 Equality, Concatenation, Extraction

Our first specialized interpolation mechanism applies when constraints C =
{C1, . . . , Cm} belong to the following grammar:

Constraints C ::= t≃ t | t ̸≃ t
Terms t ::= e | y[h:l] | t ◦ t

where e ranges over any bitvector terms such that y ̸∈ var(e). Without loss of
generality, we can assume that C is a core. We split C into a set of equalities
E = {ai≃ bi}i∈E and a set of disequalities D = {ai ̸≃ bi}i∈D.

Slicing. Our first step rewrites C into an equivalent sliced form. This computes
the coarsest-base slicing [5, 11] of equalities and disequalities in C. The goal of
this rewriting step is to split the variables into slices that can be treated as
independent terms. The terms in coarsest-base slicing are either of the form
y[h:l] (slices), or are evaluable terms e with y ̸∈ var(e).

Example 2. Consider the constraints E = {x1[4:0]≃ x1[8:4], y[6:2]≃ y[4:0]} and
{y[4:0] ̸≃ x1[8:4]} over variables y of length 6, and x1 of length 8. We cannot
treat y[6:2] and y[4:0] as independent terms because they overlap. To break
the overlap, we introduce slices: y[6:4], y[4:2], and y[2:0]. Equality y[6:2]≃ y[4:0]
is rewritten to (y[6:4]≃ y[4:2]) ∧ (y[4:2]≃ y[2:0]). Disequality y[4:0] ̸≃ x1[8:4] is
rewritten to (y[4:2] ̸≃ x1[8:6]) ∨ (y[2:0] ̸≃ x1[6:4]). The final result is
Es = { x1[4:2]≃ x1[8:6] , x1[2:0]≃ x1[6:4] , y[6:4]≃ y[4:2] , y[4:2]≃ y[2:0] } ,

Ds = { (y[4:2] ̸≃ x1[8:6]) ∨ (y[2:0] ̸≃ x1[6:4]) }.

Approved for Public Release, Distribution Unlimited 5

Algorithm 1 E-graph with value management
1: function e_graph(Es,M)
2: Initialize(G) ▷ each evaluable term or slice is its own component
3: for t1≃ t2 ∈ Es do
4: t′

1 ← rep(t1,G) ▷ get representative for t1’s component
5: t′

2 ← rep(t2,G) ▷ get representative for t2’s component
6: if y ̸∈ var(t′

1) and y ̸∈ var(t′
2) and [[t′

1]]M ̸= [[t′
2]]M then

7: raise_conflict(E ⇒ t′
1≃ t′

2) ▷ D must be empty
8: t3 ← select(t′

1, t′
2) ▷ select representative for merged component

9: G ← merge(t1, t2, t3,G) ▷ merge the components with representative t3

10: return G

Explanations. After slicing, we obtain a set Es of equalities and a set Ds that
contains disjunctions of disequalities. We can treat each slice as a separate vari-
able, so the problem lies within the theory of equality on a finite domain.

We first analyze the conflict with equality reasoning against the model, as
shown in Algorithm 1. We construct the E-graph G from Es [12], while also
taking into account the partial model M that triggered the conflict. The model
can evaluate terms e such that y ̸∈ var(e) to values [[e]]M, and those can be the
source of the conflict. To use the model for evaluating terms, we maintain two
invariants during E-graph construction:
1. If a component contains an evaluable term c, then the representative of that

component is evaluable.
2. Two evaluable terms c1 and c2 in the same component must evaluate to the

same value, otherwise this is the source of the conflict.
The E-graph construction can detect and explain basic conflicts between the
equalities in E and the current assignment.

Example 3. Let r1, r2, r3 be bit ranges of the same width. Let E be such that
Es = {x1[r1]≃ y[r3], x2[r2]≃ y[r3]}, and let D = ∅. Consider the model M :=
x1 ↦→ 0 . . . 0, x2 ↦→ 1 . . . 1. Then, e_graph(Es,M) produces the conflict clause
E ⇒ x1[r1]≃ x2[r2].

If the E-graph construction does not raise a conflict, then M is compatible
with the equalities in Es. Since C conflicts withM, the conflict explanation must
involve Ds. To obtain an explanation, we decompose each disjunct C ∈ Ds into
(CEs ∨ CM ∨ Cinterface ∨ Cfree) as follows.

– CEs
contains disequalities t1 ̸≃ t2 such that t1 and t2 have the same E-graph

representatives; such disequalities are false because of the equalities in Es.
– CM contains disequalities t1 ̸≃ t2 such that t1 and t2 have distinct represen-

tatives t′1 and t′2 with [[t′1]]M = [[t′2]]M; these are false because of M.
– Cinterface contains disequalities t1 ̸≃ t2 such that t1 and t2 have distinct rep-

resentatives t′1 and t′2, t′1 is evaluable and t′2 is a slice; we can still satisfy
t1 ̸≃ t2 by picking a good value for y; we say t′1 is an interface term.

– Cfree contains disequalities t1 ̸≃ t2 such that t1 and t2 have distinct slices as
representatives; we can still satisfy t1 ̸≃ t2 by picking a good value for y.

Approved for Public Release, Distribution Unlimited 6

Algorithm 2 Disequality conflict
1: function dis_conflict(Ds,M,G)
2: S ← ∅ ▷ where we collect interface terms
3: C0 ← ∅ ▷ where we collect the disequalities that evaluate to false
4: for C ∈ Ds do
5: Crep

M ←
⋁︁
{rep(t1,G) ̸≃ rep(t2,G) | (t1 ̸≃ t2) ∈ CM}

6: if is_empty(Cinterface) and is_empty(Cfree) then
7: raise_conflict(E ∧D ⇒ Crep

M)
8: else
9: C0 ← C0 ∨ Crep

M ▷ we collect the disequalities made false in the model
10: for t1 ̸≃ t2 ∈ Cinterface with y ̸∈ var(rep(t1,G)) do
11: S ← S ∪ {rep(t1,G)} ▷ we collect the interface term
12: C ̸= ←

⋁︁
{t1≃ t2 | [[t1]]M ̸= [[t2]]M, t1, t2 ∈ S}

13: C= ←
⋁︁
{t1 ̸≃ t2 | [[t1]]M = [[t2]]M, t1 ̸= t2, t1, t2 ∈ S}

14: return E ∧D ⇒ C0 ∨ C ̸= ∨ C=

The disjuncts in Ds take part in the conflict either when (i) one of the clauses
in Ds is false because Cinterface and Cfree are both empty; or (ii) the finite do-
mains are too small to satisfy the disequalities in Cinterface and Cfree, given the
values assigned inM. In either case, we can produce a conflict explanation with
Algorithm 2.

