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Abstract—The mobility status of self and surrounding vehicles
provides important information to various tasks in autonomous
driving (AD) and intelligent transportation system (ITS).
Accordingly, a precise, stable, and robust mobility tracking
framework is essential. Compared with self-tracking that relies
only on mobility observations from onboard sensors [e.g., global
positioning system (GPS), inertial measurement unit (IMU), and
camera], cooperative tracking markedly increases the precision
and reliability of the mobility information by integrating obser-
vations from roadside units (RSUs) and nearby vehicles through
vehicle-to-everything (V2X) communications in the Internet of
Vehicles (IoV). Nevertheless, cooperative tracking can be quite
vulnerable if there are malicious users sending bogus observa-
tions in the cooperative network. In this article, we present a
malicious user detection framework, which includes two sequen-
tial detection algorithms and a secure mobility data exchange and
fusion model to detect and remove bogus mobility information
and integrate proposed detection algorithms with previous data
fusion algorithms, which secures the cooperative mobility track-
ing in AD, ITS. Simulations validate the effectiveness and robust-
ness of the proposed framework under different types of attacks.

Index Terms—Autonomous driving (AD), cooperative mobil-
ity tracking, intelligent transportation system (ITS), Internet of
Vehicles (IoV), malicious user detection, sequential detection.

I. INTRODUCTION

AUTONOMOUS driving (AD) and intelligent transporta-
tion system (ITS) are expected to greatly improve
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the efficiency of the transportation system and reduce fatal
accidents in the near future. Extensive research efforts regard-
ing fundamental issues of AD and ITS have been carried out
in the past decade, among which obtaining precise mobility
information, such as the location, velocity, and acceleration of
the self and surrounding vehicles is one of the most essential.

In practice, the prevailing global positioning system (GPS)-
based tracking technique cannot provide the decimeter-level
precision required by AD and ITS, especially under circum-
stances where the GPS signal is weak or even completely
absent. Researchers proposed various methods to augment
the precision of mobility tracking. Many of them fall into the
category of single-vehicle multisensor independent tracking,
which relies on multiple high-precision onboard sensors, such
as GPS, inertial measurement unit (IMU), lighting detection
and ranging (LIDAR), and simultaneous localization and
mapping (SLAM), to achieve a precise independent mobility
tracking. In [1], the state-of-the-art independent localization
techniques were surveyed. As stated therein, though fus-
ing data from onboard sensors could potentially achieve the
required accuracy for AD and ITS, the cost of a single vehicle
equipped with all these sensors may be too high. In addition,
the performance may be compromised under extreme condi-
tions. Thus, multivehicle–multisensor cooperative localization
and tracking methods (see [2]–[9]) have been proposed to
exploit the information shared by surrounding cooperative
vehicles via vehicle-to-everything (V2X) communications
(see [10]–[14]) in the Internet of Vehicles (IoV) to improve
the localization and tracking performance. However, the
security challenges of the cooperative tracking system are not
considered in these works.

Similar to other Internet-of-Things (IoT) systems
(see [15] and [16]), V2X-based cooperative mobility
tracking systems also face security threats at three levels
in practical implementation: 1) the perception level; 2) the
transportation level; and 3) the application level. In terms of
the threats at the perception and transportation levels, the
current cooperative tracking framework can directly integrate
physical layer protections, such as those summarized in [17]
and [18], to prevent jamming or spoofing on sensors, and
the communication authentication protocols presented in [19]
and [20] to prevent unauthenticated malicious user from enter-
ing the cooperative network or conducting Denial-of-Service
(DoS) and Sybil attacks.

Nevertheless, there is still a chance that malicious users
obtain valid identities in an unexpected way, and then enter
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the cooperative tracking network. They may choose not to con-
duct transportation level attack or jam others’ sensors, in order
to avoid being detected in perception and transportation level.
Instead, they may send bogus mobility information to directly
interfere the data fusion algorithm in cooperative tracking to
compromise the tracking reliability and precision. Therefore,
it is desirable to add an additional data-driven defense against
bogus information sent by malicious users so that the cooper-
ative tracking algorithm itself could remain reliable and robust
against application-level bogus information attack.

Data-driven filtering and detection have been proposed as
the application-level protection against bogus information in
IoT, wireless sensor networks (WSN), and vehicular ad hoc
networks (VANETs). Reputation management-based detec-
tion [21], [22] is proposed to manage the reputation score
of each user and mark users whose scores are lower than the
preset threshold as malicious. However, a reputation update
in the framework is based on the abstract feedback values
generated by involved users after the information exchange
process. This means that the reputation management-based
detection framework cannot be directly utilized for malicious
user detection in cooperative tracking. Instead, they need to be
built on some data processing algorithms that can extract cru-
cial information from the dense high-dimensional raw mobility
data and generate simple low-dimensional feedback.

Some data processing algorithms have been proposed
in [23]–[26] to address a similar issue in WSN and VANETs,
i.e., how to remove bogus information to secure the coopera-
tive localization. Nevertheless, those algorithms are proposed
for static localization problem, and hence only utilize sin-
gle snapshot information to detect and identify malicious
users. This means that for the dynamic cooperative tracking,
they cannot exploit the temporal correlation of the mobility
information sequence to improve the detection performance. In
this regard, we propose two sequential malicious user detection
algorithms to fully utilize the temporal correlation in mobility
information sequence to improve the detection performance
and provide cooperative mobility tracking with much better
reliability and stronger robustness.

Our main contributions are summarized as follows.
1) We propose two sequential malicious user detection

algorithms, namely, the dynamic model-based mean
state detection (DMMSD) and mean residual error detec-
tion (MRED), to identify malicious users more precisely
by exploiting the temporal correlation of mobility
information sequence. To the best of our knowledge,
this is the first time sequential malicious user detec-
tion algorithms are proposed in cooperative mobility
tracking.

2) We propose a secure mobility data exchange and fusion
model which can integrate the proposed malicious
user detection algorithms with our previous cooperative
tracking fusion algorithms [7].

3) We present an extended threat model which consid-
ers both temporal and spatial distribution of bogus
information as attack parameters. As compared with
existing models used in WSN and VANETs that only
consider the spatial distribution, the extended model

can characterize possible threats in dynamic coopera-
tive tracking scenarios more comprehensively. Then, we
evaluate the performance of our proposed algorithms and
existing algorithms with different attack patterns.

The remainder of this article is organized as follows.
Related work is reviewed in Section II. The system model,
including the system state transfer model, the observation
model, the secure data exchange and fusion model, and the
extended threat model, is introduced in Section III. The
detailed DMMSD and MRED algorithms are presented in
Section IV. The performance of the proposed detection
framework is evaluated in Section V. Finally, concluding
remarks and future work are presented in Section VI.

II. RELATED WORK

Most related work in the literature falls into three categories:
1) reputation management-based detection; 2) mobility data
verification; and 3) secure localization.

