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a b s t r a c t

We introduce a new Python package (pyHMA) that interfaces with VASP to compute (classical)
anharmonic properties of crystalline systems by post-processing data from NVT Born–Oppenheimer
ab initio molecular dynamics (AIMD) simulation. It is based on the recently developed harmonically
mapped averaging (HMA) method, which leverages the analytically known harmonic behavior to
reformulate the direct/conventional ensemble averages in order to significantly improve precision, for a
given CPU time. The package consists of two stages: reading AIMD data from vasprun.xml file(s) and
then computing anharmonic properties. While the first stage is MD package-dependent, the second one
is universal, given that it receives data in the required format. To demonstrate the usage of pyHMA, we
compute anharmonic energy and pressure of aluminum fcc crystal at high pressure (≈ 115 GPa) and
up to 4000 K (near melting). We further compute anharmonic free energy as a function of temperature,
using thermodynamic integration of the HMA anharmonic energy. Although pyHMA currently interfaces
with VASP to compute HMA anharmonic energy and pressure, it is moduled in such a way to allow
for interfacing with other codes (e.g., LAMMPS) by adding a new reader and can compute other HMA
anharmonic properties (e.g., heat capacity) by adding a new method, once relevant data are available.
Program summary

Program title: pyHMA

CPC Library link to program files: http://dx.doi.org/10.17632/bzgfk52msk.1
Licensing provisions: MPL-2.0
Programming language: Python 3.7
Nature of problem: Theormodynamic properties (e.g., energy, pressure, and heat capacity) of crystalline
systems can be decomposed into: lattice (or, property at 0 K), quasiharmonic, and anharmonic
contributions. Although the first two are feasible to compute using only a few single-point density
functional theory (DFT) calculations, measuring anharmonic contribution requires running ab ini-

tio molecular dynamics (AIMD) simulation, which is computationally very demanding using direct
ensemble averaging.
Solution method: In pyHMA, we are adopting the harmonically mapped averaging (HMA) technique
that provides order(s) of magnitude higher precision, in comparison to direct/conventional (Conv)
averaging. The package works as a post-processor to VASP AIMD output to provide very precise (and
accurate) estimate of anharmonic properties, for a given DFT model, with application to energy and
pressure (at this time).
Additional comments: The term anharmonicity is commonly used in literature to qualitatively describe a
system with no equilibrium configuration at 0 K (i.e., imaginary frequencies); in other words, it refers to
a ‘‘non-harmonic" potential-energy surface. Here, however, we define anharmonic contribution of some
property X as the residual in excess of the harmonic approximation; Xah ≡ X − (Xlat + Xqh). Therefore,
this specific definition is meaningless if the system does not have equilibrium lattice configuration
at 0 K. For this reason, pyHMA checks forces on the first configuration to make sure the system has
an equilibrium configuration (i.e., zero forces). In addition, when using pyHMA to measure anharmonic
free energy using thermodynamic integration from 0 K (Sec. 3.3), only ground-state DFT must be used;
using finite-temperature DFT (i.e., Fermi–Dirac smearing; ISMEAR=-1 and SIGMA=kBT ), as often done
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with metals, cannot be used as the PES in this case is temperature-dependent, which is not accounted
for in the integration. This contribution, however, can still be included using free-energy perturbation
methods as described elsewhere [1]. On the other hand, for properties that do not require temperature
integration (e.g., energy and pressure), pyHMA reads the electronic free-energy surface (F), rather than
the ground-state energy (E0); hence, electronic contribution is accounted for.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The harmonic approximation is a very effective starting point
for estimating the properties of crystalline systems. In it, the
potential-energy surface (PES) is estimated via a second-order
series in nuclear displacements, yielding a Hamiltonian that is
tractable for evaluation of dynamic and thermodynamic behavior
[1]. This leads naturally to the following decomposition of a
thermodynamic property X:

X = Xlat + Xqh + Xah (1)

Here, lat indicates the static lattice contribution to the property
(when all atoms are at their lattice sites); qh is the quasiharmonic
contribution (given via the approximation just described); and
ah indicates the anharmonic contribution, which exactly cor-
rects the harmonic approximation. The lattice and quasiharmonic
contributions are readily evaluated using standard total-energy
methods, calculation of the Hessian for the perfect lattice, and
some linear algebra. In contrast, ab initio molecular dynamics
(AIMD) simulation is required to compute the anharmonic con-
tribution, and as a consequence it is often neglected completely
due to the high computational cost. Note that this decomposition
is valid whether ground- (0 K) or excited-state (Fermi–Dirac
statistics) is used; however, especial treatment is needed with the
latter when computing anharmonic free energy (see Section 3.3).