In a type (i) conflict, the algorithm produces an interpolant Crep
M that is

derived from a single element of Ds. Because we assume that C is a core, a
type (i) conflict can happen only if Ds is a singleton. Here is how the algorithm
behaves on such a conflict:

Example 4. Let r1 and r2 be bit ranges of the same length, let r3, r4, r5 be bit
ranges of the same length. Assume Es contains

{ x1[r1]≃ y[r1] , x2[r2]≃ y[r2] , y[r3]≃ y[r5] , y[r4]≃ y[r5] },
and assume Ds is the singleton { (y[r1] ̸≃ y[r2]∨ y[r3] ̸≃ y[r4]) }. LetM map x1
and x2 to 0 . . . 0 and assume y[r5] is the E-graph representative for component

{ y[r3], y[r4], y[r5] }.
The unique clause of Ds contains two disequalities:

– The first one, y[r1] ̸≃ y[r2], belongs to CM because the representatives of
y[r1] and y[r2], namely x1[r1] and x2[r2], both evaluate to 0 . . . 0.

– The second one, y[r3] ̸≃ y[r4] ,belongs to CEs
because the representatives of

y[r3] and y[r4] are both y[r5],
As Cinterface and Cfree are empty, Algorithm 2 outputs E ∧D ⇒ x1[r1] ̸≃ x2[r2].

For a conflict of type (ii), the equalities and disequalities that hold in M
between the interface terms make the slices of y require more values than there
exist. So the produced conflict clause includes (the negation of) all such equalities
and disequalities. An example can be given as follows:

Example 5. Assume E (and then Es) is empty and assume Ds is
{ x2[0] ̸≃ x2[1] ∨ y[0] ̸≃ y[1] , x1[0] ̸≃ y[0] , x1[1] ̸≃ y[1] }

Approved for Public Release, Distribution Unlimited 7

LetM map x1 and x2 to 00. Then dis_conflict(Ds,M,G) behaves as follows:
– In the first clause, call it C, the first disequality is in CM, as the two sides

are in different components but evaluate to the same value; so C0 becomes
{ x2[0] ̸≃ x2[1] }; the second disequality features two slices and is thus in
Cfree; The clause is potentially satisfiable and we move to the next clause.

– The second clause contains a single disequality that cannot be evaluated
(since y[0] is not evaluable in M). Term x1[0] is added to S. The clause is
potentially satisfiable so we move to the next clause.

– The third clause of Ds is similar. It contains a single disequality that cannot
be evaluated. The interface term x1[1] is added to S.

Since all clauses of Ds have been processed, the conflict is of type (ii). Indeed,
y[0] must be different from 0 because of the second clause, y[1] must also be
different from 0 because of the third clause, but y[0] and y[1] must be different
from each other because of the first clause. Since both y[0] and y[1] have only one
bit, there are only two possible values for these two slices, so the three constrains
are in conflict. Algorithm 2 produces the conflict clause

D ⇒ (x2[0] ̸≃ x2[1] ∨ x1[0] ̸≃ x1[1]).
The disequality x2[0] ̸≃ x2[1] is necessary because, if it were true inM, we would
not have to satisfy y[0] ̸≃ y[1] and therefore y ← 11 would work. Disequality
x1[0] ̸≃ x1[1] is also necessary because, if it were true in M, say with x1 ← 01
(resp. x1 ← 10), then y ← 11 (resp. y ← 00) would work.

Correctness of the method relies on the following lemma, whose proof can be
found in [17].

Lemma 1 (The produced clauses are interpolants).
1. If Algorithm 1 reaches line 7, t′1≃ t′2 is an interpolant for E ∧D at M.
2. If Algorithm 2 reaches line 7, Crep

M is an interpolant for E ∧D at M.
3. If it reaches line 14, C0 ∨ C ̸= ∨ C= is an interpolant for E ∧D at M.

4 A Linear Arithmetic Fragment

Our second specialized explanation mechanism applies when constraints C =
{C1, . . . , Cm} belong to the following grammar:

Constraints C ::= a ¬a
Atoms a ::= e1 + t ≤u e2 + t e1 ≤u e2 + t e1 + t ≤u e2
Terms t ::= y[h:] t[:l] t + e1 − t 0k ◦ t t ◦ 0k

where e1 and e2 range over evaluable bitvector terms (i.e., y ̸∈ var(e1)∪var(e2)),
and 0k is 0 on k bits. We can represent variable y as the term y[|y|:]. This frag-
ment of bitvector arithmetic is linear in y and there can be only one occurrence
of y in terms. Constraints in Section 3 are then outside this fragment in general.

