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ABSTRACT: Collecting and analyzing the vast amount of information available in the solid-state 

chemistry literature may accelerate our understanding of materials synthesis. However, one major 

problem is the difficulty of identifying which materials from a synthesis paragraph are precursors 

or are target materials. In this study, we developed a two-step Chemical Named Entity Recognition 

(CNER) model to identify precursors and targets, based on information from the context around 

material entities. Using the extracted data, we conducted a meta-analysis to study the similarities 

and differences between precursors in the context of solid-state synthesis. To quantify precursor 

similarity, we built a substitution model to calculate the viability of substituting one precursor 

with another while retaining the target. From a hierarchical clustering of the precursors, we 

demonstrate that “chemical similarity” of precursors can be extracted from text data. Quantifying 

the similarity of precursors helps provide a foundation for suggesting candidate reactants in a 

predictive synthesis model. 
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1. INTRODUCTION 

Understanding how to synthesize desired compounds is a grand challenge in the development of 

novel materials1. Researchers are trying to tackle this challenge from different perspectives, in-

cluding in situ experiments2–4, thermodynamic analysis5–8, and machine-learning guided synthesis 

parameters search9,10. One potential approach is to learn from the large volume of experimental 

synthesis “recipes”, which are provided in scientific publications in various unstructured forms11–

14. Here we define a solid-state synthesis recipe to be any structured information about a target 

material, precursors, and operations used to synthesize this material, that is classified as solid 

state by the decision tree approach of Huo et al.15. In order to understand and eventually predict 

solid-state synthesis recipes, one of the important questions is how to select precursors. 

Knowledge of which precursors to use is often achieved by an individual’s experience. Here we 

present a data-driven approach to assess the similarities and differences between precursors in 

solid-state synthesis by extracting precursors and targets from literature, and conducting a meta-

analysis with the extracted data. 

The extraction of precursors and targets from written text is difficult due to the complexities of 

natural language. First, a material entity can be written in text in various complicated forms; they 

can be represented as chemical formulas such as Al2O3 and AxB1-xC2-δ, chemical terms such as haf-

nium oxide, acronyms such as PZT for Pb(Zr0.5Ti0.5)O3, and even more complicated notations for 

composites and doped materials such as Si3N4-30 wt% ZrB2 and Zn3Ga2Ge2-xSixO10:2.5mol% Cr3+. 

Translating this knowledge into explicit rules for Chemical Named Entity Recognition (CNER) is 

difficult.  

Second, material entities can play different roles in synthesis experiments such as targets, rea-

gents, reaction media, etc. While this can usually be recognized easily by researchers based on 

their domain-specific knowledge and grammar comprehension, such implicit assignment of mean-
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ing is much harder in computational algorithms. One naïve approach could be to use multiple 

rules to distinguish between targets and precursors. For example, assign a simple material (e.g., 

TiO2) as a precursor and a complex material (e.g., Pb(Zr0.5Ti0.5)O3) as a target, because researchers 

usually use simple materials to synthesize a complex one. However, there are many cases that do 

not follow this rule: the same material zirconia can be a precursor for a Zr-based complex oxide, 

an auxiliary component as a grinding media, or even a target in the synthesis of stabilized or 

doped zirconia16. In order to correctly identify if a material plays the role of target, precursor or 

something else, one needs to read the context of the sentence or entire paragraph, in addition to 

finding the material expressions. Hardcoding all possible rules would require an enormous 

amount of human effort.  

Recent progress in natural language processing (NLP)17,18 has made it possible to locate words 

or phrases in unstructured text and classify them into pre-defined categories. For example, Swain 

et al. trained a conditional random field (CRF) model on an organic dataset19 to extract chemical 

entities—available in the toolkit ChemDataExtractor.20 Kim et al. utilized a neural network trained 

on 20 articles to extract 18 different categories of synthesis information, including materials and 

targets, for 30 different oxides systems21. Korvigo et al. developed a CNN-RNN model to extract 

chemical entities22 on the same dataset as Swain et al.. Weston et al. trained a bi-directional long-

short term memory (Bi-LSTM) model to extract inorganic materials from materials science ab-

stracts23. Other packages to extract chemical entities using NLP methods include OSCAR424, Chem-

icalTagger25, GRAM-CNN26, etc. However, the previous studies mainly focused on the identification 

of chemicals rather than their roles in synthesis. Kim et al.21 demonstrate an attempt to predict 

and analyze targets. 

Our focus here is specifically to identify precursor and target materials in inorganic solid-state 

synthesis text, and to study the relations between various precursors and correlate it with targets. 
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For the CNER task, a two-step model Synthesis Materials Recognizer (SMR) based on Bi-LSTM is 

implemented. The model recognizes context clues provided by the words around the precur-

sors/targets in the sentence. With the SMR model, we extracted 1,619 unique precursors and 

16,215 unique targets from 95,283 paragraphs in 86,554 scientific papers on solid-state synthesis. 

This corpus of papers was filtered from a larger set of 4 million papers defined in ref Kononova et 

al.27  

The large dataset indicates that the most common precursors for each element are usually the 

environmentally stable oxides, carbonates or hydroxides. By applying a probabilistic model on the 

data we explore which precursors play a similar role in the synthesis of a target material and 

which may therefore be substitutable. Combining the substitution probability and the distribution 

of synthesis temperatures, we define a multi-feature distance metric to characterize the similarity 

of precursors. A hierarchical clustering of precursors based on this metric demonstrates that the 

“chemical similarity” can be extracted from text data, without the need to include any explicit do-

main knowledge. The quantitative similarity metric offers a reference to rank precursor candi-

dates and constitutes an important step towards developing a predictive synthesis model. 