A. Reputation Management-Based Detection

Reputation management-based malicious user detection
is used in information/resources sharing in IoT or IoV
(see [21] and [22]). In the reputation management framework,
all users in the network are initially assigned with the same
reputation score. Then, after each information exchange is
completed, feedbacks are generated and sent to each other to
update the reputation score of both vehicles. Sending bogus
information will result in negative feedback and a reduction
in the reputation score. Once the score of a vehicle is below
a preset threshold, it is declared as malicious. Though rep-
utation management-based detection is a good approach to
detect malicious user by utilizing feedback to update repu-
tation dynamically, it does not address how the feedback is
generated from the raw information. For some systems, it
might be straightforward, e.g., generating feedback based on
the resolution of shared videos. However, it is not a trivial task
in cooperative tracking considering the high dimensionality of
the mobility information set when dozens of cooperative vehi-
cles are involved. Furthermore, mobility information obtained
by sensors of each cooperative vehicle is always noisy and
not fully trustworthy. Therefore, there will not be a precise
and stable reference to rely on during data processing, which
makes the feedback generating even more challenging.

Therefore, for the malicious user detection in cooperative
tracking, the reputation management-based detection serves
more like a high-level framework which builds on the result of
content-based processing algorithms (e.g., those summarized
in Section II-C and the algorithms proposed in this article) and
cannot be directly utilized to cope with the bogus mobility
information in cooperative tracking.

B. Mobility Data Verification

Another category is the mobility data verification
(see [27]–[30]) which seems to be similar to the problem
considered in this article, while there are some major differ-
ences in the main objective and the trust assumption of them.
The main task of mobility data verification is using its own
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observations as the reference to verify whether other vehicles’
self-claimed mobility information are honest. While the main
objective of malicious user detection in cooperative tracking,
in fact, is to identify and remove bogus information and cor-
responding users to maintain the reliability and precision of
cooperative mobility tracking. In data verification, the obser-
vations made by the vehicle itself are usually assumed to
be precise and it also assumes that there is always a few
identified fully trustworthy users which can assist the veri-
fication process. However, in cooperative mobility tracking,
these assumptions are generally quite impractical. Instead, the
observations made by a vehicle itself are highly likely to be
quite noisy or totally unavailable in some extreme environ-
ments. Furthermore, none of the cooperating vehicles can be
treated as fully trustworthy all the time. Therefore, in terms of
both the objective and problem setup, the existing algorithms
proposed for mobility data verification are not applicable to
the problem considered in this article.

C. Secure Localization

The third and the most relevant category is secure localiza-
tion in WSN and VANETs, which considers how to detect and
remove bogus information during the cooperative positioning
process or reduce their effects on the reliability and precision
of positioning.

In survey papers [31], [32], secure localization algorithms
are classified into two categories: 1) filtering algorithms and
2) detection algorithms. Filtering algorithms select a subset
containing position observations that are believed to be benign
to obtain the final estimate, such as gridding and voting in [23]
and [33], or use some robust loss functions in the formula-
tion of the location estimation to minimize the influence of
bogus information, such as the least median squares (LMS)
estimation proposed in [34] and the minimum mean absolute
error (MMAE) estimation used in [35] and [36]. In contrast,
the objective of various detection algorithms is to sort out
all bogus information and exclude them from the cooperative
positioning process. If properly designed, the detection algo-
rithms usually would outperform the filtering algorithms since
they attempt to retain as much benign information as possi-
ble and at the same time to exclude as much bogus data as
possible. Therefore, in this article, we focus on the design of
detection algorithms.

Early detection algorithms are mostly based on the mini-
mum mean square error (MMSE) consistency check, which
was first proposed in [23] as a part of the attack-resistant
minimum mean square estimation (ARMMSE) algorithm.
However, ARMMSE is sometimes regarded as a filtering
algorithm since it only selects a subset of benign data. The
cluster-based minimum mean square estimation (CMMSE)
in [24] utilizes the consistency check and extends it to a true
detection algorithm. Recently, hypothesis testing-based detec-
tion algorithms, such as the generalized-likelihood ratio test
(GLRT) and malicious node detection algorithm (MNDC),
were proposed in [25] and [26].

Most secure localization algorithms in WSN and VANETs
except MNDC only deal with single-snapshot information at a

specific time instant. This means that these algorithms cannot
utilize the temporal correlation of the mobility information
sequence entailed by the dynamic properties of vehicles to
increase the detection accuracy. As for MNDC, though it
directly averages data collected in a period and then con-
ducts sequential hypothesis testing, its whole framework is
based on the static node and fixed position assumption, which
makes MNDC inapplicable in the dynamic cooperative mobil-
ity tracking scenario where all vehicles are moving in most
of the time. In summary, most secure localization algorithms
are designed for the static positioning problems and hence are
not optimal solutions for dynamic cooperative tracking. Those
being said, the classical secure localization algorithms will still
be used as the baseline in this article and be compared with
the proposed detection algorithms since there is no existing
algorithm designed for malicious user detection in dynamic
scenarios reported in the literature.

III. SYSTEM MODEL

In general, the physical motion of a vehicle can be described
by a first-order hidden Markov model [37]

s[j] = f (s[j − 1], u[j], w[j])

z[j] = g(s[j], v[j]) (1)

where j is the discrete time instant index, s is the state of the
vehicle which includes velocity and position, u is the com-
mand process or equivalently the driving input, and w is the
state noise; z is the observations through sensing devices, such
as GPS, IMU, LIDAR, etc., and v is the measurement noise;
and f and g are the state transfer and measurement functions
which can be obtained by the physical laws of the motion and
the properties of the sensing devices, respectively.

We assume that all vehicles in cooperation are equipped
with GPS, IMU, and an integrated sensing system which may
include LIDAR, radar, camera, and so on. Each vehicle obtains
its own position estimate from GPS, its own velocity estimate
from IMU and wheel encoders, and the relative position and
velocity with respect to other vehicles through the integrated
sensing system. The detailed state transfer and observation
model are presented as follows.

A. System State Transfer Model

For a vehicle Vi, we can describe its mobility in a system
state transfer equation [37]

si[j] = Asi[j − 1] + Buui[j] + wi[j] (2)

where

si =

⎛
⎜⎜⎝

xi

ẋi

yi

ẏi

⎞
⎟⎟⎠, ui =

(
Fi,x

Fi,y

)
, wi =

⎛
⎜⎜⎝

wxi

wẋi

wyi

wẏi

⎞
⎟⎟⎠ (3)

A =

⎛
⎜⎜⎝

1 �t 0 0
0 1 0 0
0 0 1 �t
0 0 0 1

⎞
⎟⎟⎠, Bu =

⎛
⎜⎜⎜⎝

(�t)2

2 0
�t 0

0 (�t)2

2
0 �t

⎞
⎟⎟⎟⎠ (4)
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xi, yi and ẋi, ẏi are the Cartesian coordinates and velocities of
Vi; Fi,x and Fi,y are the vehicle command process that provides
acceleration, which can be provided by the IMU; w is the state
noise which can be usually modeled as additive white Gaussian
noise (AWGN); and �t is the discrete time step.

