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Abstract—For autonomous driving of unmanned vehicles in
intelligent transportation systems, multi-vehicle cooperative per-
ception supported by vehicular networks can greatly improve the
accuracy and reliability of the perception decisions. Currently,
the perception decisions for a single vehicle are mostly provided
by neural networks. Therefore, in order to fuse the perception
decisions from multiple vehicles, the credibility of the neural
network outputs needs to be studied. Among various factors,
the environment is one of the most important affecting vehicles’
perception decisions. In this paper, we propose a new evaluation
criteria for the neural networks used in the perception module
of unmanned vehicles. This criterion is termed as Environmental
Sensitivity (ES), indicates the sensitivity of the network to
environmental changes. We design an algorithm to quantitatively
measure the ES value of different perception networks based
on the extracted features. Experimental results show that our
algorithm can well capture the sensitivity of the network in
different environments and the ES values will be helpful to the
subsequent decision fusion process.

Index Terms—Environmental sensitivity, multi-vehicle cooper-
ative perception, decision fusion, vehicular network

I. INTRODUCTION

Environmental perception is an important component in

autonomous driving for unmanned vehicles in the intelligent

transportation system. It provides the environmental informa-

tion to facilitate the decision making process for vehicles

[1]. The vision-based perception method is one of the most

prevalent perception schemes for unmanned vehicles [2]. It

takes the camera as the main sensor and accomplishes the

detection and tracking tasks mainly based on image data or

video data. However, in the actual driving environments, there

exist many occlusion and blind areas, as well as various

extreme weather conditions. These could result in a great

compromise on the perception range and accuracy, which

could further lead to fatal accidents.
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R&D Project under Grant 2019B010153003, the open research fund of
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In order to address these problems and improve the safety of

autonomous driving in practical transportation systems, many

researchers proposed cooperative autonomous driving (see e.g.

[3]–[5]), where vehicles interact with surrounding vehicles

through the communication links among vehicles provided by

the vehicular network [6]–[8]. During the perception process,

each vehicle will share its own perception information with

other surrounding vehicles and fuse the information collected

throughout the vehicular network to obtain a more comprehen-

sive and accurate perception outcome. In the literature, most

work on multi-vehicle cooperative perception are based on the

fusion of raw sensing data (see e.g. [9], [10]), which introduces

heavy communication burden during the cooperation process

and might be impractical for the existing vehicular networks.

A more practical option is the cooperative perception at the

decision level, where the vehicles only share with each other

their local perception decisions, which mainly include the

category and location information of obstacles in the scene.

The credibility of local decisions is a key enabler of the

multi-vehicle decision fusion. In most existing researches on

environmental perception of autonomous vehicles such as

pedestrian detection [11], vehicle detection [12] and traffic

sign detection [13], the decisions are obtained through deep

learning which refers to a set of learning methods based on

neural network [14]. Therefore, to obtain the credibility of the

vehicles’ local perception decisions, it is necessary to evaluate

the output of the neural network. Compared with traditional

image processing methods, the deep learning technology has

many advantages in object detection and recognition: it has

strong expressive and learning capability to automatically learn

hierarchical features from a large number of data and optimize

multiple tasks at the same time [15]. However, it is difficult

to understand and explain the working principle of neural

networks, because the network parameters are empirically

learned from a large training dataset, lacking of rules and

boundaries. This makes the networks unable to report the

credibility of their outputs. Researchers have found that when

the network receives some abnormal inputs or inputs that

are very different from the training dataset, it often produces

some unexpected outputs with high confidence [16]. Although
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by increasing the training data size and conducting iterative

learning, the network errors can be reduced, in such an open

application scenario as the autonomous driving with a variety

of environments and unexpected inputs, decision errors would

almost be unavoidable. Meanwhile, a minor error of the

environmental perception network may lead to fatal accidents.

An example is the well-known Tesla autonomous driving

accident, which is due to the failure to detect a truck because

of the lighting condition. Therefore, given the potential errors

in the reported decisions, it is crucial to provide a scheme for

the neural networks to report quantified credibility on their

outputs.

