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ABSTRACT
Blockchain is a distributed and decentralized ledger for recording
transactions. It is maintained and shared among the participating
nodes by utilizing cryptographic primitives. A consensus protocol
ensures that all nodes agree on a unique order in which records
are appended. However, current blockchain solutions are facing
scalability issues. Many methods, such as Off-chain and Directed
Acyclic Graph (DAG) solutions, have been proposed to address the
issue. However, they have inherent drawbacks, e.g., forming para-
site chains. Performance, such as throughput and latency, is also
important to a blockchain system. Sharding has emerged as a good
candidate that can overcome both the scalability and performance
problems in blockchain. To date, there is no systematic work that an-
alyzes the sharding protocols. To bridge this gap, this paper provides
a systematic and comprehensive review on blockchain sharding
techniques. We first present a general design flow of sharding pro-
tocols and then discuss key design challenges. For each challenge,
we analyze and compare the techniques in state-of-the-art solu-
tions. Finally, we discuss several potential research directions in
blockchain sharding.
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1 INTRODUCTION
The blockchain has become a key technology for implementing
distributed ledgers. It allows a group of participating nodes (or
parties) that do not trust each other to provide trustworthy and im-
mutable services. Distributed ledgers were initially used as tamper-
evident logs to record data. They are typically maintained by in-
dependent parties without a central authority, for example, in sys-
tems like SUNDR [1], SPORC [2], and Tamper-Evident Logging [3].
The blockchain became popular because of its success in crypto-
currencies, e.g., Bitcoin [4]. Blockchain stands in the tradition of dis-
tributed protocols for both secure multiparty computation and repli-
cated services for tolerating Byzantine faults [5]. With blockchain,
a group of parties can act as a dependable and trusted third party
for maintaining a shared state, mediating exchanges, and providing
a secure computing engine [6].
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Consensus is one of the most important problems in blockchain,
as in any distributed systems where many nodes must reach an
agreement, even in the presence of faults. Current consensus al-
gorithms are only applicable to small-scale systems because of
complexity, e.g., the Practical Byzantine Fault Tolerance protocol
(PBFT) [7] with less than 20 participating nodes. Scalability is an
issue that has to be addressed before adopting blockchain in large-
scale applications. Recently, many solutions have been proposed to
achieve the scale-out throughput by allowing participating nodes
only to acquire a fraction of the entire transaction set, for exam-
ple, an Off-chain solution [8], Directed Acyclic Graph (DAG) [9]
and blockchain sharding [10]. However, the off-chain solution is
more subject to forks and the transactions in the DAG layout are
not organized in a chain structure. Among all proposed methods,
sharding schemes seem to be the most effective candidate as it can
overcome both performance and scalability problems. A sharding
scheme splits the processing of transactions among smaller groups
of nodes, called shards. As a result, shards can work in parallel to
maximize the performance and improve the throughput while re-
quiring significantly less communication, computation, and storage
overhead, allowing the scheme to work in large systems [11].

Particularly, sharding technology utilizes the concept of com-
mittees. The term committee is also used to refer to a subset of
participating nodes that collaborate to finish a specific function.
The notion of committees in the context of consensus protocols
was first introduced by Bracha [12] to reduce the round complexity
of Byzantine agreement. Using committees to reduce the commu-
nication and computation overhead of Byzantine agreement dates
back to the work of King et al. [13, 14]. However, they provided
only theoretical results and the techniques cannot be directly used
in a blockchain setting. Sharding-based blockchain protocols can
increase the transaction throughput when more participants join
the network because more committees can be formed to process
transactions in parallel. The total number of transactions processed
in each consensus round by the entire network is multiplied by the
number of committees. For security reasons, a sharding scheme
needs to fairly and randomly divide the network into small shards
with the vanishing probability of any shard having an overwhelm-
ing number of adversaries.

Although sharding is promising, it still faces many specific de-
sign challenges. We need to identify key components in blockchain
sharding, understand the challenges in each component, and sys-
tematically study potential solutions to each challenge. To date,
there has been no systematic and comprehensive study or review
on blockchain sharding. To fill the gap, this paper presents a compre-
hensive and systematic study of sharding techniques in blockchain.
We identify the key components in sharding schemes and the major
challenges in each component. As a systematization of knowledge
on blockchain sharding, we also analyze and compare the state-of-
the-art solutions.
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The rest of the paper is organized as follows. Section 2 intro-
duces various models and taxonomies of blockchain systems. Sec-
tion 3 gives an overview of sharding. Section 4 discusses consensus
protocols. Section 5 presents the approaches to generating epoch
randomness. Section 6 discusses how to deal with cross-sharding
transactions. Section 7 discusses the reconfiguration of epochs. Sec-
tion 8 compares the state-of-the-art sharding protocols. Section 9
concludes this paper.

2 PRELIMINARIES
This section introduces variousmodels and taxonomies for blockchain
protocols, followed by discussion on typical blockchain settings
and scalability issues. In this paper, we consider the terms node,
replica, party, entity, and participant having the same meaning as
participating node.

2.1 Models in Blockchain
2.1.1 Communication Models. A consensus protocol for dis-

tributed systems is greatly dependent on the underlying commu-
nication network. Typically, we can categorize communication
networks into three types [15]: strongly synchronous, partially
synchronous, and asynchronous. A network is said to be strongly
synchronous if there exists a known fixed bound, δ , such that every
message takes at most δ time units to travel from one node to an-
other in the network. A network is said to be partially synchronous
if there exists a fixed bound, δ , on the network delay and one of
the following conditions holds: 1) δ always holds, but is unknown;
2) δ is known, but only starts at some unknown time. A network is
said to be asynchronous if there is no upper bound on the network
delay. It is worth mentioning that the communication network mod-
els also vary by the network adversarial models, e.g., adversarial
network scheduling models and oblivious adversarial models [16].

A consensus protocol mustmeet three requirements [17]: (a)Non-
triviality. If a correct entity outputs a value v , then some entity
proposed v ; (b) Safety. If a correct entity outputs a value v , then all
correct entities output the same value v; (c) Liveness. If all correct
entities initiated the protocol, then, eventually, all correct entities
output some value. Note that Fisher, Lynch and Paterson (FLP) [18]
proved that a deterministic agreement protocol in an asynchronous
network cannot guarantee liveness if one entity may crash, even
when links are assumed to be reliable. In an asynchronous system,
one cannot distinguish between a crashed node and a correct one.
Theoretically, deciding the full network’s state and deducing from
it an agreed-upon output is impossible. However, there exist some
extensions to circumvent the FLP result to achieve an asynchro-
nous consensus, e.g., randomization, timing assumptions, failure
detectors, and strong primitives [16].

2.1.2 Fault Models. We distinguish two types of fault consen-
sus: crash fault-tolerant consensus (CFT) and non-crash (Byzantine)
fault-tolerant consensus (BFT) [19]. Different failure models have
been considered in the literature, and they have distinct behaviors.
In general, a crash fault is where a machine simply stops all com-
putation and communication, and a non-crash fault is where it acts
arbitrarily, but cannot break the cryptographic primitives, e.g., cryp-
tographic hashes, MACs, message digests, and digital signatures.
For instance, in a crash fault model, nodes may fail at any time.

When a node fails, it stops processing, sending, or receiving mes-
sages. Typically, failed nodes remain silent forever although some
distributed protocols have considered node recovery. Tolerating the
crash faults (e.g., corrupted participating nodes) as well as network
faults (e.g., network partitions or asynchrony) reflects the inability
of otherwise correct machines to communicate among each other
in a timely manner. This reflects how a typical CFT fault affects
the system functionalities. At the heart of these systems typically
lies a CFT-based state-machine replication (SMR) primitive [20].
However, these systems cannot deal with non-crash faults, which
is also called Byzantine failure. In Byzantine failure models, failed
nodes may take arbitrary actions, including sending and receiving
messages that are specially crafted to break the consensus process.

Classic CFT and BFT explicitly model machine faults only. These
are then combined with an orthogonal network fault model, for
either synchronous or asynchronous networks. Thus, the related
work can be classified into four categories: synchronous CFT [21],
asynchronous CFT [22], synchronous BFT [23], and asynchronous
BFT [24] [25]. The Byzantine setting is of relevance to security-
critical settings and traditional consensus protocols that tolerate
crash failures only.

2.2 BFT Consensus Scalability
Sharding a blockchain largely relies on BFT consensus protocols to
reach consensus. However, most BFT protocols are limited in their
scalability, either in terms of network size (e.g., number of nodes)
or the overall throughput. The design space for improving them is
vast. We will use Practical BFT (PBFT) [7] as an example to explain
BFT scalability. The original PBFT protocol requires n = 3f + 1
nodes to tolerate up to f Byzantine faults. It has been shown not
to scale beyond a dozen nodes due to its quadratic communica-
tion complexity [26]. Typically, scaling protocols for BFT focuses
on either reducing the number of nodes required to tolerate f
Byzantine faults [27, 28], or reducing the protocol’s communication
complexity to allow larger network sizes [29].

Reducing the number of nodes. To tolerate f Byzantine nodes
that can equivocate in a quorum system like PBFT, quorums must
be intersected by at least f + 1 nodes [30]. Consequently, if a BFT
protocol requires n = 3f + 1, its quorum size is at least 2f + 1.
The smaller n means the lower communication cost incurred in
tolerating the same number of faults; it also means that for the same
number of nodesn, the network can tolerate more faulty nodes. One
way to reduce the number of nodes is to randomly select a small
set of consensus nodes, as a committee, to run a consensus process.
A smaller consensus committee can lead to better throughput, as
a smaller committee attains higher throughput due to lower com-
munication overhead. Sharding technology reduces the consensus
process within one shard. However, in this scenario, the security of
each shard, e.g., the ratio of the number of faulty nodes to the size
of a shard, will be the top concern. It can be mitigated by utilizing
some mechanisms, e.g., the epoch randomness, to guarantee the
“good majority” for each shard with a high probability [10].