B. Observation Model

The observation at an arbitrary vehicle Vs is composed
of two parts: 1) the observation of its own mobility status,
such as those provided by GPS and IMU, denoted as zs and
2) the observation of the relative mobility status between
another vehicle Vi and itself, such as those provided by the
integrated sensing system, denoted as zi→s. For zs, we have

zs[j] = Hsss[j] + vs[j] (5)

where Hs is the measurement matrix and vs is the measurement
noise, both of which can be determined by the properties of
the sensing devices of Vs. For zi→s, we have

zi→s[j] = Hi→ssi→s[j] + vi→s[j] (6)

where si→s[j] = si[j] − ss[j] is the relative state between Vi

and Vs. The detailed value of Hi→s and the statistical property
of vi→s depend on the sensing device involved and the way to
extract the mobility-related information from the sensor data.
Without loss of generality, in this article, we assume that in
both cases, the sensing devices have direct unbiased measure-
ment of the state, and the measurement noise is AWGN with
known variance.

C. Secure Data Exchange and Fusion Model

The secure data exchange and fusion model proposed
here is based on the cooperative mobility tracking algorithm
developed in our previous work [7]. The structure of the model
is shown in Fig. 1.

The vehicle observed by other vehicles is called the tar-
get vehicle and denoted as VT . The cooperative vehicles
are denoted as V1, V2, . . . , VN , where N is the number of
cooperative vehicles. Instead of zT→i[j] + zi[j], mobility state
observation of VT from Vi at discrete-time instant tj is written
as zij for the rest of this article for simplicity. After receiving
current observations from N vehicles, VT passes observations
to its detection module. Together with observations from all
cooperative vehicles in previous K − 1 time instants, they
are stored in the detection module and form the observation
matrix Mz

Mz =

⎛
⎜⎜⎜⎝

z11 z12 · · · z1K

z21 z22 · · · z2K
...

...
. . .

...

zN1 zN2 · · · zNK

⎞
⎟⎟⎟⎠ (7)

where K is the length of observation sequence. Mz is then
analyzed by the proposed sequential detection algorithm
(DMMSD or MRED) in the detection module and generate
the enabling signals for N independent Kalman filters on VT

(ellipses labeled as KF in Fig. 1). At the same time, N cur-
rent observations are also sent to the corresponding Kalman

Fig. 1. Secure data exchange and fusion model.

filters to generate state estimates of VT . As the outcome of the
detection module, the enabling signals indicate which Kalman
filters receive trustworthy state observation input and hence
only those filters will generate outputs and pass them to the
data fusion module to form the global mobility estimate of VT

at current time instant.

D. Extended Threat Model

Existing threat models in the literature only include time-
irrelevant attacks, which cannot fully characterize all attack
patterns that may possibly be conducted in the case of dynamic
cooperative tracking. Thus, to develop a comprehensive test-
ing benchmark for evaluating the performance of the existing
and proposed algorithms under different attack patterns, the
extended threat model is presented here by considering both
temporal and spatial distribution of mobility observations.

According to the spatial distribution of bogus observations,
malicious attacks can be classified into two categories.

1) Uncoordinated Attack: There is no communication
among malicious users, thus, the bogus observations
from different malicious users are independent.

2) Coordinated Attack: Before sending their own bogus
observations to the target vehicle, malicious users will
first communicate with each other and agree on a cen-
ter state (a mutual bogus state that deviates from the
real state of VT ). Then, each malicious user generates
its bogus observation around this center.

In uncoordinated attack, it is quite common that the devi-
ations introduced by different bogus observations cancel out
with others, which results in less degradation in the cooper-
ative tracking performance. Therefore, the more threatening
coordinated attack will be our focus and all attacks in the rest
of this article are coordinated if not especially noted.

According to the temporal distribution of bogus observa-
tions, malicious attacks can be classified into three categories.

1) Continuous Trajectory Attack: The bogus state observa-
tions from one or a group of malicious users form a
continuous and slow-varying malicious state trajectory
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over a certain period. Its goal is to mislead the mobility
state estimate of VT to a predefined malicious state tra-
jectory. Usually, a continuous trajectory attack lasts for
a relatively long period.

2) Continuous Random Attack: No malicious state trajec-
tory is designed, thus, the bogus observations from
adjacent time instants have less correlation and may vary
a lot in the state space. Its goal is to simply degrade the
stability and accuracy of the mobility state estimates of
VT rather than leading it to a wrong trajectory. It is also
assumed to last for a relatively long period.

3) Sparse Random Attack: The bogus observations only
randomly occur at a few isolated time instants. For most
of the time, observations from malicious users are con-
sistent with those from benign users. While the effects
of this type of attack would be less severe as compared
with the previous two, the malicious users are more dif-
ficult to be detected and the effects could build up over
time to degrade the tracking performance.

By considering both the spatial and the temporal distribu-
tion, three major types of attacks we focused on in this article
are constructed and presented as follows.

1) Coordinated Continuous Trajectory Attack:

zmi[j] = s(m_traj)[j] + δmi[j], (j ∈ Tm). (8)

2) Coordinated Continuous Random Attack:

zmi[j] = s(m_rand)[j] + δmi[j], (j ∈ Tm). (9)

3) Coordinated Sparse Random Attack:

zmi[j] = s(m_pulse)[j] + δmi[j],
(
j ∈ Tpm

)
. (10)

In (8)–(10), i ∈ M and M is the set of the IDs of malicious
users; zmi[j] is the bogus state observation from the ith mali-
cious user at discrete time instant tj = j�t; Tm = [tstart, tend]
is the duration of the continuous trajectory and continuous
random attack; AND Tpm = {tp1, tp2, . . . , tpL} is the set
of isolated time instants when sparse random attacks occur.
s(m_traj), s(m_rand), and s(m_pulse) are the center of bogus state
that are agreed by all malicious users in coordinated attack.
Small noises δmi are added by each malicious user indepen-
dently to make the spatial distribution of the malicious data at
each time instant not abnormally dense.

IV. PROPOSED ALGORITHMS

A. Dynamic Model-Based Mean State Detection

As discussed earlier in Section II, there is only one existing
malicious user detection algorithm in the literature, namely,
the MNDC, which works on a sequence of observations rather
than single-snapshot information for detection. The simple
averaging operation over the sequence of observations was
introduced to reduce the influence of observation noise and
increase the malicious user detection performance. However,
this algorithm was originally developed only for the localiza-
tion problem in WSN and based on the static node and fixed
position assumption. When it comes to the mobility tracking
problem, the tracked target vehicle VT would be in differ-
ent states at different time instants, which makes the simple

direct averaging operation invalid in this scenario. However,
by utilizing the dynamic model which captures the correlation
between different states, the mobility observations sequence
can still be “averaged” to reduce the influence of noise and
improve the malicious user detection performance. Following
this line of thought, we propose our first algorithm, namely,
the DMMSD.