The harmonic treatment can fail (Xah is not defined) for sys-
tems that are unstable at T = 0 K; i.e., having phonon modes
with imaginary frequencies. In other cases, the approach becomes
inaccurate (Xah is significant) when large displacements from
the minimum-energy lattice configuration are relevant, such as
occurs at high temperatures, or for systems having soft de-
grees of freedom (often seen in molecular crystals). A number
of approximate methods have been developed to estimate the
properties while capturing these anharmonic effects. Examples
include self-consistent phonon theory (SCPT) [2–5], vibrational
self-consistent field (VSCF) [6–9], VCSF with vibrational
configuration-interaction (VCI) [10–12], self-consistent ab initio

lattice dynamics (SCAILD) [13], stochastic self-consistent har-
monic approximation (SSCHA) [14], temperature-dependent ef-
fective potential (TDEP) [15–17], and variational methods [18]. In
two recent papers [19,20], some of these methods, and others,
have been examined for their effectiveness in estimating the
anharmonic contributions to the free energy and other properties.

While approximate methods are useful and play an important
role in the study of crystalline systems, there are many situations
where one wants to apply methods that have, for a given molec-
ular model, no inherent inaccuracy and that can yield properties
with low uncertainty. Such methods require sampling of nuclear
configurations by molecular dynamics or Monte Carlo simulation,
and collection of appropriate averages over the sampled coordi-
nates. Sampling such a large number of configurations can be very
expensive, particularly for ab initio potentials; hence, it is valuable
to have approaches that can complete this task as efficiently as
possible.

In this regard, we recently proposed and demonstrated the
‘‘mapped-averaging’’ framework [21,22] that allows approximate

theoretical results derived from statistical mechanics to be rein-
troduced into the underlying formalism, yielding reformulated
ensemble averages that are rigorous (contain no approximation)
and allow direct evaluation of the correction to the theory by
molecular simulation. To the extent that the theory is accurate,
this correction will be small, and hence measured with small un-
certainty. Thus, by using these reformulated ensemble averages,
accurate and precise values of thermodynamic properties can be
obtained while using less computational effort, sometimes far
less.

When applied to the simulation of crystalline systems, we
refer to this method as harmonically mapped averaging (HMA),
as it involves transformation/mapping of coordinates leveraging
the known harmonic behavior [21]. An HMA reformulated en-
semble average removes the known harmonic behavior from the
conventional ensemble average (which we label Conv), yielding a
direct measurement of the anharmonic contribution Xah without
contamination by noise produced by the already known harmonic
behavior. In previous applications [21–25], we have obtained
property values to a given precision with at least one to two or-
ders of magnitude less computational effort (relative to the Conv
averaging), depending on the property and the thermodynamic
state.

Additionally, we have made observations that relate to the
accuracy (as distinct from precision) of the calculated properties.
Here, accuracy is in reference to the true thermodynamic behav-
ior for a given molecular model (i.e., apart from the question of
whether the molecular model is an accurate representation of
the physical system being modeled). First, anharmonic contribu-
tions Xah to properties are intrinsically (regardless the method of
measurement) much less sensitive to certain parameters of the
simulation, in comparison to the full property value. Specifically,
for a given molecular model, a given accuracy in Xah may be
obtained using a smaller system size (fewer atoms), and/or a
shorter potential truncation radius, relative to what is required to
obtain the same accuracy in X itself [21,23,26,27]. These benefits
can be realized most effectively by having the HMA framework
available to provide Xah directly, i.e., without requiring it be
obtained by subtracting Xlat + Xqh from (noisy) full averages.
Further, we have observed additional advantages in Xah specific
to its calculation via HMA (in comparison to Conv), including
the ability to use a larger molecular dynamics time step with
less loss of accuracy, and faster equilibration and decorrelation
of properties [21,23,25].

Some other benefits of focusing on Xah and computing it
via HMA, connecting in particular to modeling with electronic
density functional theory (DFT), are described in Section 3.

The observations given above pertain to the class of systems
we have studied to date. These are mainly lattices of monatomic
molecules with no rotational or internal degrees of freedom. The
efficiencies we observe may extend to more complex systems, but
this determination awaits further study.

Importantly, HMA does not require any alteration in how sam-
pling is performed during the simulation, so it may be used with
standard Monte Carlo or molecular dynamics methods; imple-
mentation requires only recording and processing of appropriate
data calculated on the sampled configurations. To aid with this,
we present in this paper a Python package, called pyHMA, that
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Table 1

Conventional and HMA expressions for ensemble averages of anharmonic energy
and pressure for crystalline systems. The number density is denoted by ρ, and
the virial and quasiharmonic pressures are defined as ⟨Pvir⟩ ≡ − ⟨∂U/∂V ⟩ and
Pqh ≡ −∂Aqh/∂V , respectively.