As illustrated in the Tesla and several similar accidents,

environment such as lighting condition is a key factor that

affects the network performance for autonomous driving of

unmanned vehicles. Intuitively, when an unmanned vehicle

drives in an environment similar to a scene encountered during

the training process, the perception result should have a high

credibility, and when the driving environment changes and is

quite different from all the scenes in the training set, the output

of the network should have a low credibility. This is somewhat

similar to human drivers. However, the difference is that,

though human drivers may also make wrong decisions under

abnormal conditions, at the same time they will realize that

they have not encountered such environment before and their

perceptions under such environment are less credible and they

would make adjustments accordingly such as reducing speed

or suspending driving. Therefore, we say that human drivers

have environmental sensitivity. However, the existing neural

networks adopted by unmanned vehicles do not necessarily

have this capability. In order to study the credibility of network

outputs, it is necessary to first evaluate their ES.

The environmental changes that we focus on mainly refers

to the natural influences on the environment such as weather

and lighting conditions rather than simple scene changes. This

is because during driving the scene changes are usually slow,

while in a set of continuous scenes, the environmental changes

are often sudden such as sudden strong light, a rainstorm,

or dusty weather. These environmental changes may cause

the perception network to fail. If the network cannot even

realize that the current input is abnormal, the vehicle would

not know whether and how to take advantage of the multi-

vehicle cooperation. In other words, the premise of obtaining

the output credibility of the network is that the network has a

strong capability to perceive the changes of the environment,

i.e., when the input image data is influenced by some natural

conditions, the network is capable of recognizing the abnor-

mality, so as to give its own output a low credibility. Then,

the vehicle can seek cooperation from surrounding vehicles to

improve or correct its perception decisions.

In this paper, in the context of the multi-vehicle cooperative

perception in the vehicular network, we focus on the percep-

tion network for image processing and propose a new network

evaluation criteria, namely the Environmental Sensitivity (ES),

which evaluates the perception capability of a neural network

to environmental changes. Basically, we want to evaluate how

similar the images obtained from the same scene are under

different environments for neural networks. It should be noted

that the similarity as perceived by neural networks is quite

different from those by human beings. Images that are judged

to be similar by humans are not necessarily to be perceived

as similar by neural networks, as illustrated in the adversarial

examples [17]. Therefore, in order to capture the interpretation

of the images by neural networks, our similarity measure

or equivalently distance measure is based on the features

extracted by the network, which determines the final outputs

provided by the neural networks. By studying the distribu-

tion of image features collected from different environments

extracted by the network, we combine the inter-dispersion

and intra-dispersion to obtain the ES value. While network

accuracy has been widely adopted to evaluate the performance

of neural networks, the ES proposed in this paper is another

important evaluation criteria of neural networks and pays more

attention to the security and reliability of the network. Based

on this value, one can further model the credibility of network

output, which can be used in the fusion process of multi-

vehicle cooperative perception.

The rest of this paper is organized as follows. In Section II,

we present some related researches about neural network

evaluation and their limitations. In Section III, we introduce

our algorithm to quantify the ES. In Section IV, we use the

actual driving image data to verify our algorithm, and apply

the ES evaluation algorithm to four classical feature extraction

networks commonly adopted for detection tasks. Finally, we

summarize our work and analyze the significance of the idea

proposed in this paper to the follow-up work in Section V.

II. RELATED WORK

There are mainly two methods to evaluate the sensitivity

of neural networks in the literature. One is to find the lower

bounds of input data changes that are required to cause an error

in the network output [18], [19]. However, the computation

complexity of this method is very high. It is often based on the

estimation of closed-form solutions or experimented on small-

scale networks and is difficult to be extended to the large-scale

complex perception network for autonomous driving.

The other sensitivity evaluation method is testing based,

which tries to find the network bugs by generating a number of

testing examples. During this process, the generation of effec-

tive testing examples is the key issue. Two common practices

are adversarial attack and neuron coverage. Adversarial attack

based technique [20], [21] is to generate adversarial examples

[17] that attack the network and use the attack success rate

or minimum distortion of input to evaluate the network. For a

neural network, the easier it is to build an adversarial example,

the less robust and more sensitive the network is. Neuron

coverage based technique [22], [23] is to generate bad test

inputs by maximizing the neuron coverage [22] of network

and evaluate the sensitivity of the network according to the

testing. The larger the neuron coverage is, the more effective

the testing process is. Based on the neural coverage, some

improved coverage based techniques are also proposed [24].
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For the neural networks used in the perception module

of unmanned vehicles, the existing evaluation methods have

two major issues. The first is the lack of specific context.