Let A be ∃y(C1 ∧ · · · ∧ Cm), and M be the partial model involved in the
conflict. The interpolant for A at model M is (roughly) produced as follows:
1. For each constraint Ci, 1 ≤ i ≤ m, featuring a (necessarily unique) lower-

bits extract y[wi:], we compute a condition cube ci satisfied by M and a

Approved for Public Release, Distribution Unlimited 8

Atom a Forbidden interval that a (resp. ¬a) specifies for t
Ia I¬a Condition ca/c¬a

e1 + t ≤u e2 + t
[− e2 ; − e1[[− e1 ; − e2[e1 ̸≃ e2 1

[0 ; 0[full e1≃ e2 2

e1 ≤u e2 + t
[− e2 ; e1 − e2[[e1 − e2 ; − e2[e1 ̸≃ 0 3

[0 ; 0[full e1≃ 0 4

e1 + t ≤u e2
[e2 − e1 + 1 ; − e1[[− e1 ; e2 − e1 + 1[e2 ̸≃ − 1 5

[0 ; 0[full e2≃ − 1 6
Table 1: Creating the forbidden intervals

forbidden interval Ii of the form [li ; ui[, where li and ui are evaluable terms,
such that ci ⇒ (Ci ⇔ (y[wi:] /∈ Ii)) is valid.

2. We group the resulting intervals (Ii)1≤i≤m according to their bitwidths: if
Sw is the set of intervals forbidding values for y[w:], 1 ≤ w ≤ |y|, then under
condition

⋀︁m
i=1 ci formula A is equivalent to ∃y(

⋀︁|y|
w=1 (y[w:] /∈

⋃︁
I∈Sw

I)).
3. We produce a series of constraints d1,. . . , dp that are satisfied by M and

that are inconsistent with
⋀︁|y|

w=1 (y[w:] /∈
⋃︁

I∈Sw
I). The interpolant will be

(
⋀︁m

i=1 ci ∧
⋀︁p

i=1 di)⇒ ⊥: it is implied by A, and evaluates to false in M.

4.1 Forbidden Intervals

An interval takes the form [l ; u[, where the lower bound l and upper bound u are
evaluable terms of some bitwidth w, with l included and u excluded. The notion
of interval used here is considered modulo 2w. We do not require l ≤u u so an
interval may “wrap around” in Z/2wZ. For instance, the interval [1111 ; 0001[
contains two bitvector values, namely, 1111 and 0000. If l and u evaluate to the
same value, then we consider [l ; u[to be empty (as opposed to the full domain,
which we denote by fullw or just full). Notation t ∈ I stands for literal ⊤ if I is
full and literal t−l <u u−l if I is [l ; u[. The value in model M of an evaluable
term e (resp. evaluable cube c, interval I) is denoted [[e]]M (resp. [[c]]M, [[I]]M).

Given a constraint C with unevaluable term t, we produce an interval IC of
forbidden values for t according to the rules of Table 1. A side condition literal
cC identifies when the lower and upper bounds would coincide, in which case the
interval produced is either empty or full. For every row of the table, the formula
cC ⇒ (C ⇔ t /∈ IC) is valid in BV. Given a partial model M, we convert C to
such an interval by selecting the row where [[cC]]M = true.

Example 6.
6.1 Assume C1 is literal ¬(x1 ≤u y) and M = {x1 ↦→ 0000}. Then line 4 of

Table 1 applies, and IC1 is interval full with condition x1≃ 0.
6.2 Assume C1 is ¬(y≃ x1), C2 is (x1 ≤u x3 + y), C3 is ¬(y−x2 ≤u x3 + y), and
M = {x1 ↦→ 1100, x2 ↦→ 1101, x3 ↦→ 0000}. Then by line 5, IC1 = [x1 ; x1 +1[
with trivial condition (0 ̸≃ −1), by line 3, IC2 = [−x3 ; x1−x3[with condition
(x1 ̸≃ 0), and by line 1, IC3 = [x2 ; − x3[with condition (−x2 ̸≃ x3).

Approved for Public Release, Distribution Unlimited 9

forbid(t , [0 ; 0[, c) := (1, [0 ; 0[, c) forbid(0k ◦ t , I , c) := utrimk(t , I , c)
forbid(t , full , c) := (1, full, c) forbid(t ◦ 0k , I , c) := dtrimk(t , I , c)
forbid(y[w:] , I , c) := (w, I, c) when I is not [0 ; 0[nor full
forbid(t[:w] , [l ; u[, c) := forbid(t , [l ◦ 0w ; u ◦ 0w[, c)
forbid(t + c , [l ; u[, c) := forbid(t , [l−c ; u−c[, c)
forbid(−t , [l ; u[, c) := forbid(t , [1−u ; 1−l[, c)

utrimk(t , [l ; u[, c) :=

{︄ forbid(t , [l′ ; u′[, c∧cl∧cu) if [l′ ; u′[is not [0 ; 0[
(1, full, c∧cl∧cu∧c′) if [l′ ; u′[is [0 ; 0[and [[c′]]M is true
(1, [0 ; 0[, c∧cl∧cu∧¬c′) if [l′ ; u′[is [0 ; 0[and [[c′]]M is false

where l′ is l[w:] (resp. 0w) and cl is al (resp. ¬al) if [[al]]M is true (resp. false),
u′ is u[w:] (resp. 0w) and cu is au (resp. ¬au) if [[au]]M is true (resp. false),
al is l[:w]≃ 0k, au is u[:w]≃ 0k, c′ is (0k+w ∈ [l ; u[), and w is |t|.

dtrimk(t , [l ; u[, c) :=

{︄ forbid(t , [l′ ; u′[, p∧cl∧cu) if [l′ ; u′[is not [0 ; 0[
(1, full, c∧cl∧cu∧c′) if [l′ ; u′[is [0 ; 0[and [[c′]]M is true
(1, [0 ; 0[, c∧cl∧cu∧¬c′) if [l′ ; u′[is [0 ; 0[and [[c′]]M is false

where l′ is l[:k] (resp. l[:k]+1) and cl is al (resp. ¬al) if [[al]]M is true (resp. false),
u′ is u[:k] (resp. u[:k]+1) and cu is au (resp. ¬au) if [[au]]M is true (resp. false),
al is l[k:]≃ 0k, au is u[k:]≃ 0k, c′ is (u′ ◦ 0k ∈ [l ; u[), and w is |t|.