The DMMSD consists of three main steps: 1) prediction,
which utilizes the dynamic model to convert all observations in
the sequence into predictions of current mobility state of target
vehicle; 2) averaging, the key operation to reduce the influ-
ence of observation noise and increase the detection accuracy;
and 3) consistency check and clustering, the final operation
to detect whether there are malicious users and identify all of
them if so. The detailed procedures of each step are presented
as follows.

1) Prediction With the Dynamic Model: The differences
among the observations provided by one particular user at
different time instants arise two major reasons.

1) The first reason is the effect of random observation
noises, which also exists for the static WSN scenario.

2) The second reason is the motion of the target vehi-
cle itself, which is exactly what invalidates the direct
averaging of observations at different time instants.

To cope with the motion of the target vehicle and convert all
the past observations into predictions of current mobility state
of the target vehicle, we rely on the state transfer equation (2)
or equivalently the dynamic model which completely depicts
the theoretical trajectory of the target vehicle.

The core idea of this step is pretty straightforward. The
acceleration of the target vehicle at each time instant is mea-
sured by its own onboard IMU very precisely and can be
regarded as trustworthy. Therefore, for any single past observa-
tion provided by any particular cooperating vehicle, the target
vehicle can predict its possible counterpart at current time
instant with the dynamic models and the measured acceleration
data over the period.

For instance, consider any particular cooperating vehicle
Vi observing VT . For a period of time {t1, t2, . . . , tK} (tK is
the current time instant), we can use the single-observation
data zi1 from Vi at time instant t1 and the acceleration data
{a1, a2, . . . , aK−1} from VT during this period to predict the
possible observation Vi may send to VT currently, and we
denote this predication as ẑi(1→K). Similarly, the corresponding
predictions {ẑi(2→K), ẑi(3→K), . . . , ẑi(K→K)} of past observa-
tions {zi2, zi3, . . . , ziK} can be obtained. Note that ẑi(K→K) =
ziK .

After the prediction process, state observations from Vi at
different time instants are all converted into state predictions
that correspond to the current time instant, which therefore
effectively excludes the influence of the motion of the target
vehicle in this period and makes the averaging strategy in the
second step applicable.

2) Variance Reduction With the Averaging: At any particu-
lar time instant, the way to detect the malicious user is to check
whether its observation is consistent with others. However,
due to the observation noise, even single observation from the
benign vehicle would have a large variance, which makes it
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quite difficult to determine whether the inconsistency is due
to the normal observation noise or the deliberate malicious
deviation. It is especially so when the deviation injected by
the malicious user is relatively small.

After averaging, the observation noise is significantly
reduced, which in turn makes the determination of the cause
of inconsistency much more accurate. The outcome of averag-
ing is the mean of state predictions or equivalently the mean
state z̄iK of Vi, i.e.,

z̄iK = ẑi(1→K) + ẑi(2→K) + · · · + ẑi(K→K)

K
. (11)

Qualitatively, the variance of z̄iK will be much smaller than
the variance of any single prediction ẑi(j→K) or single obser-
vation zij. However, to determine the sequence length K that
achieves the maximum variance reduction, one needs to obtain
the quantitative relation between the variance of zij, the vari-
ance of z̄iK , and the sequence length K. The relation is obtained
as the following theorem.

Theorem 1: The variance of the mean of state predictions
given by a particular cooperating vehicle is approximately

D(z̄K) =
(

D(x̄K)

D(v̄K)

)
≈ 1

K2

⎛
⎜⎜⎜⎝

Kσ 2
x + (�t)2σ 2

v

K−1∑
j=1

j2

Kσ 2
v + (�t)2σ 2

a

K−1∑
j=1

j2

⎞
⎟⎟⎟⎠ (12)

where D(x̄K)andD(v̄K) are the variance of mean position and
velocity predictions, respectively, σ 2

x andσ 2
v are the variance of

single position and velocity measurement of cooperating vehi-
cle respectively, and σ 2

a is the variance of single acceleration
measurement.

Proof: See Appendix A.
To get a clear idea of the amount of reduction in variance

by averaging the predictions, we adopt a practical observation
interval �t = 0.1s and assume that σ 2

x = σ 2
v = σ 2, and in

practice, σ 2 � σ 2
a . Accordingly

D(z̄K)

σ 2
≈ 1

600K

(
600 + (K − 1)(2K − 1)

600

)
. (13)

Fig. 2 clearly shows the trend of D(x̄K)/σ 2 and D(v̄K)/σ 2

with varying K. As shown in the figure, D(v̄K)/σ 2 decreases in
proportional to 1/K. However, D(x̄K)/σ 2 has a minimum value
due to accumulative noises brought by dynamic model-based
prediction. Therefore, under the assumptions above, K = 16
is the optimal sequence length to minimize D(x̄K)/σ 2.

After dynamic model-based averaging, the observation
matrix Mz in (7) is converted into mean state vector Z̄ which
includes the mean of state predictions from N cooperative
vehicles

Z̄ = (
z̄1K z̄2K · · · z̄NK

)T
. (14)

3) Malicious User Detection Using the Consistency Check
and Clustering: By reducing the variance of the observations
provided by cooperative vehicles, the dynamic model-based
averaging could enlarge the difference between the bogus and
normal observations, thus, make it easier to distinguish them.
However, a criterion is yet set to determine whether there are

Fig. 2. Variance reduction amount with different sequence length.

bogus observations. Moreover, a tool is needed to identify all
bogus observations and the corresponding malicious users gen-
erating them. For this task, we propose the following two-step
procedure.

1) Consistency Check: It determines whether there are
bogus observations by analyzing the distribution of the
mean states of all cooperative vehicles in state space.

2) Clustering: If the step above indicates the existence of
bogus observations, a clustering algorithm is applied to
classify those mean states into two clusters and iden-
tify the bogus mean states sent by malicious users
accordingly.

In the first step, the MMSE consistency is considered, which
was first proposed in [23]. Its core idea is concisely explained
here, while the detailed derivations can be found in the original
paper: since the benign state observations are the sum of the
true target state and zero-mean Gaussian observation noise,
MMSE of Z̄ should satisfy P{MMSE < τ 2} → 1 if all the
users are benign and the normalized threshold τ 2 is selected
properly. However, if there are bogus state observations, the
MMSE would be very likely to exceed τ 2. Thus, the MMSE
of Z̄ is computed to determine whether there are bogus mean
states.

Content-based clustering has been shown to be an effective
approach [24], [38] to classify vehicles into different groups
based on the distribution of shared data in resource sharing
optimization and malicious user detection scenario in IoV or
WSN. Thus, it is adopted in DMMSD as the last step to
classify the mean states and the corresponding users into a
benign and malicious group. If the consistency check indi-
cates the existence of bogus observations, clustering on Z̄ will
be performed. Otherwise, all the observations will be regarded
as from benign users. Considering the number of clusters is
always two in the malicious user detection scenario, K-means
clustering is a very effective and appropriate algorithm, thus,
it is adopted in our implementation of DMMSD. However,
any other clustering algorithm (e.g., density-based clustering,
spectral clustering, and so on) is also fully compatible with
this framework.

