
Verifying Visibility-Based Weak Consistency

Siddharth Krishna
1
, Michael Emmi

2
, Constantin Enea

3
, and Dejan Jovanović

2

1
New York University, New York, NY, USA, siddharth@cs.nyu.edu

2
SRI International, New York, NY, USA, michael.emmi@gmail.com,

dejan.jovanovic@sri.com
3
Université de Paris, IRIF, CNRS, F-75013 Paris, France, cenea@irif.fr

Abstract. Multithreaded programs generally leverage efficient and thread-safe

concurrent objects like sets, key-value maps, and queues. While some concurrent-

object operations are designed to behave atomically, each witnessing the atomic

effects of predecessors in a linearization order, others forego such strong consis-

tency to avoid complex control and synchronization bottlenecks. For example,

contains (value) methods of key-value maps may iterate through key-value

entries without blocking concurrent updates, to avoid unwanted performance

bottlenecks, and consequently overlook the effects of some linearization-order

predecessors. While such weakly-consistent operations may not be atomic, they

still offer guarantees, e.g., only observing values that have been present.

In this work we develop a methodology for proving that concurrent object

implementations adhere to weak-consistency specifications. In particular, we

consider (forward) simulation-based proofs of implementations against relaxed-
visibility specifications, which allow designated operations to overlook some of

their linearization-order predecessors, i.e., behaving as if they never occurred. Be-

sides annotating implementation code to identify linearization points, i.e., points
at which operations’ logical effects occur, we also annotate code to identify visible
operations, i.e., operations whose effects are observed; in practice this annotation

can be done automatically by tracking the writers to each accessed memory

location. We formalize our methodology over a general notion of transition

systems, agnostic to any particular programming language or memory model,

and demonstrate its application, using automated theorem provers, by verifying

models of Java concurrent object implementations.

1 Introduction

Programming efficient multithreaded programs generally involves carefully organiz-

ing shared memory accesses to facilitate inter-thread communication while avoiding

synchronization bottlenecks. Modern software platforms like Java include reusable

abstractions which encapsulate low-level shared memory accesses and synchronization

into familiar high-level abstract data types (ADTs). These so-called concurrent objects
typically include mutual-exclusion primitives like locks, numeric data types like atomic

integers, as well as collections like sets, key-value maps, and queues; Java’s standard-

edition platform contains many implementations of each. Such objects typically provide

strong consistency guarantees like linearizability [18], ensuring that each operation

appears to happen atomically, witnessing the atomic effects of predecessors according

to some linearization order among concurrently-executing operations.

2 S. Krishna et al.

While such strong consistency guarantees are ideal for logical reasoning about

programs which use concurrent objects, these guarantees are too strong for many oper-

ations, since they preclude simple and/or efficient implementation — over half of Java’s

concurrent collection methods forego atomicity for weak-consistency [13]. On the one

hand, basic operations like the get and put methods of key-value maps typically admit

relatively-simple atomic implementations, since their behaviors essentially depend

upon individual memory cells, e.g., where the relevant key-value mapping is stored.

On the other hand, making aggregate operations like size and contains (value) atomic

would impose synchronization bottlenecks, or otherwise-complex control structures,

since their atomic behavior depends simultaneously upon the values stored across

many memory cells. Interestingly, such implementations are not linearizable even

when their underlying memory operations are sequentially consistent, e.g., as is the

case with Java 8’s concurrent collections, whose memory accesses are data-race free.
4

For instance, the contains (value) method of Java’s concurrent hash map iterates

through key-value entries without blocking concurrent updates in order to avoid

unreasonable performance bottlenecks. Consequently, in a given execution, a contains-

value-v operation o1 will overlook operation o2’s concurrent insertion of k1 ↦→ v for a

key k1 it has already traversed. This oversight makes it possible for o1 to conclude that
value v is not present, and can only be explained by o1 being linearized before o2. In the

case that operation o3 removes k2 ↦→ v concurrently before o1 reaches key k2, but only
after o2 completes, then atomicity is violated since in every possible linearization, either

mapping k2 ↦→ v or k1 ↦→ v is always present. Nevertheless, such weakly-consistent

operations still offer guarantees, e.g., that values never present are never observed, and

initially-present values not removed are observed.

In this work we develop a methodology for proving that concurrent-object imple-

mentations adhere to the guarantees prescribed by their weak-consistency specifica-

tions. The key salient aspects of our approach are the lifting of existing sequential ADT

specifications via visibility relaxation [13], and the harnessing of simple and mechaniz-

able reasoning based on forward simulation [25] by relaxed-visibility ADTs. Effectively,

our methodology extends the predominant forward-simulation based linearizability-

proof methodology to concurrent objects with weakly-consistent operations, and

enables automation for proving weak-consistency guarantees.

To enable the harnessing of existing sequential ADT specifications, we adopt the

recent methodology of visibility relaxation [13]. As in linearizability [18], the return

value of each operation is dictated by the atomic effects of its predecessors in some

(i.e., existentially quantified) linearization order. To allow consistency weakening,

operations are allowed, to a certain extent, to overlook some of their linearization-order

predecessors, behaving as if they had not occurred. Intuitively, this (also existentially

quantified) visibility captures the inability or unwillingness to atomically observe

the values stored across many memory cells. To provide guarantees, the extent of

4

Java 8 implementations guarantee data-race freedom by accessing individual shared-memory

cells with atomic operations via volatile variables and compare-and-swap instructions. Starting

with Java 9, the implementations of the concurrent collections use the VarHandle mechanism

to specify shared variable access modes. Java’s official language and API specifications do not

clarify whether these relaxations introduce data races.

Verifying Visibility-Based Weak Consistency 3

visibility relaxation is bounded to varying degrees. Notably, the visibility of an absolute
operation must include all of its linearization-order predecessors, while the visibility

of a monotonic operation must include all happens-before predecessors, along with

all operations visible to them. The majority of Java’s concurrent collection methods

are absolute or monotonic [13]. For instance, in the contains-value example described

above, by considering that operation o2 is not visible to o1, the conclusion that v is not

present can be justified by the linearization o2; o3; o1, in which o1 sees o3’s removal

of k2 ↦→ v yet not o2’s insertion of k1 ↦→ v. Ascribing the monotonic visibility to

the contains-value method amounts to a guarantee that initially-present values are

observed unless removed (i.e., concurrently).

While relaxed-visibility specifications provide a means to describing the guar-

antees provided by weakly-consistent concurrent-object operations, systematically

establishing implementations’ adherence requires a strategy for demonstrating simula-
tion [25], i.e., that each step of the implementation is simulated by some step of (an

operational representation of) the specification. The crux of our contribution is thus

threefold: first, to identify the relevant specification-level actions with which to relate

implementation-level transitions; second, to identify implementation-level annotations

relating transitions to specification-level actions; and third, to develop strategies for

devising such annotations systematically. For instance, the existing methodology based

on linearization points [18] essentially amounts to annotating implementation-level

transitions with the points at which its specification-level action, i.e., its atomic effect,

occurs. Relaxed-visibility specifications require not only a witness for the existentially-

quantified linearization order, but also an existentially-quantified visibility relation,

and thus requires a second kind of annotation to resolve operations’ visibilities. We

propose a notion of visibility actions which enable operations to declare their visibility

of others, e.g., specifying the writers of memory cells it has read.

The remainder of our approach amounts to devising a systematic means for con-

structing simulation proofs to enable automated verification. Essentially, we identify a

strategy for systematically annotating implementations with visibility actions, given

linearization-point annotations and visibility bounds (i.e., absolute or monotonic), and

then encode the corresponding simulation check using an off-the-shelf verification

tool. For the latter, we leverage civl [16], a language and verifier for Owicki-Gries style

modular proofs of concurrent programs with arbitrarily-many threads. In principle,

since our approach reduces simulation to safety verification, any safety verifier could

be used, though civl facilitates reasoning for multithreaded programs by capturing

interference at arbitrary program points. Using civl, we have verified monotonicity of

the contains-value and size methods of Java’s concurrent hash-map and concurrent

linked-queue, respectively — and absolute consistency of add and remove operations.