Another way to reduce the number of nodes is to utilize tech-
niques to get down the n from 3f + 1 to 2f + 1. Those techniques
are mainly based on leveraging external components (e.g., the
trusted hardware) or lessening the system models. For example,
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BFT-TO [31], a hardware-assisted BFT, with less replicas, shows that
it is possible to implement a Byzantine SMR algorithm with only
2f + 1 replicas by expending the system with a simple trusted dis-
tributed component. Similarly, there exist a few other algorithms to
achieve the consensus with less replicas, such as A2M-BFT-EA [27],
MinBFT [32], MinZyzzyva [32], EBAWA [33], CheapBFT [34], and
FastBFT [35]. Besides, there also exist some other work to achieve
the same purpose by lessening the system models. For example, the
work in [36] improves the BFT threshold to 2f + 1 by utilizing a
relaxed synchrony assumption.

Reducing communication complexity. PBFT protocol has been
perceived to be a communication-heavy protocol. There is a long-
standing myth that BFT is not scalable to the number of participants
n, since most existing solutions incur the message transmission
of O(n2), even under favorable network conditions. As a result,
existing BFT chains involve very few nodes (e.g., 21 in [37]). Even
with a reduced network size, PBFT still has a communication com-
plexity of O(n2). Byzcoin [29] proposed an optimization wherein
the leader uses a collective signing protocol (CoSi) [38] to aggre-
gate other node’s messages into a single authenticated message.
By doing so, each node only needs to forward its messages to the
leader and verify the aggregate message from the latter. In this way,
by avoiding broadcasting, the communication complexity is re-
duced toO(n). Besides, there is some work [39] on utilizing trusted
execution environments (TEEs) (e.g., Intel SGX [40]) to scale dis-
tributed consensus. TEEs provide a protected memory and isolated
execution so that the regular operating systems or applications
can neither control nor observe the data being stored or processed
inside them [41]. Generally, a trusted hardware can only crash but
not be Byzantine. However, introducing trusted hardware into con-
sensus nodes is expensive, and specific knowledge is needed to
implement the protocol. Similarly, the security in this category can
be mitigated by using cryptograhic primitives, such as threshold
signatures [42] [43].

By splitting a network into multiple committees, sharding tech-
nology reduces the number of consensus nodes within committees
and further reduces the communication complexity.

2.3 Scalability in Sharding Blockchain
The blockchain scalability can be evaluated by two metrics: trans-
action throughput (e.g., the maximum rate at which the blockchain
can process transactions) and latency (e.g., the time to confirm that
a transaction has been included in the blockchain). Blockchain with
message communication complexity O(n) per node, where n is the
number of participating nodes, is typically referred to as a “scalable"
blockchain since its throughput will not decrease with the number
of participating nodes and the communication capacities in the
network. Sharding is one such solution that fairly and randomly
divides the network into small shards with vanishing probability
of any shard having an overwhelming number of adversaries.

In general, when considering scalability in sharding, it is re-
stricted to approaches targeting the blockchain’s core design, e.g.,
on-chain solutions, rather than techniques that delegate to parallel
off-path blockchain instances such as sidechains (one of the off-
chain solutions) [44]. Sharding based blockchain systems typically
operate in epochs (e.g., one epoch specifies the maximum time to

form one block): the assignment of nodes to committees is valid only
for the duration of that epoch. The number of committees scales
linearly to the amount of computational power available in the sys-
tem, and the number of nodes within a committee can be flexible.
Thus, as more nodes join the network, the transaction throughput
increases without adding to the latency, since messages needed
for consensus are decoupled from computation and broadcast of
the final block to be added to the blockchain. However, sharding
a blockchain is difficult because it must ensure some properties,
e.g., a transaction (i.e., spending some cryptocurrencies) is only
executed once on the entire network. If a transaction that should
happen only once executes more than once, it goes into a situation
of double spending [45]. Thus, we need to understand the essential
components on sharding-based blockchain system.

3 SHARDING OVERVIEW
Originally, sharding is a type of database partitioning technique that
separates a very large database intomuch smaller, faster, more easily
managed parts called data shards [46]. The term shard represents
a small part of the whole set. Technically, sharding is a synonym
for horizontal partitioning, which makes a large database more
manageable. The key idea of sharding in blockchain is to partition
the network into smaller committees, each of which processes a
disjoint set of transactions (or a “shard"). Specifically, the number
of committees grows linearly in the total computational power of
the network. And each committee has a reasonably small number
of members so they can run a classic Byzantine consensus protocol
to decide their agreed set of transactions in parallel.

3.1 Problem Definition
Assume that there exist n participating nodes having the same com-
putational power, a fraction f of which is controlled by a Byzantine
adversary. The network accepts transactions per block, e.g., a trans-
action i in block j is represented by an integer x ji ∈ ZN , where
ZN [47] is the ring of integers modulo N . All nodes have access
to an externally-specified constraint function C : ZN → {0, 1} to
determine the validity of each transaction. The sharding protocol
is to seek a protocol Π running between nodes which outputs a set
X which contains k separate “shards" or subsets Xi = {x

j
i }(1 ≤ j ≤

|Xi |) such that the following conditions hold:
• Agreement. Honest nodes agree on X with a probability of at

least 1 − 2−λ , for a given security parameter λ.
• Validity. The agreed shard X satisfies the specified constraint

function C , e.g., ∀i ∈ {1...k},∀x ji ∈ Xi ,C(x ji ) = 1.
• Scalability. The value of k grows almost linearly with the size

of the network.
The goal of sharding is to split the network into multiple commit-

tees, each processing a separate set of transactions (e.g.,Xi ) called a
shard, and the number of shards k grows near linearly on the size of
a network. Each shard needs to get an agreement localized within
a small committee, which makes the consensus procedure more
efficient. Typically, the computation and bandwidth used per node
stay constant regardless of n and k . For instance, in blockchain,
once the network agrees on the set X , it can create a cryptographic
digest of X and form a hash-chain with previously agreed sets
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in the previous runs of Π, which serve as a distributed ledger of
transactions.

3.2 Sharding Overview
Typically, the sharding protocol proceeds in epochs, each of which
decides on a set of values X =

⋃2s
i=1 Xi where 2

s is the number of
subsets Xi . The key idea is to automatically parallelize the available
computation power, dividing it into several smaller committees,
each processing a disjoint set of transactions or shards. We take
Elastico [10] as an example. The number of committees grows pro-
portionally to the total computation power in the network. All
committees, each of which has a small constant number c of mem-
bers, run a classical BFT consensus protocol internally to agree on
one block. For a decentralized system, it needs first to define the
membership, and there exist several ways to resolve a membership,
e.g., proof-of-work (PoW) [48], proof-of-stake (PoS) [49], proof-
of-storage [50], and proof-of-personhood [51]. A permissionless
sharding protocol typically consists of five critical components in
each consensus round.

1). Identity establishment and committee formation. To join in
the protocol, each node needs to establish an identitye.g., an identity
consisting of a public key, an IP address and a proof-of-work (PoW)
solution. Each node then is assigned to a committee correspond-
ing to its established identity. In this process, the system needs
to prevent the Sybil identity [52]. However, for a permissioned
blockchain, it does not require this process.

2). Overlay setup for committees. Once the committees are formed,
each node communicates to discover the identities of other nodes
in its committee. For a blockchain, an overlay of a committee is a
fully connected subgraph containing all the committee members.
Typically, this process can be done with a gossip protocol [53].

3). Intra-committee consensus. Each node within a committee
runs a standard consensus protocol to agree on a single set of
transactions. In this process, all honest members must agree on the
proposed block within its committee.

4). Cross-shard transaction processing. The transaction should
be atomically committed in the whole system. For cross-shard trans-
actions, the related shards need to get consistency. Typically, this
process requires a kind of “relay" transaction to synchronize among
related shards.

5). Epoch reconfiguration. To guarantee the security of the shards,
the shards need to be reconfigured, requiring a randomness. This
randomness will be used for the next epoch.

The above five points are the most critical components for a
permissionless blockchain sharding.

To design a sharding protocol, it needs to deal with several key
challenges. The first challenge is how to uniformly split all nodes
into several committees so that each committee has the major-
ity honest with high probability. Good randomness is a critical
component to partially address this challenge, which provides high-
entropy output [54]. However, achieving good randomness in a
distributed network is a known hard problem. Section 5 will provide
a detailed discussion on epoch randomness. The state-of-the-art so-
lution can only tolerate a small fraction of maliciousness (e.g., 1/6),
with excessive message complexity [55]. Typically, the adversary
is not static and can adaptively observe all the protocol runs. The

second challenge is how to guarantee that the adversary does not
gain a significant advantage in biasing its operations or creating
Sybil identities (if in public blockchain). Thus, due to the Byzantine
faults and network delays in real networks, the sharding protocol
must tolerate a varied rate of nodes creation and inconsistency
in views of committee members. For a permissionless blockchain,
the protocol also needs to deal with one more challenge since the
nodes have no inherent identities or external PKI to trust. A ma-
licious node can simulate many virtual nodes, thereby creating a
large set of sybils [56]. Thus, the protocol must provide an effective
mechanism to establish their identities to limit the number of Sybil
identities created by malicious nodes.