Fig. 1: Transforming the forbidden intervals

Given the supported grammar, term t contains a unique subterm of the form
y[w:]. We transform IC into an interval of forbidden values for y[w:] by applying
procedure forbid(t , IC , cC) shown in Figure 1, which proceeds by recursion on
t. Its specification is given below, and correctness is proved by induction on t.

Lemma 2 (Correctness of forbidden intervals). Assuming cube c is true
in M, then forbid(t , I , c) returns a triple (w, I ′, c′) such that c′ is a cube that
is true in M, and both c′ ⇒ c and c′ ⇒ (t /∈ I ⇔ y[w:] /∈ I ′) are valid in BV.

Running forbid(tCi
, ICi

, cCi
) for all constraints Ci, 1≤i≤m, produces a family

of triples (wi, I ′i, c′i)1≤i≤m such that, for each i, formula c′i ⇒ (Ci ⇔ (y[wi:] /∈ I ′i))
is valid in BV and c′i is true in M.

4.2 Interpolant

First, assume that one of the triples obtained above is of the form (w, full, c),
coming from constraint C. As the interval forbids the full domain of values for
y[w:], we produce conflict clause C ∧ c ⇒ ⊥. This formula is an interpolant for
A at M. This is illustrated in Example 7.1.

Example 7.
7.1 In Example 6.1 where C1 is literal ¬(x1 ≤u y) and M = {x1 ↦→ 0000}, the

interpolant for ¬(x1 ≤u y) at M is (x1≃ 0)⇒ ⊥.
7.2 Example 6.2 does not contain a full interval. Model M satisfies the three

conditions c1 := (0 ̸≃ − 1), c2 := (x1 ̸≃ 0) and c3 := (−x2 ̸≃ x3), and the

Approved for Public Release, Distribution Unlimited 10

bitwidth w1 > w2 > · · · > wj

Interval layer w1-intervals w2-intervals . . . wj-intervals
S1 = {I1.1, I1.2, . . .} S2 = {I2.1, I2.2, . . .} . . . Sj = {Ij.1, Ij.2, . . .}

Forbidding
values for y[w1:] y[w2:] . . . y[wj :]

Fig. 2: Intervals collected from C1 ∧ · · · ∧ Cm

intervals I1 = [x1 ; x1 +1[, I2 = [−x3 ; x1−x3[, and I3 = [x2 ; −x3[, evaluate
to [[I1]]M = [1100 ; 1101[, [[I2]]M = [0000 ; 1100[, and [[I3]]M = [1101 ; 0000[,
respectively. Note how

⋃︁3
i=1[[Ii]]M is the full domain.

Assume now that no interval is full (as in Example 7.2). We group the triples
(w, I, c) into different layers characterized by their bitwidths w: I will henceforth
be called a w-interval, restricting the feasible values for y[w:], and cI denotes its
associated condition in the triple. Ordering the groups of intervals by decreasing
bitwidths w1 > w2 > · · · > wj , as shown in Figure 2, Sj denotes the set of
produced wj-intervals. The properties satisfied by the triples entail that

A ∧ (
⋀︁j

i=1
⋀︁

I∈Si
cI)⇒ B

is valid, where B is ∃y
⋀︁j

i=1(y[wi:] /∈
⋃︁

I∈Si
I). And formula (

⋀︁j
i=1

⋀︁
I∈Si

cI)⇒ B
is false inM. To produce an interpolant, we replace B by a quantifier-free clause.

The simplest case is when there is only one bitwidth w = w1: the fact that
B is falsified by M means that

⋃︁
I∈S1

[[I]]M is the full domain Z/2wZ. Property
“
⋃︁

I∈S1
I is the full domain” is then expressed symbolically as a conjunction

of constraints in the bitvector language. To compute them, we first extract a
sequence I1, . . . , Iq of intervals from the set S1, originating from a subset C of
the original constraints (Ci)m

i=1, and such that the sequence [[I1]]M, . . . , [[Iq]]M
of concrete intervals leaves no “hole” between an interval of the sequence and
the next, and goes round the full circle of domain Z/2wZ: the sequence forms
a circular chain of linking intervals. This chain can be produced by a standard
coverage extraction algorithm (see, e.g., [17]). Formula B := ∃y(y[w:] /∈

⋃︁
I∈S1

I)
is then replaced by (

⋀︁q
i=1 ui ∈ Ii+1)⇒ ⊥, where ui is the upper bound of Ii and

Iq+1 is I1. Each interval has its upper bound in the next interval (ui ∈ Ii+1),
i.e., intervals do link up with each other. The conflict clause is then

(C ∧ (
⋀︁q

i=1 cIi
) ∧ (

⋀︁q
i=1 ui ∈ Ii+1))⇒ ⊥

Example 8. For Example 7.2, the coverage-extraction algorithm produces the
sequence I1, I3, I2, i.e., [x1 ; x1+1[, [x2 ; − x3[, [− x3 ; x1−x3[. The linking con-
straints are then d3 := (x1+1) ∈ I3, d2 := (−x3) ∈ I2, and d1 := (x1−x3) ∈ I1,
and the interpolant is d3 ∧ d2 ∧ d1 ⇒ ⊥.4

When several bitwidths are involved, the intervals must “complement each
other” at different bitwidths so that no value for y is feasible. For a bitwidth
wi, the union of the wi-intervals in model M may not necessarily cover the full
4 We omit c1, c2, c3 here, since they are subsumed by d1, d2, d3, respectively.

