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ABSTRACT: Collecting and analyzing the vast amount of information available in the solid-state
chemistry literature may accelerate our understanding of materials synthesis. However, one major
problem is the difficulty of identifying which materials from a synthesis paragraph are precursors
or are target materials. In this study, we developed a two-step Chemical Named Entity Recognition
(CNER) model to identify precursors and targets, based on information from the context around
material entities. Using the extracted data, we conducted a meta-analysis to study the similarities
and differences between precursors in the context of solid-state synthesis. To quantify precursor
similarity, we built a substitution model to calculate the viability of substituting one precursor
with another while retaining the target. From a hierarchical clustering of the precursors, we
demonstrate that “chemical similarity” of precursors can be extracted from text data. Quantifying
the similarity of precursors helps provide a foundation for suggesting candidate reactants in a

predictive synthesis model.




1. INTRODUCTION

Understanding how to synthesize desired compounds is a grand challenge in the development of
novel materials!. Researchers are trying to tackle this challenge from different perspectives, in-
cluding in situ experiments2-4, thermodynamic analysis®>-8, and machine-learning guided synthesis
parameters search®10. One potential approach is to learn from the large volume of experimental
synthesis “recipes”, which are provided in scientific publications in various unstructured forms11-
14 Here we define a solid-state synthesis recipe to be any structured information about a target
material, precursors, and operations used to synthesize this material, that is classified as solid
state by the decision tree approach of Huo et al.15. In order to understand and eventually predict
solid-state synthesis recipes, one of the important questions is how to select precursors.
Knowledge of which precursors to use is often achieved by an individual’s experience. Here we
present a data-driven approach to assess the similarities and differences between precursors in
solid-state synthesis by extracting precursors and targets from literature, and conducting a meta-
analysis with the extracted data.

The extraction of precursors and targets from written text is difficult due to the complexities of
natural language. First, a material entity can be written in text in various complicated forms; they
can be represented as chemical formulas such as Al,03 and AxB1.xC2-5, chemical terms such as haf-
nium oxide, acronyms such as PZT for Pb(Zro5Tios)03, and even more complicated notations for
composites and doped materials such as SizN4-30 wt% ZrB; and Zn3GazGez«SixO10:2.5mol% Cr3+.
Translating this knowledge into explicit rules for Chemical Named Entity Recognition (CNER) is
difficult.

Second, material entities can play different roles in synthesis experiments such as targets, rea-
gents, reaction media, etc. While this can usually be recognized easily by researchers based on

their domain-specific knowledge and grammar comprehension, such implicit assignment of mean-
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ing is much harder in computational algorithms. One naive approach could be to use multiple
rules to distinguish between targets and precursors. For example, assign a simple material (e.g.,
TiO2) as a precursor and a complex material (e.g., Pb(Zro5Tio5)03) as a target, because researchers
usually use simple materials to synthesize a complex one. However, there are many cases that do
not follow this rule: the same material zirconia can be a precursor for a Zr-based complex oxide,
an auxiliary component as a grinding media, or even a target in the synthesis of stabilized or
doped zirconial®. In order to correctly identify if a material plays the role of target, precursor or
something else, one needs to read the context of the sentence or entire paragraph, in addition to
finding the material expressions. Hardcoding all possible rules would require an enormous
amount of human effort.

Recent progress in natural language processing (NLP)17.18 has made it possible to locate words
or phrases in unstructured text and classify them into pre-defined categories. For example, Swain
et al. trained a conditional random field (CRF) model on an organic dataset!® to extract chemical
entities—available in the toolkit ChemDataExtractor.20 Kim et al. utilized a neural network trained
on 20 articles to extract 18 different categories of synthesis information, including materials and
targets, for 30 different oxides systems?21. Korvigo et al. developed a CNN-RNN model to extract
chemical entities?2 on the same dataset as Swain et al.. Weston et al. trained a bi-directional long-
short term memory (Bi-LSTM) model to extract inorganic materials from materials science ab-
stracts23. Other packages to extract chemical entities using NLP methods include OSCAR424, Chem-
icalTagger2>, GRAM-CNNZ26, etc. However, the previous studies mainly focused on the identification
of chemicals rather than their roles in synthesis. Kim et al.2 demonstrate an attempt to predict

and analyze targets.

Our focus here is specifically to identify precursor and target materials in inorganic solid-state

synthesis text, and to study the relations between various precursors and correlate it with targets.
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For the CNER task, a two-step model Synthesis Materials Recognizer (SMR) based on Bi-LSTM is
implemented. The model recognizes context clues provided by the words around the precur-
sors/targets in the sentence. With the SMR model, we extracted 1,619 unique precursors and
16,215 unique targets from 95,283 paragraphs in 86,554 scientific papers on solid-state synthesis.
This corpus of papers was filtered from a larger set of 4 million papers defined in ref Kononova et
al?7

The large dataset indicates that the most common precursors for each element are usually the
environmentally stable oxides, carbonates or hydroxides. By applying a probabilistic model on the
data we explore which precursors play a similar role in the synthesis of a target material and
which may therefore be substitutable. Combining the substitution probability and the distribution
of synthesis temperatures, we define a multi-feature distance metric to characterize the similarity
of precursors. A hierarchical clustering of precursors based on this metric demonstrates that the
“chemical similarity” can be extracted from text data, without the need to include any explicit do-
main knowledge. The quantitative similarity metric offers a reference to rank precursor candi-

dates and constitutes an important step towards developing a predictive synthesis model.

2. EXTRACTION OF PRECURSORS AND TARGETS

In this section, we describe the SMR model used to identify and extract precursor and target ma-
terials from a synthesis paragraph. By comparing with a baseline mode, we explain how the SMR

model works, the advantages and limitations.

2.1 Data Preparation. We used the same data extraction pipeline as described in ref Kononova
et al.?’ A total of 4,061,814 papers were scraped from main publishers including Elsevier, Wiley,
Springer, the American Chemical Society, the Electrochemical Society, and the Royal Society of

Chemistry. After classification using the semi-supervised random forest model from Huo et al.1s,
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371,850 paragraphs in the experimental sections were found to describe inorganic synthesis, such
as solid-state, hydrothermal, sol-gel, co-precipitation syntheses, with 95,283 corresponding to sol-
id-state synthesis. These 95,283 paragraphs and their corresponding abstracts in 86,554 literature

papers were used for materials extraction.

2.2 Algorithm Design and Execution. The identification of materials entities in the text and
their subsequent classification as targets, precursors, or something else were performed in two
steps as shown in Figure 1(a): first we identified all materials entities present in a sentence; next
we replaced each material with a keyword “<MAT>" and classified it as a “Target”, “Precursor”, or

just “Material”. Each step was executed by a different Bi-LSTM neural network with a conditional

random field (CRF) layer on top of it (Bi-LSTM-CRF)?2829,

For the first step, each input word was represented as the combination of a word-level embed-
ding and a character-level embedding via an embedding layer. The word-level embeddings, which
are vectors of real numbers representing the words, were trained using the Word2Vec
approach30931 with ~33,000 paragraphs on solid-state synthesis to capture the semantic and syn-
tactic similarity of words in synthesis text. In this embedding layer, the characters of each word
were converted into an embedding vector using another Bi-LSTM to learn the character-level fea-
tures such as the prefix and suffix information. The character embedding was concatenated with
the pretrained word embedding and input into a Bi-LSTM to capture the left and right context at
every word. Finally, the output from Bi-LSTM was combined with a CRF model, which character-

ized the transition probability from one tag to another to produce the final prediction.
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Figure 1. (a) Main architecture of the SMR model. x; is the embedding used as the input for the Bi-
LSTM-CRF neural network. l; represents the ith token and its left context. r; represents the ith token
and its right context. ¢; is the combination of l; and r;. t; represents the score for different tags. (b)
Change of one LSTM cell state in different context for precursor classification. The tokens in the
example sentence are separated by spaces in the hanging text and represented as the sequence

numbers on the x-axis.

