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Abstract—For autonomous driving of unmanned vehicles in
intelligent transportation systems, multi-vehicle cooperative per-
ception supported by vehicular networks can greatly improve the
accuracy and reliability of the perception decisions. Currently,
the perception decisions for a single vehicle are mostly provided
by neural networks. Therefore, in order to fuse the perception
decisions from multiple vehicles, the credibility of the neural
network outputs needs to be studied. Among various factors,
the environment is one of the most important affecting vehicles’
perception decisions. In this paper, we propose a new evaluation
criteria for the neural networks used in the perception module
of unmanned vehicles. This criterion is termed as Environmental
Sensitivity (ES), indicates the sensitivity of the network to
environmental changes. We design an algorithm to quantitatively
measure the ES value of different perception networks based
on the extracted features. Experimental results show that our
algorithm can well capture the sensitivity of the network in
different environments and the ES values will be helpful to the
subsequent decision fusion process.

Index Terms—Environmental sensitivity, multi-vehicle cooper-
ative perception, decision fusion, vehicular network

I. INTRODUCTION

Environmental perception is an important component in
autonomous driving for unmanned vehicles in the intelligent
transportation system. It provides the environmental informa-
tion to facilitate the decision making process for vehicles
[1]. The vision-based perception method is one of the most
prevalent perception schemes for unmanned vehicles [2]. It
takes the camera as the main sensor and accomplishes the
detection and tracking tasks mainly based on image data or
video data. However, in the actual driving environments, there
exist many occlusion and blind areas, as well as various
extreme weather conditions. These could result in a great
compromise on the perception range and accuracy, which
could further lead to fatal accidents.
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In order to address these problems and improve the safety of
autonomous driving in practical transportation systems, many
researchers proposed cooperative autonomous driving (see e.g.
[3]-[5]), where vehicles interact with surrounding vehicles
through the communication links among vehicles provided by
the vehicular network [6]—[8]. During the perception process,
each vehicle will share its own perception information with
other surrounding vehicles and fuse the information collected
throughout the vehicular network to obtain a more comprehen-
sive and accurate perception outcome. In the literature, most
work on multi-vehicle cooperative perception are based on the
fusion of raw sensing data (see e.g. [9], [10]), which introduces
heavy communication burden during the cooperation process
and might be impractical for the existing vehicular networks.
A more practical option is the cooperative perception at the
decision level, where the vehicles only share with each other
their local perception decisions, which mainly include the
category and location information of obstacles in the scene.

The credibility of local decisions is a key enabler of the
multi-vehicle decision fusion. In most existing researches on
environmental perception of autonomous vehicles such as
pedestrian detection [11], vehicle detection [12] and traffic
sign detection [13], the decisions are obtained through deep
learning which refers to a set of learning methods based on
neural network [14]. Therefore, to obtain the credibility of the
vehicles’ local perception decisions, it is necessary to evaluate
the output of the neural network. Compared with traditional
image processing methods, the deep learning technology has
many advantages in object detection and recognition: it has
strong expressive and learning capability to automatically learn
hierarchical features from a large number of data and optimize
multiple tasks at the same time [15]. However, it is difficult
to understand and explain the working principle of neural
networks, because the network parameters are empirically
learned from a large training dataset, lacking of rules and
boundaries. This makes the networks unable to report the
credibility of their outputs. Researchers have found that when
the network receives some abnormal inputs or inputs that
are very different from the training dataset, it often produces
some unexpected outputs with high confidence [16]. Although
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by increasing the training data size and conducting iterative
learning, the network errors can be reduced, in such an open
application scenario as the autonomous driving with a variety
of environments and unexpected inputs, decision errors would
almost be unavoidable. Meanwhile, a minor error of the
environmental perception network may lead to fatal accidents.
An example is the well-known Tesla autonomous driving
accident, which is due to the failure to detect a truck because
of the lighting condition. Therefore, given the potential errors
in the reported decisions, it is crucial to provide a scheme for
the neural networks to report quantified credibility on their
outputs.