Approved for Public Release, Distribution Unlimited 11

Algorithm 3 Producing the interpolant with multiple bitwidths
1: function cover((S1, . . . ,Sj),M)
2: output← ∅ ▷ output initialized with the empty set of constraints
3: longest← longest(S1,M) ▷ longest interval identified
4: baseline← longest.upper ▷ where to extend the coverage from
5: while [[baseline]]M ̸∈ [[longest]]M do
6: if ∃I ∈ S1, [[baseline]]M ∈ [[I]]M then
7: I ← furthest_extend(baseline,S1,M)
8: output← output ∪ {cI , baseline ∈ I} ▷ adding I’s condition and linking constraint
9: baseline← I.upper ▷ updating the baseline for the next interval pick
10: else ▷ there is a hole in the coverage of Z/2w1Z by intervals in S1
11: next← next_covered_point(baseline,S1,M) ▷ the hole is [baseline ; next[
12: if [[next]]M − [[baseline]]M <u 2w2 then
13: I ← [next[w2:] ; baseline[w2:][▷ it is projected on w2 bits and complemented
14: output← output ∪ {next−baseline <u 2w2} ∪ cover(((S2 ∪ I),S3, . . . ,Sj),M)
15: baseline← next ▷ updating the baseline for the next interval pick
16: else ▷ intervals of bitwidths ≤ w2 must forbid all values for y[w2:]
17: return cover((S2, . . . ,Sj),M) ▷ S1 was not needed
18: return output ∪ {baseline ∈ longest} ▷ adding final linking constraint

domain (i.e.,
⋃︁

I∈Si
[[I]]M may be different from Z/2wiZ). The coverage can leave

“holes”, and values in that hole are ruled out by constraints of other bitwidths.
To produce the interpolant, we adapt the coverage-extraction algorithm into
Algorithm 3, which takes as input the sequence of sets (S1, . . . ,Sj) as described
in Figure 2, and produces the interpolant’s constraints d1, . . . , dp, collected in
set output. The algorithm proceeds in decreasing bitwidth order, starting with
w1, and calling itself recursively on smaller bitwidths to cover the holes that the
current layer leaves uncovered (termination of that recursion is thus trivial). For
every hole that

⋃︁
I∈S1

[[I]]M leaves uncovered, it must determine how intervals of
smaller bitwidths can cover it.

Algorithm 3 relies on the following ingredients:
– longest(S,M) returns an interval among S whose concrete version [[I]]M

has maximal length;
– I.upper denotes the upper bound of an interval I;
– furthest_extend(a,S,M) returns an interval I ∈ S that furthest

extends a according to M (technically, an interval I that ≤u-maximizes
[[I.upper− a]]M among those intervals I such that [[a]]M ∈ [[I]]M).

– If no interval in S covers a inM, next_covered_point(a,S,M) outputs
the lower bound l of an interval in S that ≤u-minimizes [[l − a]]M.

Algorithm 3 proceeds by successively moving a concrete bitvector value baseline
around the circle Z/2w1Z. The baseline is moved when a symbolic reason why it
is a forbidden value is found, in a while loop that ends when the baseline has gone
round the full circle. If there is at least one interval in S1 that covers baseline in
M (l. 6), the call to furthest_extend(baseline,S1,M) succeeds, and output
is extended with condition cI and (baseline ∈ I) (l. 8). If not, a hole has been
discovered, whose extent is given by next_covered_point(baseline,S1,M)
(l. 11). If the hole is bigger than 2w2 (i.e., 2w2 ≤u [[next−baseline]]M), then the
intervals of layers w2 and smaller must rule out every possible value for y[w2:],
and the w1-intervals were not needed (l. 17). If on the contrary the hole is smaller
(i.e., [[next−baseline]]M <u 2w2), then the w1-interval [baseline ; next[is projected

Approved for Public Release, Distribution Unlimited 12

u1 <s u2 ⇝ ¬(u2 ≤s u1) u1 ≤s u2 ⇝ u1+2|u1|−1 ≤u u2+2|u2|−1

u1 <u u2 ⇝ ¬(u2 ≤u u1) u1≃ u2 ⇝ u1 − u2 ≤u 0
u[h:l] ⇝ u[h:][:l] u[:l][h:] ⇝ u[h+l:][:l]
(u1◦u2)[:l] ⇝ u1[:l−|u2|] if |u2| ≤ l (u1◦u2)[h:] ⇝ u2[h:] if h ≤ |u2|
(u1◦u2)[:l] ⇝ u1 ◦ u2[:l] if not (u1◦u2)[h:] ⇝ u1[h−|u2|:] ◦ u2 if not
2n×u ⇝ u[|u|−n:] ◦ 0n (n < |u|) (u1+u2)[h:] ⇝ u1[h:] + u2[h:]
bvnot(u) ⇝ −(u + 1) (u1×u2)[h:] ⇝ u1[h:]×u2[h:]
±-extk(u) ⇝ (0k◦(u+2|u|−1))−(0k◦2|u|−1) (−u)[h:] ⇝ −u[h:]
u1◦u2 ⇝ (u1◦0|u2|) + (0|u1|◦u2)

Fig. 3: Rewriting rules

as a w2-interval I := [baseline[w2:] ; next[w2:][that needs to be covered by the
intervals of bitwidth w2 and smaller. This is performed by a recursive call on
bitwidth w2 (l. 14); the fact that only hole I needs to be covered by the recursive
call, rather than the full domain Z/2w2Z, is implemented by adding to S2 in the
recursive call the complement [next[w2:] ; baseline[w2:][of I. The result of the
recursive call is added to the output variable, as well as the fact that the hole
must be small. The final interpolant is (

⋀︁
d∈output d)⇒ ⊥. An example of run on

a variant of Example 6.2 is given in [17].