For the second step, a Bi-LSTM with a similar structure to that in the first step was used but the
inputs were different. All the materials in the input sentences were replaced with the word
“<MAT>" so that the role of a material in synthesis is predicted mainly based on the surrounding
context. We found this to be more effective than directly using the specific materials words as in-

put to the Bi-LSTM, because such a direct model tries to store the mapping information from each
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different material to the particular role this material is mostly used for, which brings in bias for
frequently appearing materials. For example, as “zirconia” often describes the balls used in ball
milling, it is difficult for the neural network to deviate from this assignment and treat “zirconia” as
a target or precursor. A more detailed discussion on the benefits of the two-step model can be
found in the SI. Since all the chemical information about the material is lost by inputting “<MAT>"
instead of the materials words, we also included two additional features in the word representa-
tion, i.e., the number of metal/metalloid elements and a flag indicating whether the material con-
tained C, H, and O elements only. These additional features assist in the differentiation of precur-
sors and targets, as they tend to have different numbers of metal/metalloid elements and are gen-
erally not organic compounds in inorganic synthesis. The composition information was obtained
by parsing the raw text of the materials entities by regular expression comparison?7.

Bi-LSTM is able to infer the role of materials from context because Bi-LSTM specifies a variable
called cell state to store the information about the words around the material. Figure 1(b) shows a
typical example of the trained Bi-LSTM cell state continuously changing depending on token con-
text in the example sentence3? when feeding the tokens into Bi-LSTM one by one. In this study, 100
neurons (cells) were used to represent the context information; Figure 1(b) displays one of the
cell states relevant to the context about precursors. To obtain the cell states for the next token,
both the next token and the current cell states are input to the network. Hence, after seeing the
sequence of tokens “was prepared from” in the example sentence, the network predicts from the
context that the tokens following this phrase most likely refer to a precursor(s). Likewise, the
network predicts that the tokens following “at 700 ° C for” most likely are not precursors.

To train the SMR model, 834 solid-state synthesis paragraphs from 750 papers were tokenized
with ChemDataExtractor2?, and each token was manually annotated with tags of “Material”, “Tar-

» o«

get”, “Precursor”, and “Outside” (not a material entity). In the annotation, a target is defined as a
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final material obtained through a series of lab operations in the complete synthesis process, and a
precursor is defined as a starting reagent involved in the synthesis process through a lab opera-
tion and contributing to the target composition. Other materials include media, gas, device mate-
rials, etc. The annotation dataset contains 8601 materials, out of which 1256 are targets and 3295
are precursors. The annotated dataset was randomly split into training/validation/test sets with
500/100/150 papers in each set. Early stopping3? was used to minimize overfitting by stopping
the iterative training when the best performance was achieved on the validation set. To reduce the
variance resulting from the limited size of the training set, the six models trained in a six-fold
cross-validation process were combined together to make the final decision by voting in the classi-
fication. The entire training and test process was repeated 10 times, and the average result of the

test sets is reported.

2.3 Evaluation of SMR Accuracy and Working Examples. We first aim to demonstrate that the
recognition of context clues is necessary for the CNER task by comparing the SMR model with a
baseline model based on naive rules. To build this baseline model, we used ChemDataExtractor20
to identify and extract materials from the text. Then, inspired from a scientific perspective that re-
searchers usually use simple materials to synthesize a complex one, the precursors and targets
were assigned based on the number of elements: materials with only one metal/metalloid element
were assumed to be precursors, and materials with at least two metal/metalloid elements were
assumed to be targets. This baseline is a least-effort model but provides a quantitative reference

for understanding the importance of capturing context information.

In Table 1, we compare the performance of the SMR model and the baseline model using F{
scores, which provides a measure of the accuracy of a binary classification test based on the har-

monic mean of the precision and recall. The F1 scores on the extraction of all materials, precursors,



and targets using the SMR model are 95.0%, 90.0%, and 84.5%, respectively. Out of all the extract-
ed entities, 88.9% of precursors and 85.9% of targets in the test set are correctly identified. These
correct cases account for 91.2% and 83.4% of all the precursors and targets which should be ex-
tracted, respectively. The possibility of errors increases when multiple precursors and targets are
present in the same sentence. Out of all the sentences containing precursors/targets, the rate to
successfully retrieve all the precursors and targets in each sentence is 73.4%. Some representative
successful examples from the SMR model, such as the recognition of the targets “LiBaBO3:Sm3+”
and “(0.725-x)BiFe03-xBi(Ni0.5Mn0.5)03-0.275BaTiO3 + 1 mol% Mn02”, are shown in Table 2.
We interpret the results as follows. In the baseline model, only the information from the material
entity itself is used, resulting in low F1 scores for the extraction of precursors and targets (70.0%
and 32.1%, respectively). In contrast, the SMR model achieves better F; scores because Bi-LSTM is
able to infer the role of materials from the context. For example, as discussed previously, the Bi-
LSTM infers from the tokens “was prepared from” to mean that the following tokens probably re-
fer to a precursor(s). Likewise, the network predicts that the tokens following “at 700 ° C for” most
likely are not precursors. For a precursor with more than one metal/metalloid element, the base-
line model fails to recognize it regardless of the context, while the SMR model can still identify the

precursor nature of this material.

Table 1. Precision, recall, and F1 scores for the baseline and SMR models to extract materials, pre-

cursors, and targets. The type “Materials” include precursors, targets and all other materials.

Model Type Precision (%) Recall (%) Fiscore (%)
Materials 78.3 68.3 73.0
Baseline Precursors 60.9 82.2 70.0
Targets 48.5 33.0 321
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Materials 94.6 95.3 95.0
SMR Precursors 88.9 91.2 90.0

Targets 85.9 83.4 84.5

However, some situations still remain difficult for the SMR model:

e Some material entities tokenized into multiple tokens are not completely extracted. For exam-
ple, the incomplete pieces “(Bal-x(K” and “Na)x/2Lax/2)(Mgl/3Nb2/3)03” are extracted instead
of “(Bal-x(K or Na)x/2Lax/2)(Mgl/3 Nb2/3)03” in Table 2. The identification of these materials
is difficult due to the syntactic variability and ambiguity of multiword expressions (MWEs)34,
which might be improved by incorporating recent progress on MWE identification such as the lan-
guage-independent architecture proposed by Taslimipoor et al.3> The number of training sentenc-
es containing MWE materials might remain as an issue considering the relative large dataset3®
used by Taslimipoor et al.35

» Some sentences are ambiguous to the SMR model due to the limitations of the training set. For
example, the model correctly classifies “Y203” as a precursor in “Y203 as a precursor was added”
and “Y203” as neither target nor precursor in “Y203 as a grinding media was added”. However, in
the sentence “Y203 as a donor impurity was added”, the model does not understand “donor impu-
rity” and only assigns “Y203” as an ordinary material rather than a precursor. This situation might
be improved by including more contextual information in the input, such as the sentence embed-
dings3” of previous and next sentences, and contextualized word embeddings trained on a much
larger corpus (e.g. BERT38 and SciBERT?3?). Future possible directions for research include training
these embedding models on papers specifically on materials synthesis, although the training pro-

cess may require a significant manual time investment and considerable computational resources.
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» Misclassification can occur when the sentence is written with complicated structure. For ex-
ample, the target “Ba0.5Sr0.5CoxFe1-x03-8" is misclassified as a precursor when the order of pre-
cursors and targets is reversed or closely mixed in the sentence and the materials around this
word are all precursors, as shown in Table 2. These sentences with complicated structure must
often be treated on a case-by-case basis, and it is difficult for an NLP model to pick up general
rules to correct for these errors. A potential solution is to conduct selective sampling to annotate
sentences with complex syntax more efficiently, where only the ones that a pretrained classifier is
less confident with will be sampled for annotation*?. Our current model lays a foundation for se-
lective sampling.

Considering the significant effort required to address each of these problems and the decent
performance achieved already, we put these problems as future research directions. To retain a
higher precision in the dataset, we only used the recipes for which a balanced chemical reaction

can be reconstructed from the extracted precursors and targets as discussed by Kononova et al.2”
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Table 2. Representative successful and failed examples from the SMR model in this study.