4 CONSENSUS PROTOCOLS
Sharding on blockchain requires consensus protocols to agree on
the proposed blocks. However, capturing a representative and longi-
tudinal view of a topic in blockchain consensus is challenging [57].
Different consensus protocols function differently in the overall
sharding procedure. This section presents the state-of-the-art con-
sensus protocols for blockchain sharding in a general way.

4.1 Consensus Classification
In general, protocols can be put in two categories when being
used in the blockchain sharding: PoX and BFT. We know Proof-
of-Work (PoW) mechanism on Bitcoin [4] and Proof-of-Stake (PoS)
on Ethereum [58]. Technically speaking, PoW and PoS are not the
decent “consensus protocol", whose mechanisms are used for de-
termining the membership or the stake in a Sybil-attack-resistant
fashion. Due to historical reasons, e.g., Bitcoin used PoW as a “con-
sensus" protocol to build a bitcoin blockchain, we literally categorize
them into consensus protocols. For example, in a hybrid consensus
(e.g., ByzCoin [29] and Hybrid Consensus [59]), the decent consen-
sus protocol (the algorithm for agreement on a shared history) is
separable from and orthogonal to the membership Sybil-resistance
scheme (e.g., PoW). Here we use Proof-of-X (PoX) to represent all
alternatives of proof-of-something (including PoW and PoS), and
use BFT to represent Byzantine-based consensus protocols. In a
sharding scheme, both PoX and BFT work together to achieve the
consensus process. Roughly speaking, both protocols have different
tasks in an overall sharding scheme, which is a dynamic committee
based scheme. PoX is typically used for committee formation (e.g.,
PoW in Elastico [10]) to establish the committee members and these
corresponding identifies, while BFT is used for the intra-committee
consensus, which is used within a committee to form the blocks.
Thus, it is necessary to introduce both PoX and BFT separately.

4.1.1 PoX. Most PoX-based consensus protocols require that
the participating node has some kinds of efforts or resources to
prove its validity as a miner. We take PoW and PoS as examples to
illustrate the PoX mechanisms.

PoW is also called Nakamoto consensus in blockchain after its
originator [48], proposed in 1992, for spamEmail protection. In PoW,
the nodes that generate hashes are called miners and the process is
referred to asmining. When applying PoW as a general consensus in
blockchain, it is subject to various kinds of attacks [4], such as forks,
double-spending attacks, and 51% attacks. These are the general
problems in PoW consensus. However, when implementing PoW
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into blockchain sharding protocols, due to running PoW locally,
special care is required, e.g., selfish mining [60]. Selfish mining
allows colluding miners to generate more valid blocks than their
computing power would normally allow if they were following the
standard protocol. These valid blocks are typically generated ahead
of time, so that the colluding miners withhold blocks that they have
found, and then select a favorite one to maximize these advantages,
e.g., controlling one shard. Thus, applying PoW into blockchain
sharding requires an agreed epoch randomness for each epoch. Still,
most of the state-of-the-art sharding protocols use PoW to establish
the membership for a shard.

Compared to PoW, PoS protocols replace wasteful computa-
tions with useful “work" derived from the alternative commonly
accessible resources. For example, participants of PoS vote on new
blocks weighted by their in-band investment such as the amount
of currency held in the PPCoin blockchain [49]. In general, PoS has
a candidate pool which contains all qualified participants called
stakeholders (e.g., the amount of stake is larger than a thresh-
old value) [61] [62]. A common approach is to randomly elect a
leader from the stakeholders, which then appends a block to the
blockchain. However, in blockchain sharding, PoS may be subject
to the grinding attacks [63], in which a miner re-creates a block
multiple times until it is likely that the miner can create a second
block shortly afterward. We should mention that PoS is not just
one but instead a collection of protocols. There exist many PoS
alternatives, such as Algorand [64], Ouroboros [58], Ouroboros
Praos [62], Ethereum [65], etc.

Besides the main PoS protocol, there exist other PoX-based al-
ternatives, which require miners to hold or prove the ownership of
assets. We list three alternatives: proof-of-deposit (PoD) [66], proof-
of-burn (PoB) [67] and proof-of-coin-age (PoCA) [68]. Readers are
referred to the corresponding papers for their details.

4.1.2 BFT. Most shard-based systems use classic BFT consen-
sus protocols, e.g., PBFT, as its intra-shard consensus protocol. In
this section, we focus on discussing the potential BFT consensus
protocols, or their novel compositions which can be tailored for use
as the consensus protocols, in blockchains. Roughly speaking, BFT
protocols can be classified into two categories: leader-based BFT
and leaderless BFT. Most BFT protocols are leader-based, e.g., PBFT
or BFT-SMaRt [69]; and leaderless protocols include SINTRA [70]
and HoneyBadger [71].

Actual systems that implement PBFT or its variants are much
harder to find than systems which implement Paxos/VSR [72]. BFT-
SMaRt [73], launched around 2015, is a widely tested implementa-
tion of BFT consensus protocols. Similar to Paxos/VSR, Byzantine
consensus, such as PBFT and BFT-SMaRt, expects an eventually
synchronous network to make progress. Without this assumption,
only randomized protocols for Byzantine consensus are possible,
e.g., SINTRA (relying on distributed cryptography) [70] and Hon-
eyBadger [71], which can achieve ennventual consensus on an
asynchronous network.

Still, many well-known blockchain projects use PBFT and BFT-
SMaRt protocols. For example, Hyperledger Fabric [74] and Ten-
dermint Core [75] implement PBFT as these consensus protocols;
Symbiont [76] and R3 Corda [77] use BFT-SMaRt as their consensus

protocols. We briefly discuss these two leader-based BFT consensus
protocols, which can be used as intra-shard consensus process.

PBFT. PBFT can tolerate up to 1/3 Byzantine faults. We briefly
describe its consensus procedures. One replica, the primary/leader
replica, decides the order for clients’ requests, and forwards them to
other replicas, the secondary replicas. All replicas together then run
a three-phase (pre-prepare/prepare/commit) agreement protocol
to agree on the order of requests. Each replica processes every
request and sends a response to the corresponding client. The PBFT
protocol has the important guarantee that safety is maintained
even during periods of timing violations, progress only depends
on the leader. On detecting that the leader replica is faulty through
the consensus procedure, the other replicas trigger a view-change
protocol to select a new leader. The leader-based protocol works
very well in practice and is suitable in blockchain, however, it is
subject to scalability issues.

BFT-SMaRt. BFT-SMaRt implements a BFT total-order multicast
protocol for the replication layer of coordination service [69]. It
assumes a similar system model as BFT SMR [25] [78]: n ≥ 3f + 1
replicas to tolerate f Byzantine faults, and unbounded number of
faulty-prone clients and eventual synchrony to ensure liveness.
Typically, the BFT-SMaRt consists three key components: Total
Order Multicast [79], State Transfer [80], and Reconfiguration [81].
We refer interested readers to [79–81] for the details.

Besides the above legacy leader-based BFT protocols and the
mentioned BFT protocols in Section 2.2, there exist several variants
or newly invented algorithms, e.g., Hotstuff [82], Tendermint [75],
and Ouroboros-BFT [83]. Due to the page limit, we refer interested
readers to the corresponding references for the details.

We now briefly discuss the leaderless BFT protocols. This type of
BFT protocols mainly target on the asynchronous settings, which
are based on the randomized atomic broadcast protocols. Unlike ex-
isting weakly/partially synchronous protocols, in an asynchronous
network, messages are eventually delivered but no other timing
assumption is made, as defined in Section 2.1. We take SINTRA [70]
and HoneyBadger [71] as examples to describe the leaderless BFT
protocols.

SINTRA [70]. SINTRA is a Secure INtrusion-Tolerant Replication
Architecture for coordination in asynchronous networks subject to
Byzantine faults. It is a system implementation based on the asyn-
chronous atomic broadcast protocol [84], which consists of a reduc-
tion from atomic broadcast (ABC) to common subset agreement
(ACS), as well as a reduction from ACS to multi-value validated
agreement (MVBA). Security is achieved through the use of thresh-
old public-key cryptography, in particular through a cryptographic
common coin based on the Diffie-Hellman problem that undelies
the randomized protocols in SINTRA.

HoneyBadger [71]. HoneyBadgerBFT essentially follows asyn-
chronous secure computing with optimal resilience [85], which
uses reliable broadcast (RBC) and asynchronous binary Byzantine
agreement (ABA) to achieve ACS. HoneyBadger cherry-picks a
bandwidth-efficient, erasure-code RBC (AVID broadcast) [86] and
the most efficient ABC to realize. Specifically, HoneyBadger uses
threshold signature to provide common coins for randomized ABA
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protocol, which achieves a higher throughput by aggressively batch-
ing client transactions.

Besides the above two leaderless BFT protocols, there exist
some other peer-reviewed and non-peer-reviewed works, such as
BEAT [87], and DBFT [88].

4.2 Committee Configuration
In the sharding protocol, the membership of a shard is dynamically
changed in each epoch to guarantee safety and security. A recon-
figurable committee needs some mechanisms to track committee
membership. This is related to how to configure the committees.
Typically, there are four ways to configure a committee within the
consensus process: static, rolling (single), full, and rolling (multiple).

Static: In a static setting, the committee members are not peri-
odically changed, which is a typical configuration in permissioned
systems. For example, Hyperledger [74] and RSCoin [89] are based
on this setting, where committee members have known and trusted
identities and its threat model does not include Sybil attacks.