Anharmonic
property

Conventional (Conv) Harmonically Mapped
Averaging (HMA)

Energy, Uah ⟨U⟩ − 3
2 (N − 1) kBT − Ulat

⟨

U + 1
2 F · ∆r

⟩

− Ulat

Pressure, Pah ρkBT + ⟨Pvir⟩ − Pqh − Plat

⟨

Pvir +
Pqh−ρkBT

3(N−1)kBT
F · ∆r

⟩

− Plat

reads the VASP vasprun.xml files obtained from the canonical
AIMD simulations, and evaluates the thermodynamic properties
like pressure and energy with according to the HMA framework.
It is fast, and straightforward to apply, allowing VASP users to
readily exploit the benefits offered by HMA. We hope this devel-
opment opens up new possibilities for first-principles modeling
of crystalline systems.

The next section presents the details of the reformulated en-
semble averages and how that are implemented in pyHMA. To
demonstrate the efficiency of pyHMA, Section 3 presents calcula-
tions of the thermodynamic energy, pressure and free energy of
aluminum using VASP AIMD simulations. It is worth emphasizing
that because nuclear motion is treated using Newtonian dynam-
ics, the measured properties do not include quantum effects (e.g.,
zero-point energy). We compare the computational efficiency of
the results obtained using HMA and conventional methods. The
last section provides a summary as well as the conclusions.

2. Methodology

2.1. Harmonically mapped averaging (HMA) method

In the Conv approach to computing anharmonic properties of
crystals, the anharmonic energy Uah and pressure Pah are evalu-
ated by simply subtracting the lattice and quasiharmonic contri-
butions from the full ensemble average (indicated by ⟨. . . ⟩),

UConv
ah = ⟨U⟩ − Ulat −

3

2
(N − 1)kBT , and (2)

PConv
ah = ⟨P⟩ − Plat − Pqh, (3)

where 3
2 (N − 1)kBT is the harmonic average energy, with T the

set temperature and kB the Boltzmann constant, and Pqh is given
by Pqh = −∂Aqh/∂V , where Aqh is the quasiharmonic free energy
(given by Eq. (5)).

There is a clear inefficiency in stochastically measuring the
full energy ⟨U⟩ and pressure ⟨P⟩ when only the anharmonic
contribution is of interest, as an analytical expression for the
dominant quasiharmonic contribution is already known (but still
fluctuates in contributing to the average). HMA is available to
remedy this issue [21,22]. From it, for example, the anharmonic
energy is given directly by,

UHMA
ah = ⟨U +

1

2
F · ∆r⟩ − Ulat (4)

where the vector F represents the forces on all atoms, and ∆r
are the displacements of each atom from its lattice (equilibrium)
site. To illustrate that this expression represents the anharmonic
contribution, let us consider a perfectly harmonic system. In
this model, − 1

2F · ∆r equals U − Ulat for each configuration,
and the quantity being averaged vanishes; hence, this expression
represents the anharmonic contribution to the energy. A similar
HMA expression for anharmonic pressure exists and is given
in Table 1. Note that the virial pressure at each configuration
Pvir (defined as −∂U/∂V ) is usually implemented in standard
MD codes (e.g., VASP and LAMMPS). More details on these HMA
expressions can be found elsewhere [21].

2.2. pyHMA package

Like the conventional average, the HMA method provides only
a reformulated ensemble average and does not affect the sam-
pling algorithm (e.g., MD or MC); therefore, ensemble averages
can be obtained through post-processing of MD outputs. We
implemented the HMA method in a form of a Python package
(pyHMA) that interfaces with the widely used VASP DFT code.
The package reads (e.g., configurations and energy) data from
vasprun.xml XML output file(s) to compute anharmonic energy
and pressure, using both Conv and HMA formulations. In addition
to reading VASP data, pyHMA is moduled in such a way to read
data from other MD codes (e.g., LAMMPS) by just adding a new
‘‘reader’’ as we show below. Similarly, in addition to energy and
pressure, the code is readily extended to measure other proper-
ties (e.g., isochoric heat capacity, CV [21]), if necessary data (viz,
instantaneous Hessian matrix) are available.

The pyHMA package can be downloaded from the develop-
ment version on GitHub (https://github.com/etomica/mapped-
averaging), or from a release source package on the Python
Package Index (PyPI) manager (https://pypi.org/project/pyhma/).
The package can be installed from PyPI using the pip command
(Python 3.x):

1 $ pip install pyhma

Detailed documentation on the HMA theory and pyHMA pack-
age is hosted on Read the Docs website (https://pyhmadocs.
readthedocs.io/).