5 Normalization

As implemented in Yices 2, MCSAT processes a conflict by first computing the
conflict core with BDDs, and then normalizing the constraints using the rules
of Figure 3. In the figure, u, u1 and u2 stand for any bitvector terms, ±-extk(u)
is the sign-extension of u with k bits, and bvnot(u) is the bitwise negation of u.
The bottom left rule is applied with lower priority than the others (as upper-bits
extraction distributes over ◦ but not over +) and only if exactly one of {u1, u2}
is evaluable (and not 0). In the implementation, u[|u|:0] is identified with u, ◦
is associative, and +,× are subject to ring normalization. This is helped by the
internal (flattened) representation of concatenations and bitvector polynomials
in Yices 2. Normalization allows the specialized interpolation procedure to apply
at least to the following grammar:5

Atoms a ::= e1 + t ⋖ e2 + t e1 ⋖ e2 + t e1 + t ⋖ e2 e1 ⋖ e2
Terms t ::= t[h:l] t + e1 − t e1 ◦ t t ◦ e1 ±-extk(t)

where ⋖ ∈ {≤u, <u,≤s, <s, ≃ }. Rewriting can often help further, by eliminating
occurrences of the conflict variable (thus making more subterms evaluable) and
increasing the chances that two unevaluable terms t1 and t2 become syntactically
equal in an atom e1+t1 ⋖ e2+t2.6 Finally, we cache evaluable terms to avoid
recomputing conditions of the form y /∈ var(e). These conditions are needed to
determine whether the specialized procedures apply to a given conflict core.
5 e1 ⋖ e2 is accepted since it either constitutes the interpolant or it can be ignored.
6 For this reason we normalize evaluable subterms of, e.g., t1 and t2.

Approved for Public Release, Distribution Unlimited 13

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 29000 30000 31000 32000 33000 34000

ti
m

e
 (

s)

benchmarks solved

all
bb

bb+eq
bb+arith

all-prop
smtcomp2019

Fig. 4: Evaluation of the MCSAT solver and the effect of different explainer combinations
and propagation. Each curve shows the number of benchmarks that the solver variant
can solve against the time.

6 Experiments

We implemented our approach in the MCSAT solver within Yices 2 [13]. To eval-
uate its effectiveness, and the impact of the different modules, we ran the MCSAT
solver with different settings on the 41,547 QF_BV benchmarks available in the
SMT-LIB library [1]. We used a three-minute timeout per instance. Each curve
in Figure 4 shows the number of solved instances for each solver variant; all:
the procedures of Sections 3 and 4, with the bitblasting baseline when these do
not apply; bb: only the bitblasting baseline; bb+eq: procedure of Section 3 plus
the baseline; bb+arith: procedure of Section 4 plus the baseline; all-prop is the
same as all but with no propagation of bitvector assignments during search. For
reference, we also included the version of the Yices 2 MCSAT solver that entered
the 2019 SMT competition7, marked as smtcomp2019.

The solver combining all explainer modules solved 33,236 benchmarks be-
fore timeout, 14,174 of which are solved by pure simplification, and 19,062 of
which actually rely on MCSAT explanations. 14,313 of those are solved with-
out ever calling the default bitblasting baseline (only the dedicated explainers
of Sections 3 and 4 are used), while the other 4,749 instances are solved by a
combination of the three explainers.

The results show that both equality and arithmetic explainers contribute to
the effectiveness of the overall solver, individually and combined. A bit more than
half of the problem instances involving MCSAT explanations are fully within the
scope of the two dedicated explainers. Of course these explainers are still useful
beyond that half, in combination with the bitblasting explainer. The results also
7 https://smt-comp.github.io/2019/

Approved for Public Release, Distribution Unlimited 14

https://smt-comp.github.io/2019/

show that the eager MCSAT value propagation mechanism introduced in [21] is
important for effective solving in practice.

For comparison, we also ran two solvers CDCL(T) solvers based on bitblast-
ing on the same benchmarks and with the same timeout. We picked Yices 2 [13]
(version 2.6.1) and Boolector [29] (version 3.2.0) and we used the same backend
SAT solver for both, namely CaDiCaL [7]. Yices 2 solved 40,962 instances and
Boolector solved 40,763 instances. We found 794 instances in the SMTLib bench-
marks where our MCSAT solver was faster than Boolector by more than 2 sec.
The pspace/ndist* and pspace/shift1add* instances are trivial for MCSAT
(solved in less than 0.25 sec. each), while Boolector hit our 3-minute timeout on
all ndist.a.* instances and all but 3 shift1add* ones. The brummayerbiere4
instances are trivial for MCSAT (solved in less than 0.03 sec.) while Boolec-
tor ran out of memory in our experimentation (except for one instance). In-
stances with a significant runtime difference in favour of MCSAT are among
spear/openldap_v2.3.35/* and brummayerbiere/bitrev* (MCSAT is system-
atically better), float/mult* (MCSAT is almost systematically better),
float/div*, asp/SchurNumbers/*, 20190311-bv-term-small-rw-Noetzli/*,
and Sage2/*. MCSAT is almost systematically faster on uclid/catchconv/*
and faster on more than half of spear/samba_v3.0.24/*.

Using an alternative MCSAT approach to bitvector solving, Zeljić et al. re-
ported that their solver could solve 23704 benchmarks from a larger set of 49971
instances with a larger timeout of 1200s [32].8 We have not managed to reproduce
the results of Zeljić’s solver on our Linux server for direct comparison.

To debug the implementation of our explainers, every conflict explanation
that is produced when solving in debug mode is sent on-the-fly to (non-MCSAT)
Yices 2, which checks the validity of the clause by bitblasting. In debug mode,
every normalization we perform with the rules of Section 5 is also sent to Yices 2
to prove the equality between the original term and the normalized term. Per-
formance benchmarking was only done after completing, without any red flag, a
full run of MCSAT in debug mode on the 41,547 QF_BV benchmarks instances.

7 Discussion and Future Work

The paper presents ongoing work on building an MCSAT solver for the theory of
bitvectors. We have presented two main ideas for the treatment of BV in MCSAT,
that go beyond the approach proposed by Zeljić et al. [32].

First, by relying on BDDs for representing feasible sets, our design keeps the
main search mechanism of MCSAT generic and leaves fragment-specific mecha-
nisms to conflict explanation. The explanation mechanism is selected based on
the constraints involved in the conflict. BDDs are also used to minimize the con-
flicts, which increases the chances that a dedicated explanation mechanism can
be applied. BDDs offer a propagation mechanism that differs from those in [32]
in that the justification for a propagated assignment is computed lazily, only
8 The additional 8424 benchmarks have since been deleted from the SMT-LIB library

as duplicates.