Rolling (Single): The committee is updated in a sliding window
fashion, where new nodes are added to the current committee and
the oldest members are ejected. ByzCoin [29] adopts this scheme,
in which each node has a voting power proportional to the number
of mining blocks it has in the current window.

Full: This scheme is a lottery-based mechanism, such as Algo-
rand [64] and SnowWhite [90], to select the committee members for
each epoch using randomness generated based on previous blocks.

Rolling (Multiple): The committee swaps out multiple members
each time. For example, Omniledger [91] uses cryptographic sorti-
tion to select a subset of committees to be swapped out and replaced
with new members. This is done in a way that the ratio between
honest and Byzantine members in a committee is maintained.

We should mention that many blockchain mechanisms for com-
mittee configuration are not orthogonal and potentially complemen-
tary, instead ofmutually exclusive. For example, a largeHyperLedger-
like permissioned system could serve as a big “directory" from
which an OmniLedger-like random committee selection could take
place. Similarly, a ByzCoin-like rolling committee selection mecha-
nism based on PoX (e.g., PoW or PoS) could be used to drive the
selection of multiple independent committees for OmniLedger-like
sharded consensus, not just a signle committee as in ByzCoin.

In a sharding-based protocol, to maintain the committee’s safety
and security, it typically adopts either full or rolling (multiple) com-
mittee configuration schemes. To configure or reconfigure the com-
mittees, a good epoch randomness is required.

5 EPOCH RANDOMNESS
In blockchain sharding protocols, when multiple nodes are involved
in a consensus protocol, an important issue is how the participating
nodes are assigned to which committee so that the generated com-
mittee is “fair". For example, each generated committee requires
that it has a majority of honest nodes, and the ratio of faulty nodes
should not exceed a threshold that the consensus protocol specified
for that shard. One approach to assigning nodes to committees

is done statically according to a specified policy, in which it as-
sumes the existence of a random source or a trusted third party, e.g.,
RSCoin [89]. However, such approach can be problematic in a per-
missionless setting, which requires a shared random coin [92] [93].
Another approach is to dynamically allocate nodes to committees.
This dynamic allocation should be a randomized process, aiming
to stop an adversary from concentrating its presence in one com-
mittee, and exceeding the Byzantine tolerance threshold. However,
generating good randomness in a distributed manner is a known
hard problem. For example, the distributed random number gen-
erator in [55] can only tolerate up to 1/6 fraction of Byzantine
nodes, while still incurring a high message complexity. There ex-
ist other randomness generation schemes with different goals or
sychrony [94] settings, such as AVSS [84] and APSS [95] for asyn-
chronous communication model, RandHound and RandHerd [96]
for scalability in synchronous communication model. In this sec-
tion, we discuss the potential epoch randomness for sharding-based
protocols, and summarize the start-of-the-art epoch randomness
generation for blockchain.

5.1 Properties of Epoch Randomness
To generate a seed for sharding securely without requiring a trusted
randomness beacon [89] or binding the protocol to PoX, a good
distributed randomness generation is required to meet with several
features: public-verifiability, unbiasability, unpredictability, and
availability.

1). Public-Verifiability: A third party, e.g., not directly partaking
processes, should also be able to verify generated value. As soon
as a new random beacon value becomes available, all parties can
verify the correctness of the new value using public information
only.

2). Bias-Resistance: This is the assurance that any single partici-
pant or a colluding adversary cannot influence the future random-
ness beacon values to its own advantage.

3). Unpredictability: Participants (either correct or adversarial)
should not be able to predict or precompute future random beacon
values in advance.

4). Availability: This property shows that any single participant
or a colluding adversary should not be able to prevent the progress.

5.2 Randomness Generation Methods
Roughly speaking, there exist several ways to generate random-
ness, which can be considered as the baseline of bias-resistance
randomness generation. This section introduces these baselines,
including Verifiable Random Function (VRF) [97], Verifiable Secret
Sharing (VSS) [98], Public Verifiable Secret Sharing (PVSS) [99],
and Verifiable Delay Functions (VDF) [100] [101].

5.2.1 VRF. Intuitively, the idea behind a VRF is that Alice asks
Bob to compute a function fs on some input x . Only Bob is able
to compute fs as its result is dependent on some secret value s ,
which only Bob knows. The result v = fs (x) has the property
of being unique and computationally indistinguishable from a
truly random string v ′ of equal length. Alice wants to be sure
that Bob indeed provided the unique correct result of the compu-
tations [102]. Formally, VRFs address the issue of unverifiability
of Pseudo-Random Functions (PRFs). Consider the case where a
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party computing fs (x1), fs (x2), ..., fs (xn ) claims the corresponding
outputs are o1,o2, ...,on . Without knowledge of s , an observer can-
not verify that applying fs to xi indeed yields the corresponding
output oi . As soon as s gets published, future output values are not
indistinguishable from truly random strings anymore. They get
fully predictable and can be efficiently computed by any party.

To obtain verifiability without compromising the unpredictabil-
ity property of future outputs, a party knowing the seed s publishes
v = fs (x) together with a proof proo fx . This proof allows verifica-
tion of the fact that v = fx (x) indeed holds without revealing s . It
is crucial that a party knowing s can only construct a valid proof
for a unique v for every x [97]. However, for the proof itself, there
is no uniqueness requirement. Some proposed solution is based
on interactive zero-knowledge proofs [97]. However, interactive
zero-knowledge proofs incur high communication complexity.

5.2.2 VSS. Secret sharing is a scheme to distribute a secret S
among a certain number of participants, each one receiving a part of
the secret, called a share. Shares can be combined by collaborating
participants to reconstruct the original secret. A (t ,n)-secret sharing
scheme is that any group of t (or more) out of n participants can
recover S from their shares. Shamir’s secret sharing protocol [103]
is based on polynomial interpolation. The key idea behind it is the
fact that given t points (x1,y1), (x2,y2), ..., (xt ,yt ) with different x-
coordinates, there is a unique polynomialp(x) of degree (t−1) going
through all of the points. However, Shamir’s secret sharing protocol
is based on an important assumption: the participants assume that
they are given correct shares. And this limits the ability to apply
this scheme in, e.g., fault-tolerant or even trust-less distributed
systems. For example, this assumption does not hold in Byzantine
fault tolerance systems. Thus, a verifiable secret sharing (VSS) is
required to protect against malicious dealers/participants.

5.2.3 PVSS. A PVSS scheme [99] [104] makes it possible for
any party to verify secret-shares without revealing any informa-
tion about the secrets or the shares. During the share distribu-
tion phase, for each trustee i , the dealer produces an encrypted
share Ei (si ) along with a non-interactive zero-knowledge proof
(NIZK) [105] to prove that Ei (si ) correctly encrypts a valid share si
of s . During the reconstruction phase, trustees recover s by pooling
t properly-decrypted shares. They then publish s along with all
shares and NIZK proofs showing that the shares were properly
decrypted. There also exist some optimized PVSS schemes, such as
SCRAPE [106]. Typically, PVSS runs in three steps:

1). The dealer chooses a degree t − 1 secret sharing polynomial
s(x) =

∑t−1
j=0 ajx j and creates, for each trustee i ∈ {1, ...,n}, an

encrypted share Ŝi = X
s(i)
i of the shared secret S0 = Gs(0). The

dealer also creates commitments Aj = Haj , where H , G is a
generator of д, and for each share a NIZK encryption consistency
proof P̂i , Afterwards, the dealer publishes Ŝi , P̂i and Aj .

2). Each trustee i verifies his share Ŝi using P̂i and Aj , and if
valid, publishes the decrypted share Si = (Ŝi )x

−1
i together with z

NIZK decryption consistency proof Pi .
3). The dealer checks the validity of Si against Pi , discards invalid

shares and, if there are at least t out of n decrypted shares left,
recovers the shared secret S0 through Lagrange interpolation.

We should notice that VRFs play a different role from VSS and
PVSS: VRFs allow individual parties to produce verifiable random-
ness, while both VSS and PVSS allow groups of parties to produce
collective randomness, a.k.a “common coins".

As a brief comparison between VSS and PVSS, VSS aims to resist
malicious share holders, in which there is a verification mechanism
for each share holder to verify validity of its share, while in PVSS,
not just the participants can verify their own shares, but anybody
can verfiy that the participants received correct shares. However,
most existing PVSS schemes are complex and inefficient, especially
in computation. PVSS schemes are typically “single-use", while VSS
schemes and the distributed key generation (DKG) algorithms built
from them can produce multi-use distributed threshold key pairs.

5.2.4 VDF. Essentially, a verifiable delay function (VDF) re-
quires a specified number of sequential steps to evaluate, yet pro-
duce a unique output that can be efficiently and publicly verified.
VDFs have many applications in decentralized systems, including
public randomness beacons, leader election in consensus protocols,
and proofs of replications. A VDF is a function f : X → Y that
takes a prescribed time to compute, even on a parallel computer.
However, once computed, the output can be quickly verified by
anyone. Moreover, every input x ∈ X must have a unique valid
output y ∈ Y. Specially, a VDF that implements a function X → Y
is a tuple of three algorithms:
• Setup(λ,T ) → pp is a randomized algorithm that takes a secu-

rity parameter λ and a time boundT , and outputs public parameters
pp.
• Eval(pp,x) → (y,π ) takes an input x ∈ X and outputs ay ∈ Y

and a proof π .
• Veri f y(pp,x ,y,π ) → {accept , reject} outputs accept if y is

the correct evaluation of the VDF on input x .
If (y,π ) ← Eval(pp,x) then Veri f y(pp,x ,y,π ) = accept , for all

x ∈ X and pp output by Setup(π ,T ). Besides, a VDF must satisfy
three properties: ϵ-evaluation time, sequentiality and uniqueness.
We refer interested readers to [100, 101, 107] for the details.