As illustrated in the Tesla and several similar accidents,
environment such as lighting condition is a key factor that
affects the network performance for autonomous driving of
unmanned vehicles. Intuitively, when an unmanned vehicle
drives in an environment similar to a scene encountered during
the training process, the perception result should have a high
credibility, and when the driving environment changes and is
quite different from all the scenes in the training set, the output
of the network should have a low credibility. This is somewhat
similar to human drivers. However, the difference is that,
though human drivers may also make wrong decisions under
abnormal conditions, at the same time they will realize that
they have not encountered such environment before and their
perceptions under such environment are less credible and they
would make adjustments accordingly such as reducing speed
or suspending driving. Therefore, we say that human drivers
have environmental sensitivity. However, the existing neural
networks adopted by unmanned vehicles do not necessarily
have this capability. In order to study the credibility of network
outputs, it is necessary to first evaluate their ES.

The environmental changes that we focus on mainly refers
to the natural influences on the environment such as weather
and lighting conditions rather than simple scene changes. This
is because during driving the scene changes are usually slow,
while in a set of continuous scenes, the environmental changes
are often sudden such as sudden strong light, a rainstorm,
or dusty weather. These environmental changes may cause
the perception network to fail. If the network cannot even
realize that the current input is abnormal, the vehicle would
not know whether and how to take advantage of the multi-
vehicle cooperation. In other words, the premise of obtaining
the output credibility of the network is that the network has a
strong capability to perceive the changes of the environment,
i.e., when the input image data is influenced by some natural
conditions, the network is capable of recognizing the abnor-
mality, so as to give its own output a low credibility. Then,
the vehicle can seek cooperation from surrounding vehicles to
improve or correct its perception decisions.

In this paper, in the context of the multi-vehicle cooperative
perception in the vehicular network, we focus on the percep-
tion network for image processing and propose a new network
evaluation criteria, namely the Environmental Sensitivity (ES),
which evaluates the perception capability of a neural network
to environmental changes. Basically, we want to evaluate how

similar the images obtained from the same scene are under
different environments for neural networks. It should be noted
that the similarity as perceived by neural networks is quite
different from those by human beings. Images that are judged
to be similar by humans are not necessarily to be perceived
as similar by neural networks, as illustrated in the adversarial
examples [17]. Therefore, in order to capture the interpretation
of the images by neural networks, our similarity measure
or equivalently distance measure is based on the features
extracted by the network, which determines the final outputs
provided by the neural networks. By studying the distribu-
tion of image features collected from different environments
extracted by the network, we combine the inter-dispersion
and intra-dispersion to obtain the ES value. While network
accuracy has been widely adopted to evaluate the performance
of neural networks, the ES proposed in this paper is another
important evaluation criteria of neural networks and pays more
attention to the security and reliability of the network. Based
on this value, one can further model the credibility of network
output, which can be used in the fusion process of multi-
vehicle cooperative perception.

The rest of this paper is organized as follows. In Section II,
we present some related researches about neural network
evaluation and their limitations. In Section III, we introduce
our algorithm to quantify the ES. In Section IV, we use the
actual driving image data to verify our algorithm, and apply
the ES evaluation algorithm to four classical feature extraction
networks commonly adopted for detection tasks. Finally, we
summarize our work and analyze the significance of the idea
proposed in this paper to the follow-up work in Section V.

II. RELATED WORK

There are mainly two methods to evaluate the sensitivity
of neural networks in the literature. One is to find the lower
bounds of input data changes that are required to cause an error
in the network output [18], [19]. However, the computation
complexity of this method is very high. It is often based on the
estimation of closed-form solutions or experimented on small-
scale networks and is difficult to be extended to the large-scale
complex perception network for autonomous driving.