Fig. 1 shows the overall structure of the pyHMA package, while
Listing 1 shows detailed implementation of these steps interac-
tively using Python interpreter. The code consists of two stages:
reading MD data from vasprun.xml file(s) and then using the
output to compute anharmonic energy and pressure (using Conv
and HMA methods). In the first stage, the
read([‘vasprun.xml’]) function (exists in vasp_reader.py
module) parses the vasprun.xml file to extract the following
data, and saves them to a dictionary (data): box_row_vecs (box
edge row vectors, in Å), num_atoms (total number of atoms),
volume_atom (volume per atom, in Å3/atom), basis (atomic
fractional positions of first configuration), position (instanta-
neous atomic fractional positions), force (instantaneous atomic
forces, in eV/Å), energy (instantaneous ground-state potential
energy E0 for ISMEAR̸= −1, or electronic free energy F for
ISMEAR=-1, in eV/atom), pressure (instantaneous pressure, in
GPa), pressure_ig (ideal-gas pressure, in GPa), timestep (MD
timestep, in fs), and temperature (set temperature, in K). The
function handles a sequence of vasprun.xml files from the same
simulation; for example, read([‘vasprun-1.xml’,‘vasprun-
2.xml’]). In this case, the output configuration from the first
run (CONTCAR) must be the input (POSCAR) for the second run. It
is worth emphasizing that we use LXML parser
with the capability to recover broken XML files
(lxml.etree.XMLParser(recover=True)). Therefore, the
read() function can handle incomplete vasprun.xml file(s)
generated from interrupted AIMD runs (by the user, or due to
some time constraint).

The read() function takes the following optional arguments
as well: force_tol, raw_files, fermi_dirac, and verbose.
The value of force_tol (default is 0.001 eV/Å) is the maximum
magnitude of the force allowed on any atom of the initial con-
figuration in the first vasprun.xml file, which is supposed to
be the equilibrium one (i.e., zero forces). However, if read()
function detects force(s) larger than force_tol, it will be inter-
rupted and prints a warning with list of atoms having large initial
forces. The second argument, raw_files (default is False),
directs pyHMA to generate the following files that it reads from

https://github.com/etomica/mapped-averaging
https://github.com/etomica/mapped-averaging
https://github.com/etomica/mapped-averaging
https://pypi.org/project/pyhma/
https://pyhmadocs.readthedocs.io/
https://pyhmadocs.readthedocs.io/
https://pyhmadocs.readthedocs.io/
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Fig. 1. Overall structure of pyHMA package, showing its two stages. In the first stage (vasp_reader.py module), pyHMA extracts relevant MD information
from vasprun.xml files(s) and saves them to a data dictionary, with the following keys: box_row_vecs (Å), num_atoms, volume_atom (Å3/atom), basis
(fractional), position (fractional), force (eV/Å), energy (eV/atom), pressure (GPa), pressure_ig (GPa), timestep (fs), and temperature (K). In the second
stage (processor.py module), a Processor instance (proc) of the Processor class is created using the data dict and a user-specified quasiharmonic pressure
(pressure_qh). The instantaneous (Conv and HMA) anharmonic energy and pressure are then computed by calling proc.process() method, which saves the
output into a proc.out_data list. Finally, using block-averaging technique, ensemble statistics (averages, stochastic uncertainties, and adjacent block correlations)
are computed by calling the proc.get_stats() method.

XML file(s): poscar_eq.dat (initial POSCAR), posfor.dat (in-
stantaneous atomic positions (fractional) and force (eV/atom)),
energy.dat (instantaneous ground-state potential energy E0
for ISMEAR̸= −1, or electronic free energy F for ISMEAR=-
1, in eV/atom), pressure.dat (instantaneous pressure, GPa).
The third argument, fermi_dirac (default is False), directs
pyHMA to read the electronic free-energy surface (F), instead of
the ground-state energy (E0), when using AIMD simulation with
Fermi–Dirac statistics (ISMEAR=-1 and SIGMA= kBT ) to compute
free-energy-derivative properties (e.g., energy and pressure). It is
worth noting that this simulation cannot be used directly to mea-
sure anharmonic free energy using thermodynamic integration
(see Section 3.3). The last argument, verbose (default is False),
makes pyHMA print (to the console) the positions and forces of
the initial configuration to verify the data pyHMA read. Line 5 of
Listing 1 shows the full usage of the read() function.

In the second stage of pyHMA, the data are analyzed to
compute anharmonic energy and pressure. This is accomplished,
first, by creating an object (proc) of the Processor class us-
ing the data dict in addition to the quasiharmonic pressure
(pressure_qh, in GPa) at the given T , for HMA pressure calcula-
tions. The units of anharmonic energy can be set to meV/atom,
instead of the pyHMA’s eV/atom default, by passing meV=True
to the Processor constructor — see line 10 of Listing 1. The
instantaneous, Conv and HMA, anharmonic properties are then
obtained by calling proc.process() method (see line 13 of
Listing 1). The method takes two optional arguments, steps_tot
and verbose; the former is the number of steps to be used
(default is steps found in vasprun.xml files) and the latter is
to direct pyHMA to print simulation details while running. The
output is saved to a 2D array (proc.out_data) of length equal
to the number of MD steps and contains four columns: Conv and
HMA anharmonic energies and pressures. The method also gen-
erates energy_ah.out and pressure_ah.out output files for
the anharmonic energy (eV/atom; or meV/atom if meV=True) and
pressure (GPa), respectively. Each file contains three columns;
time (in fs), Conv, and HMA estimates of the property.