2. EXTRACTION OF PRECURSORS AND TARGETS 

In this section, we describe the SMR model used to identify and extract precursor and target ma-

terials from a synthesis paragraph. By comparing with a baseline mode, we explain how the SMR 

model works, the advantages and limitations. 

2.1 Data Preparation. We used the same data extraction pipeline as described in ref Kononova 

et al.27 A total of 4,061,814 papers were scraped from main publishers including Elsevier, Wiley, 

Springer, the American Chemical Society, the Electrochemical Society, and the Royal Society of 

Chemistry. After classification using the semi-supervised random forest model from Huo et al.15, 
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371,850 paragraphs in the experimental sections were found to describe inorganic synthesis, such 

as solid-state, hydrothermal, sol-gel, co-precipitation syntheses, with 95,283 corresponding to sol-

id-state synthesis. These 95,283 paragraphs and their corresponding abstracts in 86,554 literature 

papers were used for materials extraction.  

2.2 Algorithm Design and Execution. The identification of materials entities in the text and 

their subsequent classification as targets, precursors, or something else were performed in two 

steps as shown in Figure 1(a): first we identified all materials entities present in a sentence; next 

we replaced each material with a keyword “<MAT>” and classified it as a “Target”, “Precursor”, or 

just “Material”. Each step was executed by a different Bi-LSTM neural network with a conditional 

random field (CRF) layer on top of it (Bi-LSTM-CRF)28,29.  

For the first step, each input word was represented as the combination of a word-level embed-

ding and a character-level embedding via an embedding layer. The word-level embeddings, which 

are vectors of real numbers representing the words, were trained using the Word2Vec 

approach30,31 with ~33,000 paragraphs on solid-state synthesis to capture the semantic and syn-

tactic similarity of words in synthesis text. In this embedding layer, the characters of each word 

were converted into an embedding vector using another Bi-LSTM to learn the character-level fea-

tures such as the prefix and suffix information. The character embedding was concatenated with 

the pretrained word embedding and input into a Bi-LSTM to capture the left and right context at 

every word. Finally, the output from Bi-LSTM was combined with a CRF model, which character-

ized the transition probability from one tag to another to produce the final prediction. 
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Figure 1. (a) Main architecture of the SMR model. xi is the embedding used as the input for the Bi-

LSTM-CRF neural network. li represents the ith token and its left context. ri represents the ith token 

and its right context. ci is the combination of li and ri. ti represents the score for different tags. (b) 

Change of one LSTM cell state in different context for precursor classification. The tokens in the 

example sentence are separated by spaces in the hanging text and represented as the sequence 

numbers on the x-axis. 

 

For the second step, a Bi-LSTM with a similar structure to that in the first step was used but the 

inputs were different. All the materials in the input sentences were replaced with the word 

“<MAT>” so that the role of a material in synthesis is predicted mainly based on the surrounding 

context. We found this to be more effective than directly using the specific materials words as in-

put to the Bi-LSTM, because such a direct model tries to store the mapping information from each 

(a) 

(b) 
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different material to the particular role this material is mostly used for, which brings in bias for 

frequently appearing materials. For example, as “zirconia” often describes the balls used in ball 

milling, it is difficult for the neural network to deviate from this assignment and treat “zirconia” as 

a target or precursor. A more detailed discussion on the benefits of the two-step model can be 

found in the SI. Since all the chemical information about the material is lost by inputting “<MAT>” 

instead of the materials words, we also included two additional features in the word representa-

tion, i.e., the number of metal/metalloid elements and a flag indicating whether the material con-

tained C, H, and O elements only. These additional features assist in the differentiation of precur-

sors and targets, as they tend to have different numbers of metal/metalloid elements and are gen-

erally not organic compounds in inorganic synthesis. The composition information was obtained 

by parsing the raw text of the materials entities by regular expression comparison27. 

Bi-LSTM is able to infer the role of materials from context because Bi-LSTM specifies a variable 

called cell state to store the information about the words around the material. Figure 1(b) shows a 

typical example of the trained Bi-LSTM cell state continuously changing depending on token con-

text in the example sentence32 when feeding the tokens into Bi-LSTM one by one. In this study, 100 

neurons (cells) were used to represent the context information; Figure 1(b) displays one of the 

cell states relevant to the context about precursors. To obtain the cell states for the next token, 

both the next token and the current cell states are input to the network. Hence, after seeing the 

sequence of tokens “was prepared from” in the example sentence, the network predicts from the 

context that the tokens following this phrase most likely refer to a precursor(s). Likewise, the 

network predicts that the tokens following “at 700 ° C for” most likely are not precursors.   

To train the SMR model, 834 solid-state synthesis paragraphs from 750 papers were tokenized 

with ChemDataExtractor20, and each token was manually annotated with tags of “Material”, “Tar-

get”, “Precursor”, and “Outside” (not a material entity). In the annotation, a target is defined as a 
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final material obtained through a series of lab operations in the complete synthesis process, and a 

precursor is defined as a starting reagent involved in the synthesis process through a lab opera-

tion and contributing to the target composition. Other materials include media, gas, device mate-

rials, etc. The annotation dataset contains 8601 materials, out of which 1256 are targets and 3295 

are precursors. The annotated dataset was randomly split into training/validation/test sets with 

500/100/150 papers in each set. Early stopping33 was used to minimize overfitting by stopping 

the iterative training when the best performance was achieved on the validation set. To reduce the 

variance resulting from the limited size of the training set, the six models trained in a six-fold 

cross-validation process were combined together to make the final decision by voting in the classi-

fication. The entire training and test process was repeated 10 times, and the average result of the 

test sets is reported. 