Most researches on network evaluation rarely consider the

application scenario. They evaluate the network on several

arbitrarily selected applications, while no one can guarantee

that their approach will work for all scenarios. Autonomous

driving is a special scenario which contains more complex

and diverse environments. So its requirements for the stability

and reliability of the perception network are higher. Therefore,

more targeted evaluation methods for unmanned vehicle per-

ception module are needed. The second and more important

issue is that the evaluation criteria are not comprehensive.

The main concern of the existing network sensitive evaluation

methods is the range of inputs that a network can handle

correctly, which is certainly important, but not sufficient. In

autonomous driving, it is one thing for the perception network

to handle as many input types as possible, yet it is another

thing for the network to deal with different environmental

types. Hence, one needs to designate another measure to

evaluate a network’s sensitivity to the driving environment.

In this paper, we focus on the perception network for

automated driving and propose a new evaluation criteria,

which measures the capability of the network to perceive

environmental changes. Only when the network can distin-

guish environments with small differences into distinct classes,

it may have perception ability to recognize the abnormal

environments that do not exist in the training dataset. ES

is another evaluation criteria different from the accuracy. It

concerns more on the security and reliability of the network.

III. ES

ES measures the network’s capability to distinguish envi-

ronmental changes. The environmental changes that we mainly

focus on is the influences on the perception network imposed

by natural conditions. That is, by creating distortions to the

original images under different natural influences, we evaluate

the changes in the perception results of the network. We define

the images from the same environment as several photos taken

continuously by the camera under the same natural influences.

The ES value is calculated based on the features extracted

from the convolution layer in the perception network. On

the one hand, this is because feature extraction is a very

important step for the perception network and the subsequent

classification and regression tasks are based on these features.

On the other hand, the distance measures to distinguish input

images as perceived by neural networks is quite different from

those by human beings. While the human beings judge on the

original images, neural networks do not. Taking the instance of

adversarial examples [17], the small difference that is hard to

be detected by human will be considered as two completely

different inputs by the neural networks. Therefore, features

can be regarded as the abstract representation of the original

images perceived by the network.

ES includes two important factors: one is the inter-

dispersion, which indicates how disperse are the features of

different environments. The other is the intra-dispersion, which

indicates how dense are the features of the same environment.

The higher the feature dispersion of different environments,

the better the ability to distinguish different environments

of the network. The lower the feature dispersion of the

same environment, the better the environmental information

extracted by the network. Therefore, the higher the inter-

dispersion and the lower the intra-dispersion, the higher the

ES value. Fig. 1 is a 2D visualization example of the features

under two different environments. It can be seen that the

features of these two environments are well differentiated and

the image features from the same environment are relatively

concentrated, which shows that the network is sensitivity to

these two environments. In order to quantify the ES, we

consider the intra-dispersion and inter-dispersion respectively.

Fig. 1. The distribution of features extracted from MobileNet-SSD.

Suppose there are K kinds of environments in total, which

are {C1, C2, . . . , CK}, the number of features of each class

is denoted as {n1, n2, . . . , nK}. Then, the total feature matrix

can be expressed as F d×n where d is the dimension of features

and n = n1 + n2 + . . .+ nK is the total number of features.

In the distribution of environmental features, there might

be some abnormal features, which deviate from most features.

These abnormal features have an impact on the mean value

of all features. Therefore, we should consider the weighted

average value instead of the mean value of the features, where

the weight of each data is determined by the abnormal degree

of features. Suppose the data set whose mean value is to be

calculated is X = {x1,x2, . . . ,xm}. For data xi, its k-nearest

neighbor xj can be expressed as xj = Knn(xi) where k
is usually a small value, and its k-nearest neighbor distance

represents the distance between xi and Knn(xi), expressed in

Eq. (1). The distance metric we use here is Euclidean distance,

denoted by L2.