Finally, using block averaging technique, statistics (average,
uncertainty, and correlation) of ensemble averages are obtained
by calling proc.get_stats() method. The method takes two
required (steps_eq and blocksize) and one optional
(verbose) arguments. The steps_eq argument sets the number
of equilibration steps, blocksize sets the number of steps in
each block, and verbose (default is False) prints to the console
information about the steps used in the block averaging tech-
nique. The method returns the statistics output in a form of a
dictionary (stats) of four entries: Conv and HMA anharmonic

Table 2

Summary of arguments used by pyHMA’s methods and script. See Listings 1 and 2
for usage.

Required Optional Default

pressure_qh (GPa) force_tol 0.001 eV/Å
steps_eq steps_tot Steps in vasprun.xml
blocksize raw_files False
vasprun.xml file(s) meV False

verbose False
fermi_dirac False

energies (e_ah_conv and e_ah_hma) and pressures (p_ah_conv
and p_ah_hma), each with three elements of average (avg),
uncertainty (err), and adjacent blocks correlation (cor). The
output can be presented in a more user-friendly format by using
proc.print_stats() method, which yields the output shown
after line 43 of Listing 1.

Both stages can be invoked directly from the command line
using a script named pyhma, which has the same options to those
used with the interactive usage (except for the usage of -r and
-v short options). Listing 2 shows the usage of the script, with
application to the same system used in Listing 1. Table 2 provides
a list of all arguments used by the pyHMA package.

It is worth emphasizing that the correlation should be as small
as possible (less than ≈ 0.2) to ensure accurate estimate of un-
certainty. Although increasing the block size length (blocksize)
reduces the correlations, the number of blocks should be large
enough (⪆ 50) to yield meaningful statistics.

3. Example application

3.1. Model and computational details

We modeled fcc aluminum crystal at high pressure (with
Plat = 114.4 GPa) and up to 4000 K (near-melting tempera-
ture [28]) as a test case for using the pyHMA package. All compu-
tations are performed using the DFT method as implemented in
the Vienna ab initio simulation package (VASP, version 5.3.5) [29].
The projector-augmented wave (PAW) potential approach [30]
is used, with 3 electrons treated as valence, and the exchange–
correlation functional is described by the Perdew–Burke–
Ernzerhof (PBE) [31] generalized-gradient approximation. To
ensure accuracy of 1 meV/atom and 0.1 GPa for the anharmonic
energy and pressure, respectively, we use a plane-wave cutoff
energy of 300 eV and a Γ -centered Monkhorst–Pack k-points
mesh of size 4 × 4 × 4. First-order Methfessel–Paxton smearing
method is used, with σ = 0.2 eV.
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1 >>> import pyhma
2 >>> # Read ' vasprun.xml ' files and save them to ' data ' dictionary.
3 >>> # Optional args defaults: force_tol=0.001 (eV/A), raw_files=False, fermi_dirac=False, and

verbose=False.
4 >>> # raw_files=True makes: poscar_eq.dat, posfor.dat, energy.dat, and pressure.dat.
5 >>> data = pyhma.read([ ' vasprun -1.xml ' , ' vasprun -2.xml '], force_tol=0.002, raw_files=True,

fermi_dirac=False, verbose=False)
6 >>> # data.keys() = dict_keys ([ ' box_row_vecs ' , ' num_atoms ' , ' volume_atom ' , ' basis ' , ' position ' ,

' force ' , ' energy ' , ' pressure ' , ' pressure_ig ' , ' timestep ' , ' temperature ' , ' ismear '])
7 >>> # Create Processor object to analyze the data.
8 >>> # Optional arg default: meV=False (i.e., energy is given in eV).
9 >>> # ' pressure_qh ' is a required quasiharmonic pressure (GPa) for HMA pressure.