Example Sentences Expected Error in Extraction
Successful
The LiBaB03:Sm3+ samples were prepared by solid-state reaction.*! Target: LiBaBO3:Sm3+ N/A

Ceramic samples of (0.725-x)BiFe03-xBi(Ni0.5Mn0.5)03-0.275BaTiO3 + 1 mol%
MnO2 (x = 0-0.08) (BFO-BT-BNM-x) were prepared by the conventional solid-state

Targets: (0.725-x)BiFe03-xBi(Ni0.5Mn0.5)03-

0.275BaTi03 + 1 mol% Mn02, BFO-BT-BNM-x N/A
route using high-purity metal oxides and carbonates as starting materials: Bi203 (99

) ) Precursors: Bi203, Fe203, BaC03, TiO2, NiO, MnO2
%), Fe203 (99 %), BaC0O3 (99 %), TiO2 (98 %), NiO (99 %), Mn0O2 (99.99 %).42

Y203 as a precursor was added. Precursor: Y203 N/A
Y203 as a grinding media was added. Material: Y203 N/A
Failed

“(Bal-x(K” and

(Bal-x(K or Na)x/2Lax/2)(Mgl/3Nb2/3)03 with 0 < x < 1 were synthesized by a “Na)x/2Lax/2)(Mgl/
Target: (Bal-x(K or Na)x/2Lax/2)(Mg1/3Nb2/3)03
conventional solid-state reaction method.*3 3Nb2/3)03” extract-
ed
Y203 extracted as an
Y203 as a donor impurity was added.** Precursor: Y203
ordinary material
Required amounts of BaC03, SrC03, CoC03-0.5H20 and Fe203 powders for Targets: Ba0.55r0.5CoxFe1-x03-§, PrBaCo205+8  |Ba0.5Sr0.5CoxFel-

Ba0.5Sr0.5CoxFe1-x03-§, Pr6011, BaC03, and CoC03-0.5H20 powders for PrBa- Precursors: BaC03, SrC03, CoC03-0.5H20, Fe203, [x03-6 extracted as a
C0205+6 were mixed and ball-milled for 24h.45 Pr6011, BaCO3, CoC03-0.5H20 precursor
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3. SUBSTITUTION OF PRECURSORS

We first present the variety of the extracted precursors. An intriguing question is how frequently
researchers substitute one precursor with another while retaining the target, which sheds light on
how similar these precursors behave in a solid-state reaction. We utilize a substitution model
based on the work of Hautier et al.#¢ and Yang et al.#” to quantify the probability that two precur-

sors are interchangeable.

3.1 Common and uncommon precursors. The SMR model was applied to generate the dataset
of 29,308 reactions by analyzing 95,283 solid-state synthesis paragraphs (see the work by
Kononova et al.?? for details). Since a reaction can be mentioned multiple times in the same paper,
resulting in multiple records in the dataset, the records were unified to 28,530 reactions, contain-
ing 71 different metal/metalloid elements and 1,619 distinct precursors. Some precursors are
rarely used. Restricting the statistics to precursors used at least 30 times, there are 58 met-

al/metalloid elements and 182 precursors.

To visualize the variety of precursors, the precursors for each metal/metalloid element are cate-
gorized by anion (group) class and counted by the number of corresponding reactions in which
they are used. The frequency of each anion class normalized by the total number of reactions for
an element is shown in Figure 2. One precursor is usually used much more frequently than other
precursors for the same element, which we denote as the common precursor. Figure 2 shows that
for alkali and alkaline earth elements, the common precursors are carbonates except for MgO
which is the typical source for Mg. For transition metal and other main group elements, the com-
mon precursors are oxides except for B(OH)s for B. In general, the common precursor tends to be
the compound that is stable under ambient conditions, which is beneficial to the purity and accu-

rate weighting in experiments*8. Our observation on the common precursors suggests that labora-
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tory chemists will prioritize shelf-stability of precursors; although we note that more reactive pre-
cursors can help to facilitate synthesis reactions.

Sometimes, the decision to use an uncommon precursor is motivated by an interesting ad-
vantage for a specific non-traditional precursor. For example, in some cases precursors can func-
tion as morphology templates; Zhao et al. reported that y-MnOOH nanorods were used to obtain
LiMn204 nanorods, whereas LiMn;04 from electrolytic MnO2 (EMD) only consisted of many irregu-
lar and aggregated particles#®. The use of a lower-melting-point precursor can result in a target
with smaller particle size; Liu et al. adopted Sr(NO3)2 instead of SrCO3 to synthesize SrTiO3 nano-
crystals®0, An amorphous precursor can facilitate the reaction process and minimize the possibil-
ity of forming chemical segregations; Mercury et al. utilized amorphous Al(OH)3 rather than Al;03
in the synthesis of CazAl206°1. In these examples, there were strategically designed precursors in
order to achieve a particular synthesis result. Collecting these individual use cases provides inter-

esting insight in synthesis design.
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Figure 2. Fraction of different classes of precursors corresponding to each element: (a) main

group elements, (b) transition metal elements.

3.2 Substitution model. The large number of reactions we obtained gives us the opportunity to
understand to what extent precursors are interchangeable. To measure the probability that one
precursor can be substituted by another while retaining the target, we utilized a substitution
model similar to the one developed by Hautier et al.*¢ and used by Yang et al.#7 for structure pre-
diction. For each pair of precursors, the model counts the number of occurrences where the same
targets can be synthesized from either of the precursors. The more frequently the two precursors
are interchanged, the more similar they are.

In the following part, we define the substitution model in a mathematical form, and express the
probability of finding a substitutional precursor pair P, (pij‘l,pij ’2) as a sigmoid with unknown
parameter A. Assuming the independence of substitutions, we deconvolute the probability of find-
ing substitution between two lists of precursors Py, (Ry, Rx) into the product of P, (pij * pij ’2). At
last, we maximize Py, (Ry, Ry) over substitution observations to solve A and use it to calculate
substitution probability.

First, we define precursor substitution in a mathematical form. Let E=(e, e2, ..., en) be a pre-
defined ordered list of all the metal/metalloid elements given in the periodic table. We assume
each precursor contributes one metal/metalloid element to targets. For the target Rz, in a reac-
tion synthesis R=(Rrar, Rx), define the precursor list as Rx=(p1, p2, ..., pn), Where p; is the precursor
for element e; present in Rrar; otherwise p; is null. For a pair of reaction {R, R’}, if Rrer=R’rer and Rx7
R’x, we say precursor substitution occurs. Through iterating over all possible combinations of any

two reactions, we obtain a collection of N reaction pairs where precursor substitution occurs, de-
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noted as the data D={{R, R}, {R, R’}?, .., {R, R}"}. Our objective is now to find the values of the
pairwise precursor substitutions that maximize the likelihood of D.

Next, we define the potential substitutional precursor pairs. For element e;, denote the list of
candidate precursors as (pil, pi2, ..., pl.mi), where m; is the total number of unique precursors. We
assume that potentially every precursor pfl can be substituted by any other one piT 2, forming a
substitutional pair {pirl,pirz} where 1 < 7; < 7, < m;. In total, there can be up to M; = (nzl‘) such
pairs for element e;. For simplicity, we assemble all substitutional pairs for all elements into one
list and renumber the pairs as {pij‘l, pij‘z} where j = 1, ..., 2% ;[M;[. Although the index i is not nec-
essary, we retain it for clarity to distinguish between elements. The probability that the pair

i1 2 _ . .
{p{"", p/*} can be found as a substitution occurs is written as

Psub(pi]’l,pi]'Z) = sigmoid(4;) (1)
where A; is a parameter to be optimized. Assuming all substitutional precursor pairs are inde-
pendent of each other, the probability that the pair of precursor lists {Rx, R’x} can be found as a

substitution occurs is

, eZjAj1j(Rx.Rx)
Psup(Rx, Rx) = 7 (2)
where
1 {R . R! } = {p.j’l p.j’z}
1,(Ry, Ry) = | Ui i) = Wi P 3)
0, otherwise

and Z is the partition function for normalization, given by

z=] [(1+eM) 4)
J

The value of A=(A4, A2,...) is obtained by maximizing the likelihood over the data D:

N
2 = argmax; )" 10gPaun((Ry, RY)'12) 5)

t=1
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For those substitutional pairs not found in D, the value of A; will be set to a common low value such
that Pgy, (pl.j’l, pij'z) in Eq. (1) is close to zero.