2.3 Evaluation of SMR Accuracy and Working Examples. We first aim to demonstrate that the 

recognition of context clues is necessary for the CNER task by comparing the SMR model with a 

baseline model based on naïve rules. To build this baseline model, we used ChemDataExtractor20 

to identify and extract materials from the text. Then, inspired from a scientific perspective that re-

searchers usually use simple materials to synthesize a complex one, the precursors and targets 

were assigned based on the number of elements: materials with only one metal/metalloid element 

were assumed to be precursors, and materials with at least two metal/metalloid elements were 

assumed to be targets. This baseline is a least-effort model but provides a quantitative reference 

for understanding the importance of capturing context information. 

In Table 1, we compare the performance of the SMR model and the baseline model using F1 

scores, which provides a measure of the accuracy of a binary classification test based on the har-

monic mean of the precision and recall. The F1 scores on the extraction of all materials, precursors, 



10 

 

and targets using the SMR model are 95.0%, 90.0%, and 84.5%, respectively. Out of all the extract-

ed entities, 88.9% of precursors and 85.9% of targets in the test set are correctly identified. These 

correct cases account for 91.2% and 83.4% of all the precursors and targets which should be ex-

tracted, respectively. The possibility of errors increases when multiple precursors and targets are 

present in the same sentence. Out of all the sentences containing precursors/targets, the rate to 

successfully retrieve all the precursors and targets in each sentence is 73.4%. Some representative 

successful examples from the SMR model, such as the recognition of the targets “LiBaBO3:Sm3+” 

and “(0.725-x)BiFeO3-xBi(Ni0.5Mn0.5)O3-0.275BaTiO3 + 1 mol% MnO2”, are shown in Table 2. 

We interpret the results as follows. In the baseline model, only the information from the material 

entity itself is used, resulting in low F1 scores for the extraction of precursors and targets (70.0% 

and 32.1%, respectively). In contrast, the SMR model achieves better F1 scores because Bi-LSTM is 

able to infer the role of materials from the context. For example, as discussed previously, the Bi-

LSTM infers from the tokens “was prepared from” to mean that the following tokens probably re-

fer to a precursor(s). Likewise, the network predicts that the tokens following “at 700 ° C for” most 

likely are not precursors. For a precursor with more than one metal/metalloid element, the base-

line model fails to recognize it regardless of the context, while the SMR model can still identify the 

precursor nature of this material.   

 

Table 1. Precision, recall, and F1 scores for the baseline and SMR models to extract materials, pre-

cursors, and targets. The type “Materials” include precursors, targets and all other materials.  

Model Type Precision (%) Recall (%) F1 score (%) 

Baseline 

Materials 78.3 68.3 73.0 

Precursors 60.9 82.2 70.0 

Targets 48.5 33.0 32.1 
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SMR 

Materials 94.6 95.3 95.0 

Precursors 88.9 91.2 90.0 

Targets 85.9 83.4 84.5 

 

However, some situations still remain difficult for the SMR model: 

• Some material entities tokenized into multiple tokens are not completely extracted. For exam-

ple, the incomplete pieces “(Ba1-x(K” and “Na)x/2Lax/2)(Mg1/3Nb2/3)O3” are extracted instead 

of “(Ba1-x(K or Na)x/2Lax/2)(Mg1/3 Nb2/3)O3” in Table 2. The identification of these materials 

is difficult due to the syntactic variability and ambiguity of multiword expressions (MWEs)34, 

which might be improved by incorporating recent progress on MWE identification such as the lan-

guage-independent architecture proposed by Taslimipoor et al.35 The number of training sentenc-

es containing MWE materials might remain as an issue considering the relative large dataset36 

used by Taslimipoor et al.35 

• Some sentences are ambiguous to the SMR model due to the limitations of the training set. For 

example, the model correctly classifies “Y2O3” as a precursor in “Y2O3 as a precursor was added” 

and “Y2O3” as neither target nor precursor in “Y2O3 as a grinding media was added”. However, in 

the sentence “Y2O3 as a donor impurity was added”, the model does not understand “donor impu-

rity” and only assigns “Y2O3” as an ordinary material rather than a precursor. This situation might 

be improved by including more contextual information in the input, such as the sentence embed-

dings37 of previous and next sentences, and contextualized word embeddings trained on a much 

larger corpus (e.g. BERT38 and SciBERT39). Future possible directions for research include training 

these embedding models on papers specifically on materials synthesis, although the training pro-

cess may require a significant manual time investment and considerable computational resources. 
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• Misclassification can occur when the sentence is written with complicated structure. For ex-

ample, the target “Ba0.5Sr0.5CoxFe1-xO3-δ” is misclassified as a precursor when the order of pre-

cursors and targets is reversed or closely mixed in the sentence and the materials around this 

word are all precursors, as shown in Table 2. These sentences with complicated structure must 

often be treated on a case-by-case basis, and it is difficult for an NLP model to pick up general 

rules to correct for these errors. A potential solution is to conduct selective sampling to annotate 

sentences with complex syntax more efficiently, where only the ones that a pretrained classifier is 

less confident with will be sampled for annotation40. Our current model lays a foundation for se-

lective sampling. 

Considering the significant effort required to address each of these problems and the decent 

performance achieved already, we put these problems as future research directions. To retain a 

higher precision in the dataset, we only used the recipes for which a balanced chemical reaction 

can be reconstructed from the extracted precursors and targets as discussed by Kononova et al.27   
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Table 2. Representative successful and failed examples from the SMR model in this study. 