Dk(xi) = L2(xi,Knn(xi)) = L2(xi,xj) , (1)

the weight of xi is calculated as follows:

αi =
Dk (xi)

Dk (Knn(xi))
=

Dk (xi)

Dk (xj)
, (2)

ρi = max (αi, 1) , (3)

wi = e(−λ(ρi−1)) , (4)
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where αi in Eq. (2) is the ratio of k-nearest distance of data

xi to that of data xj = Knn(xi). If αi > 1, it indicates that

the density near xi is less than that near xj , so xi may be

an outlier. If αi ≤ 1, it indicates that the density near xi is

greater than or equal to that near xj , so xi is a dense point

with respect to xj . Hence, we define the outlier factor ρi in

Eq. (3) as the maximum value of αi and 1. If ρi = 1, xi is not

an outlier. Otherwise, the larger the ρi, the greater the outlier

degree of data xi. In Eq. (4), λ is an adjustment parameter in

the exponential function, based on which, ρi is mapped to the

weight of data xi, wi, with range from zero to one.

Given the weights of all data in X , the weighted average

value can be obtained as:

m =

n∑
i=1

wixi

n∑
i=1

wi

. (5)

Assuming the weight average vector of features in class Cj

is mj , then the intra-dispersion matrix of class Cj can be

expressed as:

Sj =
∑

f i∈Cj

(f i −mj)(f i −mj)
T , (6)

where Sj is a symmetric matrix, similar to the covariance

matrix, but without the expectation operation. The total intra-

dispersion matrix is the sum of all classes’ intra-dispersion

matrix, expressed as follows:

Sintra =

K∑

j=1

Sj . (7)

The inter-dispersion measures the distribution of features

among different classes. Assuming that m represents the mean

vector of all features, the inter-class dispersion matrix can be

expressed as:

Sinter =

K∑

j=1

(mj −m)(mj −m)T . (8)

The inter-dispersion matrix does not consider the inner data

distribution, but uses the weighted average vectors to represent

all features in the corresponding class and measures the

distribution of these weighted average vectors.

ES is the relative ratio between the inter-dispersion and the

intra-dispersion. For now, the dispersions are given in matrices.

In order to convert the matrix into scalar, we take the trace

of the matrix to represent the dispersion. This is because

both the intra-dispersion matrix and inter-dispersion matrix are

symmetric. The trace of the symmetric matrix is equal to the

sum of the eigenvalues, which can represent the dispersion of

the data in the projection direction of the eigenvector. So the

sum of eigenvalues can reflect the dispersion degree of data

distribution. As a result, ES can be expressed as:

ES =
tr(Sinter)

tr(Sintra)
. (9)

IV. EXPERIMENTS

To illustrate the proposed measure, we conducted exper-

iments using the UA DETRAC data set [25], [26] which

consists of 10 hours of videos captured by a Cannon EOS

550D camera at 24 different locations at Beijing and Tianjin

in China. We assume that 100 consecutive images collected

by the camera are in the same scene. Based on the images in

the same scene, we simulate three different environments by

adding distortions due to different natural influences, including

rain, fog and strong light, and take the original images and

the three naturally distorted images as four different environ-

ments to evaluate the distribution of features extracted by the

network. Fig. 2 gives an example on the images with different

distortions under different environments.

(a) Original (b) Rain

(c) Fog (d) Strong light

Fig. 2. The original image and the images under different environment
conditions.

High-dimensional features are usually so sparse that it is

difficult for the model to find the relations between fea-

tures, and the computational complexity of calculating the

distances among features is very high. So we use t-SNE (t-

Distributed Stochastic Neighbor Embedding) [27] to reduce

the high-dimensional features to two dimensions and carry

out the visualization and ES calculation in the two-dimensional

space. t-SNE is a nonlinear dimensionality reduction algorithm

for exploring high-dimensional data. It converts the high-

dimensional Euclidean distance into a conditional probability

distribution representing similarity, and constructs the proba-

bility distribution of these points in the low-dimensional space

to make the two probability distributions as similar as possible.