Although our models are written in civl and assume sequentially-consistent memory

accesses, they capture the difficult aspects of weak-consistency in Java, including heap-

based memory access; furthermore, our models are also sound with respect to Java 8’s

memory model, since their Java 8 implementations guarantee data-race freedom.

In summary, we present the first methodology for verifying weakly-consistent op-

erations using sequential specifications and forward simulation. Contributions include:

4 S. Krishna et al.

– the formalization of our methodology over a general notion of transition systems,

agnostic to any particular programming language or memory model (§3);

– the application of our methodology to verifying a weakly-consistent contains-value

method of a key-value map (§4); and

– amechanization of ourmethodology used for verifyingmodels of weakly-consistent

Java methods using automated theorem provers (§5).

Aside from the outline above, this article summarizes an existing weak-consistency

specification methodology via visibility relaxation (§2), summarizes related work (§6),

and concludes (§7). Proofs of all theorems and lemmas are listed in Appendix A.

2 Weak Consistency

Our methodology for verifying weakly-consistent concurrent objects relies both on the

precise characterization of weak consistency specifications, as well as a proof technique

for establishing adherence to specifications. In this section we recall and outline a

characterization called visibility relaxation [13], an extension of sequential abstract

data type (ADT) specifications in which the return values of some operations may not

reflect the effects of previously-effectuated operations.

Notationally, in the remainder of this article, ε denotes the empty sequence, ∅
denotes the empty set, _ denotes an unused binding, and ⊤ and ⊥ denote the Boolean

values true and false, respectively. We write R(x) to denote the inclusion x ∈ R of

a tuple x in the relation R; and R[x ↦→ y] to denote the extension R ∪ {xy} of R to

include xy; and R | X to denote the projection R∩X∗
of R to setX ; and R to denote

the complement {x : x /∈ R} ofR; andR(x) to denote the image {y : xy ∈ R} ofR on

x; and R−1(y) to denote the pre-image {x : xy ∈ R} of R on y; whether R(x) refers
to inclusion or an image will be clear from its context. Finally, we write xi to refer to

the ith element of tuple x = x0x1

2.1 Weak-Visibility Specifications

For a general notion of ADT specifications, we consider fixed sets M and X of method

names and argument or return values, respectively. An operation label λ = ⟨m,x, y⟩
is a method name m ∈ M along with argument and return values x, y ∈ X. A read-
only predicate is a unary relation R(λ) on operation labels, an operation sequence
s = λ0λ1 . . . is a sequence of operation labels, and a sequential specification S =
{s0, s1, . . .} is a set of operation sequences. We say thatR is compatible with S when S
is closed under deletion of read-only operations, i.e., λ0 . . . λj−1λj+1 . . . λi ∈ S when

λ0 . . . λi ∈ S and R(λj).

Example 1. The key-value map ADT sequential specification Sm is the prefix-closed

set containing all sequences λ0 . . . λi such that λi is either:

– ⟨put, kv, b⟩, and b = ⊤ iff some ⟨rem, k, _⟩ follows any prior ⟨put, kv, _⟩;
– ⟨rem, k, b⟩, and b = ⊤ iff no other ⟨rem, k, _⟩ follows some prior ⟨put, kv, _⟩;
– ⟨get, k, v⟩, and no ⟨put, kv′, _⟩ nor ⟨rem, k, _⟩ follows some prior ⟨put, kv, _⟩, and

v = ⊥ if no such ⟨put, kv, _⟩ exists; or

Verifying Visibility-Based Weak Consistency 5

– ⟨has, v, b⟩, and b = ⊤ iff no prior ⟨put, kv′, _⟩ nor ⟨rem, k, _⟩ follows some prior

⟨put, kv, _⟩.

The read-only predicate Rm holds for the following cases:

Rm(⟨put, _, b⟩) if ¬b Rm(⟨rem, _, b⟩) if ¬b Rm(⟨get, _, _⟩) Rm(⟨has, _, _⟩).

This is a simplification of Java’s Map ADT, i.e., with fewer methods.
5

To derive weak specifications from sequential ones, we consider a set V of ex-

actly two visibility labels from prior work [13]: absolute and monotonic.6 A visibility
annotation V : M → V maps each methodm ∈ M to a visibility V (m) ∈ V.

Intuitively, absolute visibility requires operations to observe the effects of all of their

linearization-order predecessors. The weaker monotonic visibility requires operations

to observe the effects of all their happens-before (i.e., program- and synchronization-

order) predecessors, along with the effects already observed by those predecessors,

i.e., so that sets of visible effects are monotonically increasing over happens-before

chains of operations; conversely, operationsmay ignore effects which have been ignored

by their happens-before predecessors, so long as those effects are not transitively related

by program and synchronization order.

Definition 1. A weak-visibility specificationW = ⟨S,R, V ⟩ is a sequential specifica-
tion S with a compatible read-only predicate R and a visibility annotation V .

Example 2. The weakly-consistent contains-value map Wm = ⟨Sm, Rm, Vm⟩ annotates
the key-value map ADT methods of Sm from Example 1 with:

Vm(put) = Vm(rem) = Vm(get) = absolute, Vm(has) = monotonic.

Java’s concurrent hash map appears to be consistent with this specification [13].

We ascribe semantics to specifications by characterizing the values returned by

concurrent method invocations, given constraints on invocation order. In practice, the

happens-before order among invocations is determined by a program order, i.e., among

invocations of the same thread, and a synchronization order, i.e., among invocations

of distinct threads accessing the same atomic objects, e.g., locks. A history h =
⟨O, inv , ret , hb⟩ is a set O ⊆ N of numeric operation identifiers, along with an invoca-

tion function inv : O → M× X mapping operation identifiers to method names and

argument values, a partial return function ret : O ⇀ X mapping operation identifiers

to return values, and a (strict) partial happens-before relation hb ⊆ O ×O; the empty
history h∅ has O = inv = ret = hb = ∅. An operation o ∈ O is complete when ret(o)
is defined, and is otherwise incomplete; then h is complete when each operation is. The

label of a complete operation o with inv(o) = ⟨m,x⟩ and ret(o) = y is ⟨m,x, y⟩.
To relate operations’ return values in a given history back to sequential specifica-

tions, we consider certain sequencings of those operations. A linearization of a history

h = ⟨O, _, _, hb⟩ is a total order lin ⊇ hb over O which includes hb, and a visibility

5

For brevity, we abbreviate Java’s remove and contains-value methods by rem and has.

6

Previous work refers to absolute visibility as complete, and includes additional visibility labels.

6 S. Krishna et al.

projection vis of lin maps each operation o ∈ O to a subset vis(o) ⊆ lin−1(o) of the
operations preceding o in lin ; note that ⟨o1, o2⟩ ∈ vis means o1 observes o2. For a
given read-only predicate R, we say o’s visibility is monotonic when it includes every

happens-before predecessor, and operation visible to a happens-before predecessor,

which is not read-only,
7
i.e., vis(o) ⊇

(︁
hb−1(o) ∪ vis(hb−1(o))

)︁
| R. We says o’s

visibility is absolute when vis(o) = lin−1(o), and vis is itself absolute when each vis(o)
is. An abstract execution e = ⟨h, lin, vis⟩ is a history h along with a linearization of

h, and a visibility projection vis of lin . An abstract execution is sequential when hb is

total, complete when h is, and absolute when vis is.