Example Sentences Expected Error in Extraction 

Successful 

The LiBaBO3:Sm3+ samples were prepared by solid-state reaction.41 Target: LiBaBO3:Sm3+ N/A 

Ceramic samples of (0.725-x)BiFeO3-xBi(Ni0.5Mn0.5)O3-0.275BaTiO3 + 1 mol% 

MnO2 (x = 0-0.08) (BFO-BT-BNM-x) were prepared by the conventional solid-state 

route using high-purity metal oxides and carbonates as starting materials: Bi2O3 (99 

%), Fe2O3 (99 %), BaCO3 (99 %), TiO2 (98 %), NiO (99 %), MnO2 (99.99 %).42 

Targets: (0.725-x)BiFeO3-xBi(Ni0.5Mn0.5)O3-

0.275BaTiO3 + 1 mol% MnO2, BFO-BT-BNM-x 

Precursors: Bi2O3, Fe2O3, BaCO3, TiO2, NiO, MnO2 

N/A 

Y2O3 as a precursor was added. Precursor: Y2O3 N/A 

Y2O3 as a grinding media was added. Material: Y2O3 N/A 

Failed 

(Ba1-x(K or Na)x/2Lax/2)(Mg1/3Nb2/3)O3 with 0 ≤ x ≤ 1 were synthesized by a 

conventional solid-state reaction method.43 
Target: (Ba1-x(K or Na)x/2Lax/2)(Mg1/3Nb2/3)O3 

“(Ba1-x(K” and 

“Na)x/2Lax/2)(Mg1/

3Nb2/3)O3” extract-

ed 

Y2O3 as a donor impurity was added.44 Precursor: Y2O3 
Y2O3 extracted as an 

ordinary material 

Required amounts of BaCO3, SrCO3, CoCO3∙0.5H2O and Fe2O3 powders for 

Ba0.5Sr0.5CoxFe1-xO3-δ, Pr6O11, BaCO3, and CoCO3∙0.5H2O powders for PrBa-

Co2O5+δ were mixed and ball-milled for 24h.45 

Targets: Ba0.5Sr0.5CoxFe1-xO3-δ, PrBaCo2O5+δ 

Precursors: BaCO3, SrCO3, CoCO3∙0.5H2O, Fe2O3, 

Pr6O11, BaCO3, CoCO3∙0.5H2O 

Ba0.5Sr0.5CoxFe1-

xO3-δ extracted as a 

precursor 
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3. SUBSTITUTION OF PRECURSORS  

We first present the variety of the extracted precursors. An intriguing question is how frequently 

researchers substitute one precursor with another while retaining the target, which sheds light on 

how similar these precursors behave in a solid-state reaction. We utilize a substitution model 

based on the work of Hautier et al.46  and Yang et al.47 to quantify the probability that two precur-

sors are interchangeable. 

3.1 Common and uncommon precursors. The SMR model was applied to generate the dataset 

of 29,308 reactions by analyzing 95,283 solid-state synthesis paragraphs (see the work by 

Kononova et al.27 for details). Since a reaction can be mentioned multiple times in the same paper, 

resulting in multiple records in the dataset, the records were unified to 28,530 reactions, contain-

ing 71 different metal/metalloid elements and 1,619 distinct precursors. Some precursors are 

rarely used. Restricting the statistics to precursors used at least 30 times, there are 58 met-

al/metalloid elements and 182 precursors.  

To visualize the variety of precursors, the precursors for each metal/metalloid element are cate-

gorized by anion (group) class and counted by the number of corresponding reactions in which 

they are used. The frequency of each anion class normalized by the total number of reactions for 

an element is shown in Figure 2. One precursor is usually used much more frequently than other 

precursors for the same element, which we denote as the common precursor. Figure 2 shows that 

for alkali and alkaline earth elements, the common precursors are carbonates except for MgO 

which is the typical source for Mg. For transition metal and other main group elements, the com-

mon precursors are oxides except for B(OH)3 for B. In general, the common precursor tends to be 

the compound that is stable under ambient conditions, which is beneficial to the purity and accu-

rate weighting in experiments48. Our observation on the common precursors suggests that labora-
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tory chemists will prioritize shelf-stability of precursors; although we note that more reactive pre-

cursors can help to facilitate synthesis reactions.  

Sometimes, the decision to use an uncommon precursor is motivated by an interesting ad-

vantage for a specific non-traditional precursor. For example, in some cases precursors can func-

tion as morphology templates; Zhao et al. reported that γ-MnOOH nanorods were used to obtain 

LiMn2O4 nanorods, whereas LiMn2O4 from electrolytic MnO2 (EMD) only consisted of many irregu-

lar and aggregated particles49. The use of a lower-melting-point precursor can result in a target 

with smaller particle size; Liu et al. adopted Sr(NO3)2 instead of SrCO3 to synthesize SrTiO3 nano-

crystals50. An amorphous precursor can facilitate the reaction process and minimize the possibil-

ity of forming chemical segregations; Mercury et al. utilized amorphous Al(OH)3 rather than Al2O3 

in the synthesis of Ca3Al2O6
51. In these examples, there were strategically designed precursors in 

order to achieve a particular synthesis result. Collecting these individual use cases provides inter-

esting insight in synthesis design. 

             

(a) (b) 
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Figure 2. Fraction of different classes of precursors corresponding to each element: (a) main 

group elements, (b) transition metal elements. 

3.2 Substitution model. The large number of reactions we obtained gives us the opportunity to 

understand to what extent precursors are interchangeable. To measure the probability that one 

precursor can be substituted by another while retaining the target, we utilized a substitution 

model similar to the one developed by Hautier et al.46 and used by Yang et al.47 for structure pre-

diction. For each pair of precursors, the model counts the number of occurrences where the same 

targets can be synthesized from either of the precursors. The more frequently the two precursors 

are interchanged, the more similar they are.  