The cluster with more members will be regarded as the
benign group and all the corresponding users will be marked
as benign. All the users in the other cluster will be marked
as malicious users. The result of consistency check and clus-
tering are concluded as a boolean vector or equivalently
a trust table, which describes each vehicle as benign or
malicious.
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Algorithm 1 DMMSD
Input: Mz, A, Bu, a
Output: trust_table

1: for i = 1 → N do
2: for j = 1 → K do
3: for k = 1 → K − j do
4: Mz[i, j] = AMz[i, j] + Bua[j + k]
5: end for
6: end for
7: end for
8: Z̄ = mean of all columns of Mz
9: ResMMSEcheck = MMSE_consistency_check(Z̄)

10: if ResMMSEcheck indicates all vehicles are benign then
11: all vehicles are marked as benign in trust_table
12: else
13: ResCluster = Clustering(Z̄)

14: the bigger cluster → benign
15: the smaller cluster → malicious
16: convert the clustering result to trust_table
17: end if

The pseudocode of the DMMSD algorithm is shown in
Algorithm 1. After generating the trust table by executing
the DMMSD algorithm, the subsequent data fusion process as
shown in Fig. 1 will be performed. The target vehicle only uses
the outcomes (mobility state estimates of VT ) of the Kalman
filters that are enabled by the trust table as the input of our
previously proposed fusion algorithms [7] to obtain the global
estimate of the mobility state of itself.

B. Inherent Disadvantages of DMMSD

Though DMMSD reduces the variance of observations and
substantially increases the accuracy of detection in continuous
trajectory attack (8), it also has two inherent disadvantages.

1) Utilizing the dynamic model makes averaging operation
and observation noise reduction applicable in dynamic
scenarios, while it also brings in accumulative noises in
the process of prediction, which limits the performance
of DMMSD when bogus state observations do not
deviate too much from the true state of the target vehicle.

2) Consistency check and clustering are only based on
mean states Z̄ in DMMSD. However, as well known,
both the mean and the variance are essential to depict the
statistical property of a data sequence. Without including
the variance in its development, DMMSD cannot detect
abnormal fluctuations in the observation sequence, and
thus, cannot resist the other two types of attacks in the
extended threat model: 1) the continuous random attacks
as described in (9) and 2) the sparse random attacks as
described in (10).

The first disadvantage can be clearly seen in the (K − 1)

(2K − 1) term in (13), which limits the maximum variance
reduction ratio. The detail of the reason why the variance
information of the observation sequence cannot be integrated
into DMMSD is presented in Appendix B.

Consequently, two inherent disadvantages of DMMSD
make it insensitive to continuous trajectory attack with small
deviation and cannot resist continuous and sparse random
attack at all. To solve this problem, we propose our second
detection algorithm, namely, the MRED.

C. Mean Residual Error Detection

Essentially, all sequential detection algorithms consist of
different operations on the state observations matrix Mz.
However, the order of different operations may lead to dif-
ferent performances. To have a vision of the connection and
difference between MRED and DMMSD, the core steps of
DMMSD are summarized and reviewed from the point of view
of matrix operations.

1) Convert state observations into state predictions and
average predictions of each cooperating vehicle (i.e.,
perform prediction operation on all columns of Mz, then
average all columns) to obtain the mean states vector Z̄.

2) Conduct consistency check and clustering on Z̄ (i.e.,
analyze the relation of different rows in Z̄).

Simply speaking, the operation order in DMMSD is “col-
umn first, row second.” Thus, it is natural to think about
reversing the order to “row first, column second” and see the
difference. The MRED algorithm is proposed based on this
idea.

MRED consists of three steps: 1) computing the residual
error, a better preprocessing approach to exclude the influ-
ence of the motion of target vehicle; 2) obtaining the squared
residual error, the operation that makes MRED resistant to
continuous and sparse random attack; and 3) consistency check
and clustering. The detail of the three steps is introduced as
follows.

1) Residual Error in MRED: The inevitable accumulative
noise problem brought by dynamic model-based prediction in
DMMSD is the result of the “column first” operation order. By
switching to “row first,” MRED not only excludes the influ-
ence of the motion of the target vehicle in this step but also
naturally avoids the prediction process and accumulative noise.

The procedure of this step is described as follows. An arbi-
trary vehicle is selected as the reference and the residual errors
between the observations of the reference and other vehicles
are computed. The residual error between vehicles Vi and VRef
at tj is denoted as rij

rij = zij − zRefj. (15)

The collection of all residual errors forms the residual error
matrix, which is denoted as

Mr =

⎛
⎜⎜⎜⎝

r11 r12 · · · r1K

r21 r22 · · · r2K
...

...
. . .

...

rN1 rN2 · · · rNK

⎞
⎟⎟⎟⎠. (16)

This simple step could effectively exclude the influence of
the motion since the movement of the target vehicle has the
same effect on observations of all cooperating vehicles. Thus,
such an effect is naturally canceled out after the subtraction
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between the reference and other vehicles. Therefore, comput-
ing residual error matrix Mr already excludes the influence
of the motion. With this property, we can average different
columns of Mr directly to obtain the mean residual errors of all
cooperative vehicles, which avoids bringing in the prediction
process and any additional noises (hence overcomes the first
inherent disadvantage of DMMSD). Moreover, this property
also brings the variance reduction ratio to the theoretical lower
bound and reduces the computation complexity by replacing
the computation-heavy prediction process with simple residual
error computing.

Similar to (14), we use N mean residual errors as the mean
residual error vector, which will be used in the third step of
MRED and denoted as

R̄ = (
r̄1 r̄2 · · · r̄N

)T
. (17)

2) Squared Residual Error in MRED: The mean residual
error vector R̄ plays the same role as the mean state vector Z̄
in DMMSD. Thus, to detect the continuous and sparse random
attack, one still need another indicator which can character-
ize the fluctuation of the observation sequence. The squared
residual error is exactly what is needed.

Briefly speaking, if any particular vehicle Vi is conducting
a continuous or sparse random attack, the mean residual error
r̄i between this vehicle and the reference can be quite small
due to the potential cancellation between positive and nega-
tive residual errors at different time instants. Nevertheless, the
mean of squared residual error r̄2

i will be abnormally large

because of the nonnegative property of r2
ij, which means r̄2

i
actually plays a similar role as the desired but unachievable
variance indicator in DMMSD to detect continuous and sparse
random attacks.

By elementwise squaring the residual error matrix Mr, we
can obtain the matrix of the squared residual error M2

r

M2
r =

⎛
⎜⎜⎜⎝

r2
11 r2

12 · · · r2
1K

r2
21 r2

22 · · · r2
2K

...
...