Example 3. An abstract execution can be defined using the linearization
8

⟨put, ⟨1, 1⟩,⊤⟩ ⟨get, 1, 1⟩ ⟨put, ⟨0, 1⟩,⊤⟩ ⟨put, ⟨1, 0⟩,⊥⟩ ⟨has, 1,⊥⟩

along with a happens-before order that, compared to the linearization order, keeps

⟨has, 1,⊥⟩ unordered w.r.t. ⟨put, ⟨0, 1⟩,⊤⟩ and ⟨put, ⟨1, 0⟩,⊥⟩, and a visibility projec-

tion where the visibility of every put and get includes all the linearization predecessors

and the visibility of ⟨has, 1,⊥⟩ consists of ⟨put, ⟨1, 1⟩,⊤⟩ and ⟨put, ⟨1, 0⟩,⊥⟩. Recall
that in the argument ⟨k, v⟩ to put operations, the key k precedes value v.

To determine the consistency of individual histories against weak-visibility spec-

ifications, we consider adherence of their corresponding abstract executions. Let

h = ⟨O, inv , ret , hb⟩ be a history and e = ⟨h, lin, vis⟩ a complete abstract execu-

tion. Then e is consistent with a visibility annotation V and read-only predicate R if

for each operation o ∈ dom(lin) with inv(o) = ⟨m, _⟩, vis(o) is absolute or mono-

tonic, respectively, according to V (m) and R. The labeling λ0λ1 . . . of a total order
o0 ≺ o1 ≺ . . . of complete operations is the sequence of operation labels, i.e., λi is the

label of oi. Then e is consistent with a sequential specification S when the labeling
9

of lin | (vis(o) ∪ {o}) is included in S, for each operation o ∈ dom(lin).10 Finally, we
say e is consistent with a weak-visibility specification ⟨S,R, V ⟩ when it is consistent

with S, R, and V .

Example 4. The execution in Example 3 is consistent with the weakly-consistent

contains-value mapWm defined in Example 2.

Remark 1. Consistencymodels suited for modern software platforms like Java are based

on happens-before relations which abstract away from real-time execution order. Since

happens-before, unlike real-time, is not necessarily an interval order, the composition

7

For convenience we rephrase Emmi and Enea [13]’s notion to ignore read-only predecessors.

8

For readability, we list linearization sequences with operation labels in place of identifiers.

9

As is standard, adequate labelings of incomplete executions are obtained by completing each

linearized yet pending operation with some arbitrarily-chosen return value [18]. It is sufficient

that one of these completions be included in the sequential specification.

10

We consider a simplification from prior work [13]: rather than allowing the observers of a

given operation to pretend they see distinct return values, we suppose that all observers agree

on return values. While this is more restrictive in principle, it is equivalent for the simple

specifications studied in this article.

Verifying Visibility-Based Weak Consistency 7

of linearizations of two distinct objects in the same execution may be cyclic, i.e., not

linearizable. Recovering compositionality in this setting is orthogonal to our work of

proving consistency against a given model, and is explored elsewhere [11].

The abstract executions E(W) of a weak-visibility specification W = ⟨S,R, V ⟩
include those complete, sequential, and absolute abstract executions derived from

sequences of S, i.e., when s = λ0 . . . λn ∈ S then each es labels each oi by λi, and

orders hb(oi, oj) iff i < j. In addition, when E(W) includes an abstract execution

⟨h, lin, vis⟩ with h = ⟨O, inv , ret , hb⟩, then E(W) also includes any:

– execution ⟨h′, lin, vis⟩ such that h′ =
⟨︁
O, inv , ret , hb′

⟩︁
and hb′ ⊆ hb; and

– W -consistent execution ⟨h′, lin, vis ′⟩ with h′ = ⟨O, inv , ret ′, hb⟩ and vis ′ ⊆ vis .

Note that while happens-before weakening hb′ ⊆ hb always yields consistent executions,
unguarded visibility weakening vis ′ ⊆ vis generally breaks consistency with visibility

annotations and sequential specifications: visibilities can become non-monotonic, and

return values can change when operations observe fewer operations’ effects.

Lemma 1. The abstract executions E(W) of a specification W are consistent with W .

Example 5. The abstract executions of Wm include the complete, sequential, and abso-

lute abstract execution defined by the following happens-before order

⟨put, ⟨1, 1⟩,⊤⟩ ⟨get, 1, 1⟩ ⟨put, ⟨0, 1⟩,⊤⟩ ⟨put, ⟨1, 0⟩,⊥⟩ ⟨has, 1,⊤⟩

which implies that it also includes one in which just the happens-before order is modi-

fied such that ⟨has, 1,⊤⟩ becomes unordered w.r.t. ⟨put, ⟨0, 1⟩,⊤⟩ and ⟨put, ⟨1, 0⟩,⊥⟩.
Since it includes the latter, it also includes the execution in Example 3 where the

visibility of has is weakened which also modifies its return value from ⊤ to ⊥.

Definition 2. The histories of a weak-visibility specification W are the projections
H(W) = {h : ⟨h, _, _⟩ ∈ E(W)} of its abstract executions.

2.2 Consistency against Weak-Visibility Specifications

To define the consistency of implementations against specifications, we leverage a

general model of computation to capture the behavior of typical concurrent systems,

e.g., including multiprocess and multithreaded systems. A sequence-labeled transition
system ⟨Q,A, q,→⟩ is a setQ of states, along with a setA of actions, initial state q ∈ Q
and transition relation → ∈ Q × A∗ × Q. An execution is an alternating sequence

η = q0a⃗0q1a⃗1 . . . qn of states and action sequences starting with q0 = q such that

qi
a⃗i−→ qi+1 for each 0 ≤ i < n. The trace τ ∈ A∗

of the execution η is its projection

a⃗0a⃗1 . . . to individual actions.

To capture the histories admitted by a given implementation, we consider sequence-

labeled transition systems (SLTSs) which expose actions corresponding to method call,

return, and happens-before constraints. We refer to the actions call(o,m, x), ret(o, y),
and hb(o, o′), for o, o′ ∈ N,m ∈ M, and x, y ∈ X, as the history actions, and a history
transition system is an SLTS whose actions include the history actions. We say that an

8 S. Krishna et al.

action over operation identifier o is an o-action, and assume that executions are well
formed in the sense that for a given operation identifier o: at most one call o-action
occurs, at most one ret o-action occurs, and no ret nor hb o-actions occur prior to a

call o-action. Furthermore, we assume call o-actions are enabled, so long as no prior
call o-action has occurred. The history of a trace τ is defined inductively by fh(h∅, τ),
where h∅ is the empty history, and,

fh(h, ε) = h
fh(h, aτ) = fh(gh(h, a), τ)
fh(h, ãτ) = fh(h, τ)

gh(h, call(o,m, x)) = ⟨O ∪ {o}, inv [o ↦→ ⟨m,x⟩], ret , hb⟩
gh(h, ret(o, y)) = ⟨O, inv , ret [o ↦→ y], hb⟩
gh(h, hb(o, o

′)) = ⟨O, inv , ret , hb ∪ ⟨o, o′⟩⟩

where h = ⟨O, inv , ret , hb⟩, and a is a call, ret, or hb action, and ã is not. An imple-
mentation I is a history transition system, and the histories H(I) of I are those of its

traces. Finally, we define consistency against specifications via history containment.

Definition 3. Implementation I is consistent with specification W iff H(I) ⊆ H(W).

3 Establishing Consistency with Forward Simulation

To obtain a consistency proof strategy, we more closely relate implementations to

specifications via their admitted abstract executions. To capture the abstract executions

admitted by a given implementation, we consider SLTSs which expose not only history-

related actions, but also actions witnessing linearization and visibility. We refer to

the actions lin(o) and vis(o, o′) for o, o′ ∈ N, along with the history actions, as the
abstract-execution actions, and an abstract-execution transition system (AETS) is an SLTS

whose actions include the abstract-execution actions. Extending the corresponding

notion from history transition systems, we assume that executions are well formed in

the sense that for a given operation identifier o: at most one lin o-action occurs, and no

lin or vis o-actions occur prior to a call o-action. The abstract execution of a trace τ is

defined inductively by fe(e∅, τ), where e∅ = ⟨h∅, ∅, ∅⟩ is the empty execution, and,

fe(e, ε) = e
fe(e, aτ) = fe(ge(e, a), τ)
fe(e, ãτ) = fe(e, τ)

ge(e, â) = ⟨gh(h), lin, vis⟩
ge(e, lin(o)) = ⟨h, lin ∪ {⟨o′, o⟩ : o′ ∈ lin}, vis⟩
ge(e, vis(o, o

′)) = ⟨h, lin, vis ∪ {⟨o, o′⟩}⟩

where e = ⟨h, lin, vis⟩, and a is a call, ret, hb, lin, or vis action, ã is not, and â is a

call, ret, or hb action. A witnessing implementation I is an abstract-execution transition

system, and the abstract executions E(I) of I are those of its traces.