In the following part, we define the substitution model in a mathematical form, and express the 

probability of finding a substitutional precursor pair 𝑃sub(𝑝𝑖
𝑗,1

, 𝑝𝑖
𝑗,2

) as a sigmoid with unknown 

parameter λ. Assuming the independence of substitutions, we deconvolute the probability of find-

ing substitution between two lists of precursors 𝑃sub(𝑅𝑋, 𝑅𝑋
′ ) into the product of 𝑃sub(𝑝𝑖

𝑗,1
, 𝑝𝑖

𝑗,2
). At 

last, we maximize 𝑃sub(𝑅𝑋, 𝑅𝑋
′ ) over substitution observations to solve λ and use it to calculate 

substitution probability. 

First, we define precursor substitution in a mathematical form. Let E=(e1, e2, …, en) be a pre-

defined ordered list of all the metal/metalloid elements given in the periodic table. We assume 

each precursor contributes one metal/metalloid element to targets. For the target RTar in a reac-

tion synthesis R=(RTar, RX), define the precursor list as RX=(p1, p2, …, pn), where pi is the precursor 

for element ei present in RTar; otherwise pi is null. For a pair of reaction {R, R’}, if RTar=R’Tar and RX≠

R’X, we say precursor substitution occurs. Through iterating over all possible combinations of any 

two reactions, we obtain a collection of N reaction pairs where precursor substitution occurs, de-
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noted as the data D={{R, R’}1, {R, R’}2, …, {R, R’}N}. Our objective is now to find the values of the 

pairwise precursor substitutions that maximize the likelihood of D. 

Next, we define the potential substitutional precursor pairs. For element ei, denote the list of 

candidate precursors as (pi
1, pi

2, …, 𝑝𝑖
𝑚𝑖), where mi is the total number of unique precursors. We 

assume that potentially every precursor 𝑝𝑖
𝜏1

 can be substituted by any other one 𝑝𝑖
𝜏2 , forming a 

substitutional pair {𝑝𝑖
𝜏1 , 𝑝𝑖

𝜏2} where 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑚𝑖. In total, there can be up to Mi = (
𝑚𝑖

2
) such 

pairs for element ei. For simplicity, we assemble all substitutional pairs for all elements into one 

list and renumber the pairs as {𝑝𝑖
𝑗,1

, 𝑝𝑖
𝑗,2

} where 𝑗 = 1, … , ∑ |M𝑖|𝑛
𝑖=1 . Although the index i is not nec-

essary, we retain it for clarity to distinguish between elements. The probability that the pair 

{𝑝𝑖
𝑗,1

, 𝑝𝑖
𝑗,2

} can be found as a substitution occurs is written as  

𝑃sub(𝑝𝑖
𝑗,1

, 𝑝𝑖
𝑗,2

) = sigmoid(𝜆𝑗)                                                           (1) 

where λj is a parameter to be optimized. Assuming all substitutional precursor pairs are inde-

pendent of each other, the probability that the pair of precursor lists {RX, R’X} can be found as a 

substitution occurs is  

𝑃sub(𝑅𝑋, 𝑅𝑋
′ ) =

𝑒∑ 𝜆𝑗𝟏𝑗(𝑅𝑋,𝑅𝑋
′ )𝑗

𝑍
                                                            (2) 

where  

𝟏𝑗(𝑅𝑋, 𝑅𝑋
′ ) = {

1, {𝑅𝑋,𝑖 , 𝑅𝑋,𝑖
′ } = {𝑝𝑖

𝑗,1
, 𝑝𝑖

𝑗,2
}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                 (3) 

and Z is the partition function for normalization, given by 

𝑍 = ∏(1 + 𝑒𝜆𝑗)

𝑗

                                                                     (4) 

The value of λ=(λ1, λ2,…) is obtained by maximizing the likelihood over the data D: 

𝝀∗ = argmax𝝀 ∑ 𝑙𝑜𝑔𝑃sub((𝑅𝑋, 𝑅𝑋
′ )𝑡|𝝀)

𝑁

𝑡=1

                                               (5) 
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For those substitutional pairs not found in D, the value of λj will be set to a common low value such 

that 𝑃sub(𝑝𝑖
𝑗,1

, 𝑝𝑖
𝑗,2

) in Eq. (1) is close to zero. 

Finally, we define the substitution probability. Here we discuss one substitutional pair {𝑝𝑖
𝑗,1

, 𝑝𝑖
𝑗,2

} 

and omit the index j for simplicity. For a given reaction using precursor pi
1, the probability that pi

1 

is substitutable by pi
2 is 

𝑃(𝑝𝑖
2|𝑝𝑖

1) = 𝑃(𝑝𝑖
1 substituted)

𝑃sub(𝑝𝑖
1, 𝑝𝑖

2)

∑ 𝑃sub(𝑝𝑖
1, 𝑝𝑖

𝑘)𝑘≠1

                                           (6) 

where P(pi
1 substituted) is a prior probability of pi

1 being substitutable and is calculated as the 

number of reactions with the substituted precursor pi
1 divided by the total number of all reactions 

using pi
1. The fractional part in the right-hand side accounts for the conditional probability that pi

1 

is substitutable by pi
2 when substitution occurs, which can be calculated with Eq. (1). A small frac-

tion of reactions (~5%) which included multiple metal/metalloid elements in the same precursors 

or used multiple precursors for the same element were not considered in this model.  