10 >>> proc = pyhma.Processor(data, pressure_qh=4.94525, meV=True)
11 >>> # Compute instantaneous anharmonic energy and pressure (using Conv and HMA methods).
12 >>> # Optional args defaults: verbose=False and steps_tot = MD steps from ' vasprun.xml '.
13 >>> proc.process(steps_tot=10000, verbose=True)
14
15 Simulation data
16 ===============
17 Ground-state DFT calculations (E0) using ISMEAR=1
18 Set temperature (K): 1000.00000
19 Volume (A^3/atom): 10.00000
20 MD timestep (fs): 2.00000
21 Lattice energy (eV/atom): -2.21324
22 Harmonic energy (eV/atom): 0.12522
23 Lattice pressure (GPa): 114.44281
24 Harmonic pressure (GPa): 4.94525
25
26 Found 11036 total MD steps
27 Using 10000 user-set MD steps
28
29 Computing instantaneous properties ...
30
31 >>> # Perform block averaging statistics on the production steps (steps_tot - steps_eq).
32 >>> # Optional arg default: verbose=False
33 >>> stats = proc.get_stats(steps_eq=1000, blocksize=90, verbose=True)
34
35 Block averaging statistics
36 ==========================
37 9000 production steps (after 1000 equilibration steps)
38 100 blocks (blocksize = 90 steps)
39
40 Computing statistics ...
41
42 >>> # Print anharmonic energy and pressure (using Conv and HMA methods).
43 >>> proc.print_stats(stats)
44
45 e_ah_conv (meV/atom): 2.10911 +/- 1.1e+00 cor: 0.35
46 e_ah_hma (meV/atom): 0.42650 +/- 4.3e-02 cor: 0.11
47 p_ah_conv (GPa): 0.01371 +/- 3.1e-02 cor: 0.36
48 p_ah_hma (GPa): -0.03419 +/- 4.1e-03 cor: 0.26
49
50

Listing 1: Using pyHMA in the Python interpreter, with application to aluminum fcc crystal at high pressure (Plat = 114.4 GPa;
corresponds to volume of 10 Å3/atom) and temperature (1000 K). The VASP AIMD simulation consists of two consecutive runs, with the
first one starts from the equilibrium fcc configuration. The total MD length used is 10, 000 steps, including 2000 steps for equilibration,
with timestep of ∆t = 2.0 fs. The quasiharmonic pressure input (pressure_qh) needed for HMA pressure is computed using Phonopy
package (see Section 3.1).

AIMD simulations are carried out in the standard NVT canon-
ical ensemble, with the temperature controlled using a Langevin
thermostat [32] of friction coefficient of 10 ps−1. The use of
this specific thermostat (rather than Andersen or Nosé–Hoover)
allows for using a relatively large MD integrator time step (∆t =
2.0 fs) without loss of accuracy (for the given DFT model), as we
showed recently [33]. A single isochore of volume 10.0 Å3/atom
is considered, with temperature varying from 500 to 4000 K,
in 500 K intervals. The simulation box is made of 32-atoms
supercell, created from 2 × 2 × 2 fcc conventional unit cells.

Clearly, finite-size effects can be large at such small system;
however, our focus here is not absolute accuracy (i.e., ‘‘true’’
estimate) per se, but to demonstrate the usage of pyHMA for
a given model. All simulations run for 104 steps (20 ps), with
the data collection starting after 103 steps of equilibration. The
stochastic uncertainty in ensemble averages is estimated using
the block-averaging technique. To ensure small correlations (less
than ≈ 0.2), we use 100 blocks, each having block size of 90 steps.
Uncertainties are based on 68% confidence limits.
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1 $ # Usage:
2 $ # pyhma --pressure_qh=qh pressure (GPa) --steps_eq=equilib. steps --blocksize=block size
3 $ # [--steps_tot=used steps] [--force_tol=force tolerance] [--raw_files|-r]
4 $ # [--fermi_dirac] [--meV] [--verbose|-v] vasprun -1.xml vasprun -2.xml ...
5 $ pyhma --pressure_qh=4.94525 --steps_eq=1000 --steps_tot=10000 --blocksize=90
6 -r --meV vasprun -1.xml vasprun -2.xml
7 e_ah_conv (meV/atom): 2.10911 +/- 1.1e+00 cor: 0.35
8 e_ah_hma (meV/atom): 0.42650 +/- 4.3e-02 cor: 0.11
9 p_ah_conv (GPa): 0.01371 +/- 3.1e-02 cor: 0.36

10 p_ah_hma (GPa): -0.03419 +/- 4.1e-03 cor: 0.26
11

Listing 2: Using pyHMA from the command-line through the pyhma script, applied to the same system as in Listing 1. The command-
line options are given in square brackets, with the following default values: steps_tot=MD steps detected and force_tol=0.001
(eV/atom). In addition, the following flags direct pyHMA to do the following: raw_file generates raw data files (poscar_eq.dat,
posfor.dat, energy.dat, and pressure.dat), fermi_dirac uses electronic free-energy surface F (default is reading ground-state
PES; E0), uses meV units (default is eV), and verbose prints simulation details while running

The quasiharmonic pressure Pqh (Table 1) is computed from
Pqh = −∂Aqh/∂V , where Aqh is the classical free energy (apart
from the lattice contribution) using the quasiharmonic approxi-
mation [1,34],

Aqh (T , V ) = kBT

3(N−1)
∑

j=1

ln

(

h̄ωj

kBT

)