. . .
...

r2
N1 r2

N2 · · · r2
NK

⎞
⎟⎟⎟⎠. (18)

Similarly, the mean of squared residual error vector R̄2 is
written as

R̄2 =
(

r̄2
1 r̄2

2 · · · r̄2
N

)T
. (19)

3) Pairwise Consistency Check and Clustering: After
obtaining R̄ and R̄2, the final step of MRED is also consistency
check and clustering.

The essence of consistency check is to determine whether
there are mean predictions or mean residual errors deviat-
ing from the majority in the state space. In DMMSD, the
MMSE of Z̄, a global indicator formed by all elements of Z̄,
is computed to find out inconsistency. Nevertheless, since the
difference between observations of other vehicles and the ref-
erence (residual error and squared residual error) are already
obtained in the previous two steps of MRED, computing pair-
wise rather than a global indicator is a much more effective
and appropriate way to perform the consistency check. Thus,

Algorithm 2 MRED

Input: Mz, Ll, Lu, L′
l, L′

u
Output: trust_table

1: Ref= Identity of an arbitrary vehicle
2: VecRef= state observations of reference
3: Mr = Mz − VecRef
4: R̄ = mean of all columns of Mr
5: M2

r = (Mz − VecRef)
2

6: R̄2 = mean of all columns of M2
r

7: if ∀i, Ll < R̄i < Lu then
8: all vehicles are marked as benign in trust_table_1
9: else

10: ResCluster_1 = Clustering(R̄)

11: the bigger cluster → benign
12: the smaller cluster → malicious
13: convert the clustering result to trust_table_1
14: end if
15: if ∀i, L′

l < R̄2
i < L′

u then
16: all vehicles are marked as benign in trust_table_2
17: else
18: ResCluster_2 = Clustering(R̄2)

19: the bigger cluster → benign
20: the smaller cluster → malicious
21: convert the clustering result to trust_table_2
22: end if
23: trust_table = trust_table_1 & trust_table_2

a pairwise consistency check is adopted in MRED and the fol-
lowing theorem gives the criterion to determine whether there
are malicious users.

Theorem 2: If ∃i ∈ {1, 2, . . . , N}, r̄i /∈ [Ll, Lu] or r̄2
i /∈

[L′
l, L′

u], then Vi or VRef is a malicious user. Otherwise, all
cooperative vehicles are benign. Ll, L′

l and Lu, L′
u are proper

lower and upper bounds.
Proof: See Appendix C.

After the pairwise consistency check, if the existence of
malicious user is confirmed, clustering in the MRED algorithm
is completed in the same way as in DMMSD; K-means clus-
tering on R̄ and R̄2 generates two local trust table. Considering
mean residual error and the mean of the squared residual error
are designed for detecting different types of attacks, so we use
AND operation to integrate two local trust tables (boolean vec-
tors) and form the global trust table, which ensures that MRED
is immune to all types of attacks defined in Section III-D. The
pseudocode of MRED is shown in Algorithm 2.

So far, the procedures of MRED and the principles behind
them have been thoroughly interpreted. However, before pre-
senting the evaluation results, we want to digress here to
explain why the reputation management-based detection is
not further adopted after MRED finishes, since in Sections I
and II-A, we did mention that it can be utilized once feedback
is generated by data processing algorithm. The major reason
is that it is difficult for a reputation management-based detec-
tion framework to react to malicious behavior in a real-time
manner. A qualitative illustration is presented as follows. For
instance, malicious users may act with normal behavior over
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a period of time to first obtain a sufficiently high reputation
score before attacking. Then, for an extremely short duration
(e.g., one or several discrete-time instants), they conduct a
coordinated sparse random attack together. In this scenario,
sparse attack will be detected by the proposed algorithms
(e.g., MRED) and the negative feedback will be generated,
while the reputation score of malicious users will not fall
below the threshold immediately since their reputation score
is sufficiently high to afford a few negative feedbacks (being
detected by MRED) before dropping too much. Therefore, the
bogus observations for those several time instants will bypass
reputation-based detection and cause deviation in mobility esti-
mates, which may expose vehicles to great danger considering
that the AD, ITS, and IoV are highly dynamic scenarios. By
contrast, the detection in MRED is naturally real time since the
detection result is based on the trust table which is regenerated
at every time instant. Therefore, considering the strict real-time
detection requirement in a highly dynamic cooperative mobil-
ity tracking scenario, using the raw feedback (trust value in
the trust table) generated by MRED to detect malicious users
would be a more suitable approach.

V. PERFORMANCE EVALUATION

A. Simulation Setup and Parameter Settings

In this section, we evaluate our algorithms by comparing
their performance with the detection and filtering algorithms
that are originally designed for WSN. Although MNDC algo-
rithm [26] has the best performance in existing detection
algorithms designed for WSN, it is only designed for static
scenario and inapplicable to cooperative mobility tracking sce-
nario. Thus, we turned classical CMMSE from [24] into a
sequential enhanced version, SeqMMSE, and compare it with
DMMSD and MRED. Two classical filtering algorithms LMS
estimation from [34] and MMAE estimation used in [35] and
[36] are selected as representatives of filtering algorithms in
our comparisons.

Since the proposed and existing algorithms all process posi-
tion and velocity information in state observations indepen-
dently, without loss of generality, in our following evaluation,
we assume bogus observations only exist in the position
information to simplify the simulation scenario for better fig-
ure readability. The true trajectory of the target vehicle is
plotted as the blue line in Figs. 4(a), 5(a), and 6(a), which
is obtained by a typical lane changing action. To further
reduce the number of simulation parameters, we assume that
bogus position information only deviates from true position
information in the Y direction. Parameters of our simulation
are listed in Table I and the performance of the proposed
and existing algorithms are evaluated under three types of
coordinated attack in the following sections.

B. Coordinated Continuous Trajectory Attack

In coordinated continuous trajectory attack simulation, the
malicious trajectory ym[j] agreed by all malicious users is
assumed to be obtained by adding a constant malicious devi-
ation in Y direction εm to the true trajectory yt[j] of the target
vehicle, i.e., ym[j] = yt[j] + εm.

TABLE I
SIMULATION PARAMETERS

1) Detection Rate Comparison: True-positive rate (TPR)
and false-positive rate (FPR) are essential indicators to evalu-
ate the performance of detection algorithms. Thus, we first
compare the TPR and FPR of SeqMMSE, DMMSD, and
MRED with varying malicious deviation εm and the vari-
ance of malicious data σ 2

m in Fig. 3. As shown in the
figures, DMMSD and MRED outperform SeqMMSE eas-
ily with higher TPR and lower FPR, so only DMMSD and
MRED will be selected as representatives of the detection
algorithms and be further compared with filtering algorithms
in the following part.