Besides the above randomness generation baselines, there exist
other works, such as random zoo [108], deterministic threshold
signatures [109] and distributed key generation [94].

5.3 Comparison
Epoch randomness generation in sharding protocols can be treated
as a separate module to provide randomness, so that the node can
be fairly assigned to the shards according to the public random-
ness. Thus, any efficient randomness generation algorithm can be
implemented as a separated module.

We provide a comparison of the state-of-the-art epoch random-
ness generation schemes, and discuss these approaches. In our
comparison, we do not only consider the protocols specifically
targeted at implementing random beacons, but also by including
approaches that can readily provide random beacon functionality
as a product of their intended applications, such as a provision
of a distributed public ledger. Our comparison mainly focuses on
the network models, its achieved properties, complexity evaluation
metrics, and the baseline technology. However, we must mention
that some characteristics were not specified or not available, so
we left them blank. Table 1 shows a comparison for generating
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Table 1: A comparison for generating public-verifiable randomness for blockchain
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Cachin et al. [110] Async yes uniq. thr. sig. ✓ ✓ ✓ O(n2) O(n) O(1)
RandShare [96] no PVSS ✗† ✓ ✓ O(n3) O(n3) O(n3)
Algorand [64] Semi-Syn no VRF 10−12 ↗ ✗ O(cn)∗ O(c)∗ O(1)∗

Ouroboros Praos [62] no VRF ✓ ↗ ✗ O(n)∗ O(1)∗ O(1)∗

Ouroboros [58]

Syn

no PVSS ✓ ✓ ✓ O(n3) O(n3) O(n3)
Proof-of-Work [4] no hash func. ✓ ↗ ✗ O(n) very high≀ O(1)

Proof-of-Delay [111] no hash func. ✓ ✓ ✓ O(n) very high≀ O(loд∆)◦

Caucus [112] no hash func. ✓ ↗ ✗ O(n) O(1) O(1)
Dfinity [113] yes⊕ BLS sig. 10−12 ✓ ✓ O(cn) O(c) O(1)
Scrape [106] no PVSS ✓ ✓ ✓ O(n3) O(n2) O(n2)

RandHound [96] no PVSS 0.08% ✓ ✓ O(c2n) O(c2n) O(c2n)
RandHerd [96] yes⊕ PVSS/Cosi 0.08% ✓ ✓ O(c2loдn)‡ O(c2loдn) O(1)
HydRand [114] no PVSS ✓ ✓↗ ✓ O(n2) O(n) O(n)

▽ provides an upper bound of failure probability for the parameterized protocol.
∗ represents that the randomness generation approach is not in a standalone way, it requires additional communication and verification
steps for underlying consensus protocols or implementation of e.g., bulletin board. In this table, these steps are not counted into the
complexity.
↗ provides the probabilistic guarantees for unpredictability, which quickly, e.g., exponentially in the waiting time, get stronger as the
longer a client waits after it commits to using a future protocol output. However, in HydRand, the unpredictability can be reached with
certainty only after f rounds.
⊕ In Dfinity and RandHerd, nodes are split into smaller groups, and within each of these groups, a distributed key generation protocol
is required.
† means that the protocol only provides liveness with additional synchrony assumption.
‡ depends on the relation between n and c . For example, assume that each node only sends a single message during the process of
generating a round’s randomness, already yields a complexity of O (n), which is higher than the stated O (c2loдn) for a constant group
size c and large n.
◦ means the verification process is executed within a smart contract via an interactive challenge/response protocol. The logarithmic
complexity O (∆) depends on security parameter ∆.
≀ shows the complexity is not dependent on the number of nodes n.

public-verifiable randomness for blockchain. About the complexity
evaluation, n refers to the number of the participants in the over-
all network, and if the protocols are based on clusters/subsets, c
denotes the size of some subset of nodes. And then the value c is
protocol dependent, and is typically a constant and negligible factor
for the resulting complexity in practice.

6 CROSS-SHARD TRANSACTIONS
To scale blockchain, transactions need to be distributed among mul-
tiple committees (or shards), and each shard processes a subset of
transactions in parallel. Typically, a transaction may have multiple
inputs and outputs. However, due to sharding technology, the inputs
and outputs of a transaction might be in different shards, and these
transactions are called cross-shard (or inter-shard) transactions. Due
to random distribution of the transactions in sharding protocols, a
cross-shard transaction can be considered as a global transaction,
which should be executed by different shards. To achieve a global
consistency among different shards, we need to carefully handle
the cross-shard transactions. Taking Unspent Transaction-Output

(UTXO) model as an example, it is expected that the majority of
transactions (e.g., more than 90% in [91]) are cross-sharded in a
traditional model, where UTXOs are randomly assigned to shards
for processing [10] [89]. For the Account/Balance transaction model,
the cross-shard transactions also can reach up to 90% when the
number of shards is more than 64 [115].

To enable value transfer between different shards thereby achiev-
ing shard interoperability, supporting for cross-shard transactions
is crucial in any sharded-ledger system. In this section, we first
describe a general transaction model, Unspent Transaction-Output
(UTXO), and present its potential issues in blockchain sharding pro-
tocols. Then we discuss potential techniques (e.g., atomic commit)
to deal with cross-shard transactions. Finally, we present the state-
of-the-art approaches to cope with the cross-shard transactions in
sharding.

6.1 Transaction Model
UTXO model is adopted by most blockchain protocols and dis-
tributed applications. It represents each step in the evaluation of a
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data object as a separate atomic state of the ledger. Such a state is
created by a transaction and destroyed (or “consumed") by another
unique transaction occurring later [74]. More specifically, in a typi-
cal UTXO model, an input represents the value that is to be spent
and output represents the new value that is created in response to
the input values’ consumption. We can think of inputs and outputs
representing different phases of the state of the same asset (e.g., in
asset management), where state includes its ownership (or shares).
Clearly, an input can be used only once, and stops being considered
in the system.

In a UTXO model, input fields implicitly or explicitly refer out-
put fields of other transactions that have not yet been spent. At
the validation time, verifiers need to ensure that the outputs refer-
enced by the inputs of the transactions have not been spent and
upon transaction-commitment we see them as spent. However, in
a multi-shard system, some transactions might involve a coordina-
tion between multiple shards. Such transactions might require to
access or manipulate the state that is handled by different shards.
The inter-shard consensus ensures that this takes place consistently
and atomically across all involved shards.

A simple but inadequate strawman approach to a cross-shard
transaction, is to concurrently send a transaction to all the corre-
sponding shards for processing. However, for a cross-shard transac-
tion, due to the separated verification processes, some shards might
commit this transaction while others might abort it. In such a case
the UTXOs at the shard who accepted the transactions are lost
as there is no straightforward way to roll back a half-committed
transaction, without adding exploitable race conditions. Thus, we
require to ensure the consistency of transactions between shards, to
prevent double spending and to prevent unspent funds from being
locked forever.

6.2 Atomic Commit
In multi-shard blockchain, it requires to guarantee the global trans-
actions with the properties of ACID [116]: Atomicity, Consistency,
Isolation, and Durability. Atomic Commitment (AC) protocol was
intially proposed to handle the global ACID transactions [117]. To
ensure the transaction atomicity in a blockchain sharding, we re-
quire the participants to agree on one output for the transaction:
either commit or abort, but not both.

One of the earliest and most commonly used protocols for atomic
commitment is the two-phase commit (2PC) protocol [118]. In a
2PC protocol, the global transaction manager (or called coordinator
node) sends a “prepare" message to all local transactions. The local
transactions try to become ready to commit, i.e., reach the ready
state. In this state, a local transaction has successfully finished all its
actions. To be able to follow a global commit decision, the changes
of the local transactions are written to a stable storage. Different to
the committed state, it is still possible to abort a local transaction
in the ready state [119]. In other words, the local transaction is able
to follow either a global commit or abort decision.

When it is required that every correct participant eventually
reaches an outcome despite the failure of other participants, the
problem is called Non-Blocking Atomic Commitment (NB-AC) [120].
Solving this problem enables correct participants to relinquish re-
sources (e.g., locks) without waiting for crashed participants to

recover. The 2PC algorithm solves AC but not NB-AC, whereas the
three-phase commit (3PC) algorithm [121] [122] solves NB-AC in
synchronous systems (when communication delays and process
relative speeds as bounded). The 3PC protocol introduces an ad-
ditional pre-commit state between the ready and commit states,
which ensures that there is no direct transaction between the
non-committable and committable states. This simple modification
makes the 3PC protocol non-blocking under node failure. However,
compared to the 2PC protocol, the 3PC protocol acts as the major
performance suppressant in the design of efficient distributed sys-
tems. It can be easily observed that the addition of the pre-commit
state leads to an extra phase of communication among the nodes.
Thus, it is necessary to design an efficient commit protocol for
geo-scale systems.