Finally, we define the substitution probability. Here we discuss one substitutional pair {pij o pl.j ’2}
and omit the index j for simplicity. For a given reaction using precursor p;l, the probability that p1
is substitutable by p;? is

Psub (pil' plz)
Y ix1 Psun (PL, PF)

P(p?|p}) = P(p} substituted) (6)

where P(pi! substituted) is a prior probability of p;! being substitutable and is calculated as the
number of reactions with the substituted precursor p;! divided by the total number of all reactions
using pi1. The fractional part in the right-hand side accounts for the conditional probability that p!
is substitutable by p;2 when substitution occurs, which can be calculated with Eq. (1). A small frac-
tion of reactions (~5%) which included multiple metal/metalloid elements in the same precursors

or used multiple precursors for the same element were not considered in this model.

3.3 Cross-validation of the substitution model. We evaluated the predictive power of the sub-
stitution model by performing a cross-validation test on the generation of alternative precursor
lists. Cross-validation consists in training the model on part of the data available (the training set)
and predicting back the remaining data (the validation set). Given a target Rrr and an existing pre-
cursor list Ry in the training set, we can propose an alternative precursor list R’x to synthesis the
same target by replacing the precursors in Rx with different ones. With the substitution probabil-

ity defined in Eq. (6), the conditional probability of Ry being substitutable by R’x is given by

PRyRO =[] PG ™
plERy,P?ERY, P} #D?
If P(R’x/Rx) is higher than a given threshold, the proposed R’x will be accepted as a positive pre-

diction of an alternative precursor list. Otherwise, R’y will be rejected as a negative prediction. Ap-
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plying this procedure on all possible R’yx, we obtain all the positive and negative predictions and
compare with the validation set for evaluation. Two-thirds of the reactions were used as the train-
ing set and the remaining one-third of the data were used as the validation set. For example,
Lao.7Ca03MnOs3 is synthesized from Laz03, CaCO3, Mn02°2 in the training set. As a true positive pre-
diction, the substituted precursor list La;03, Ca0O, and Mn(Ac)2>3 was also found in the validation
set. The true positive rate (TPR) and false positive rate (FPR) were used as metrics to evaluate the
performance. The TPR and FPR of the prediction vary with the probability threshold, as shown in
Figure 3. Overall, the TPR is higher than the FPR, indicating that the substitution model is predic-
tive in the selection of alternative precursors and can effectively distinguish between the substitu-
tions leading to existing precursor lists and those leading to non-existing ones. Higher threshold
values lead to fewer false alarms but imply fewer true hits. An adequate threshold can be found by

selecting the one resulting in relatively higher TPR and lower FPR.
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Figure 3. TPR and FPR with varying probability threshold in the prediction of alternative precur-
sor list. The green dashed line indicates where the largest difference between the TPR and FPR
was observed.

3.4 Substitution probability. The probability P(B/A) that a precursor A is substituted by anoth-

er precursor B for the same metal/metalloid element is displayed as a heatmap in Figure 4, where
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the rows are A and the columns are B. The color represents the probability of substitution defined
in Eq. (6), as shown by the colorbar. For each element, the precursors are ordered by the number
of reactions using it from the most to the least, i.e., the first precursor is the common precursor for
each element. For the sake of simplicity, we merged the precursor in its hydrated form and its an-
hydrous form, e.g. LiOH-H20 and LiOH, based on the assumption that water will evaporate early on
during the solid-state heating process. The rows for the common precursors usually display rela-
tively high substitution probability, which implies that many uncommon precursors can be re-
placed with the common precursors. Note that our analysis only indicates that substitution can
lead to the same target compound under similar reaction conditions. The choice of different pre-
cursors can still be justified as they might infer different properties on the compound. For exam-
ple, in the battery chemistry, LiOH is sometimes preferred over Li2CO3 as it leaves less carbonate
residual on the surface of the particles.

Intuitively, hydroxides are similar to oxides, however, Figure 4 also captures some differences in
this similarity for different elements. For example, the common precursor for Al is the oxide,
whereas that for B is the hydroxide. Furthermore, the probability of substitution between Al(OH)3
and Al;03 is considerably higher than between B(OH)3 and B203. The number of reactions using
Al>03, Al(OH)3, B(OH)3, and B203 are 1606, 148, 705, and 252, respectively, indicating that this dif-
ference is not due to limited data. The reason behind this is possibly correlated with the unique
bonding in B203; B is highly hybridized with O in B203, much more than Al with O in Al;03.This
creates strong units in B203 held together by relatively weak forces>* accounting for its low melt-
ing point and high glass-forming ability>>. Although nitrates are often used in solution-based syn-
thesis, the chance to use nitrates in solid-state synthesis is also considerable. Figure 4 shows that
for elements Ca, Ba, Al, and Fe, nitrates frequently replace the common oxide or carbonate precur-

sors. For example, the probability of substituting Fe>O3 with Fe(NO3)3 is high. The nitrates are

20



used in various ways such as in conventional solid-state synthesis>¢, modified solid-state synthe-
sis>7, combustion synthesis®8, and sol-gel synthesis>?. Although carbonates appear interchangeable
with oxides, the metals in them might not occupy the same valence state. The probability of substi-

tution between MnCO3 and MnO: is higher than that between MnCO3 and MnO, indicating that

MnO; is more similar to MnCO3 than MnO.
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Figure 4. Substitution probability P(B[A) which is the probability that the precursor A on the x-
axis is substituted with precursor B on the y-axis: (a) Li, (b) Ca and Ba, (c) B and Al, (d) Fe, (e) Co,
(f) Mn. For example, we found that in 15% of reactions that use CaCOs3, it could also be substituted

with another precursor to introduce Ca into the same targets; in 73% of the substitutions, the oth-
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er precursor is CaO. The joint probability that CaCOs3 is substituted and the substitute is CaO is
11%. Because CaF; is exclusively used for synthesis of fluorine-containing compounds, the proba-

bility that CaF> is substituted to synthesize the same target is zero.

To better understand how precursors are chosen for elements with variable valence, for each Mn
precursor with reasonable frequency of use, we plot in Figure 5 the distribution of valence states
for Mn in the targets synthesized from that precursor. The valence of Mn in the target compound
was determined by iterating all possible combinations of valence states and finding the one result-
ing in the charge neutrality for the compound®0. The width of each violin plot is proportional to
the probability density for different valence states; the total area is proportional to the number of
reactions using the corresponding precursor. The adoption of MnO, Mn;03, and MnO is preferred
in the literature to synthesize targets with similar valence states, i.e.,, most Mn ions in targets from
MnO, Mn203, and MnO? corresponds to 2+, 3+, and 3+~4+, respectively. Different from the oxides,
the valence states in targets from MnCO3 and Mn(Ac)2 (Ac stands for acetate anion CH3COO-) are
more evenly distributed, indicating that the use of MnCO3 and Mn(Ac): is less dependent on the
valence states in the targets. This appears reasonable given the ease by which MnCO3 and Mn(Ac)2
decompose when heated and Mn?2+* can be oxidized to whatever is stable in the high-component
solid under proper oxygen chemical potential. This observation is consistent with the higher
probability of substitution between MnCO3z and MnO> as aforementioned. By comparing the num-
ber of reactions using different precursors, it should be noted that the most frequently used Mn
precursor to synthesize targets with Mn valence states lower than 3+ remains MnOz, which is the
common precursor for Mn, even though MnO; is more frequently used to synthesize targets with
Mn valence states between 3+ and 4+. One possible reason is that Mn at high temperature can rap-

idly reduce or oxidize driven by the extent of entropic stabilization of Oz on the right-hand side of
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the reaction MnO, + AH & MnO,_, + 202. In other words, the metal valence state in the precur-

sor does not necessarily impose the valence state in the target in solid-state synthesis.
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Figure 5. Mn valence states in targets from Mn(Ac); (manganese acetate), MnCO3, MnO, Mn304,
Mn;03, and MnO;. The width in each violin plot is proportional to the probability density for va-
lence at different values. The total area of each violin plot is proportional to the number of reac-

tions using the corresponding precursor.