We adopt forward simulation [25] for proving consistency against weak-visibility

specifications. Formally, a simulation relation from one system Σ1 = ⟨Q1, A1, χ1,→1⟩
to another Σ2 = ⟨Q2, A2, χ2,→2⟩ is a binary relation R ⊆ Q1 ×Q2 such that initial

states are related, R(χ1, χ2), and: for any pair of related states R(q1, q2) and source-

system transition q1
a⃗1−→1 q′1, there exists a target-system transition q2

a⃗2−→2 q′2 to

related states, i.e., R(q′1, q
′
2), over common actions, i.e., (a⃗1 | A2) = (a⃗2 | A1). We say

Σ2 simulates Σ1 and write Σ1 ⊑ Σ2 when a simulation relation from Σ1 to Σ2 exists.

We derive transition systems to model consistency specifications in simulation. The

following lemma establishes the soundness and completeness of this substitution, and

the subsequent theorem asserts the soundness of the simulation-based proof strategy.

Verifying Visibility-Based Weak Consistency 9

Definition 4. The transition system JW Ks of a weak-visibility specification W is the
AETS whose actions are the abstract execution actions, whose states are abstract executions,
whose initial state is the empty execution, and whose transitions include e1 a⃗−→ e2 iff
fe(e1, a⃗) = e2 and e2 is consistent with W .

Lemma 2. A weak-visibility spec. and its transition system have identical histories.

Theorem 1. A witnessing implementation I is consistent with a weak-visibility specifi-
cationW if the transition system JW Ks ofW simulates I .

Our notion of simulation is in some sense complete when the sequential specifica-

tion S of a weak-consistency specificationW = ⟨S,R, V ⟩ is return-value deterministic,
i.e., there is a single label ⟨m,x, y⟩ such that λ⃗ · ⟨m,x, y⟩ ∈ S for any method m,

argument-value x, and admitted sequence λ⃗ ∈ S. In particular, JW Ks simulates any wit-

nessing implementation I whose abstract executions E(I) are included in E(JW Ks).
11

This completeness, however, extends only to inclusion of abstract executions, and not

all the way to consistency, since consistency is defined on histories, and any given

operation’s return value is not completely determined by the other operation labels

and happens-before relation of a given history: return values generally depend on lin-

earization order and visibility as well. Nevertheless, sequential specifications typically

are return-value deterministic, and we have used simulation to prove consistency of

Java-inspired weakly-consistent objects.

Establishing simulation for an implementation is also helpful when reasoning

about clients of a concurrent object. One can use the specification in place of the

implementation and encode the client invariants using the abstract execution of the

specification in order to prove client properties, following Sergey et al.’s approach [35].

3.1 Reducing Consistency to Safety Verification

Proving simulation between an implementation and its specification can generally be

achieved via product construction: complete the transition system of the specification,

replacing non-enabled transitions with error-state transitions; then ensure the synchro-

nized product of implementation and completed-specification transition systems is safe,
i.e., no error state is reachable. Assuming that the individual transition systems are

safe, then the product system is safe iff the specification simulates the implementation.

This reduction to safety verification is also generally applicable to implementation

and specification programs, though we limit our formalization to their underlying

transition systems for simplicity. By the upcoming Corollary 1, such reductions enable

consistency verification with existing safety verification tools.

3.2 Verifying Implementations

While Theorem 1 establishes forward simulation as a strategy for proving the con-

sistency of implementations against weak-visibility specifications, its application to

11

This is a consequence of a generic result stating that the set of traces of an LTS A1 is included

in the set of traces of an LTS A2 iff A2 simulates A1, provided that A2 is deterministic [25].

10 S. Krishna et al.

real-world implementations requires program-level mechanisms to signal the underly-

ing AETS lin and vis actions. To apply forward simulation, we thus develop a notion of

programs whose commands include such mechanisms.

This section illustrates a toy programming language with AETS semantics which

provides these mechanisms. The key features are the lin and vis program commands,

which emit linearization and visibility actions for the currently-executing operation,

alongwith load, store, and cas (compare-and-swap) commands, which record and return

the set of operation identifiers having written to each memory cell. Such augmented

memory commands allow programs to obtain handles to the operations whose effects

it has observed, in order to signal the corresponding vis actions.

While one can develop similar mechanisms for languages with any underlying

memory model, the toy language presented here assumes a sequentially-consistent

memory. Note that the assumption of sequentially-consistent memory operations is

practically without loss of generality for Java 8’s concurrent collections since they are

designed to be data-race free — their anomalies arise not from weak-memory semantics,

but from non-atomic operations spanning several memory cells.

For generality, we assume abstract notions of commands and memory, using κ,
µ, ℓ, and M respectively to denote a program command, memory command, local
state, and global memory. So that operations can assert their visibilities, we consider

memory which stores, and returns upon access, the identifier(s) of operations which

previously accessed a given cell. A program P = ⟨init, cmd, idle, done⟩ consists of an
init(m,x) = ℓ function mapping method namem and argument values x to local state

ℓ, along with a cmd(ℓ) = κ function mapping local state ℓ to program command κ,
and idle(ℓ) and done(ℓ) predicates on local states ℓ. Intuitively, identifying local states

with threads, the idle predicate indicates whether a thread is outside of atomic sections,

and subject to interference from other threads; meanwhile the done predicate indicates

whether whether a thread has terminated.

The denotation of a memory command µ is a function JµKm from global memory

M1, argument value x, and operation o to a tuple JµKm(M1, x, o) = ⟨M2, y⟩ consisting
of a global memory M2, along with a return value y.

Example 6. A sequentially-consistent memory system which records the set of oper-

ations to access each location can be captured by mapping addresses x to value and

operation-set pairsM(x) = ⟨y,O⟩, along with three memory commands:

JloadKm(M,x, _) = ⟨M,M(x)⟩

JstoreKm(M,xy, o) = ⟨M [x ↦→ ⟨y,M(x)1 ∪ {o}⟩], ε⟩

JcasKm(M,xyz, o) =

{︃
⟨M [x ↦→ ⟨z,M(x)1 ∪ {o}⟩], ⟨true,M(x)1⟩⟩ if M(x)0 = y
⟨M, ⟨false,M(x)1⟩⟩ if M(x)0 ̸= y

where the compare-and-swap (CAS) operation stores value z at address x and returns

true when y was previously stored, and otherwise returns false .

The denotation of a program command κ is a function JκKc from local state ℓ1 to a

tuple JκKc(ℓ1) = ⟨µ, x, f⟩ consisting of a memory command µ and argument value x,

Verifying Visibility-Based Weak Consistency 11

and a update continuation f mapping the memory command’s return value y to a pair

f(y) = ⟨ℓ2, α⟩, where ℓ2 is an updated local state, and αmaps an operation o to an LTS

action α(o). We assume the denotation Jret xKc(ℓ1) = ⟨nop, ε, λy.⟨ℓ2, λo.ret(z)⟩⟩ of
the ret command yields a local state ℓ2 with done(ℓ2) without executing memory

commands, and outputs a corresponding LTS ret action.