3.3 Cross-validation of the substitution model. We evaluated the predictive power of the sub-

stitution model by performing a cross-validation test on the generation of alternative precursor 

lists. Cross-validation consists in training the model on part of the data available (the training set) 

and predicting back the remaining data (the validation set). Given a target RTar and an existing pre-

cursor list RX in the training set, we can propose an alternative precursor list R’X to synthesis the 

same target by replacing the precursors in RX with different ones. With the substitution probabil-

ity defined in Eq. (6), the conditional probability of RX being substitutable by R’X is given by  

𝑃(𝑅𝑋
′ |𝑅𝑋) = ∏ 𝑃(𝑝𝑖

2|𝑝𝑖
1)

𝑝𝑖
1∈𝑅𝑋,𝑝𝑖

2∈𝑅𝑋
′ ,𝑝𝑖

1≠𝑝𝑖
2

                                                               (7) 

If P(R’X|RX) is higher than a given threshold, the proposed R’X will be accepted as a positive pre-

diction of an alternative precursor list. Otherwise, R’X will be rejected as a negative prediction. Ap-
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plying this procedure on all possible R’X, we obtain all the positive and negative predictions and 

compare with the validation set for evaluation. Two-thirds of the reactions were used as the train-

ing set and the remaining one-third of the data were used as the validation set. For example, 

La0.7Ca0.3MnO3 is synthesized from La2O3, CaCO3, MnO2
52 in the training set. As a true positive pre-

diction, the substituted precursor list La2O3, CaO, and Mn(Ac)2
53 was also found in the validation 

set. The true positive rate (TPR) and false positive rate (FPR) were used as metrics to evaluate the 

performance. The TPR and FPR of the prediction vary with the probability threshold, as shown in 

Figure 3. Overall, the TPR is higher than the FPR, indicating that the substitution model is predic-

tive in the selection of alternative precursors and can effectively distinguish between the substitu-

tions leading to existing precursor lists and those leading to non-existing ones. Higher threshold 

values lead to fewer false alarms but imply fewer true hits. An adequate threshold can be found by 

selecting the one resulting in relatively higher TPR and lower FPR.   

 

Figure 3. TPR and FPR with varying probability threshold in the prediction of alternative precur-

sor list. The green dashed line indicates where the largest difference between the TPR and FPR 

was observed. 

3.4 Substitution probability. The probability P(B|A) that a precursor A is substituted by anoth-

er precursor B for the same metal/metalloid element is displayed as a heatmap in Figure 4, where 
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the rows are A and the columns are B. The color represents the probability of substitution defined 

in Eq. (6), as shown by the colorbar. For each element, the precursors are ordered by the number 

of reactions using it from the most to the least, i.e., the first precursor is the common precursor for 

each element. For the sake of simplicity, we merged the precursor in its hydrated form and its an-

hydrous form, e.g. LiOH⋅H2O and LiOH, based on the assumption that water will evaporate early on 

during the solid-state heating process. The rows for the common precursors usually display rela-

tively high substitution probability, which implies that many uncommon precursors can be re-

placed with the common precursors. Note that our analysis only indicates that substitution can 

lead to the same target compound under similar reaction conditions. The choice of different pre-

cursors can still be justified as they might infer different properties on the compound. For exam-

ple, in the battery chemistry, LiOH is sometimes preferred over Li2CO3 as it leaves less carbonate 

residual on the surface of the particles.  

Intuitively, hydroxides are similar to oxides, however, Figure 4 also captures some differences in 

this similarity for different elements. For example, the common precursor for Al is the oxide, 

whereas that for B is the hydroxide.  Furthermore, the probability of substitution between Al(OH)3 

and Al2O3 is considerably higher than between B(OH)3 and B2O3. The number of reactions using 

Al2O3, Al(OH)3, B(OH)3, and B2O3 are 1606, 148, 705, and 252, respectively, indicating that this dif-

ference is not due to limited data. The reason behind this is possibly correlated with the unique 

bonding in B2O3; B is highly hybridized with O in B2O3, much more than Al with O in Al2O3.This 

creates strong units in B2O3 held together by relatively weak forces54 accounting for its low melt-

ing point and high glass-forming ability55. Although nitrates are often used in solution-based syn-

thesis, the chance to use nitrates in solid-state synthesis is also considerable. Figure 4 shows that 

for elements Ca, Ba, Al, and Fe, nitrates frequently replace the common oxide or carbonate precur-

sors. For example, the probability of substituting Fe2O3 with Fe(NO3)3 is high. The nitrates are 
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used in various ways such as in conventional solid-state synthesis56, modified solid-state synthe-

sis57, combustion synthesis58, and sol-gel synthesis59. Although carbonates appear interchangeable 

with oxides, the metals in them might not occupy the same valence state. The probability of substi-

tution between MnCO3 and MnO2 is higher than that between MnCO3 and MnO, indicating that 

MnO2 is more similar to MnCO3 than MnO. 

 

Figure 4. Substitution probability P(B|A), which is the probability that the precursor A on the x-

axis is substituted with precursor B on the y-axis: (a) Li, (b) Ca and Ba, (c) B and Al, (d) Fe, (e) Co, 

(f) Mn. For example, we found that in 15% of reactions that use CaCO3, it could also be substituted 

with another precursor to introduce Ca into the same targets; in 73% of the substitutions, the oth-
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er precursor is CaO. The joint probability that CaCO3 is substituted and the substitute is CaO is 

11%. Because CaF2 is exclusively used for synthesis of fluorine-containing compounds, the proba-

bility that CaF2 is substituted to synthesize the same target is zero.  