− kBT ln(N1/2V ), (5)

where h̄ ≡ h/2π , with h being Planck’s constant, N is the number
of atoms, V is the box volume, and ωj are the phonon frequencies,
obtained as the eigenvalues of the dynamical Hessian matrix
of the minimized potential energy. The summation is carried
out over the 3(N − 1) degrees of freedom and the last term
accounts for the center of mass motion (vanishes in the thermo-
dynamic limit). The phonon calculations are conducted using the
finite-displacement (frozen-phonon) method, as implemented in
Phonopy [35] (version 2.4.2), with VASP used to compute forces.
We obtained the volume derivative of the first term in Eq. (5) by
performing lattice dynamics calculations on 21 different volumes
(from 9.0 to 11.0, with interval of 0.1 Å3/atom), then applying a
fourth-order polynomial fit, from which the derivative is obtained
analytically. The low CPU cost of the quasiharmonic calculations
allowed us to do such a (relatively) large number of points;
hence, we get an accurate estimate at the desired density with
low CPU effort, in comparison to AIMD simulations. The trivial
derivative of the center-of-mass term is given analytically by
kBT/V . At the volume of interest (10 Å3/atom), the total derivative
of Aqh yields a quasiharmonic pressure of the form: Pqh(GPa) =

0.00494525 T (K).
Once the anharmonic contribution is available from pyHMA,

the absolute property can be obtained by adding to it the lattice
and quasiharmonic contributions,

U = U∗
lat +

3

2
(N − 1)kBT + Uah, and (6)

P = P∗
lat + P∗

qh + Pah. (7)

In principle, for a given level of DFT theory (exchange–correlation,
pseudopotential, etc.), all components should be computed us-
ing the same level of ‘‘DFT quality’’ (e.g., k-points and energy
cutoff). However, we observed here (and earlier [23]) that the
convergence rate of properties with respect to DFT parameters
depends on the contribution under investigation (i.e., lattice,
quasiharmonic, or anharmonic). More specifically, we found (for
monatomic atoms) that the anharmonic contribution requires the
least rigorous DFT convergence parameters to reach the same
accuracy as the other contributions (results not shown), which
may be attributed to cancellation of errors. Therefore, for a given
target accuracy (say, 1 meV/atom and 0.1 GPa), we have used

different DFT settings for each component of the absolute energy
and pressure. Both lattice and quasiharmonic contributions (not
the focus of this work) can be computed with arbitrary accu-
racy, because only few single-point DFT energy calculations are
required — this is denoted in Eqs. (6)–(7) by asterisk superscripts.
In addition, only a single unit cell is needed for the lattice
calculations due to the independence of this component on the
system size.

It is worth emphasizing here that Ulat, Plat, and Pqh inputs
needed for the anharmonic calculations (see Table 1) must be ob-
tained using the same setting (e.g., system size, DFT parameters,
etc.) as used with AIMD simulations in order to ensure having the
same PES. Conversely, since U∗

lat, P
∗
lat, and P∗

qh are computed at dif-
ferent level of theory, they should be used only for computing full,
absolute properties (i.e., by adding to the anharmonic-property
averages output by pyHMA), and not as inputs for the pyHMA
calculations, as this will result in inconsistent and inaccurate
anharmonic results.

In the next two subsections we present anharmonic results
for aluminum obtained using pyHMA, to show the effectiveness of
the HMA method relative to standard (Conv) averaging approach.
Since we are interested in presenting only anharmonic properties
in this work, the other lattice and quasiharmonic contributions
needed for absolute values are not given here.

3.2. Results: Anharmonic energy and pressure

Fig. 2 depicts the temperature dependence of the anharmonic
energy (a) and pressure (b), up to 4000 K, using both Conv and
HMA formulations. The first observation is that HMA method
provides more precise estimates, compared to the Conv approach,
without loss of accuracy. Some of the Conv data points are not
statistically consistent with HMA, which can be attributed to
the relatively large timestep used here (∆t = 2.0 fs). As we
showed earlier, while HMA can handle such a timestep, Conv
technique introduces uncontrolled inaccuracies [25]. Moreover,
as expected for anharmonic behavior, the leading term for the
temperature variation should be T 2 (i.e., linear term is absent).
Accordingly, we fit the anharmonic energy and pressure (Fig. 2)
using a polynomial function (blue line) in the form c1T

2 + c2T
3 +

c3T
4.
To quantify the extent of precision improvement of HMA

compared to Conv, we use the recently introduced difficulty ratio
metric, DConv/DHMA; where the difficulty D is defined by D ≡

σ t1/2, where σ is the stochastic uncertainty and t is the CPU time
[36]. This quantity is invariant with the simulation length, so re-
sults from different runs can be compared. However, for our case,
the CPU times are the same from Conv and HMA, so the difficulty
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Fig. 2. Temperature dependence of anharmonic energy (a) and pressure (b), both using Conv and HMA approaches. The blue lines are polynomial fits in the form
c1T

2 + c2T
3 + c3T

4 , to ensure a leading quadratic behavior. All error bars are based on 68% confidence limits, here and throughout this work. For clarity, data points
are shifted slightly to the right (Conv) and to the left (HMA).