The other sensitivity evaluation method is testing based,
which tries to find the network bugs by generating a number of
testing examples. During this process, the generation of effec-
tive testing examples is the key issue. Two common practices
are adversarial attack and neuron coverage. Adversarial attack
based technique [20], [21] is to generate adversarial examples
[17] that attack the network and use the attack success rate
or minimum distortion of input to evaluate the network. For a
neural network, the easier it is to build an adversarial example,
the less robust and more sensitive the network is. Neuron
coverage based technique [22], [23] is to generate bad test
inputs by maximizing the neuron coverage [22] of network
and evaluate the sensitivity of the network according to the
testing. The larger the neuron coverage is, the more effective
the testing process is. Based on the neural coverage, some
improved coverage based techniques are also proposed [24].
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For the neural networks used in the perception module
of unmanned vehicles, the existing evaluation methods have
two major issues. The first is the lack of specific context.
Most researches on network evaluation rarely consider the
application scenario. They evaluate the network on several
arbitrarily selected applications, while no one can guarantee
that their approach will work for all scenarios. Autonomous
driving is a special scenario which contains more complex
and diverse environments. So its requirements for the stability
and reliability of the perception network are higher. Therefore,
more targeted evaluation methods for unmanned vehicle per-
ception module are needed. The second and more important
issue is that the evaluation criteria are not comprehensive.
The main concern of the existing network sensitive evaluation
methods is the range of inputs that a network can handle
correctly, which is certainly important, but not sufficient. In
autonomous driving, it is one thing for the perception network
to handle as many input types as possible, yet it is another
thing for the network to deal with different environmental
types. Hence, one needs to designate another measure to
evaluate a network’s sensitivity to the driving environment.

In this paper, we focus on the perception network for
automated driving and propose a new evaluation criteria,
which measures the capability of the network to perceive
environmental changes. Only when the network can distin-
guish environments with small differences into distinct classes,
it may have perception ability to recognize the abnormal
environments that do not exist in the training dataset. ES
is another evaluation criteria different from the accuracy. It
concerns more on the security and reliability of the network.

III. ES

ES measures the network’s capability to distinguish envi-
ronmental changes. The environmental changes that we mainly
focus on is the influences on the perception network imposed
by natural conditions. That is, by creating distortions to the
original images under different natural influences, we evaluate
the changes in the perception results of the network. We define
the images from the same environment as several photos taken
continuously by the camera under the same natural influences.

The ES value is calculated based on the features extracted
from the convolution layer in the perception network. On
the one hand, this is because feature extraction is a very
important step for the perception network and the subsequent
classification and regression tasks are based on these features.
On the other hand, the distance measures to distinguish input
images as perceived by neural networks is quite different from
those by human beings. While the human beings judge on the
original images, neural networks do not. Taking the instance of
adversarial examples [17], the small difference that is hard to
be detected by human will be considered as two completely
different inputs by the neural networks. Therefore, features
can be regarded as the abstract representation of the original
images perceived by the network.

ES includes two important factors: one is the inter-
dispersion, which indicates how disperse are the features of

different environments. The other is the intra-dispersion, which
indicates how dense are the features of the same environment.
The higher the feature dispersion of different environments,
the better the ability to distinguish different environments
of the network. The lower the feature dispersion of the
same environment, the better the environmental information
extracted by the network. Therefore, the higher the inter-
dispersion and the lower the intra-dispersion, the higher the
ES value. Fig. 1 is a 2D visualization example of the features
under two different environments. It can be seen that the
features of these two environments are well differentiated and
the image features from the same environment are relatively
concentrated, which shows that the network is sensitivity to
these two environments. In order to quantify the ES, we
consider the intra-dispersion and inter-dispersion respectively.
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Fig. 1. The distribution of features extracted from MobileNet-SSD.

Suppose there are K kinds of environments in total, which
are {C1,Co,...,Ck}, the number of features of each class
is denoted as {n1,na,...,nk}. Then, the total feature matrix
can be expressed as F' g, where d is the dimension of features
and n = n; +ng + ...+ ng is the total number of features.

In the distribution of environmental features, there might
be some abnormal features, which deviate from most features.
These abnormal features have an impact on the mean value
of all features. Therefore, we should consider the weighted
average value instead of the mean value of the features, where
the weight of each data is determined by the abnormal degree
of features. Suppose the data set whose mean value is to be
calculated is X = {@1,x2,...,x,,}. For data x;, its k-nearest
neighbor «; can be expressed as x; = Knn(ax;) where k
is usually a small value, and its k-nearest neighbor distance
represents the distance between x; and Knn(x;), expressed in
Eq. (1). The distance metric we use here is Euclidean distance,
denoted by L.