Approved for Public Release, Distribution Unlimited 15

when it is needed in conflict analysis. Computing the conflict core at that point
effectively recovers justification of the propagations.

Second, we propose explanation mechanisms for two fragments of the theory:
the core fragment of BV that includes equality, concatenation and extraction;
and a fragment of linear arithmetic. Compared to previous work on coarsest-base
slicing, such as [5], our work applies the slicing on the conflict constraints only,
rather than the whole problem. This should in general make the slices coarser,
which we expect to positively impact efficiency. Our work on explaining arith-
metic constraints is novel, notwithstanding the mechanisms studied by Janota
and Wintersteiger [19] that partly inspired our Table 1 but addressed a smaller
fragment of arithmetic outside of the context of MCSAT.

We have implemented the overall approach in the Yices 2 SMT solver. Ex-
periments show that the overall approach is effective on practical benchmarks,
with all the proposed modules adding to the solver performance. MCSAT is not
yet competitive with bitblasting, but we are making progress. The main chal-
lenge is devising efficient word-level explanation mechanisms that can handle all
or a least a large fragment of BV. Finding high-level interpolants in BV is still
an open problem and our work on MCSAT shows progress for some fragments
of the bitvector theory. For MCSAT to truly compete with bitblasting, we will
need interpolation methods that cover larger classes of constraints.

A key step in that direction is to extend the bitvector arithmetic explainer
so that it handles multiplications by constants, then multiplication by evaluable
terms, and, finally, arbitrary multiplications. Deeper integration of fragment-
specific explainers could potentially help explaining hybrid conflicts that involve
constraints from different fragments. To complement the explainers that we are
developing, we plan to further explore the connection between interpolant gen-
eration and the closely related domain of quantifier elimination, particularly
those techniques by John and Chakraborty [20] for the bitvector theory. The
techniques by Niemetz et al. [28] for solving quantified bitvector problems using
invertibility conditions could also be useful for interpolant generation in MCSAT.

Future work also includes relating our approach to the report by Chihani,
Bobot, and Bardin [8], which aims at lifting the CDCL mechanisms to the word
level of bitvector reasoning, and therefore seems very close to MCSAT. Finally,
we plan to explore integrating our MCSAT treatment of bitvectors with other
components of SMT-solvers, whether in the context of MCSAT or in different
architectures. An approach for this is the recent framework of Conflict-Driven
Satisfiability (CDSAT) [3, 4], which precisely aims at organizing collaboration
between generic theory modules.

Acknowledgments The authors thank Aleksandar Zeljić for fruitful discussions. This
material is based upon work supported in part by NSF grants 1528153 and 1816936,
and by the Defense Advanced Research Project Agency (DARPA) and Space and Naval
Warfare Systems Center, Pacific (SSC Pacific) under Contract No. N66001-18-C-4011.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of NSF, DARPA, or
SSC Pacific.

Approved for Public Release, Distribution Unlimited 16

References

1. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2010), www.SMT-LIB.org

2. Biere, A., Bloem, R. (eds.): Proc. of the 26th Int. Conf. on Computer
Aided Verification (CAV’14), LNCS, vol. 8559. Springer-Verlag (Jul 2014).
https://doi.org/10.1007/978-3-319-08867-9

3. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability
for theory combination: Transition system and completeness. J. of Automated Rea-
soning 64(3), 579–609 (2019). https://doi.org/10.1007/s10817-018-09510-y

4. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Satisfiability modulo theories
and assignments. In: de Moura, L. (ed.) Proc. of the 26th Int. Conf. on Automated
Deduction (CADE’17). LNAI, vol. 10395, pp. 42–59. Springer-Verlag (Aug 2017)

5. Bruttomesso, R., Sharygina, N.: A scalable decision procedure for
fixed-width bit-vectors. In: Proc. of the 2009 Int. Conf. on Computer-
Aided Design (ICCAD’09). pp. 13–20. ICCAD’09, ACM Press (2009).
https://doi.org/10.1145/1687399.1687403

6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on 100(8), 677–691 (1986)

7. CaDiCaL Simplified Satisfiability Solver, http://fmv.jku.at/cadical/
8. Chihani, Z., Bobot, F., Bardin, S.: CDCL-inspired Word-level Learning for

Bit-vector Constraint Solving (Jun 2017), https://hal.archives-ouvertes.fr/
hal-01531336, preprint

9. Chockler, H., Weissenbacher, G. (eds.): Proc. of the 30th Int. Conf. on
Computer Aided Verification (CAV’18), LNCS, vol. 10982. Springer-Verlag
(Jul 2018). https://doi.org/10.1007/978-3-319-96142-2, https://doi.org/10.
1007/978-3-319-96142-2

10. CUDD: the CU Decision Diagram package, https://github.com/ivmai/cudd
11. Cyrluk, D., Möller, O., Rueß, H.: An efficient decision procedure for the theory

of fixed-sized bit-vectors. In: Grumberg, O. (ed.) Proc. of the 9th Int. Conf. on
Computer Aided Verification (CAV’97). LNCS, vol. 1254, pp. 60–71. Springer-
Verlag (1997). https://doi.org/10.1007/3-540-63166-6_9

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. Journal of the ACM (JACM) 52(3), 365–473 (2005)

13. Dutertre, B.: Yices 2.2. In: Biere and Bloem [2], pp. 737–744.
https://doi.org/10.1007/978-3-319-08867-9_49

14. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In:
Damm, W., Hermanns, H. (eds.) Proc. of the 19th Int. Conf. on Computer Aided
Verification (CAV’07). LNCS, vol. 4590, pp. 519–531. Springer-Verlag (2007).
https://doi.org/10.1007/978-3-540-73368-3

15. Graham-Lengrand, S., Jovanović, D.: An MCSAT treatment of bit-vectors. In:
Brain, M., Hadarean, L. (eds.) 15th Int. Work. on Satisfiability Modulo Theories
(SMT 2017) (Jul 2017)