Fig. 3. Temperature dependence of the DConv/DHMA difficulty ratio of measuring
anharmonic energy and pressure, where D ≡ t1/2σ (see text).

ratio is simply the ratio of uncertainties. The square of this ratio
is the Conv to HMA relative CPU time required to obtain a result
of a given precision. Fig. 3 shows the temperature dependence of
the difficulty ratio for measuring anharmonic energy and pres-
sure. For anharmonic energy, the HMA improvement increases
with decreasing temperature to about 33× at 500 K (i.e. ≈ 103

CPU speed-up). On the other hand, the HMA improvement of
anharmonic pressure is nearly constant, ≈ 7× (i.e. ≈ 50× CPU
speed-up).

3.3. Results: Anharmonic free energy

As an application to the precise HMA anharmonic energy
obtained from pyHMA, we consider computing anharmonic free
energy Aah along an isochore (fixed volume) via thermodynamic
integration in temperature, which is computationally demand-
ing when using standard (Conv) averaging. The Aah free-energy
expression is given by [21],

Aah(T ) = −T

∫ T

0

Uah(T
′)

T ′2
dT ′. (8)

Because the leading term of Uah is quadratic in T , the integrand
Uah(T

′)/T ′2 has a finite intercept at T → 0. It is important to
emphasize that the thermodynamic integration in temperature
(HMA and Conv) is valid only for a temperature-independent
PES (i.e., ground-state DFT; E0); hence, it cannot be used with
finite-temperature DFT models (e.g., using Fermi–Dirac statistics;
ISMEAR=-1). Fig. 4 shows the variation of the integrand with
temperature, using both Conv and HMA methods, computed from

Fig. 4. Temperature dependence of the thermodynamic-integration integrand
(Eq. (8)), both using Conv and HMA methods. The blue line is a second-order
polynomial fit of the HMA data, which is given by (in eV/K2): 4.6395×10−10 +

1.4877× 10−14T + 2.4021× 10−17T 2 . For clarity, data points are shifted slightly
to the right (Conv) and to the left (HMA).

the data given in Fig. 2(a). The variation from HMA is significantly
smoother than Conv, which makes it the more efficient choice to
compute anharmonic free energies. To do this, we fit the HMA
integrand data using a second-order polynomial function (blue
line), then analytically integrate the fitting function using Eq. (8)
to get Aah(T ). Fig. 5 depicts the temperature dependence of the
anharmonic free energy using HMA energies, which also has a
leading quadratic term in T , as can be inferred from Eq. (8). The
dashed lines represent stochastic uncertainty bounds (obtained
from propagation of errors in the fit), which is less than our 1
meV tolerance target.

Once the anharmonic contribution is available from pyHMA,
the absolute Helmholtz free-energy property (again, not the focus
of this work) can be obtained by adding to it the lattice and
quasiharmonic contributions,

A = U∗
lat + A∗

qh + Aah, (9)

where A∗
qh is the quasiharmonic free energy as given by Eq. (5),

with the asterisk indicating the possibility of using a different DFT
parameters than those used with the AIMD simulation.

4. Conclusions

We have developed the pyHMA package, which allows VASP
users to exploit the benefits offered by the HMA method for
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Fig. 5. Temperature dependence of the anharmonic free energy using HMA
method. This is obtained from Eq. (8), with the integrand given by the fitting
function in Fig. 4. The dashed lines represent stochastic uncertainty bounds as
obtained from propagation of errors in the fit.

measuring anharmonic properties of harmonically stable crystals
(i.e., no imaginary frequencies). Advantages include high preci-
sion (hence, speed-up) and accuracy, relative to the conventional
approach, for a given choice of DFT settings (e.g., exchange–
correlation functional).

In particular, the package calculates the anharmonic energy
and pressure of crystalline systems by post-processing the
vasprun.xml files obtained from canonical AIMD simulations. As
a case study, the thermodynamic properties of aluminum at high
pressure and up to near-melting temperature were computed;
the computational savings from HMA were many orders of mag-
nitude relative to conventional averaging. Also, the convention-
ally overwhelming computational cost of free-energy calculations
was significantly reduced.

Extension of pyHMA to permit calculation of properties given as
the second derivative of the free energy (e.g., heat capacity, elastic
constants) would require the capability in VASP to compute and
manipulate the Hessian matrix given the second derivatives of
the energy with respect to atom coordinates. Such a capability
has been implemented in LAMMPS [27].
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