4. SIMILARITY OF PRECURSORS

While subsitutionability, defined in the previous section, indicates that a solid-state reaction to
the target is possible with the substitutional precursors, it makes no statement as to whether the
reaction condition needs to be modified. In the following section we define similarity of precursors
based on the substitutionability as well as the extent to which the reaction conditions are similar.
At this point, we only use temperature to describe the reaction condition considering the amount
of effort, but one could extend this concept to capture other synthesis info such as atmosphere,

time, number of operations, milling speed, etc.
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4.1 Metric for similarity. Two features, the substitution probability and the distribution of syn-
thesis temperatures of the reactions that use a particular precursor, were utilized to characterize
similarity of precursors.

As introduced in Section 3, a precursor p} is substituted by another precursor p? with the prob-
ability P(p?|p?). We use the geometric average of P(p?|p}) and P(p}|p?) to balance the asymmet-
ric situations where p} or p? is substituted. The distance accounting for the substitution probabil-

ity is defined as

du(PhPD) = 1= (PG PP [P ®

where pi! and p;? are two precursors for element e;.

A different precursor can be used with a different synthesis temperature. As an example, the dis-
tribution of the highest firing temperature used in synthesis reactions with two different Fe or Ca
precursors is presented in Figure 6. The temperatures were extracted by regular expression
matching in the corresponding synthesis paragraph?’. For example, Figure 6 shows that the typical
firing temperature is much lower when FeC204 is used as a precursor than when Fe;03 is, whereas
the firing temperature for CaO is comparable to that for CaCOs. Utilizing the overlap between the
distributions of temperatures for two precursors, a distance is defined as follows to describe the
similarity between the two precursors.

overlapped area of two temperature distribution

dtemp (pl;l’ plz) =1- 9)

total area of two temperature distribution
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Figure 6. Highest firing temperature in the synthesis process for: (a) Fe;03 and FeC;04 and (b)
CaCOs3 and CaO.

Both dsuw in Eq. (8) and diemp in Eq. (9) satisfy the property that 0 < d; < 1. We utilized the Eu-
clidean distance to define a multi-feature distance metrict162 to combine the two features togeth-

er. The distance between a pair of precursors for the same element is defined as

D(pl,p?) = \/dsub(pil.pf)z + dyomp (DL P2)? (10)

The multi-feature aspect of this distance metric is general; it is straightforward to include addi-
tional features into this distance metric as new relevant features are considered. The current two
representative features are selected because the substitution probability reflects the comparison
of overall reactions in synthesis, and temperature is the most important parameter to activate
these reactions. Finally, to visualize the similarity of precursors for the same element, we per-
formed hierarchical clustering based on the pairwise distance D(p}, p?) using the Ward's mini-
mum variance method®3. The hierarchical clustering method repeatedly identifies two clusters
that are closest and merges these two clusters until only one supercluster is left.

4.2 Similarity of precursors. Based on the distance defined in Eq. (10), precursors for the same
elements were hierarchically clustered, and the similarities between them are displayed as den-

drograms in Figure 7. The vertical axis represents the distance between two precursors or the dis-
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tance between two clusters. In general, similar precursors will be drawn closer to each other on
the horizontal axis.

Generally, the cluster with the smallest internal distance includes the common precursors, indi-
cated using bold fonts in Figure 7. Simple binary fluorides and sulfides are far away from the
common precursors and are typically used as source of F and S in target materials so that HF and
H>S can be avoided. Metals are sometimes used as precursors directly; however, they are far away
from the common precursors, indicating that metals and metal oxides tend to be used as precur-
sors for different classes of materials. There is a trend that precursors are clustered following the
order: oxide, carbonate, nitrate, acetate, where the adjacent precursors are more similar (e.g., car-
bonate and oxide, or carbonate and nitrate), and the nonadjacent precursors are less similar (e.g.
oxide and acetate) though there are variations to this for some elements. When the common pre-
cursor is a carbonate, the order may change to nitrate, carbonate, oxide, acetate (e.g., Ba), where
the carbonate and the nitrate are more similar than the carbonate and the oxide, but the carbonate
still sits between the nitrate and the oxide. The similarity between different classes is possibly
correlated with the different bonding strength between the cations and anions, which can be indi-
cated by the order of melting points, namely oxide > carbonate > nitrate/acetate.

However, there are also some observations that are not easy to immediately rationalize. For Li, it
is the hydroxide rather than oxide or nitrate closest to the carbonate, whereas for Ca and Ba, the
hydroxides are even absent, which means Ca(OH)2 and Ba(OH); are rarely used. This difference
may originate from the methods used to prepare these precursors being different, resulting in dif-
ferent availabilities. One practical clue is that Li20O is more expensive than LiOH; Li20 (295% purity)
is $378.00 for 100 g ($8.10/g of Li), while lithium hydroxide monohydrate (295% purity) is
$181.00 for 2 kg ($0.54/g of Li) from the chemical supplier Strem Chemicals®4. It also observed

that LiAc and LiH2POs4, as well as FeC204 and FePOs, are clustered together, because they are fre-
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quently used to synthesize the extensively studied cathode material LiFePOs, reflecting possible
application bias in the data. In addition, oxides are similar to each other for variable valence ele-
ments, but the most similar precursor to the common oxide is not necessary an oxide. For example,
the oxides of Mn are clustered together, ranging from MnO; to MnO. However, the most similar
precursor to MnO; is MnCOs3 as discussed in section 3.3.1. Similarly, the nitrate Fe(NO3)3 is more
similar to Fe;03 than the mixed valence oxide Fe304to Fe;03. There are many factors in the selec-
tion of precursors, including both scientific reasons such as bonding, reactivity, and melting point,
and anthropogenic reasons® such as literature success, convenience, applications, price, and hu-
man bias. The data in this work is a reflection of all those factors; it is not entirely clear how to de-
convolute all these issues. An interesting scientific advance would be to identify the precursors
that are chemically compelling while avoiding the implicit anthropogenic biases. This work pro-

vides a historical statistical analysis to serve as a baseline comparison.
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Figure 7. Clusters of precursors for (a) Li, (b) Ca, (c) Ba, (d) Fe, (e) Co, (f) Mn by similarity. The

common precursors are indicated using bold fonts.

The similarity could help guide the selection of precursors when researchers alter existing reci-
pes by replacing precursors. For a starting experiment, it might be profitable to pick precursors
similar to what has been tried before. On the other hand, when the synthesis is not going well, it is
best to use a very different precursor in order to diversify the synthesis space. If there are many
possible combinations of precursors, the quantitative value of the similarity could also serve as a

reference to rank them. Currently, the creation of new recipes is in principle limited to targets al-
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ready in our dataset. Therefore, it is also important in the future to develop similarity among tar-
gets. In that way, it would be possible to predict synthesis recipes for new target materials by
evaluating the similarity with targets for which synthesis is known, a process that is very similar

the current literature-based approach to the synthesis of novel materials.

5. CONCLUSIONS

In this study, we proposed a two-step model based on Bi-LSTM to extract the precursors and
targets in inorganic solid-state synthesis reactions as reported in 86,554 literature papers. The F1
scores for the extraction of precursors and targets are 90.0% and 84.5%, respectively. Through
comparison with a simple baseline model and showing how Bi-LSTM takes advantage of not only
the written expression of words but also the surrounding context, we illustrated why the use of Bi-
LSTM is suitable for our Chemical Named Entity Recognition (CNER) problem.

Using the extracted data, we conducted a meta-analysis on the similarities and differences be-
tween precursors. The statistics on the frequency to use different classes of precursors shows that
each element usually has a common precursor to bring it into a target compound. A substitution
model is used to quantify the probability of substituting one precursor with another while the tar-
get remains unchanged. By establishing distance metrics from the substitution model and the dis-
tribution of synthesis temperature, precursors for the same element were clustered to show the
similarities between these precursors. This hierarchical clustering demonstrates that chemical
domain knowledge of solid-state synthesis can be captured from text mining and provides a foun-

dation for developing a predictive synthesis model.