Example 7. A simple goto language over variables a, b, . . . for the memory system of

Example 6 would include the following commands:

Jgoto aKc(ℓ) = ⟨nop, ε, λy.⟨jump(ℓ, ℓ(a)), λo.ε⟩⟩
Jassume aKc(ℓ) = ⟨nop, ε, λy.⟨next(ℓ), λo.ε⟩⟩ if ℓ(a) ̸= 0

Jb, c = load(a)Kc(ℓ) = ⟨load, ℓ(a), λy1, y2.⟨next(ℓ[b ↦→ y1][c ↦→ y2]), λo.ε⟩⟩
Jstore(a, b)Kc(ℓ) = ⟨store, ℓ(a)ℓ(b), λy.⟨next(ℓ), λo.ε⟩⟩

Jd, e = cas(a, b, c)Kc(ℓ) = ⟨cas, ℓ(a)ℓ(b)ℓ(c), λy1, y2.⟨next(ℓ[d ↦→ y1][e ↦→ y2]), λo.ε⟩⟩

where the jump and next functions update a program counter, and the load command

stores the operation identifier returned from the corresponding memory commands.

Linearization and visibility actions are captured as program commands as follows:

JlinKc(ℓ) = ⟨nop, ε, λy.⟨next(ℓ), λo.lin(o)⟩⟩
Jvis(a)Kc(ℓ) = ⟨nop, ε, λy.⟨next(ℓ), λo.vis(o, ℓ(a))⟩⟩

Atomic sections can be captured with a lock variable and a pair of program commands,

JbeginKc(ℓ) = ⟨nop, ε, λy.⟨next(ℓ[lock ↦→ true]), λo.ε⟩⟩
JendKc(ℓ) = ⟨nop, ε, λy.⟨next(ℓ[lock ↦→ false]), λo.ε⟩⟩

such that idle states are identified by not holding the lock, i.e., idle(ℓ) = ¬ℓ(lock), as
in the initial state init(m,x)(lock) = false .

Figure 1 lists the semantics JP Kp of a program P as an abstract-execution transition

system. The states ⟨M,L⟩ of JP Kp include a global memoryM , along with a partial

function L from operation identifiers o to local states L(o); the initial state is ⟨M∅, ∅⟩,
whereM∅ is an initial memory state. The transitions for call and hb actions are enabled

independently of implementation state, since they are dictated by implementations’

environments. Although we do not explicitly model client programs and platforms

here, in reality, client programs dictate call actions, and platforms, driven by client

programs, dictate hb actions; for example, a client which acquires the lock released after

operation o1, before invoking operation o2, is generally ensured by its platform that o1
happens before o2. The transitions for all other actions are dictated by implementation

commands. While the ret, lin, and vis commands generate their corresponding LTS

actions, all other commands generate ε transitions.

Each atomic
a⃗−→ step of the AETS underlying a given program is built from a

sequence of ⇝ steps for the individual program commands in an atomic section.

Individual program commands essentially execute one small ⇝ step from shared

memory and local state ⟨M1, ℓ1⟩ to ⟨M2, ℓ2⟩, invoking memory command µ with

12 S. Krishna et al.

o ̸∈ dom(L) ℓ = init(m,x)

⟨M,L⟩ call(o,m,x)−−−−−−→ ⟨M,L[o ↦→ ℓ]⟩

done(L(o1)) o2 ̸∈ dom(L)

⟨M,L⟩ hb(o1,o2)−−−−−−→ ⟨M,L⟩

⟨M1, ℓ1, o, ε⟩⇝∗ ⟨M2, ℓ2, o, a⃗⟩ idle(ℓ2)

⟨M1, L[o ↦→ ℓ1]⟩
a⃗−→ ⟨M2, L[o ↦→ ℓ2]⟩

cmd(ℓ1) = κ JκKc(ℓ1) = ⟨µ, x, f⟩
JµKm(M1, x, o) = ⟨M2, y⟩ f(y) = ⟨ℓ2, α⟩

⟨M1, ℓ1, o, a⃗⟩⇝ ⟨M2, ℓ2, o, a⃗ · α(o)⟩

Fig. 1. The semantics of program P = ⟨init, cmd, idle, done⟩ as an abstract-execution transition

system, where J·Kc and J·Km are the denotations of program and memory commands, respectively.

argument x, and emitting action α(o). Besides its effect on shared memory, each step

uses the result ⟨M2, y⟩ of memory command µ to update local state and emit an action

using the continuation f , i.e., f(y) = ⟨ℓ2, α⟩. Commands which do not access memory

are modeled by a no-op memory commands. We define the consistency of programs by

reduction to their transition systems.

Definition 5. A program P is consistent with a specification iff its semantics JP Kp is.

Thus the consistency of P with W amounts to the inclusion of JP Kp’s histories
in W ’s. The following corollary of Theorem 1 follows directly by Definition 5, and

immediately yields a program verification strategy: validate a simulation relation from

the states of JP Kp to the states of JW Ks such that each command of P is simulated by

a step of JW Ks.

Corollary 1. A program P is consistent with specification W if JW Ks simulates JP Kp.

4 Proof Methodology

In this section we develop a systematic means to annotating concurrent objects for

relaxed-visibility simulation proofs. Besides leveraging an auxiliary memory system

which tags memory accesses with the operation identifiers which wrote read values

(see §3.2), annotations signal linearization points with lin commands, and indicate

visibility of other operations with vis commands. As in previous works [3, 37, 2, 18] we

assume linearization points are given, and focus on visibility-related annotations.

As we focus on data-race free implementations (e.g., Java 8’s concurrent collections)

for which sequential consistency is sound, it can be assumed without loss of generality

that the happens-before order is exactly the returns-before order between operations,

which orders two operations o1 and o2 iff the return action of o1 occurs in real-time

before the call action of o2. This assumption allows to guarantee that linearizations are

consistent with happens-before just by ensuring that the linearization point of each

operation occurs in between its call and return action (like in standard linearizability).

Verifying Visibility-Based Weak Consistency 13

var table: array of T;

procedure absolute put(k: int, v: T) {
atomic {
store(table[k], v);
vis(getLin());
lin();

}
}

procedure absolute get(k: int) {
atomic{
v, O = load(table[k]);
vis(getLin());
lin();

}
return v;

}

procedure monotonic has(v: T)
vis(getModLin());

{
store(k, 0);
while (k < table.length) {
atomic{
tv, O = load(table[k]);
vis(O ∩ getModLin());

}
if (tv = v) then {
lin();
return true;

}
inc(k);

}
lin();
return false;

}

Fig. 2. An implementation Ichm modeling Java’s concurrent hash map. The command inc(k)
increments counter k, and commands within atomic {. . .} are collectively atomic.

It is without loss of generality because the clients of such implementations can use

auxiliary variables to impose synchronization order constraints between every two

operations ordered by returns-before, e.g., writing a variable after each operation

returns which is read before each other operation is called (under sequential consistency,

every write happens-before every other read which reads the written value).

We illustrate our methodology with the key-value map implementation Ichm of

Figure 2, which models Java’s concurrent hash map. The lines marked in blue and

red represent linearization/visibility commands added by the instrumentation that

will be described below. Key-value pairs are stored in an array table indexed by keys.

The implementation of put and get are obvious while the implementation of has
returns true iff the input value is associated to some key consists of a while loop

traversing the array and searching for the input value. To simplify the exposition, the

shared memory reads and writes are already adapted to the memory system described

in Section 3.2 (essentially, this consists in adding new variables storing the set of

operation identifiers returned by a shared memory read). While put and get are

obviously linearizable, has is weakly consistent, with monotonic visibility. For instance,

given the two thread program {get(1); has(1)} || {put(1, 1); put(0, 1); put(1, 0)} it

is possible that get(1) returns 1 while has(1) returns false. This is possible in an

interleaving where has reads table[0] before put(0,1) writes into it (observing the

initial value 0), and table[1] after put(1,0) writes into it (observing value 0 as well).

The only abstract execution consistent with the weakly-consistent contains-value map

Wm (Example 2) which justifies these return values is given in Example 3. We show

that this implementation is consistent with a simplification of the contains-value map

Wm, without remove key operations, and where put operations return no value.