To better understand how precursors are chosen for elements with variable valence, for each Mn 

precursor with reasonable frequency of use, we plot in Figure 5 the distribution of valence states 

for Mn in the targets synthesized from that precursor. The valence of Mn in the target compound 

was determined by iterating all possible combinations of valence states and finding the one result-

ing in the charge neutrality for the compound60. The width of each violin plot is proportional to 

the probability density for different valence states; the total area is proportional to the number of 

reactions using the corresponding precursor. The adoption of MnO, Mn2O3, and MnO2 is preferred 

in the literature to synthesize targets with similar valence states, i.e., most Mn ions in targets from 

MnO, Mn2O3, and MnO2 corresponds to 2+, 3+, and 3+~4+, respectively. Different from the oxides, 

the valence states in targets from MnCO3 and Mn(Ac)2 (Ac stands for acetate anion CH3COO-) are 

more evenly distributed, indicating that the use of MnCO3 and Mn(Ac)2 is less dependent on the 

valence states in the targets. This appears reasonable given the ease by which MnCO3 and Mn(Ac)2 

decompose when heated and Mn2+ can be oxidized to whatever is stable in the high-component 

solid under proper oxygen chemical potential. This observation is consistent with the higher 

probability of substitution between MnCO3 and MnO2 as aforementioned. By comparing the num-

ber of reactions using different precursors, it should be noted that the most frequently used Mn 

precursor to synthesize targets with Mn valence states lower than 3+ remains MnO2, which is the 

common precursor for Mn, even though MnO2 is more frequently used to synthesize targets with 

Mn valence states between 3+ and 4+. One possible reason is that Mn at high temperature can rap-

idly reduce or oxidize driven by the extent of entropic stabilization of O2 on the right-hand side of 
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the reaction MnO2 + ∆𝐻 ⇌ MnO2−𝑥 +
𝑥

2
O2. In other words, the metal valence state in the precur-

sor does not necessarily impose the valence state in the target in solid-state synthesis.  

 

Figure 5. Mn valence states in targets from Mn(Ac)2 (manganese acetate), MnCO3, MnO, Mn3O4, 

Mn2O3, and MnO2. The width in each violin plot is proportional to the probability density for va-

lence at different values. The total area of each violin plot is proportional to the number of reac-

tions using the corresponding precursor.  

4. SIMILARITY OF PRECURSORS 

While subsitutionability, defined in the previous section, indicates that a solid-state reaction to 

the target is possible with the substitutional precursors, it makes no statement as to whether the 

reaction condition needs to be modified. In the following section we define similarity of precursors 

based on the substitutionability as well as the extent to which the reaction conditions are similar. 

At this point, we only use temperature to describe the reaction condition considering the amount 

of effort, but one could extend this concept to capture other synthesis info such as atmosphere, 

time, number of operations, milling speed, etc.   
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4.1 Metric for similarity. Two features, the substitution probability and the distribution of syn-

thesis temperatures of the reactions that use a particular precursor, were utilized to characterize 

similarity of precursors.  

As introduced in Section 3, a precursor 𝑝𝑖
1 is substituted by another precursor 𝑝𝑖

2 with the prob-

ability 𝑃(𝑝𝑖
2|𝑝𝑖

1). We use the geometric average of 𝑃(𝑝𝑖
2|𝑝𝑖

1) and 𝑃(𝑝𝑖
1|𝑝𝑖

2) to balance the asymmet-

ric situations where 𝑝𝑖
1 or 𝑝𝑖

2 is substituted. The distance accounting for the substitution probabil-

ity is defined as  

𝑑sub(𝑝𝑖
1, 𝑝𝑖

2) = 1 − √𝑃(𝑝𝑖
1|𝑝𝑖

2)𝑃(𝑝𝑖
2|𝑝𝑖

1)                                                (8) 

where pi
1 and pi

2 are two precursors for element ei. 

A different precursor can be used with a different synthesis temperature. As an example, the dis-

tribution of the highest firing temperature used in synthesis reactions with two different Fe or Ca 

precursors is presented in Figure 6. The temperatures were extracted by regular expression 

matching in the corresponding synthesis paragraph27. For example, Figure 6 shows that the typical 

firing temperature is much lower when FeC2O4 is used as a precursor than when Fe2O3 is, whereas 

the firing temperature for CaO is comparable to that for CaCO3. Utilizing the overlap between the 

distributions of temperatures for two precursors, a distance is defined as follows to describe the 

similarity between the two precursors.  

𝑑temp(𝑝𝑖
1, 𝑝𝑖

2) = 1 −
overlapped area of two temperature distribution

total area of two temperature distribution
                     (9) 
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Figure 6. Highest firing temperature in the synthesis process for: (a) Fe2O3 and FeC2O4 and (b) 

CaCO3 and CaO. 

Both dsub in Eq. (8) and dtemp in Eq. (9) satisfy the property that 0 ≤ 𝑑𝑖 ≤ 1. We utilized the Eu-

clidean distance to define a multi-feature distance metric61,62 to combine the two features togeth-

er. The distance between a pair of precursors for the same element is defined as 

𝐷(𝑝𝑖
1, 𝑝𝑖

2) = √𝑑sub(𝑝𝑖
1, 𝑝𝑖

2)2 + 𝑑temp(𝑝𝑖
1, 𝑝𝑖

2)2                                           (10) 

The multi-feature aspect of this distance metric is general; it is straightforward to include addi-

tional features into this distance metric as new relevant features are considered. The current two 

representative features are selected because the substitution probability reflects the comparison 

of overall reactions in synthesis, and temperature is the most important parameter to activate 

these reactions. Finally, to visualize the similarity of precursors for the same element, we per-

formed hierarchical clustering based on the pairwise distance 𝐷(𝑝𝑖
1, 𝑝𝑖

2) using the Ward's mini-

mum variance method63. The hierarchical clustering method repeatedly identifies two clusters 

that are closest and merges these two clusters until only one supercluster is left.  

4.2 Similarity of precursors. Based on the distance defined in Eq. (10), precursors for the same 

elements were hierarchically clustered, and the similarities between them are displayed as den-

drograms in Figure 7. The vertical axis represents the distance between two precursors or the dis-

(a) (b) 
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tance between two clusters. In general, similar precursors will be drawn closer to each other on 

the horizontal axis.  