2) Cooperative Tracking Performance Comparison: To
compare the proposed algorithms with filtering algorithms
LMS and MMAE, here we adopt the trajectory estimates and
root mean square error (RMSE) as the performance indicators.
The performance of different algorithms is shown in Fig. 4.
It is clearly shown in Fig. 4(a) that the trajectory estimate of
LMS has several sharp pulses. and the estimate of MMAE
has an observable deviation in Y direction due to the bogus
information. In contrast, estimates of DMMSD and MRED are
much more stable and closer to the true trajectory of the tar-
get vehicle. RMSE curves with a varying number of malicious
users in Fig. 4 provide us with more information. RMSEs of
estimates of LMS, DMMSD, and MRED are quite stable as the
number of malicious users increases, but RMSEs of DMMSD
and MRED are significantly lower than LMS and just slightly
above the RMSE curve of the “Ground Truth” (where no mali-
cious exist). Though the RMSEs of DMMSD and MRED are
slightly higher than MMAE when the ratio of malicious users
is relatively low, this is actually a reasonable result caused by
the detection property of DMMSD and MRED.

A brief explanation is given here: to make proposed algo-
rithms more generalized and resistant to different types of
attack, it is desirable to make the detection rate more bal-
anced, i.e., make the TPR slightly smaller than 1 and FPR
slightly larger than 0, instead of pushing one of them to the
best. Therefore, when the ratio of malicious users is low, TPR
smaller than 1 and FPR larger than 0 may cause few malicious
users being regarded as benign and some benign vehicles being
regarded as malicious. Consequently, RMSEs of the detection
algorithms are slightly higher than MMAE. Though one is able
to increase TPR or decrease FPR by fine-tuning parameters in
the consistency check step, it often comes with the price of
a significant increase in FPR or decrease TPR according to
our test. To get a balanced and robust performance in all the
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(a)

(b)

Fig. 3. TPR and FPR under continuous trajectory attack. (a) With varying
deviation. (b) With varying variance.

malicious ratio, a little bit higher RMSE in the low malicious
ratio case is completely acceptable.

Quantitatively, RMSE of MRED is 16.2% higher than
MMAE and 10.7% lower than LMS in the worst case, while
72.8% and 20.9% lower than MMAE and LMS in the best
case, respectively. Since the detection algorithm has a funda-
mental influence on the reliability and security of cooperative
mobility tracking in AD and ITS, it is apparently wiser to
sacrifice a little bit precision for much stronger robustness.

C. Coordinated Continuous Random Attack

In coordinated continuous random attack simulations, bogus
observations reported by malicious users are assumed to have
a periodic positive and negative constant deviation εm from the
true trajectory of the target vehicle in Y direction. Compared
with deviation in continuous trajectory attack, εm is assumed

(a)

(b)

Fig. 4. Performance under coordinated trajectory attacks. (a) Trajectory
estimates. (b) RMSEs.

to be larger in order to compensate for its periodic change
and cause similar amount of deviation in the global estimate.
From Fig. 5(a), one can see that DMMSD cannot resist this
continuous random attack, which is consistent with the anal-
ysis in Section IV-B. Trajectory estimates and RMSE curves
presented in Fig. 5(a) and (b) both indicate that MRED is still
the most robust algorithm. RMSE of MRED is 13.6% higher
than MMAE in the worst case but 52.2% lower in the best
case. As for LMS and DMMSD, MRED easily outperforms
them in any malicious ratio.

D. Coordinated Sparse Random Attack

Compared with the coordinated continuous random attack,
bogus observations in coordinated sparse random attacks only
occur at some isolated time instants. To compensate for the
shorter duration, εm adopted in simulations is also set to
be larger than the one in the continuous random attack. In
Fig. 6(a), one can see that due to the very large deviation, the
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(a)

(b)

Fig. 5. Performance under coordinated continuous random attack.
(a) Trajectory estimates. (b) RMSEs.

trajectory estimates of DMMSD and LMS are severely dis-
torted at those attack moments. MMAE is better but still worse
than the proposed MRED algorithm. RMSE curves in Fig. 6(b)
have similar trend with those in Fig. 5(b). Quantitatively, the
RMSE of MRED is 18.2% higher than MMAE in the worst
case while 31.5% lower in the best case. Furthermore, if the
attack frequency increases, the advantage of MRED would be
more substantial.

E. Simulation Summary

In summary, the detection rate of MRED easily outperforms
the existing SeqMMSE detection algorithm and the RMSE
of MRED is about 0.6 m in almost any type of attack and
any malicious user ratio. All the evaluation results strongly
demonstrate the excellent robustness and precision of MRED
as compared with existing classical detection and filtering
algorithms.

(a)

(b)

Fig. 6. Performance under coordinated sparse random attack. (a) Trajectory
estimates. (b) RMSEs.

VI. CONCLUSION

In this article, we proposed two sequential detection algo-
rithms (namely, DMMSD and MRED) to exploit the temporal
correlation of mobility observation sequence to improve the
malicious user detection performance and provide coopera-
tive mobility tracking with stronger robustness against bogus
mobility information sent by malicious users. A secure mobil-
ity data exchange and fusion model was presented to integrate
the proposed detection algorithms with existing cooperative
tracking fusion algorithms and form a complete secure cooper-
ative mobility tracking framework. Furthermore, to character-
ize all the possible threats and develop a more comprehensive
testing benchmark for secure cooperative mobility tracking,
we introduced an extended threat model. With this compre-
hensive testing benchmark, the performances of MRED and
the existing filtering and detection algorithms are evaluated
under different attack patterns. The advantage of the proposed
MRED algorithm is clearly demonstrated with better detec-
tion accuracy and stronger robustness. Therefore, the MRED
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algorithm is appropriate to detect bogus mobility information
and the malicious users generating them, and secure the coop-
erative mobility tracking process. In the future, one may
consider the utilization of the correlation among acceleration,
velocity, and position of vehicles to conduct multilevel joint
sequential detection.

APPENDIX A
PROOF OF THEOREM 1

The four dimensions of state and observation vector s and
z are position and velocity in X direction and position and
velocity in Y direction as we introduced in (3), (5), and (6).
Without loss of generality, we assume the motions in X direc-
tion and Y direction are independent, so we only consider X
direction in the following derivations.

First, the variance of single prediction ẑ(j→K) from any par-
ticular cooperating vehicle is derived. For simplicity, we use
scalars x, v, a as the position, velocity observation from coop-
erating vehicle, and acceleration observation from IMU of VT .
According to the state transfer function (2), we have

xj+1 = xj + vj�t + 1

2
aj(�t)2 (20)

vj+1 = vj + aj�t. (21)

Then, we can get position and velocity prediction at tK from
the observation at t1

x̂1→K = x1 + �t
K−1∑
j=1

vj + 1

2
(�t)2

K−1∑
j=1

aj (22)

v̂1→K = v1 + �t
K−1∑
j=1

aj. (23)

Considering that we only have the velocity at t1, we need to
write x̂1→K as

x̂1→K = x1 + �t
K−1∑
j=1

v1 + (�t)2
K−1∑
j=1

j−1∑
k=1

ak + 1

2
(�t)2

K−1∑
j=1

aj.