Given an implementation I , let L(I) be an instrumentation of I with program

commands lin() emitting linearization actions. The execution of lin() in the context

of an operation with identifier o emits a linearization action lin(o). We assume thatL(I)
leads to well-formed executions (e.g., at most one linearization action per operation).

14 S. Krishna et al.

Example 8. For the implementation in Figure 2, the linearization commands of put
and get are executed atomically with the store to table[k] in put and the load of

table[k] in get, respectively. The linearization command of has is executed at any

point after observing the input value v or after exiting the loop, but before the return.

The two choices correspond to different return values and only one of them will be

executed during an invocation.

Given an instrumentation L(I), a visibility annotation V for I’s methods, and a

read-only predicate R, we define a witnessing implementation V(L(I)) according to
a generic heuristic that depends only on V and R. This definition uses a program

command getLin() which returns the set of operations in the current linearization

sequence.
12
The current linearization sequence is stored in a history variable which

is updated with every linearization action by appending the corresponding operation

identifier. For readability, we leave this history variable implicit and omit the corre-

sponding updates. As syntactic sugar, we use a command getModLin() which returns

the set of modifiers (non read-only operations) in the current linearization sequence.

To represent visibility actions, we use program commands vis(A) where A is a set

of operation identifiers. The execution of vis(A) in the context of an operation with

identifier o emits the set of visibility actions vis(o, o′) for every operation o′ ∈ A.
Therefore, V(L(I)) extends the instrumentation L(I) with commands generating

visibility actions as follows:

– for absolute methods, each linearization command is preceded by vis(getLin())
which ensures that the visibility of an invocation includes all the predecessors in

linearization order. This is executed atomically with lin().
– for monotonic methods, the call action is followed by vis(getModLin()) (and

executed atomically with this command) which ensures that the visibility of each

invocation is monotonic, and every read of a shared variable which has beenwritten

by a set of operations O is preceded by vis(O ∩ getModLin()) (and executed

atomically with this command). The latter is needed so that the visibility of such

an invocation contains enough operations to explain its return value (the visibility

command attached to call actions is enough to ensure monotonic visibilities).

Example 9. The blue lines in Figure 2 demonstrate the visibility commands added by

the instrumentation V(·) to the key-value map in Figure 2 (in this case, the modifiers

are put operations). The first visibility command in has precedes the procedure body
to emphasize the fact that it is executed atomically with the procedure call. Also, note

that the read of the array table is the only shared memory read in has.

Theorem 2. The abstract executions of the witnessing implementation V(L(I)) are
consistent with V and R.

Proof. Let ⟨h, lin, vis⟩ be the abstract execution of a trace τ of V(L(I)), and let o be
an invocation in h of a monotonic method (w.r.t. V). By the definition of V , the call
action of o is immediately followed in τ by a sequence of visibility actions vis(o, o′)

12

We rely on retrieving the identifiers of currently-linearized operations. More complex proofs

may also require inspecting, e.g., operation labels and happens-before relationships.

Verifying Visibility-Based Weak Consistency 15

for every modifier o′ which has been already linearized. Therefore, any operation

which has returned before o (i.e., happens-before o) has already been linearized and it

will necessarily have a smaller visibility (w.r.t. set inclusion) because the linearization

sequence is modified only by appending new operations. The instrumentation of

shared memory reads may add more visibility actions vis(o, _) but this preserves the
monotonicity status of o’s visibility. The case of absolute methods is obvious.

The consistency of the abstract executions of V(L(I)) with a given sequential

specification S, which completes the proof of consistency with a weak-visibility speci-

fication W = ⟨S,R, V ⟩, can be proved by showing that the transition system JW Ks of
W simulates V(L(I)) (Theorem 1). Defining a simulation relation between the two

systems is in some part implementation specific, and in the following we demonstrate

it for the key-value map implementation V(L(Ichm)).
We show that JWmKs simulates implementation Ichm. A state of Ichm in Figure 2

is a valuation of table and the history variable lin storing the current linearization
sequence, and a valuation of the local variables for each active operation. Let ops(q)
denote the set of operations which are active in an implementation state q. Also, for
a has operation o ∈ ops(q), let index (o) be the maximal index k of the array table
such that o has already read table[k] and table[k] ̸= v. We assume index (o) = −1 if

o did not read any array cell.

Definition 6. LetRchm be a relation which associates every implementation state q with
a state of JWmKs, i.e., an ⟨S,R, V ⟩-consistent abstract execution e = ⟨h, lin, vis⟩ with
h = ⟨O, inv , ret , hb⟩, such that:

1. O is the set of identifiers occurring in ops(q) or the history variable lin,
2. for each operation o ∈ ops(q), inv(o) is defined according to its local state, ret(o) is

undefined, and o is maximal in the happens-before order hb,
3. the value of the history variable lin in q equals the linearization sequence lin ,
4. every invocation o ∈ ops(q) of an absolute method (put or get) has absolute visibility

if linearized, otherwise, its visibility is empty,
5. table is the array obtained by executing the sequence of operations lin ,
6. for every linearized get(k) operation o ∈ ops(q), the put(k,_) operation in vis(o)

which occurs last in lin writes v to key k, where v is the local variable of o,
7. for every has operation o ∈ ops(q), vis(o) consists of:

– all the put operations o′ which returned before o was invoked,
– for each i ≤ index (o), all the put(i,_) operations from a prefix of lin that

wrote a value different from v,
– all the put(index (o) + 1,_) operations from a prefix of lin that ends with a

put(index (o) + 1,v) operation, provided that tv = v.
Above, the linearization prefix associated to an index j1 < j2 should be a prefix of
the one associated to j2.

A large part of this definition is applicable to any implementation, only points (5),

(6), and (7) being specific to the implementation we consider. The points (6) and (7)

ensure that the return values of operations are consistent with S and mimic the effect

of the vis commands from Figure 2.

Theorem 3. Rchm is a simulation relation from V(L(Ichm)) to JWmKs.

16 S. Krishna et al.

5 Implementation and Evaluation

In this section we effectuate our methodology by verifying two weakly-consistent

concurrent objects: Java’s ConcurrentHashMap and ConcurrentLinkedQueue.13 We

use an off-the-shelf deductive verification tool called civl [16], though any concurrent

program verifier could suffice. We chose civl because comparable verifiers either

require a manual encoding of the concurrency reasoning (e.g. Dafny or Viper) which

can be error-prone, or require cumbersome reasoning about interleavings of thread-

local histories (e.g. VerCors). An additional benefit of civl is that it directly proves

simulation, thereby tying the mechanized proofs to our theoretical development. Our

proofs assume no bound on the number of threads or the size of the memory.

Our use of civl imposes two restrictions on the implementations we can verify.

First, civl uses the Owicki-Gries method [29] to verify concurrent programs. These

methods are unsound for weak memory models [22], so civl, and hence our proofs,

assume a sequentially-consistent memory model. Second, civl’s strategy for building

the simulation relation requires implementations to have statically-known linearization

points because it checks that there exists exactly one atomic section in each code path

where the global state is modified, and this modification is simulated by the specification.

Given these restrictions, we can simplify our proof strategy of forward refinement

by factoring the simulations we construct through an atomic version of the specification

transition system. This atomic specification is obtained from the specification AETS

JW Ks by restricting the interleavings between its transitions.

Definition 7. The atomic transition system of a specification W is the AETS JW Ka =

⟨Q,A, q,→a⟩, where JW Ks = ⟨Q,A, q,→⟩ is the AETS ofW and e1
a⃗−→a e2 if and only if

e1
a⃗−→ e2 and a⃗ ∈ {call(o,m, x)}∪{ret(o, y)}∪{hb(o, o′)}∪{a1⃗ lin(o) : a1⃗ ∈ {vis(o, _)}∗}.