METHODS

Data preparation. Borges®® was used to scrape papers from websites of main publishers under

agreements made with them. LimeSoup®’ was used to parse the papers from HTML content into

29



plain text. Solid-state synthesis paragraphs were identified with the synthesis paragraph classifi-
cation model®8 by Huo et al.1>

CNER and similarity analysis. The SMR model was developed with Theano®® and TensorFlow?°
based on the work by Lample et al?° An internal crowdsourcing website similar to Amazon Me-
chanical Turk”! was built for data annotation. ChemDataExtractor2? was used for text tokenization.
Gensim7’2 was used to train the Word2Vec3931 embeddings. The precursor substitution model was
adapted from the ion substitution model developed by Hautier et al*® and Yang et al%’ as in
pymatgen®0. All coding was with Python 373. More details of the methods are introduced in each

section.
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BERT, and utilization of synthesis time. This material is available free of change via the Internet at

http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Gerbrand Ceder - Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA,
94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA,

94720, USA; E-mail: gceder@berkeley.edu

CODE AVAILABILITY

The code of the Synthesis Materials Recognizer (SMR) model is publicly available at the GitHub

repository https://github.com/CederGroupHub /text-mined-synthesis public.

ACKNOWLEDGMENT
30


mailto:gceder@berkeley.edu
https://github.com/CederGroupHub/text-mined-synthesis_public

Funding to support this work was provided by the Energy & Biosciences Institute through the EBI-
Shell program (Award No PT74140 and PT78473), the Assistant Secretary of Energy Efficiency
and Renewable Energy, Vehicle Technologies Office, U.S. Department of Energy under Contract No.
DE-AC02-05CH11231, the Office of Naval Research (ONR) Award #N00014-16-1-2432, the Na-
tional Science Foundation under Grant Number 1922311, 1922372, and 1922090, and the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division under Contract No. DE-AC02-05-CH11231 (D2S2 program KCD2S2). We
thank Anna Sackmann (Science Data and Engineering Librarian at UC Berkeley) for helping us to
obtain Text and Data Mining agreements with the specified publishers. We also thank Prof. Elsa
Olivetti, Edward Kim, Alexander Van Grootel, and Zach Jensen for valuable collaborations and help
with content acquisition and HTML/XML markups parser development, and Chris Bartel, Zheren
Wang, Amalie Trewartha, Nicolas Mingione, Haegyeom Kim, Guobo Zeng, Huiwen Ji, Indranil Ru-
dra, Padmini Rajagopalan, Kaustubh Kaluskar, and Lalit Gupta for valuable discussions. Finally, we
thank all the Ceder group members for their help with data annotation and manual checks of the

data.

REFERENCES

(1) Hemminger, ]. C.; Sarrao, J.; Crabtree, G.; Flemming, G.; Ratner, M. Challenges at the Frontiers
of Matter and Energy: Transformative Opportunities for Discovery Science; United States,
2015. https://doi.org/10.2172/1283188.

(2) Bianchini, M.; Wang, |.; Clément, R. ].; Ouyang, B.; Xiao, P.; Kitchaev, D.; Shi, T.; Zhang, Y,;
Wang, Y.; Kim, H.; et al. The Interplay between Thermodynamics and Kinetics in the Solid-
State Synthesis of Layered Oxides. Nat. Mater. 2020, 1-8. https://doi.org/10.1038/s41563-

020-0688-6.

31



(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Jiang, Z.; Ramanathan, A.; Shoemaker, D. P. In Situ Identification of Kinetic Factors That
Expedite Inorganic Crystal Formation and Discovery. . Mater. Chem. C 2017, 5, 57009.
https://doi.org/10.1039/c6tc04931a.

Martinolich, A. J.; Neilson, J. R. Toward Reaction-by-Design: Achieving Kinetic Control of
Solid State Chemistry with Metathesis. Chem. Mater. 2017, 29 (2), 479-489.
https://doi.org/10.1021/acs.chemmater.6b04861.

Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; Persson, K.
A.; Ceder, G. The Thermodynamic Scale of Inorganic Crystalline Metastability. Sci. Adv. 2016,
2 (11),e1600225. https://doi.org/10.1126/sciadv.1600225.

Sun, W,; Jayaraman, S.; Chen, W.; Persson, K. A, Ceder, G. Nucleation of Metastable
Aragonite CaCO3 in Seawater. Proc. Natl Acad. Sci. 2015, 112 (11), 3199-3204.
https://doi.org/10.1073 /pnas.1423898112.

Chen, B.-R.; Sun, W.; Kitchaev, D. A.; Mangum, J. S.; Thampy, V.; Garten, L. M.; Ginley, D. S.;
Gorman, B. P.; Stone, K. H.; Ceder, G.; et al. Understanding Crystallization Pathways Leading
to Manganese Oxide Polymorph Formation. Nat. Commun. 2018, 9 (1), 2553.
https://doi.org/10.1038/s41467-018-04917-y.

Sun, W.; Holder, A, Orvafanos, B., Arca, E. Zakutayev, A, Lany, S. Ceder, G.
Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides. Chem. Mater. 2017, 29
(16), 6936-6946. https://doi.org/10.1021/acs.chemmater.7b02399.

Raccuglia, P.; Elbert, K. C.; Adler, P. D. F,; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler,
S. A,; Schrier, ].; Norquist, A. ]. Machine-Learning-Assisted Materials Discovery Using Failed
Experiments. Nature 2016, 533 (7601), 73-76. https://doi.org/10.1038 /nature17439.

Kim, E.; Huang, K.; Saunders, A.; McCallum, A.; Ceder, G.; Olivetti, E. Materials Synthesis

Insights from Scientific Literature via Text Extraction and Machine Learning. Chem. Mater.

32



(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

2017,29 (21),9436-9444. https://doi.org/10.1021/acs.chemmater.7b03500.

Chu, C. W,; Hor, P. H;; Meng, R. L,; Gao, L.; Huang, Z. ].; Wang, and Y. Q. Evidence for
Superconductivity above 40 K in the La-Ba-Cu-O Compound System. Phys. Rev. Lett. 1987,
58 (4),405-407. https://doi.org/10.1103 /PhysRevLett.58.405.

Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, ]. B. Effect of
Structure on the Fe 3 + / Fe 2 + Redox Couple in Iron Phosphates. J. Electrochem. Soc. 2019,
144 (5), 1609-1613. https://doi.org/10.1149/1.1837649.

Subramanian, M. A,; Li, D.; Duan, N.; Reisner, B. A.; Sleight, A. W. High Dielectric Constant in
ACu3Ti4012 and ACu3Ti3FeO12 Phases. J. Solid State Chem. 2000, 151 (2), 323-325.
https://doi.org/10.1006/jssc.2000.8703.

Ikesue, A.; Kinoshita, T.; Kamata, K.; Yoshida, K. Fabrication and Optical Properties of High-
Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers. /. Am. Ceram. Soc.
1995, 78 (4), 1033-1040. https://doi.org/10.1111/j.1151-2916.1995.tb08433 x.

Huo, H.; Rong, Z.; Kononova, O.; Sun, W.; Botari, T.; He, T.; Tshitoyan, V.; Ceder, G. Semi-
Supervised Machine-Learning Classification of Materials Synthesis Procedures. npj Comput.
Mater. 2019, 5 (1), 62. https://doi.org/10.1038/s41524-019-0204-1.

Imanaka, N.; Kamikawa, M.; Tamura, S.; Adachi, G. Carbon Dioxide Gas Sensing with the
Combination of Trivalent Sc3+ lon Conducting Sc2(WO04)3 and O2- Ion Conducting
Stabilized Zirconia Solid Electrolytes. Solid State Ionics 2000, 133 (3), 279-285.
https://doi.org/10.1016/S0167-2738(00)00751-7.

Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural
Language Processing [Review Article]. I[EEE Comput. Intell. Mag. 2018, 13 (3), 55-75.
https://doi.org/10.1109/MC1.2018.2840738.

Krallinger, M.; Rabal, O.; Lourenco, A.; Oyarzabal, ].; Valencia, A. Information Retrieval and

33



(19)

(20)

(21)

(22)

(23)

(24)

(25)

Text Mining Technologies for Chemistry. Chem. Rev. 2017, 117 (12), 7673-7761.
https://doi.org/10.1021/acs.chemrev.6b00851.