However, neither 2PC nor 3PC can be directly applied to the
blockchain sharding schemes without modification. For different
blockchain sharding schemes, they might have different assump-
tions among the shards, e.g., the trustworthiness among shards. A
practical cross-shard commit approach depends on its assumptions
and the threat models used. For example, Interledger [123] proto-
col enables transfers between ledgers, and ledger-provided escrow
removes the need to trust these connectors (e.g., each connector
functions as a trusted third party to provide the service to the pay-
ment sender [124]). Analogized to the blockchain sharding scheme,
it assumes that different shards (or alternatively blockchain) that we
want to perform atomic transactions across are mutually distrustful,
e.g., one might fail to be secure and/or live. The mutual distrusts
can further lead to DoS “account lockout" attacks, which is why
all these Interledger-type protocols require complex timeout-based
recovery mechanisms. In contrast, OmniLedger relies on the fact
that all shards can be assumed “by construction" to be both safe
and live, which means that the simple 2PC approach works fine in
that context, and the NB-AC problem does not need to be solved in
that threat model. But in OmniLedger the shards have to trust each
other. If we weaken the security of OmniLedger’s shard selection
so that shards no longer fully trust each other, then we need to
bring back more complex cross-shard commit protocols.

Thus, for different blockchain sharding schemes, they might
have different mechanisms to deal with the the cross-shard transac-
tions. We will discuss these different solutions for specific sharding
schemes.

6.3 Methods to Deal with Cross-shard
Transactions

Instead of presenting all possible AC protocols, this section presents
several state-of-the-art schemes to deal with cross-shard transac-
tions. Some of these schemes do not use the term “shard" but instead
using “committee" to deal with the cross-committee transactions,
both have the same meaning, i.e., one transaction involving multi-
ple independent entities. However, some sharding protocols, such
as Elastico, do not provide a clear or separated process to deal with
the cross-shard transactions.

6.3.1 RSCoin. RSCoin [89] is a cryptocurrency framework in
which central banks maintain complete control over the monetary
supply, but rely on a distributed set of authorities, or mintettes,
to prevent double-spending. The mintettes process the lower-level
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blocks, which form a potentially cross-referenced chain. The com-
munication between committee members takes place indirectly
through the client, and it also relies on the client to ensure com-
pletion of the transactions. A client first gets signed “clearance"
from the majority of the mintettes that manage the transaction
inputs. Next, the client sends the transaction and signed clearance
to mintettes corresponding to transaction outputs. The mintettes
check the validity of the transaction and verify signed evidence
from input mintettes that the transaction is not double-spending
any inputs. If the checks pass, the mintettes append the transaction
to be included in the next block. The system operates in epochs: at
the end of each epoch, mintettes send all cleared transactions to
the central bank, which collates transactions into blocks that are
appended to the blockchain.

However, client/user-driven atomic commit protocols are vul-
nerable to DoS if the client stops participating and the inputs are
locked forever. These systems assume that clients are incentivized
to proceed to the unlock phase. Such incentives may exist in a
cryptocurrency application where an unresponsive client will lose
its own coins if the inputs are permanently locked, but do not
hold for a general-purpose platform where inputs may have shared
ownership. Besides, RSCoin relies on a two-phase commit protocol
executed within each shard which, unfortunately, is not Byzan-
tine fault tolerant and can result in double spending attacks by a
colluding adversary.

6.3.2 Chainspace. Chainspace [125] is a recently proposed, sharded
smart contract platform with privacy built in by design. To enable
scalability on Chainspace, the nodes are organized into shards that
manage the state of objects, keep track of their validity, and record
transactions committed or aborted. The nodes ensure that only valid
transactions, consisting of encrypted or committed data, along with
the zero-knowledge proofs that assert their correctness, end up
on their shard of the blockchain. The nodes communicate with
the other shards to decide whether to accept or reject a transac-
tion via inter-shard consensus. Instead of a client-driven approach,
Chainspace runs an atomic commit protocol collaboratively be-
tween all the concerned committees. This is achieved by making
all the committees act as a resource manager for the transactions
they manage. To do this, Chainspace proposes a protocol called
Sharded Byzantine Atomic Commit or S-BAC, which combines exist-
ing Byzantine agreement and atomic commit protocols in a novel
way. In S-BAC Byzantine agreement securely keeps a consensus
on a shard of 3f + 1 nodes in total, containing up to f malicious
nodes. Atomic commit runs across all shards that contain objects
which the transaction relies on. The transaction is rejected unless
all of the shards accept to commit the transaction.

6.3.3 OmniLedger. OmniLedger [91] uses a Byzantine shard
atomic commit (Atomix) protocol to atomically process transac-
tions across committees, such that each transaction is either com-
mitted or aborted. Since both deploying atomic commit protocols
and running BFT consensus are unnecessarily complex, atomix uses
a lock-then-unlock process. OmniLedger intentionally keeps the
shards’ logic simple and makes any direct shard-to-shard commu-
nication unnecessary by tasking the client with the responsibility
of driving the unlock process while permitting any other party

(e.g., validators or even other clients) to fill in for the client if a spe-
cific transaction stalls after being submitted for processing. Atomix
takes a three-step (initialize/lock/unlock) protocol to deal with cross-
shard UTXO transactions. More specifically, the client first gossips
the cross-shard transactions to all their input shards. Then, Om-
niLedger takes a two-phase approach to handle atomic commit, in
which each input shard first locks the corresponding input UTXO(s)
and issues a proof-of-acceptance, if the UTXO is valid. The client
collects responses from all input committees and issues an “un-
lock to commit" to the output shard. Interested readers are referred
to [91] for the details.

Both OmniLedger and RSCoin heavily rely on the client to pro-
ceed with the cross-shard transactions, thus both protocols assume
that the client is the honest part. Typically, OmniLedger allows the
output committee to verify transactions independently; the trans-
actions have to be gossiped to the entire network and one proof
needs to be generated for a batch of transactions, potentially incur-
ring some communication overhead. Besides, OmniLedger depends
on the client to retrieve the proof which incurs extra burden on
typically lightweight client nodes.

6.3.4 RapidChain. In RapidChain [11], the user does not attach
any proof to transaction. It lets the user communicate with any
committee who routes transaction to its output committee via the
inter-committee routing protocol. RapaidChain considers a sim-
ple UTXO transaction tx =< (I1, I2),O > that spends coins I1, I2
in shard S1 and S2, respectively, to create a new coin O belong-
ing to shard S3. The RapidChain engine executes tx by splitting it
into three sub-transactions: txa =< I1, I ′1 >, txb =< I2, I ′2 >, and
txc =< (I

′
1, I
′
2),O >, where I

′
1 and I

′
2 belong to S3. txa and txb essen-

tailly transfer I1 and I2 to the output shard, which are spent by txc
to create the final output O . All thress sub-transactions are single-
shard. In case of failures, when, for example, txb fails while txa
succeeds, RapidChain sidesteps atomicity by informing the owner
of I1 to use I ′1 for future transactions, which has the same effect as
rolling back the failed tx . The cross-shard transaction in Rapid-
Chain has largely relied on the inter-committee routing scheme
which enables the users and committee leaders to quickly locate to
which committees they should send their transaction. To achieve
this, RapidChain builds a routing overlay network, at the commit-
tee level, which is based on a routing algorithm of Kademlia [126].
Specifically, each RapidChain committee maintains a routing table
of loд(n) records which point to loд(n) different committees which
are distance 2i for 0 ≤ i ≤ loдn − 1 away.

For cross-shard transactions in RapidChain, one drawback is
that, for each transaction, it creates three different transactions to
exchange information among shards. This inherently increases the
number of transactions to be proceeded, and the communication by
sending the extra transactions back to its input committees also in-
creases. It uses the committee’s leader to produce these transactions
without considering the status of a leader (e.g., malicious leader).
Also, the input committees include the created new transaction into
its leader. This behavior to some extent modifies the originality of
transactions. Besides, the cross-shard transaction largely depends
on the routing algorithm, which is a potential bottleneck.
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6.3.5 Discussion. Sharding protocols reduce the communica-
tion, computation and storage requirements of each node by di-
viding the blockchain into partitions, each stored by one of the
committees. The cross-shard transactions, however, makes the veri-
ficationmore challenging. Thus, an efficientmechanism to deal with
the cross-shard transactions is crucial in the design of a practical
blockchain sharding protocol.

Intuitively, there exist some fallacies about the client (who is a
coordinator to handle cross-shard transactions) or the shard con-
sensus leader. Taking OmniLedger and RSCoin as examples, one
fallacy is that if the client performs some malicious behaviors, then
the protocol could not proceed successfully. This is not the fact.
Both RSCoin and OmniLedger have backup “garbage collection"
strategies that enable the ledger (or other clients) to complete or
abort cross-shard transactions that failed or malicious clients might
leave uncompleted. It is not a complicated process, and just a matter
of ensuring that the “lock" phase records all the cross-shard transac-
tion information that a future garbage-collector or other interested
client needs to complete or abort the transaction that has an ac-
count of interest locked. Another fallacy is that the OmniLedger
uses the leader of a shard to issue and indicate acceptance or rejec-
tion; this might involve some problems, especially if the leader is a
malicious one. This is also not true. An OmniLedger shard’s leader
is merely the leader of a PBFT-sytle Byzantine consensus group, and
has no power to carry out any (malicious) behaviors itself without
getting them validated by a majority of honest nodes within the
same group. In other words, the “accept" or “reject" decision, like
all decisions that an OmniLedger shard makes, are products of (and
layered on top of) the PBFT state machine, and thus will always be
“correct" and “honest" and “non-malicious" because of PBFT, unless
the system’s basic security invariants are broken, e.g., leading to
fully-compromised with too many corrupted nodes.