Note that the language of JW Ka is included in the language of JW Ks and simulation

proofs towards JW Ka apply to JW Ks as well.
Our civl proofs show that there is a simulation from an implementation to its atomic

specification, which is encoded as a program whose state consists of the components

of an abstract execution, i.e., ⟨O, inv , ret , hb, lin, vis⟩. These were encoded as maps

from operation identifiers to values, sequences of operation identifiers, and maps from

operation identifiers to sets of operation identifiers respectively. Our axiomatization

of sequences and sets were adapted from those used by the Dafny verifier [23]. For

each method in M, we defined atomic procedures corresponding to call actions, return

actions, and combined visibility and linearization actions in order to obtain exactly the

atomic transitions of JW Ka.
It is challenging to encode Java implementations faithfully in civl, as the latter’s

input programming language is a basic imperative language lacking many Java features.

Most notable among these is dynamic memory allocation on the heap, used by almost

all of the concurrent data structure implementations. As civl is a first-order prover,

we needed an encoding of the heap that lets us perform reachability reasoning on the

13

Our verified implementations are open source, and available at:

https://github.com/siddharth-krishna/weak-consistency-proofs.

https://github.com/siddharth-krishna/weak-consistency-proofs

Verifying Visibility-Based Weak Consistency 17

heap. We adapted the first-order theory of reachability and footprint sets from the

GRASShopper verifier [30] for dynamically allocated data structures. This fragment is

decidable, but relies on local theory extensions [36], which we implemented by using

the trigger mechanism of the underlying SMT solver [27, 15] to ensure that quantified

axioms were only instantiated for program expressions. For instance, here is the “cycle”

axiom that says that if a node x has a field f[x] that points to itself, then any y that
it can reach via that field (encoded using the between predicate Btwn(f, x, y, y))
must be equal to x:

axiom (forall f: [Ref]Ref, x: Ref, y:Ref :: {known(x), known(y)}
f[x] == x && Btwn(f, x, y, y) ==> x == y);

We use the trigger known(x), known(y) (known is a dummy function that maps every

reference to true) and introduce known(t) terms in our programs for every term t of
type Ref (for instance, by adding assert known(t) to the point of the program where

t is introduced). This ensures that the cycle axiom is only instantiated for terms that

appear in the program, and not for terms that are generated by instantations of axioms

(like f[x] in the cycle axiom). This process was key to keeping the verification time

manageable.

Since we consider fine-grained concurrent implementations, we also needed to

reason about interference by other threads and show thread safety. civl provides

Owicki-Gries [29] style thread-modular reasoning, by means of demarcating atomic

blocks and providing preconditions for each block that are checked for stability under

all possible modifications by other threads. One of the consequences of this is that

these annotations can only talk about the local state of a thread and the shared global

state, but not other threads. To encode facts such as distinctness of operation identifiers

and ownership of unreachable nodes (e.g. newly allocated nodes) in the shared heap,

we use civl’s linear type system [40].

For instance, the proof of the pushmethod needs to make assertions about the value

of the newly-allocated node x. These assertions would not be stable under interference

of other threads if we didn’t have a way of specifying that the address of the new node

is known only by the push thread. We encode this knowledge by marking the type of

the variable x as linear – this tells civl that all values of x across all threads are distinct,
which is sufficient for the proof. civl ensures soundness by making sure that linear

variables are not duplicated (for instance, they cannot be passed to another method

and then used afterwards).

We evaluate our proof methodology by considering models of two of Java’s weakly-

consistent concurrent objects.

Concurrent Hash Map One is the ConcurrentHashMap implementation of the Map

ADT, consisting of absolute put and get methods and a monotonic has method that

follows the algortihm given in Figure 2. For simplicity, we assume here that keys are

integers and the hash function is identity, but note that the proof of monotonicity of

has is not affected by these assumptions.
14

14

Our civl implementation assumes the hash function is injective to avoid reasoning about the

dynamic bucket-list needed to resolve hash collisions. While such reasoning is possible within

18 S. Krishna et al.

Module Code Proof Total Time (s)
Sets and Sequences - 85 85 -

Executions and Consistency - 30 30 -

Heap and Reachability - 35 35 -

Map ADT 51 34 85 -

Array-map implementation 138 175 313 6

Queue ADT 50 22 72 -

Linked Queue implementation 280 325 605 13

Fig. 3. Case study detail: for each object we show lines of code, lines of proof, total lines, and

verification time in seconds. We also list common definitions and axiomatizations separately.

civl can construct a simulation relation equivalent to the one defined in Definition 6

automatically, given an inductive invariant that relates the state of the implementation

to the abstract execution. A first attempt at an invariant might be that the value stored

at table[k] for every key k is the same as the value returned by adding a get operation
on k by the specification AETS. This invariant is sufficient for civl to prove that the

return value of the absolute methods (put and get) is consistent with the specification.

However, it is not enough to show that the return value of the monotonic has
method is consistent with its visibility. This is because our proof technique constructs

a visibility set for has by taking the union of the memory tags (the set of operations

that wrote to each memory location) of each table entry it reads, but without additional

invariants this visibility set could entail a different return value. We thus strengthen

the invariant to say that tableTags[k], the memory tags associated with hash table

entry k, is exactly the set of linearized put operations with key k. A consequence of

this is that the abstract state encoded by tableTags[k] has the same value for key k as
the value stored at table[k]. civl can then prove, given the following loop invariant,

that the value returned by has is consistent with its visibility set.

(forall i: int :: 0 <= i && i < k ==> Map.ofVis(my_vis, lin)[i] != v)

This loop invariant says that among the entries scanned thus far, the abstract map

given by the projection of lin to the current operation’s visibility my_vis does not

include value v.

Concurrent Linked Queue Our second case study is the ConcurrentLinkedQueue
implementation of the Queue ADT, consisting of absolute push and pop methods and

a monotonic size method that traverses the queue from head to tail without any locks

and returns the number of nodes it sees (see Figure 4 for the full code). We again model

the core algorithm (theMichael-Scott queue [26]) and omit some of Java’s optimizations,

for instance to speed up garbage collection by setting the next field of popped nodes

to themselves, or setting the values of nodes to null when popping values.

The invariants needed to verify the absolute methods are a straightforward combi-

nation of structural invariants (e.g. that the queue is composed of a linked list from

the head to null, with the tail being a member of this list) and a relation between the

civl, see our queue case study, this issue is orthogonal to the weak-consistency reasoning

that we study here.

Verifying Visibility-Based Weak Consistency 19

var head, tail: Ref; struct Node { var data: K; var next: Ref; }

procedure absolute push(k: K) {
x = new Node(k, null);
while (true) {
t, _ = load(tail);
tn, _ = load(tail.next);
if (tn == null) {
atomic {
b, _ = cas(t.next, tn, x);
if (b) {
vis(getLin());
lin();

}
}
if (b) then break;

} else {
b, _ = cas(tail, t, tn);

}
}

}

procedure absolute pop() {
while (true) {
h, _ = load(head);
t, _ = load(tail);
hn, _ = load(h.next);
if (h != t) {
k, _ = load(hn.data);
atomic {
b, _ = cas(head, h, hn);
if (b) {
vis(getLin());
lin();

}
}
if (b) then return k;

}
}

}

procedure monotonic size()
vis(getModLin());

{
store(s, 0);
c, _ = load(head);
atomic {
cn, O = load(c.next);
vis(O ∩ getModLin());

}
while (cn != null) {
inc(s);
c = cn;
atomic {
cn, O = load(c.next);
vis(O ∩ getModLin());

}
}
lin();
return s;

}

Fig. 4. The simplified implementation of Java’s ConcurrentLinkedQueue that we verify.

abstract and concrete states. Once again, we need to strengthen this invariant in order

to verify the monotonic size method, because otherwise we cannot prove that the

visibility set we construct (by taking the union of the memory tags of nodes in the list

during traversal) justifies the return value.

The key additional invariant is that the memory tags for the next field of each node

(denoted x.nextTags for each node x) in the queue contain the operation label of the

operation that pushed the next node into the queue (if it exists). Further, the sequence

of push operations in lin are exactly the operations in the nextTags field of nodes in

the queue, and in the order they are present in the queue.