Krallinger, M.; Rabal, O.; Leitner, F.; Vazquez, M.; Salgado, D.; Lu, Z.; Leaman, R;; Ly, Y.; Ji, D;
Lowe, D. M.; et al. The CHEMDNER Corpus of Chemicals and Drugs and Its Annotation
Principles. J. Cheminform. 2015, 7 (S1), S2. https://doi.org/10.1186/1758-2946-7-S1-S2.
Swain, M. C.; Cole, ]. M. ChemDataExtractor: A Toolkit for Automated Extraction of Chemical
Information from the Scientific Literature. J. Chem. Inf. Model. 2016, 56 (10), 1894-1904.
https://doi.org/10.1021/acs.jcim.6b00207.

Kim, E.; Huang, K.; Tomala, A.; Matthews, S.; Strubell, E.; Saunders, A.; McCallum, A.; Olivetti,
E. Machine-Learned and Codified Synthesis Parameters of Oxide Materials. Sci. Data 2017, 4
(1),170127. https://doi.org/10.1038/sdata.2017.127.

Korvigo, I.; Holmatov, M.; Zaikovskii, A.; Skoblov, M. Putting Hands to Rest: Efficient Deep
CNN-RNN Architecture for Chemical Named Entity Recognition with No Hand-Crafted Rules.
J. Cheminform. 2018, 10 (1), 28. https://doi.org/10.1186/s13321-018-0280-0.

Weston, L.; Tshitoyan, V.; Dagdelen, ].; Kononova, O.; Trewartha, A.; Persson, K. A.; Ceder, G.;
Jain, A. Named Entity Recognition and Normalization Applied to Large-Scale Information
Extraction from the Materials Science Literature. J. Chem. Inf. Model. 2019, 59 (9), 3692-
3702. https://doi.org/10.1021/acs.jcim.9b00470.

Jessop, D. M.; Adams, S. E.; Willighagen, E. L.; Hawizy, L.; Murray-Rust, P. OSCAR4: A Flexible
Architecture for Chemical Text-Mining. J. Cheminform. 2011, 3 (1), 41.
https://doi.org/10.1186/1758-2946-3-41.

Hawizy, L.; Jessop, D. M.; Adams, N.; Murray-Rust, P. ChemicalTagger: A Tool for Semantic
Text-Mining in Chemistry. J. Cheminform. 2011, 3 (1), 17. https://doi.org/10.1186/1758-

2946-3-17.

34



(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

Zhu, Q.; Li, X.; Conesa, A.; Pereira, C. GRAM-CNN: A Deep Learning Approach with Local
Context for Named Entity Recognition in Biomedical Text. Bioinformatics 2018, 34 (9),
1547-1554. https://doi.org/10.1093 /bioinformatics/btx815.

Kononova, O.; Huo, H.; He, T.; Rong, Z.; Botari, T.; Sun, W.; Tshitoyan, V.; Ceder, G. Text-
Mined Dataset of Inorganic Materials Synthesis Recipes. Sci. Data 2019, 6 (1), 203.
https://doi.org/10.1038/s41597-019-0224-1.

Hochreiter, S.; Schmidhuber, ]J. Long Short-Term Memory. Neural Comput. 1997, 9 (8),
1735-1780. https://doi.org/10.1162 /neco.1997.9.8.1735.

Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural Architectures for
Named Entity Recognition. In 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016 -
Proceedings of the Conference; 2016; pp 260-270. https://doi.org/10.18653/v1/n16-1030.
Mikolov, T.; Chen, K.; Corrado, G.; Dean, ]. Efficient Estimation of Word Representations in
Vector Space. In Ist International Conference on Learning Representations, ICLR 2013 -
Workshop Track Proceedings; 2013. http://arxiv.org/abs/1301.3781 (accessed Jun 26,
2019).

Mikolov, T.; Sutskever, I.; Chen, K., Corrado, G.; Dean, ]J. Distributed Representations
Ofwords and Phrases and Their Compositionality. In Advances in Neural Information
Processing Systems; 2013. http://arxiv.org/abs/1310.4546 (accessed Mar 12, 2019).
Narayanan, S.; Thangadurai, V. Effect of Y Substitution for Nb in Li5La3Nb2012 on Li Ion
Conductivity of Garnet-Type Solid Electrolytes. J. Power Sources 2011, 196 (19), 8085-8090.
https://doi.org/10.1016/j.jpowsour.2011.05.031.

Prechelt, L. Early Stopping — But When? In Montavon G., Orr G.B.,, Miiller KR. (eds) Neural

Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700; Springer, Berlin,

35



(34)

(35)

(36)

(37)

(38)

(39)

Heidelberg, 2012; pp 53-67. https://doi.org/10.1007/978-3-642-35289-8_5.

Constant, M.; Eryigit, G.; Monti, ]J.; Van Der Plas, L.; Ramisch, C.; Rosner, M.; Todirascu, A.
Multiword Expression Processing: A Survey. Comput. Linguist. 2017, 43 (4), 837-892.
https://doi.org/10.1162/COLI_a_00302.

Taslimipoor, S.; Rohanian, 0. SHOMA at Parseme Shared Task on Automatic Identification of
VMWESs: Neural Multiword Expression Tagging with High Generalisation. In Proceedings of
the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-
MWE-CxG-2018); 2018. http://arxiv.org/abs/1809.03056 (accessed Sep 6, 2019).

Ramisch, C.; Cordeiro, S. R,; Savary, A.; Vincze, V.; Mititelu, V. B.; Bhatia, A.; Buljan, M.;
Candito, M.; Gantar, P.; Gioulj, V.; et al. Edition 1.1 of the Parseme Shared Task on Automatic
Identification of Verbal Multiword Expressions. In LAW-MWE-CxG 2018 - Joint Workshop on
Linguistic Annotation, Multiword Expressions and Constructions, Proceedings of the
Workshop; 2018; pp 222-240. https://www.aclweb.org/anthology/W18-4925 (accessed Jul
28,2020).

Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-
Networks. EMNLP-IJCNLP 2019 - 2019 Conf. Empir. Methods Nat. Lang. Process. 9th Int. Jt.
Conf. Nat. Lang. Process. Proc. Conf. 2019, 3982-3992. http://arxiv.org/abs/1908.10084
(accessed Jul 28, 2020).

Devlin, J.; Chang, M. W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding. In NAACL HLT 2019 - 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference; 2019; Vol. 1, pp 4171-4186.
http://arxiv.org/abs/1810.04805 (accessed Jul 11, 2019).

Beltagy, I.; Lo, K.; Cohan, A. SCIBERT: A Pretrained Language Model for Scientific Text. In

36



(40)

(41)

(42)

(43)

(44)

(45)

(46)

EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language
Processing and 9th International Joint Conference on Natural Language Processing,
Proceedings of the Conference; 2020; pp 3615-3620. http://arxiv.org/abs/1903.10676
(accessed Jul 28, 2020).

Bota, P.; Silva, ].; Folgado, D.; Gamboa, H. A Semi-Automatic Annotation Approach for
Human Activity Recognition. Sensors 2019, 19 (3), 501.
https://doi.org/10.3390/s19030501.

Li, P.; Wang, Z.; Yang, Z.; Guo, Q.; Li, X. Emission Features of LiBaB03:Sm3+ Red Phosphor
for White LED. Mater. Lett. 2009, 63 (9-10), 751-753.
https://doi.org/10.1016/j.matlet.2008.12.041.

Luo, L.; Zhou, L.; Zou, X.; Zheng, Q. Lin, D. Structure, Piezoelectric and Multiferroic
Properties of Bi(Ni0.5Mn0.5)03-Modified BiFeO3-BaTiO3 Ceramics. . Mater. Sci. Mater.
Electron. 2015, 26 (12), 9451-9462. https://doi.org/10.1007 /s10854-015-3376-6.

Paik, ]. H,; Kim, S. K;; Lee, M. ].; Choi, B. H.; Lim, E. K;; Nahm, S. Ordering Structure of Barium
Magnesium Niobate Ceramic with A-Site Substitution. J. Eur. Ceram. Soc. 2006, 26 (14),
2885-2888. https://doi.org/10.1016/j.jeurceramsoc.2006.05.013.