The advantage of t-SNE is that it can maintain the local

structure of the high-dimensional data, i.e., the points with

similar distance in the high-dimensional space are still similar

in the low-dimensional space. It is commonly used in high-

dimensional data visualization. The dimensionality reduction

process is similar to the data compression process, making

the feature distribution more compact while maintaining the

relative relationship between features as much as possible.

For comparative studies to illustrate our proposed ES

measure, we select four classic feature extraction networks:
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VGG16 [28], VGG19 [28], Inception-V3 [29] and ResNet50

[30], which are all pre-trained on ImageNet. It is a reasonable

practice because for most classification or detection tasks, the

convolution layers are usually fine tuned on the basis of these

pre-trained feature extraction networks.

We randomly select 200 scenes from the dataset, equivalent

to 20,000 original and 60,000 distorted images and evaluate

the ES of different networks for every scene based on these

images. We finally obtain the ES matrix with the size of

800 × 4. Because the value ranges of features in different

scenes are quite different, we normalized the ES values of

different networks in each scene using Z-score standardized

method [31], which can convert data of different magnitude

into uniform Z-score scores for comparison. The conversion

formula is as follows:

es∗ij =
esij − μi

σi
, (10)

where i ∈ [1, 800] is the index of the scene, j ∈ {1, 2, 3, 4} is

the index of the corresponding network, esij is the original ES

value of the network j in the i-th scene, μi and σi are the mean

ES value and standard deviation value of different networks

in the i-th scene respectively, and es∗ij is the normalized ES

value. After the normalization, we can obtained the normalized

ES matrix ES∗.

Fig. 3 shows the distribution of features extracted by four

networks in three selected scenes. Different rows represent

different scenes, and four figures in each row represent the

distribution of features extracted by the four networks in the

same scene. The title of each figure gives the name of the

network generating the features and the ES value calculated

based on the feature distribution. It can be seen that the

performance of Inception-V3 is the worst in the three scenes.

The features of different environments are overlapped together

and cannot be distinguished well. The features extracted by

VGG16 can be distinguished easily in scene (a) and scene (b).

However, in scene (c) the features of three environments are

mixed together and the distribution are very dispersed in each

environment. As for VGG19, its ES value is high in scene (a),

but the features in scene (b) and scene (c) are too dispersed,

resulting in the lower ES values. By comparison, ResNet 50

has the best performance in ES evaluation process based on

these three scenes. Its features are centralized within the class

and dispersed sufficiently among classes in scene (a) and (b).

In scene (c), though the features in rainy days are very close

to the original features, the distribution is still better than the

other three networks in the same scene with the highest ES

value.

In order to reflect the average ES level of each network, we

calculate the mean of ES values for every network respectively

based on the ES∗, which is the result of all 200 scenes

studied. The results are presented in Table I. It can be seen

that the order of the four networks based on the average ES

values from high to low is ResNet50 > VGG16 > VGG19 >
Inception-V3, which is basically consistent with the analysis

based on Fig. 3. This shows that our ES evaluation algorithm

can well reflect the sensitivity of network to the environmental

changes based on the corresponding feature distributions.

TABLE I
MEAN NORMALIZED ES VALUES OF FOUR NETWORKS

VGG16 VGG19 Inception-V3 ResNet50
mean ES -0.09317394 -0.24366768 -0.9122827 1.24912431

V. CONCLUSIONS

This paper presented a new neural network evaluation

criterion, namely the Environmental Sensitivity (ES), which

aims at the neural networks used in the perception module

of autonomous vehicles. This criterion is different from the

commonly adopted one, the accuracy. It concerns more about

the safety and reliability of the network, and is used to evaluate

the capability of the network to capture various environmental

changes. We designed the ES evaluation algorithm by mea-

suring the distribution of the features extracted by the neural

networks under different environments. In the experiments, we

used the algorithm to evaluate four commonly used feature

extraction networks and results showed that our algorithm can

well capture the sensitivity of the network to environmental

changes. Based on the work of this paper, according to a

network’s ES value, one can further model the credibility of

the network outputs, that is, the reliability of the perception

decision for a single vehicle. This can be used in the decision

fusion process of multiple vehicles in the vehicular network

so as to improve each vehicle’s perception performance.
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