Dy (x;) = Lo(x;, Knn(x;)) = La(x;, ;) , (D

the weight of x; is calculated as follows:

Dk (ZIZZ) Dk ((BZ)
i = = ’ 2
= Dy (Knn(w)  Di (w) @
pi = max (a;,1) 3)
w; = e(=Api—1)) , (4)
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where a; in Eq. (2) is the ratio of k-nearest distance of data
x; to that of data «; = Knn(x;). If o; > 1, it indicates that
the density near x; is less than that near x;, so x; may be
an outlier. If o; < 1, it indicates that the density near x; is
greater than or equal to that near x;, so x; is a dense point
with respect to x;. Hence, we define the outlier factor p; in
Eq. (3) as the maximum value of «; and 1. If p; = 1, x; is not
an outlier. Otherwise, the larger the p;, the greater the outlier
degree of data ;. In Eq. (4), A is an adjustment parameter in
the exponential function, based on which, p; is mapped to the
weight of data x;, w;, with range from zero to one.

Given the weights of all data in X, the weighted average
value can be obtained as:

®)

Assuming the weight average vector of features in class C)
is mj, then the intra-dispersion matrix of class C; can be
expressed as:

Si= > (fi—m)(fi—m)", 6)

fiecj

where S; is a symmetric matrix, similar to the covariance
matrix, but without the expectation operation. The total intra-
dispersion matrix is the sum of all classes’ intra-dispersion
matrix, expressed as follows:

K
Sinwa = Y _ S - (7)
j=1

The inter-dispersion measures the distribution of features
among different classes. Assuming that m represents the mean
vector of all features, the inter-class dispersion matrix can be
expressed as:

K
Sinter = Z(m] —m)(m; — m)T ) (8)

Jj=1

The inter-dispersion matrix does not consider the inner data
distribution, but uses the weighted average vectors to represent
all features in the corresponding class and measures the
distribution of these weighted average vectors.

ES is the relative ratio between the inter-dispersion and the
intra-dispersion. For now, the dispersions are given in matrices.
In order to convert the matrix into scalar, we take the trace
of the matrix to represent the dispersion. This is because
both the intra-dispersion matrix and inter-dispersion matrix are
symmetric. The trace of the symmetric matrix is equal to the
sum of the eigenvalues, which can represent the dispersion of
the data in the projection direction of the eigenvector. So the
sum of eigenvalues can reflect the dispersion degree of data
distribution. As a result, ES can be expressed as:

- tr(Sinter)

ES = .
S tr(Sintra)

€))

IV. EXPERIMENTS

To illustrate the proposed measure, we conducted exper-
iments using the UA DETRAC data set [25], [26] which
consists of 10 hours of videos captured by a Cannon EOS
550D camera at 24 different locations at Beijing and Tianjin
in China. We assume that 100 consecutive images collected
by the camera are in the same scene. Based on the images in
the same scene, we simulate three different environments by
adding distortions due to different natural influences, including
rain, fog and strong light, and take the original images and
the three naturally distorted images as four different environ-
ments to evaluate the distribution of features extracted by the
network. Fig. 2 gives an example on the images with different
distortions under different environments.

(c) Fog

Fig. 2. The original image and the images under different environment
conditions.

High-dimensional features are usually so sparse that it is
difficult for the model to find the relations between fea-
tures, and the computational complexity of calculating the
distances among features is very high. So we use t-SNE (t-
Distributed Stochastic Neighbor Embedding) [27] to reduce
the high-dimensional features to two dimensions and carry
out the visualization and ES calculation in the two-dimensional
space. t-SNE is a nonlinear dimensionality reduction algorithm
for exploring high-dimensional data. It converts the high-
dimensional Euclidean distance into a conditional probability
distribution representing similarity, and constructs the proba-
bility distribution of these points in the low-dimensional space
to make the two probability distributions as similar as possible.
The advantage of t-SNE is that it can maintain the local
structure of the high-dimensional data, i.e., the points with
similar distance in the high-dimensional space are still similar
in the low-dimensional space. It is commonly used in high-
dimensional data visualization. The dimensionality reduction
process is similar to the data compression process, making
the feature distribution more compact while maintaining the
relative relationship between features as much as possible.