16. Graham-Lengrand, S., Jovanović, D.: Interpolating bit-vector arithmetic con-
straints in MCSAT. In: Sharygina, N., Hendrix, J. (eds.) 17th Int. Work. on Sat-
isfiability Modulo Theories (SMT 2019) (Jul 2019)

17. Graham-Lengrand, S., Jovanović, D., Dutertre, B.: Solving bitvectors with MC-
SAT: explanations from bits and pieces (long version). Tech. rep., SRI International
(Apr 2020), https://arxiv.org/abs/2004.07940

Approved for Public Release, Distribution Unlimited 17

www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-08867-9
https://doi.org/10.1007/s10817-018-09510-y
https://doi.org/10.1145/1687399.1687403
http://fmv.jku.at/cadical/
https://hal.archives-ouvertes.fr/hal-01531336
https://hal.archives-ouvertes.fr/hal-01531336
https://doi.org/10.1007/978-3-319-96142-2
https://doi.org/10.1007/978-3-319-96142-2
https://doi.org/10.1007/978-3-319-96142-2
https://github.com/ivmai/cudd
https://doi.org/10.1007/3-540-63166-6_9
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-73368-3
https://arxiv.org/abs/2004.07940

18. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two
solvers: Eager and lazy approaches to bit-vectors. In: Biere and Bloem [2], pp.
680–695. https://doi.org/10.1007/978-3-319-08867-9

19. Janota, M., Wintersteiger, C.M.: On intervals and bounds in bit-vector arithmetic.
In: King, T., Piskac, R. (eds.) Proc. of the 14th Int. Work. on Satisfiability Modulo
Theories (SMT’16). CEUR Workshop Proceedings, vol. 1617, pp. 81–84. CEUR-
WS.org (Jul 2016), http://ceur-ws.org/Vol-1617/paper8.pdf

20. John, A.K., Chakraborty, S.: A layered algorithm for quantifier elimination
from linear modular constraints. Formal Methods in System Design 49(3), 272–
323 (Dec 2016). https://doi.org/10.1007/s10703-016-0260-9, https://doi.org/
10.1007/s10703-016-0260-9

21. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) Proc. of the 18th Int. Conf. on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI’17). LNCS, vol. 10145, pp. 330–346.
Springer-Verlag (Jan 2017). https://doi.org/10.1007/978-3-319-52234-0_18

22. Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the
model constructing satisfiability calculus. In: Proc. of the 13th Int. Conf. on For-
mal Methods In Computer-Aided Design (FMCAD’13). FMCAD Inc. (Oct 2013),
http://www.cs.nyu.edu/~barrett/pubs/JBdM13.pdf

23. Junker, U.: Quickxplain: Conflict detection for arbitrary constraint propagation
algorithms. In: IJCAI’01 Workshop on Modelling and Solving problems with con-
straints (2001)

24. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of
View, Second Edition. Texts in Theoretical Computer Science. An EATCS Se-
ries, Springer-Verlag (2016). https://doi.org/10.1007/978-3-662-50497-0, https:
//doi.org/10.1007/978-3-662-50497-0

25. Marques Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., Maaren, H.V., Walsh, T. (eds.) Handbook of S atisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS
Press (2009)

26. de Moura, L.M., Jovanovic, D.: A model-constructing satisfiability calculus. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) Proc. of the 14th Int. Conf. on
Verification, Model Checking, and Abstract Interpretation (VMCAI’13). LNCS,
vol. 7737, pp. 1–12. Springer-Verlag (Jan 2013). https://doi.org/10.1007/978-3-
642-35873-9_1

27. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014), https://satassociation.org/jsat/index.php/jsat/
article/view/120

28. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: Solving quanti-
fied bit-vectors using invertibility conditions. In: Chockler and Weissenbacher [9],
pp. 236–255. https://doi.org/10.1007/978-3-319-96142-2_16, https://doi.org/
10.1007/978-3-319-96142-2_16

29. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.
In: Chockler and Weissenbacher [9], pp. 587–595. https://doi.org/10.1007/978-3-
319-96145-3_32, https://doi.org/10.1007/978-3-319-96145-3_32

30. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Mod-
ulo Theories: From an abstract Davis–Putnam–Logemann–Loveland pro-
cedure to DPLL(T). J. of the ACM Press 53(6), 937–977 (2006).
https://doi.org/10.1145/1217856.1217859

31. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
volumes). Elsevier and The MIT Press (2001)

Approved for Public Release, Distribution Unlimited 18

https://doi.org/10.1007/978-3-319-08867-9
http://ceur-ws.org/Vol-1617/paper8.pdf
https://doi.org/10.1007/s10703-016-0260-9
https://doi.org/10.1007/s10703-016-0260-9
https://doi.org/10.1007/s10703-016-0260-9
https://doi.org/10.1007/978-3-319-52234-0_18
http://www.cs.nyu.edu/~barrett/pubs/JBdM13.pdf
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://satassociation.org/jsat/index.php/jsat/article/view/120
https://satassociation.org/jsat/index.php/jsat/article/view/120
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1145/1217856.1217859

32. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with
mcsat. In: Creignou, N., Berre, D.L. (eds.) Proc. of the 19th Int. Conf. on Theory
and Applications of Satisfiability Testing (RTA’06). LNCS, vol. 9710, pp. 249–266.
Springer-Verlag (Jul 2016). https://doi.org/10.1007/978-3-319-40970-2_16

Approved for Public Release, Distribution Unlimited 19

https://doi.org/10.1007/978-3-319-40970-2_16

	Solving bitvectors with MCSAT: explanations from bits and pieces
	Introduction
	A General Scheme for Bitvectors
	MCSAT Overview
	BDD Representation and Conflict Detection
	Baseline Conflict Explanation

	Equality, Concatenation, Extraction
	A Linear Arithmetic Fragment
	Forbidden Intervals
	Interpolant

	Normalization
	Experiments
	Discussion and Future Work