How to efficiently handle the cross-shard transactions is a funda-
mental topic in most blockchain sharding protocols. When design-
ing an efficient mechanism to deal with cross-shard transactions, it
requires to consider several significant factors, e.g., the atomic com-
mitment scheme within the shard, the communication complexity
among the shards (e.g., the number of message exchanges), and
the transaction model. Technically, the transaction model affects
the cross-shard transaction mechanism significantly. We should
notice that for different applications, they might adopt different
transaction models. Currently, most of the state-of-the-art sharding
protocols are still based on the traditional cryptocurrency-based
UTXO model. However, for different transaction models, it might
result different storage requirements [127] [128].

Besides the garbage-collection mechanisms, there exist some
blockchain protocols, such as SideCoin [129] and RollerChain [130],
utilizing the distributed state snapshotting mechanism [131] to
record the blockchain’s recent status. And this state snapshotting
mechanism can be applied into sharding blockchain, e.g., Rapid-
Chain, to check the cross-shard transactions much quicker, and it
also can be used to reconfigure the committees of next epoch.

7 EPOCH RECONFIGURATION
Sharding protocols partition the consensus nodes into different
shards, so that each shard can process the transactions in parallel,

and hence improve the scalability of the whole system. However,
partitioning the nodes into shards in blockchain sharding intro-
duces new challenges when dealing with the phenomenon of the
churn. For example, corrupted nodes could strategically leave and
rejoin the shards, so that eventually they can take over one of
the shards and break the security guarantees of the blockchain
protocol. Moreover, the adversary can actively corrupt a constant
number of uncorrupted nodes in each epoch even if no nodes
join/rejoin [11]. Most current sharding protocols did not explic-
itly provide the approaches to deal with the epoch reconfiguration.
However, the epoch reconfiguration is critical to guarantee the
security of blockchain system.

Clearly, to prevent attacks from the adversary, e.g, corrupting
a specific shard, the adversary should not have the knowledge, in
advance, how the partition (reconfiguration) process works. This
requires that the partition process should not be affected by the
adversary who do not know which participating nodes will be
assigned to which shard ahead. Also, for each shard working cor-
rectly, it must guarantee that the majority of participating nodes
within each shard (e.g., at least 2/3 of the shard members) are
honest and follow the consensus protocol. One simple and naive
way is to leverage the randomness, discussed in Section 5. By ap-
plying the randomness on epoch reconfiguration, the probability
of one shard being bad is negligible (e.g., less than 10−7). In this
section, we present several state-of-the-art schemes to deal with
epoch reconfiguration, which typically rely on the (modified) epoch
randomness and the specific mechanisms together. We call epoch
reconfiguration and shard reconfiguration interchangeably in this
section.

7.1 Hash + Final Committee
One simple and naive approach for epoch reconfiguration is to re-
elect all committees periodically faster than the adversary’s ability
to generate the churn. A previous approach is used to generate
epoch randomness [132]. However, this solution tolerates at most
1/6 fraction of malicious nodes and only works for a small network
since it essentially bears an excessive message complexity. The
cryptographic hash operations can be used to achieve the same
purpose at some extent. In the last step of Elastico [10], it takes a
similar but optimized approach via the final committee (or called
consensus committee) to achieve epoch reconfiguration. The final
committee at the final step generates a set of random strings used
for next epoch. In general, Elastico consists of two main phases for
epoch reconfiguration.

In the first phase of the reconfiguration, each member of the final
committee chooses a r -bit random string Ri and sends a hashH (Ri )
to everyone in that committee. The final committee then runs an
interactive consistency protocol to agree on a single set of hash
values S [133] and broadcasts S to everyone in the network. This set
S contains at least 2c/3 (where c is the size of the final committee)
hash values and serves as a commitment to the random strings. In
the second phase, each member of the final committee broadcasts
a message containing the random string Ri itself to everyone (i.e.,
not just to the final committee). This phase starts only after the
agreement of S is done, i.e., having 2c/3 signatures on S . This is to
guarantee that honest members release their commitments only
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after they are sure that the committee has agreed on S and the
adversary cannot change its commitment. After the second phase,
each node in this system has received at least 2c/3 and at most
3c/2 pairs of Ri and H (Ri ) from members of the final committee,
since the honest members follow the protocol, while the malicious
nodes may choose not to release their commitments. Nodes discard
any random strings Ri that do not match the commitments H (Ri ).
Finally, the agreed-to set S is used to configure the next epoch.

However, there exist several weaknesses in this kind of epoch
reconfiguration. First, re-generating all the committees is very ex-
pensive due to the large overhead of the bootstrapping protocol.
Second, maintaining a separate ledger for each committee is chal-
lenging when several committee members may be fully replaced
in every epoch. Third, the randomness used in each epoch can be
biased by an adversary, and hence, compromise the committee se-
lection process and even allow malicious nodes to precompute PoW
puzzles. Besides, Elastico requires a trusted setup for generating
an initial common randomness that is revealed to all parties at the
same time.

7.2 DRG + PoW + Cuckoo Rule
RapidChain adopts a different approach to handle partial issues in
Elastico via Cuckoo rule [134] [135]. In general, the epoch recon-
figuration has three components: offline PoW, epoch randomness
generation, and reconfiguration process. The reconfiguration pro-
cess uses Cuckoo rule to re-organize only a subset of shardmembers
during the reconfiguration event that shards are balanced with re-
spect to their sizes as nodes join or leave the network.

RapidChain relies on PoW to protect against Sybil attack by re-
quiring every node who wants to join or stay in the protocol to
solve a PoW puzzle. In each epoch, a fresh puzzle is generated based
on the epoch randomness so that the adversary cannot precompute
the solutions ahead of the time to compromise the committees.
All nodes in RapidChain solve a PoW offline without making the
protocol stop and wait for the solution. Thus, the expensive PoW
calculations are performed off the critical latency path. The refer-
ence committee (CR ) in RapidChain is responsible to check the PoW
solutions of all nodes at the start of each epoch, and then agrees on
a reference block consisting of the list of all active nodes for that
epoch as well as their assigned committees.

To compute an offline PoW solution, an epoch randomness gen-
eration process is needed, in which the members of the reference
committee run a distributed random generation (DRG) protocol to
agree on an unbiased random value. CR includes the randomness
in the reference block so that other committees can randomize
their epochs. RapidChain uses a verifiable secret sharing (VSS) of
Feldman [98] to generate an unbiased randomness within the refer-
ence committee. Any new node who wishes to join the system can
contact any node in any committees at any time and request the
randomness of this epoch as a fresh PoW puzzle.

To assign the nodes to shards, it first maps each node to a random
position in [0, 1) using a hash function. Then the range [0, 1) is
partitioned into k regions of size k/n, and a committee is defined as
the group of nodes that are assigned to O(loд(n)) regions, for some
constant k . Awerbuch and Scheideler [134] propose the Cuckoo
rule to ensure that the set of committees created in the range [0, 1)

remain robust to join-leave attacks. Based on this rule, when a
node wants to join the network, it is placed at a random position
x ∈ [0, 1), while all nodes in a constant-sized interval surrounding
x are moved (or cuckoo’ed) to a new random position in [0, 1). It is
proved that given ε ≤ 1/2− 1/k in a steady state, all regions of size
O(loд(n))/n have O(loд(n)) nodes (i.e., they are balanced) of which
less than 1/3 are faulty, with high probability, for any polynomial
number of rounds.

7.3 VRF + Global Reconfiguration
Similar to Elastico, OminiLedger also runs a global reconfiguration
protocol at each epoch, e.g., once a day, to allow new participants
to join the protocol. The protocol generates identities and assigns
participants to shards using a slow identity blockchain protocol
that assumes the synchronous channels. In each epoch, a fresh
randomness is generated using a bias-resistant random generation
protocol that relies on a verifiable random function (VRF) [97]
for unpredicatble leader election in a way similar to the lottery
algorithm of Algorand [64]. Then, the protocol uses the elected
leader as the client in the RandHound [96] protocol to generate the
epoch randomness.

More specifically, at the beginning of an epoch, each validator
computes a ticket which contains all properly registered validators
of the current epoch (e.g., as stored in the identity blockchain) and
the view counter. Validators then gossip these tickets with each
other for a time δ , after which they lock in the lowest-value valid
ticket they have seen thus far and accept the corresponding node
as the leader of the RandHound protocol run. Once the validators
have successfully completed a run of RandHound and the leader
has broadcast randomness together with its correctness proof, each
of the registered validators can verify and use this randomness to
compute a permutation, and subdivide the result into approximately
equally-sized buckets, thereby determining the assignment of nodes
to shards.

8 STATE-OF-THE-ART SHARDING
PROTOCOLS

This section summaries a comparison of the state-of-the-art blockchain
sharding protocols in a more general way. We first summarize and
compare several state-of-the-art blockchain sharding protocols, and
then briefly discuss other protocols to deal with the scalability in
blockchain.

8.1 Comparision of State-of-the-art Sharding
Protocols

Table 2 provides a comprehensive comparison for the current classic
blockchain sharding protocols. Instead of considering the individual
protocols, we map out the landscape by extracting and evaluating
the high-level design themes in blockchain sharding schemes. The
system designer can have a general overview on these blockchain
sharding schemes. In this section, the terms committee and shard
have the same meaning.