For comparative studies to illustrate our proposed ES
measure, we select four classic feature extraction networks:
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VGG16 [28], VGG19 [28], Inception-V3 [29] and ResNet50
[30], which are all pre-trained on ImageNet. It is a reasonable
practice because for most classification or detection tasks, the
convolution layers are usually fine tuned on the basis of these
pre-trained feature extraction networks.

We randomly select 200 scenes from the dataset, equivalent
to 20,000 original and 60,000 distorted images and evaluate
the ES of different networks for every scene based on these
images. We finally obtain the ES matrix with the size of
800 x 4. Because the value ranges of features in different
scenes are quite different, we normalized the ES values of
different networks in each scene using Z-score standardized
method [31], which can convert data of different magnitude
into uniform Z-score scores for comparison. The conversion
formula is as follows:

w _ B8y T M

i U
7

(10)

where ¢ € [1,800] is the index of the scene, j € {1,2,3,4} is
the index of the corresponding network, es;; is the original ES
value of the network j in the i-th scene, y; and o; are the mean
ES value and standard deviation value of different networks
in the i-th scene respectively, and es; is the normalized ES
value. After the normalization, we can obtained the normalized
ES matrix ES™.

Fig. 3 shows the distribution of features extracted by four
networks in three selected scenes. Different rows represent
different scenes, and four figures in each row represent the
distribution of features extracted by the four networks in the
same scene. The title of each figure gives the name of the
network generating the features and the ES value calculated
based on the feature distribution. It can be seen that the
performance of Inception-V3 is the worst in the three scenes.
The features of different environments are overlapped together
and cannot be distinguished well. The features extracted by
VGGI16 can be distinguished easily in scene (a) and scene (b).
However, in scene (c) the features of three environments are
mixed together and the distribution are very dispersed in each
environment. As for VGG19, its ES value is high in scene (a),
but the features in scene (b) and scene (c) are too dispersed,
resulting in the lower ES values. By comparison, ResNet 50
has the best performance in ES evaluation process based on
these three scenes. Its features are centralized within the class
and dispersed sufficiently among classes in scene (a) and (b).
In scene (c), though the features in rainy days are very close
to the original features, the distribution is still better than the
other three networks in the same scene with the highest ES
value.

In order to reflect the average ES level of each network, we
calculate the mean of ES values for every network respectively
based on the ES*, which is the result of all 200 scenes
studied. The results are presented in Table I. It can be seen
that the order of the four networks based on the average ES
values from high to low is ResNet50 > VGG16 > VGGI19 >
Inception-V3, which is basically consistent with the analysis
based on Fig. 3. This shows that our ES evaluation algorithm

can well reflect the sensitivity of network to the environmental
changes based on the corresponding feature distributions.

TABLE I
MEAN NORMALIZED ES VALUES OF FOUR NETWORKS
VGGI16 VGGI19 Inception-V3 ResNet50
mean ES | -0.09317394 | -0.24366768 -0.9122827 1.24912431

V. CONCLUSIONS

This paper presented a new neural network evaluation
criterion, namely the Environmental Sensitivity (ES), which
aims at the neural networks used in the perception module
of autonomous vehicles. This criterion is different from the
commonly adopted one, the accuracy. It concerns more about
the safety and reliability of the network, and is used to evaluate
the capability of the network to capture various environmental
changes. We designed the ES evaluation algorithm by mea-
suring the distribution of the features extracted by the neural
networks under different environments. In the experiments, we
used the algorithm to evaluate four commonly used feature
extraction networks and results showed that our algorithm can
well capture the sensitivity of the network to environmental
changes. Based on the work of this paper, according to a
network’s ES value, one can further model the credibility of
the network outputs, that is, the reliability of the perception
decision for a single vehicle. This can be used in the decision
fusion process of multiple vehicles in the vehicular network
so as to improve each vehicle’s perception performance.
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