(24)

All noises of x, v, and a in (23) and (24) are assumed to be
AWGN with known variance as mentioned in Section III-B.
Use σ 2

x , σ 2
v , and σ 2

a to represent their variances. Thus, the
variances of x̂1→K and v̂1→K can be derived as

D(x̂1→K) = D(x1) + (�t)2D

⎛
⎝

K−1∑
j=1

v1

⎞
⎠+ 1

4
(�t)4D

⎛
⎝

K−1∑
j=1

aj

⎞
⎠

+ (�t)4D

⎛
⎝

K−1∑
j=1

j−1∑
k=1

ak

⎞
⎠ (25a)

D
(
v̂1→K

) = D(v1) + (�t)2D

⎛
⎝

K−1∑
j=1

aj

⎞
⎠. (25b)

With further simplifications

D
(
x̂1→K

) = σ 2
x + (K − 1)2(�t)2σ 2

v + 1

4
(�t)4(K − 1)σ 2

a

+ (�t)4σ 2
a

[
12 + 22 + · · · + (K − 2)2

]
(26a)

D
(
v̂1→K

) = σ 2
v + (K − 1)2(�t)2σ 2

a . (26b)

A practical observation interval �t = 0.1 s is used in our
assumption. The variance of the observations of IMU is quite
small and the length of sequence K will not be larger than 30.
Therefore, the last two terms in (26a) are high-order small
amount and can be neglected. Then, the approximation of
D(x̂1→K) has the same form as D(v̂1→K), so we can use state
vector to integrate them and simplify the expression

D
(
ẑ1→K

) =
(

D
(
x̂1→K

)
D
(
v̂1→K

)
)

≈
(

σ 2
x + (K − 1)2(�t)2σ 2

v
σ 2

v + (K − 1)2(�t)2σ 2
a

)
. (27)

The form of variance of other prediction D(ẑj→K) is similar

D
(
ẑj→K

) ≈
(

σ 2
x + (K − j)2(�t)2σ 2

v
σ 2

v + (K − j)2(�t)2σ 2
a

)
. (28)

Eventually, the variance of the mean of state predictions D(z̄K)

can be obtained

D(z̄K) = D
(
ẑ1→K

)+ D
(
ẑ2→K

)+ · · · + D
(
ẑK→K

)

K2

≈ 1

K2

⎛
⎜⎜⎜⎜⎝

Kσ 2
x + (�t)2σ 2

v

(
K−1∑
j=1

j2
)

Kσ 2
v + (�t)2σ 2

a

(
K−1∑
j=1

j2
)

⎞
⎟⎟⎟⎟⎠

.

APPENDIX B
DISCUSSION ON THE SECOND DISADVANTAGE

OF DMMSD

It is natural to think of using variance estimate of all state
predictions of each vehicle as an indicator to check the fluctu-
ation of original observation sequence and determine the user
is benign or malicious. For instance, for any particular coop-
erating vehicle Vi observing VT , the variance estimate S2

i of
state predictions can be obtained as

S2
i =

K∑
j=1

[
ẑi(j→K) − z̄iK

]2
K − 1

. (29)

If state observations are from a benign user, the variance
estimate of state predictions is very likely to fall in a reason-
able range [Ll, Lu], where the lower and upper bounds Ll, Lu

are chosen properly according to the variance of a single obser-
vation. In contrast, the variance estimate of state predictions
from a malicious user is very likely to be out of this range if
it is conducting continuous or sparse random attack since the
fluctuations of those observations would be abnormally large.
So far, it seems that variance estimate can indeed be included
as a proper indicator in DMMSD. However, the further anal-
ysis below shows that it is challenging to precisely determine
Ll and Lu in DMMSD.

All dimensions of ẑi(j→K) and z̄iK follow the Gaussian
distribution, thus, ẑi(j→K) − z̄iK also follow the Gaussian distri-
bution. It is well known that if independent random variables
Xi(i = 1, 2, . . . , K) all follow the normalized Gaussian distri-
bution, the sum of the square of Xi will follow the χ -square
distribution. However, in our case, the variances of ẑi(j→K)

are different since different amount of noises are accumulated
in the process of prediction, which is clearly shown in (28).
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Therefore, each dimension of S2 only follows generalized
χ -square distribution, which does not have a closed-form prob-
ability density function. It means that we need to numerically
recompute Ll, Lu according to our desired confidence level in
every detection, which greatly increases the computation load
of the algorithm. Worse still, the square operation in (29) will
also enlarge accumulated noises and make it difficult to find
out the proper lower and upper bound Ll, Lu, which further
degrades the detection accuracy of the DMMSD algorithm
in the continuous and sparse random attacks. Therefore, it
is quite difficult to include a precise variance-based consis-
tency check to detect the continuous and sparse random attacks
in DMMSD.

APPENDIX C
PROOF OF THEOREM 2

The effectiveness and completeness of the pairwise consis-
tency check can be first proved in continuous trajectory attack
in all three cases as follows.

1) If reference and vehicle Vi are both benign, the resid-
ual error rij at tj would follow the Gaussian distribution
N (0, σ 2

i +σ 2
Ref), and then the corresponding mean resid-

ual error r̄i follows N (0, [(σ 2
i + σ 2

Ref)/K]). Therefore,
P{r̄i ∈ [Ll, Lu]} → 1 can be satisfied by choosing proper
bounds Ll, Lu according to the distribution.

2) For the selected reference and a cooperative user Vi,
if one of them is malicious and the other is benign,
P{r̄i ∈ [Ll, Lu]} will be significantly decreased since the
bogus observations usually have a large deviation from
the true state of the target vehicle as compared with
the normal unbiased noisy observations from a benign
vehicle. Thus, the mean residual error will remain abnor-
mally large after the averaging as compared with the
case where both vehicles are benign.

3) If both of them are malicious, r̄i is very likely to fall
in [Ll, Lu] since they are conducting coordinated attack
where the difference between their observation is small
as we assumed. Nevertheless, this situation will not
affect the detection since the consistency check step only
needs to determine whether there are malicious users
rather than identify all of them. Thus, as long as there are
benign vehicles, the pair of one malicious user and one
benign vehicle will always occur and then be detected
by the pairwise consistency check.

The detection of continuous and sparse random attacks
is almost the same except the indicator is switched to
squared residual errors. rij at tj follows the Gaussian distri-

bution N (0, σ 2
i + σ 2

Ref), then [(Kr̄2
i )/(σ

2
i + σ 2

Ref)] follows the
χ -square distribution χ(K). Thus, we can also find proper
bounds L′

l, L′
u to guarantee that if both the reference and Vi

are benign, P{r̄2
i ∈ [L′

l, L′
u]} → 1. The existence of malicious

users that are conducting continuous or sparse random attacks
will be detected if r̄2

i falls out of the range.
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