In this comparison, we mainly focus on four aspects: protocol
settings, intra-committee consensus, inter-committee consensus,
as well as safety and their performances. Note that some properties
have already been described in the previous sections. The protocol
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Table 2: A comparison for sharding blockchain protocols

RSCoin
[89]

Chainspace
[125]

Elastico
[10]

OmniLedger
[91]

RapidChain
[11]

Committee
Formation Permissioned Flexible PoW Pow/PoX Offline PoW

Strong
Consistency ✓ ✓ ✓ ✓ ✓

Network Model ! Async Partial Sync. Partial Sync. Sync.

Single
Intra-committee

Consensus

Committee
Configuration Static Flexible Full Swap Rolling

(subset) Partical Swap

Incentives
(join, participate) (-, -) (✗, ✗) (✓, ✗) (✓, ✗) (✓, ✗)

Leader Internal Internal Internal Internal Internal
Msg. Compl† O(n) O(n2) O(n2) O(n) O(n)

Multiple
Inter-committee

Consensus

Inter-Committee
Configuration ✗ ✗

Dynamic
(Random)

Dynamic
(Random)

Dynamic
(Random)

Mediated Client ✗ ! Client ✗

Incentives ✗ ✗ ! ✗ ✗

Safety

TX Censorship
Resistance ✓ ✓ ✗ ✓ ✓

DoS
Resistance ✓ ✓∗ ✓ ✓ ✓

Adversary
Model 33% 33% 33% 33%‡ 33%

Performance
Throughput 2k tx/s 1 350 tx/s 2 16 blocks in 110s 3 ≈10k tx/s 4 ≈7,300tx/s 5

Scalable ✓ ✓ ✓ ✓ ✓

Latency <1s <1s 110s for 16 blocks ≈1s 8.7s for 7300tx
✓: has property; ✗: does not have property; ∗: partially has property; −: means the property does not apply to the given category; !: means the
value is missing; †: means message complexity.
‡: each shard tolerates 1/3-fraction adversary, and the overall protocol tolerates only 1/4.
1: 3 nodes/committee and 10 committee in total; 2: 4 nodes/committee and 15 committees in total; 3: 100 nodes/committee and 16 committees in
total; 4: 72 nodes/committee (12.5% adversary) and 25 committees in total; 5: 250 nodes/committee and 4000 nodes in total.

settings show how the protocols set up in an overall perspective,
such as committee formation, network model. The intra-committee
consensus shows how to achieve a consensus within a committee,
and the inter-committee consensus shows how to achieve an agree-
ment among different committees. Finally, we compare their safety
aspects and the achieved performance.

Protocol Settings: Committee formation refers to the criteria
used to allow nodes to join a committee, which describes the mech-
anisms to establish the membership, e.g., membership based on
PoW or PoS. This is an important aspect of decentralized and per-
missionless systems to thwart Sybil attacks. However, for permis-
sioned blockchain, e.g., RSCoin, we do not need to deal with Sybil
attacks, since permissioned systems operate in a relatively trust
environment where the participating nodes are granted commit-
tee membership based on these organizational policy. Consistency
shows the likelihood that the system will reach a consensus on the
proposed value, typically, it can be either strong or weak. In general,
classic BFT protocols offer strong consistency, but are subject to
the scalability issue. Network Model shows the synchrony of the
underlying communication network. Typically, the communication
networks can be categorized into three types: strongly synchronous,
partially synchronous, and asynchronous.

Intra-Committee Consensus: Committee Configuration repre-
sents how the committee members are assigned to the committee
in a single committee setting, e.g., either the members serve on
the committee permanently (static) or they are changed at regular
intervals (rolling or swap) for the epoch-based protocols. Incentives
show the mechanisms that keep participating nodes motivated to
participate in the consensus process and follow its rules. We dis-
tinguish the incentives in two aspects: one is the join process, and
the other is the participating process. Leader indicates, within a
specific committee, where the leader comes from. It can be either
elected among the current committee (internally), externally, or
flexible (e.g., through the specified smart contracts). For the listed
schemes, all leaders come internally from its committee members.
Msg. Complexity shows the communication complexity within one
committee at the message level, where n refers to the number of
participating nodes.

Inter-Committee Consensus: Inter-committee configuration
shows how themembers are assigned to the committees in amultiple-
committee setting, which can be either static or dynamic. A dy-
namic approach is typically based on the randomness generated
from the previous epoch. Mediated indicates how to mediate the
cross-sharding transactions. It can be optionally mediated by an
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external resource, e.g., the client. Incentives indicates, for mediators,
whether they will get some rewards for their mediation efforts.

Safety and Performance: For safety, we focus on the resis-
tance against an adversary. TX Censorship Resistance shows the
system’s resilience to the proposed transactions being suppressed
(i.e., censored) by malicious nodes involved in consensus process.
DoS Resistance represents the resilience of the nodes involved in
consensus to Denial-of-service (DoS) attacks. If the participants of
the consensus protocol are known in advance, an adversary may
launch a DoS attack against them. Adversary Model represents the
fraction of malicious or faulty nodes that the consensus protocol can
tolerate (e.g., the protocol still works correctly despite the presence
of such nodes). Note that for different adversary models, it might
have different resistance rates. In this comparison, the adversary
models are all based on the Byzantine setting. For performance, we
target at analyzing its throughout, latency and scalability. Through-
put is the maximum rate at which transactions can be agreed upon
by the consensus protocol; latency represents the time it takes from
when a transaction is proposed until consensus has been reached on
it. Scalability shows if the system has the ability to achieve greater
throughput when consensus involves a larger number of nodes. All
the listed schemes in Table 2 can scale.

8.2 Discussion
Besides the sharding-based blockchain protocols summarized in
Table 2, there exist other alternatives to deal with scalability issues,
which are conceptually similar to the mentioned sharding-based
protocols, e.g., Monoxide [115] and SSChain [136].

Monoxide utilizes the concept of asynchronous consensus zones,
in which each zone is conceptually a shard. Instead of utilizing
UTXO transactionmodels, this protocol is based on the account/balance
transaction model, which is similar to a bank account model. It
proposes an eventual atomicity scheme, by relying on the relay
transactions, to ensure the atomicity of transactions across zones.
For the consensus protocol, Monoxide builds on the PoW scheme
in general, and it uses the Chu-ko-nu mining scheme, which allows
a single PoW solution to create multiple blocks at different zones si-
multaneously, to ensure the effective mining power in each zone to
be at the same level of the entire network. Conceptually, Monoxide
can be categorized as a kind of blockchain sharding scheme.

SSChain utilizes a two-layer architecture to eliminate the data
migration overhead in reshuffling scheme. In SSChain, participating
nodes can freely join in one or more shards without reshuffling
network periodically. In this two-layer structure, the first layer is
the root chain network, which has a significantly large portion (e.g.,
over 50%) of computing power over the whole network, while the
second layer is the shard networks, in which each shard maintains
disjoint ledgers and independently processes a disjoint subset of
transactions. In the words, the root chain maintains security of the
system, while shards improve the throughput and decrease storage
requirements.

There also a large number of non-peer reviewed blockchain
sharding protocols in the literature, e.g., Aspen [137], Blockclique [138],
Ethereum 2.0 [139], etc. Due to the page limit, the interested reader
are referred to the provided references for their details.

It is necessary to briefly discuss the techniques to handle the
blockchain scalability (including sharding protocols) in general.
There exists twomain-stream solutions: off-chain solutions [8] [140]
and DAG solutions [9].

Off-chain Solutions. In this solutions, each node holds its transac-
tions locally, referred as “off-chain", and only sends a description or
the eventual outcome of these transactions to the “main chain", re-
ferred as “on-chain". However, there is no guarantee on the validity
of the “off-chain" transactions, either validation node are introduced
to validate and endorse these transactions, or economical deposit
should be provided for the transactions. And, the validity condition
might be compromised due to centralization or the economical
constraint. There exist several key chellenges in off-chain solutions,
e.g., the way to keep the state consistency (and final conformation
of transactions) between “off-chains" and the “on-chain" in real-
time (or acceptable time) manner, the centralization and security
issues in the “off-chains" which rely on intermediaries to aggregate
and settle transactions off-chain.

Directed Acyclic Graph (DAG) Solutions. In DAG, the transac-
tions are not structured in a chain, but in a graph. The validity
is dependent on the (directly or indirectly) outgoing edges of the
transaction, which represents the nodes that have validated it. A
scale-out throughput can be achieved if the acquirement of the
complete graph is not obligated for all nodes. And, the validity
of the transaction might be compromised due to its dependency
on the validators. Also, there exist some probability that the valid
transactions are appended to the parasite chains [9].

Sharding Solutions. Besides the common issues discussed in this
paper, there exist some potential research topics on blockchain
sharding, such as horizontal sharding (e.g., Channels [141]) and
heterogeneous sharding (e.g., nodes with different capacity), and
application-specific blockchain sharding schemes (e.g., sharding
schemes targeted to industrial Internet of Things (IIoT) [128] [142]).
Sharding based blockchain systems make trade-offs between the
scalability of throughout, storage efficiency, and security [143].
A widely open fundamental question is that Is there a blockchain
design that simultaneously scales throughput, storage efficiency, and
security?

9 CONCLUSION
This paper presents a Systematization of Knowledge for sharding
on blockchain. We identified key components and challenges in
sharding. The publicly verifiable randomness is critical for placing
participating nodes uniformly into shards. Within each shard, a
consensus protocol is needed to reach an agreement on the blocks.
BFT-based protocols are dominating in existing solutions. For the
cross-shard transactions, the protocol needs to guarantee the atomic
properties. Finally, a reconfiguration process is needed at the end
of an epoch. We analyzed several well-known blockchain sharding
protocols and then discussed several potential research directions.
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