Generally, the cluster with the smallest internal distance includes the common precursors, indi-

cated using bold fonts in Figure 7. Simple binary fluorides and sulfides are far away from the 

common precursors and are typically used as source of F and S in target materials so that HF and 

H2S can be avoided. Metals are sometimes used as precursors directly; however, they are far away 

from the common precursors, indicating that metals and metal oxides tend to be used as precur-

sors for different classes of materials. There is a trend that precursors are clustered following the 

order: oxide, carbonate, nitrate, acetate, where the adjacent precursors are more similar (e.g., car-

bonate and oxide, or carbonate and nitrate), and the nonadjacent precursors are less similar (e.g. 

oxide and acetate) though there are variations to this for some elements. When the common pre-

cursor is a carbonate, the order may change to nitrate, carbonate, oxide, acetate (e.g., Ba), where 

the carbonate and the nitrate are more similar than the carbonate and the oxide, but the carbonate 

still sits between the nitrate and the oxide. The similarity between different classes is possibly 

correlated with the different bonding strength between the cations and anions, which can be indi-

cated by the order of melting points, namely oxide > carbonate > nitrate/acetate. 

 However, there are also some observations that are not easy to immediately rationalize. For Li, it 

is the hydroxide rather than oxide or nitrate closest to the carbonate, whereas for Ca and Ba, the 

hydroxides are even absent, which means Ca(OH)2 and Ba(OH)2 are rarely used. This difference 

may originate from the methods used to prepare these precursors being different, resulting in dif-

ferent availabilities. One practical clue is that Li2O is more expensive than LiOH; Li2O (≥95% purity) 

is $378.00 for 100 g ($8.10/g of Li), while lithium hydroxide monohydrate (≥95% purity) is 

$181.00 for 2 kg ($0.54/g of Li) from the chemical supplier Strem Chemicals64. It also observed 

that LiAc and LiH2PO4, as well as FeC2O4 and FePO4, are clustered together, because they are fre-
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quently used to synthesize the extensively studied cathode material LiFePO4, reflecting possible 

application bias in the data. In addition, oxides are similar to each other for variable valence ele-

ments, but the most similar precursor to the common oxide is not necessary an oxide. For example, 

the oxides of Mn are clustered together, ranging from MnO2 to MnO. However, the most similar 

precursor to MnO2 is MnCO3 as discussed in section 3.3.1. Similarly, the nitrate Fe(NO3)3 is more 

similar to Fe2O3 than the mixed valence oxide Fe3O4 to Fe2O3. There are many factors in the selec-

tion of precursors, including both scientific reasons such as bonding, reactivity, and melting point, 

and anthropogenic reasons65 such as literature success, convenience, applications, price, and hu-

man bias. The data in this work is a reflection of all those factors; it is not entirely clear how to de-

convolute all these issues. An interesting scientific advance would be to identify the precursors 

that are chemically compelling while avoiding the implicit anthropogenic biases. This work pro-

vides a historical statistical analysis to serve as a baseline comparison. 
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Figure 7. Clusters of precursors for (a) Li, (b) Ca, (c) Ba, (d) Fe, (e) Co, (f) Mn by similarity. The 

common precursors are indicated using bold fonts. 

The similarity could help guide the selection of precursors when researchers alter existing reci-

pes by replacing precursors. For a starting experiment, it might be profitable to pick precursors 

similar to what has been tried before. On the other hand, when the synthesis is not going well, it is 

best to use a very different precursor in order to diversify the synthesis space. If there are many 

possible combinations of precursors, the quantitative value of the similarity could also serve as a 

reference to rank them. Currently, the creation of new recipes is in principle limited to targets al-
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ready in our dataset. Therefore, it is also important in the future to develop similarity among tar-

gets. In that way, it would be possible to predict synthesis recipes for new target materials by 

evaluating the similarity with targets for which synthesis is known, a process that is very similar 

the current literature-based approach to the synthesis of novel materials. 

5. CONCLUSIONS  

In this study, we proposed a two-step model based on Bi-LSTM to extract the precursors and 

targets in inorganic solid-state synthesis reactions as reported in 86,554 literature papers. The F1 

scores for the extraction of precursors and targets are 90.0% and 84.5%, respectively. Through 

comparison with a simple baseline model and showing how Bi-LSTM takes advantage of not only 

the written expression of words but also the surrounding context, we illustrated why the use of Bi-

LSTM is suitable for our Chemical Named Entity Recognition (CNER) problem.  

Using the extracted data, we conducted a meta-analysis on the similarities and differences be-

tween precursors. The statistics on the frequency to use different classes of precursors shows that 

each element usually has a common precursor to bring it into a target compound. A substitution 

model is used to quantify the probability of substituting one precursor with another while the tar-

get remains unchanged. By establishing distance metrics from the substitution model and the dis-

tribution of synthesis temperature, precursors for the same element were clustered to show the 

similarities between these precursors. This hierarchical clustering demonstrates that chemical 

domain knowledge of solid-state synthesis can be captured from text mining and provides a foun-

dation for developing a predictive synthesis model. 

METHODS 

Data preparation. Borges66 was used to scrape papers from websites of main publishers under 

agreements made with them. LimeSoup67 was used to parse the papers from HTML content into 
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plain text.  Solid-state synthesis paragraphs were identified with the synthesis paragraph classifi-

cation model68 by Huo et al.15   

CNER and similarity analysis. The SMR model was developed with Theano69 and TensorFlow70 

based on the work by Lample et al.29 An internal crowdsourcing website similar to Amazon Me-

chanical Turk71 was built for data annotation. ChemDataExtractor20 was used for text tokenization. 

Gensim72 was used to train the Word2Vec30,31 embeddings. The precursor substitution model was 

adapted from the ion substitution model developed by Hautier  et al.46 and Yang et al.47 as in 

pymatgen60.  All coding was with Python 373. More details of the methods are introduced in each 

section.  
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