Leng, S.; Zheng, L.; Li, G.; Zeng, ].; Yin, Q.; Xu, Z.; Chu, R. Impedance Spectroscopy Analysis for
High-T ¢ BaTiO 3-(Bi 1/2Na 1/2)TiO 3 Lead-Free PTCR Ceramics. Phys. Status Solidi Appl.
Mater. Sci. 2011, 208 (5), 1099-1104. https://doi.org/10.1002 /pssa.201000061.
Hashimoto, D.; Han, D.; Uda, T. Dependence of Lattice Constant of Ba, Co-Contained
Perovskite Oxides on Atmosphere, and Measurements of Water Content. Solid State Ionics
2014, 262, 687-690. https://doi.org/10.1016/j.ssi.2013.12.029.

Hautier, G.; Fischer, C.; Ehrlacher, V.; Jain, A.; Ceder, G. Data Mined lonic Substitutions for

the Discovery of New Compounds. I[norg. Chem. 2011, 50 (2), 656-663.

37



(47)

(48)

(49)

(50)

(51)

(52)

(53)

https://doi.org/10.1021/ic102031h.

Yang, L.; Ceder, G. Data-Mined Similarity Function between Material Compositions. Phys.
Rev. B -  Condens.  Matter = Mater.  Phys. 2013, 88 (22), 1-9.
https://doi.org/10.1103/PhysRevB.88.224107.

West, A. R. Solid State Chemistry and Its Applications, Student Edition, 2nd ed.; John Wiley &
Sons: Chichester, 2014.

Zhao, H.; Li, F.; Liu, X;; Xiong, W.; Chen, B.; Shao, H.; Que, D.; Zhang, Z.; Wu, Y. A Simple, Low-
Cost and Eco-Friendly Approach to Synthesize Single-Crystalline LiMn204 Nanorods with
High Electrochemical Performance for Lithium-lon Batteries. Electrochim. Acta 2015, 166,
124-133. https://doi.org/10.1016/].ELECTACTA.2015.03.040.

Liu, S. Z,; Wang, T. X;; Yang, L. Y. Low Temperature Preparation of Nanocrystalline SrTiO3
and BaTiO3 from Alkaline Earth Nitrates and TiO2 Nanocrystals. Powder Technol. 2011, 212
(2), 378-381. https://doi.org/10.1016/].POWTEC.2011.06.010.

Rivas Mercury, |. .; De Aza, A. .; Turrillas, X.; Pena, P. The Synthesis Mechanism of Ca3AI206
from Soft Mechanochemically Activated Precursors Studied by Time-Resolved Neutron
Diffraction up to 1000°C. J. Solid State Chem. 2004, 177 (3), 866-874.
https://doi.org/10.1016/].JSSC.2003.09.022.

Varshney, D.; Mansuri, I; Kaurav, N.; Lung, W. Q.; Kuo, Y. K. Influence of Ce Doping on
Electrical and Thermal Properties of La0.7-xCexCa0.3Mn0O3 (0.0<x<0.7) Manganites. J.
Magn. Magn. Mater. 2012, 324 (20), 3276-3285.
https://doi.org/10.1016/].JMMM.2012.05.028.

Bhattacharya, S.; Pal, S.; Mukherjee, R. .; Chaudhuri, B. .; Neeleshwar, S.; Chen, Y. .; Mollah, S.;
Yang, H. . Development of Pulsed Magnetic Field and Study of Magnetotransport Properties

of K-Doped Lal-XCax-YKyMnO3 CMR Materials. J. Magn. Magn. Mater. 2004, 269 (3), 359-

38



(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

371. https://doi.org/10.1016/S0304-8853(03)00632-2.

Fajans, K.; Barber, S. W. Properties and Structures of Vitreous and Crystalline Boron Oxide. J.
Am. Chem. Soc. 1952, 74 (11), 2761-2768. https://doi.org/10.1021/ja01131a019.

Ferlat, G.; Seitsonen, A. P.; Lazzeri, M.; Mauri, F. Hidden Polymorphs Drive Vitrification in B
2 0 3. Nat. Mater. 2012, 11 (11), 925-929. https://doi.org/10.1038/nmat3416.
Sakthipandi, K. Rajendran, V. Metal Insulator Transition of Bulk and Nanocrystalline
Lal - XCaxMnO3 Perovskite Manganite Materials through In-Situ Ultrasonic Measurements.
Mater. Charact. 2013, 77, 70-80. https://doi.org/10.1016/].MATCHAR.2012.12.013.

Paul Blessington Selvadurai, A.; Pazhanivelu, V.; Murugaraj, R. Strain Correlated Effect on
Structural, Magnetic, and Dielectric Properties in Ti4+ Substituted Bi0.8Ba0.2Fe1-xTix03.
Solid State Sci. 2015, 46, 71-79.
https://doi.org/10.1016/].SOLIDSTATESCIENCES.2015.06.002.

Liu, Y.; Chen, D. Y. Protective Coatings for Cr203-Forming Interconnects of Solid Oxide Fuel
Cells. Int. ] Hydrogen Energy 2009, 34 (22), 9220-9226.
https://doi.org/10.1016/].]JHYDENE.2009.09.022.

Garskaite, E.; Gibson, K.; Leleckaite, A.; Glaser, ].; Niznansky, D.; Kareiva, A.; Meyer, H.-]. On
the Synthesis and Characterization of Iron-Containing Garnets (Y3Fe5012, YIG and
Fe3A15012, IAG). Chem. Phys. 2006, 323 (2-3), 204-210.
https://doi.org/10.1016/].CHEMPHYS.2005.08.055.

Ong, S. P.; Richards, W. D; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V.
L.; Persson, K. A.; Ceder, G. Python Materials Genomics (Pymatgen): A Robust, Open-Source
Python Library for Materials Analysis. Comput. Mater. Sci. 2013, 68, 314-319.
https://doi.org/10.1016/j.commatsci.2012.10.028.

Sun, W.; Bartel, C. |.; Arca, E.; Bauers, S. R,; Matthews, B.; Orvafianos, B.; Chen, B. R.; Toney,

39



(62)

(63)

(64)

(65)

(66)
(67)

(68)

(69)

(70)

(71)

(72)

M. F.; Schelhas, L. T.; Tumas, W.; et al. A Map of the Inorganic Ternary Metal Nitrides. Nat.
Mater. 2019, 18 (7), 732-739. https://doi.org/10.1038/s41563-019-0396-2.

Gower, J. C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 1971,
27 (4),857-871. https://doi.org/10.2307 /2528823.

Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963,
58 (301), 236-244. https://doi.org/10.1080/01621459.1963.10500845.

Strem Chemicals. https://www.strem.com/ (accessed Sep 18, 2019).

Jia, X.; Lynch, A,; Huang, Y.; Danielson, M.; Lang’at, I.; Milder, A.; Ruby, A. E.; Wang, H,;
Friedler, S. A;; Norquist, A. ].; et al. Anthropogenic Biases in Chemical Reaction Data Hinder
Exploratory  Inorganic  Synthesis. = Nature 2019, 573 (7773), 251-255.
https://doi.org/10.1038/s41586-019-1540-5.

Borges. https://github.com/CederGroupHub/Borges.git (accessed Aug 12, 2020).
LimeSoup. https://github.com/CederGroupHub/LimeSoup.git (accessed Aug 12, 2020).
Synthesis Paragraph Classification. https://github.com/CederGroupHub/text-mined-
synthesis_public/tree/master/ParagraphClassification (accessed Aug 12, 2020).

Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.; Bahdanau, D.; Ballas, N.; Bastien, F,;
Bayer, ].; Belikov, A.; Belopolsky, A.; et al. Theano: A Python Framework for Fast
Computation of Mathematical Expressions. 2016. http://arxiv.org/abs/1605.02688
(accessed Aug 12, 2020).

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A,;
Dean, ].; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. https://www.tensorflow.org/ (accessed Aug 12, 2020).

Amazon Mechanical Turk. https://www.mturk.com/ (accessed Aug 12, 2020).

Rehurek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In

40



Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks; 2010; pp
45-50. http://is.muni.cz/publication/884893 /en (accessed Aug 12, 2020).
(73) Van Rossum, G.; Drake, F. L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA,

20009.

41



TABLE OF CONTENTS (TOC) GRAPHIC

Literature ——» Precursors —» Similarity

g Not ] _
2 precursor E e
-1 -
=] Possibly 5—"
o
precursor |
[}
Position of word in a sentence S

CaC0,
CaNO,),
CaF,

42