Figure 5 shows a simplified version of the civl encoding of these invariants. In

it, we use the following auxiliary variables in order to avoid quantifier alternation:

nextInvoc maps nodes to the operation label (type Invoc in civl) contained in the

nextTags field; nextRef maps operations to the nodes whose nextTags field contains

them, i.e. it is the inverse of nextInvoc; and absRefs maps the index of the abstract

queue (represented as a mathematical sequence) to the corresponding concrete heap

node. We omit the triggers and known predicates for readability; the full invariant can

be found in the accompanying proof scripts.

Given these invariants, one can show that the return value s computed by size
is consistent with the visibility set it constructs by picking up the memory tags from

each node that it traverses. The loop invariant is more involved, as due to concurrent

updates size could be traversing nodes that have been popped from the queue; see

our civl proofs for more details.

Results Figure 3 provides a summary of our case studies. We separate the table into

sections, one for each case study, and a common section at the top that contains the

common theories of sets and sequences and our encoding of the heap. In each case study

section, we separate the definitions of the atomic specification of the ADT (which can

20 S. Krishna et al.

// nextTags only contains singleton sets of push operations
(forall y: Ref ::
(Btwn(next, start, y, null) && y != null && next[y] != null
==> nextTags[y] == Set(nextInvoc[y])

&& invoc_m(nextInvoc[y]) == Queue.push))

// nextTags of the last node is the empty set
&& nextTags[absRefs[Queue.stateTail(Queue.ofSeq(lin)) - 1]]

== Set_empty()

// lin is made up of nextInvoc[y] for y in the queue
&& (forall n: Invoc :: invoc_m(n) == Queue.push

==> (Seq_elem(n, lin)
<==> Btwn(next, start, nextRef[n], null)

&& nextRef[n] != null && next[nextRef[n]] != null))

// lin is ordered by order of nodes in queue
&& (forall n1, n2: Invoc ::

(invoc_m(n1) == Queue.push && invoc_m(n2) == Queue.push
&& Seq_elem(n1, lin) && Seq_elem(n2, lin)
==> (Seq_ord(lin, n1, n2)

<==> Btwn(next, nextRef[n1], nextRef[n1], nextRef[n2])
&& nextRef[n1] != nextRef[n2])))

Fig. 5. A snippet from the civl invariant for the queue.

be reused for other implementations) from the code and proof of the implementation

we consider. For each resulting module, we list the number of lines of code, lines of

proof, total lines, and civl’s verification time in seconds. Experiments were conducted

on an Intel Core i7-4470 3.4 GHz 8-core machine with 16GB RAM.

Our two case studies are representative of theweakly-consistent behaviors exhibited

by all the Java concurrent objects studied in [13], both those using fixed-size arrays

and those using dynamic memory. As civl does not direclty support dynamic memory

and other Java language features, we were forced to make certain simplifications

to the algorithms in our verification effort. However, the assumptions we make are

orthogonal to the reasoning and proof of weak consistency of the monotonic methods.

The underlying algorithm used by, and hence the proof argument for monotonicity

of, hash map’s has method is the same as that in the other monotonic hash map

operations such as elements, entrySet, and toString. Similarly, the argument used

for the queue’s size can be adapted to other monotonic ConcurrentLinkedQueue
and LinkedTransferQueue operations like toArray and toString. Thus, our proofs
carry over to the full versions of the implementations as the key invariants linking the

memory tags and visibility sets to the specification state are the same.

In addition, civl does not currently have any support for inferring the preconditions

of each atomic block, which currently accounts for most of the lines of proof in our case

studies. However, these problems have been studied and solved in other tools [30, 39],

and in theory can be integrated with civl in order to simplify these kinds of proofs.

Verifying Visibility-Based Weak Consistency 21

In conclusion, our case studies show that verifying weakly-consistent operations

introduces little overhead compared to the proofs of the core absolute operations. The

additional invariants needed to prove monotonicity were natural and easy to construct.

We also see that our methodology brings weak-consistency proofs within the scope of

what is provable by off-the-shelf automated concurrent program verifiers in reasonable

time.

6 Related Work

Though linearizability [18] has reigned as the de-facto concurrent-object consistency

criterion, several recent works proposed weaker criteria, including quantitative re-
laxation [17], quiescent consistency [10], and local linearizability [14]; these works

effectively permit externally-visible interference among threads by altering objects’ se-

quential specifications, each in their own way. Motivated by the diversity of these

proposals, Sergey et al. [35] proposed the use of Hoare logic for describing a custom

consistency specification for each concurrent object. Raad et al. [31] continued in this

direction by proposing declarative consistency models for concurrent objects atop

weak-memory platforms. One common feature between our paper and this line of

work (see also [21, 9]) is encoding and reasoning directly about the concurrent history.

The notion of visibility relaxation [13] originates from Burckhardt et al.’s axiomatic

specifications [7], and leverages traditional sequential specifications by allowing certain

operations to behave as if they are unaware of concurrently-executed linearization-

order predecessors. The linearization (and visibility) actions of our simulation-proof

methodology are unique to visibility-relaxation based weak-consistency, since they

refer to a global linearization order linking executions with sequential specifications.

Typical methodologies for proving linearizability are based on reductions to safety

verification [8, 5] and forward simulation [3, 37, 2], the latter generally requiring

the annotation of per-operation linearization points, each typically associated with

a single program statement in the given operation, e.g., a shared memory access.

Extensions to this methodology include cooperation [38, 12, 41], i.e., allowing operations’
linearization points to coincide with other operations’ statements, and prophecy [33, 24],
i.e., allowing operation’ linearization points to depend on future events. Such extensions

enable linearizability proofs of objects like the Herlihy-Wing Queue (HWQ). While

prophecy [25], alternatively backward simulation [25], is generally more powerful

than forward simulation alone, Bouajjani et al. [6] described a methodology based on

forward simulation capable of proving seemingly future-dependent objects like HWQ

by considering fixed linearization points only for value removal, and an additional

kind of specification-simulated action, commit points, corresponding to operations’

final shared-memory accesses. Our consideration of specification-simulated visibility

actions follows this line of thinking, enabling the forward-simulation based proof of

weakly-consistent concurrent objects.

22 S. Krishna et al.

7 Conclusion and Future Work

This work develops the first verification methodology for weakly-consistent operations

using sequential specifications and forward simulation, thus reusing existing sequential

ADT specifications and enabling simple reasoning, i.e., without prophecy [1] or back-

ward simulation [25]. This paper demonstrates the application of our methodology to

absolute and monotonic methods on sequentially-consistent memory, as these are the

consistency levels demonstrated in actual Java implementations of which we are aware.

Our formalization is general, and also applicable to the other visibility relaxations,

e.g., the peer and weak visibilities [13], and weaker memory models, e.g., the Java

memory model.

Extrapolating, we speculate that handling other visibilities amounts to adding anno-

tations and auxiliary state which mirrors inter-operation communication. For example,

while monotonic operations on shared-memory implementations observe mutating

linearization-order predecessors – corresponding to a sequence of shared-memory up-

dates – causal operations with message-passing based implementations would observe

operations whose messages have (transitively) propagated. The corresponding anno-

tations may require auxiliary state to track message propagation, similar in spirit to

the getModLin() auxiliary state that tracks mutating linearization-order predecessors

(§4). Since weak memory models essentially alter the mechanics of inter-operation

communication, the corresponding visibility annotations and auxiliary state may simi-

larly reflect this communication. Since this communication is partly captured by the

denotations of memory commands (§3.2), these denotations would be modified, e.g., to

include not one value and tag per memory location, but multiple. While variations are

possible depending on the extent to which the proof of a given implementation relies

on the details of the memory model, in the worst case the auxiliary state could capture

an existing memory model (e.g., operational) semantics exactly.

As with systematic or automated linearizability-proof methodologies, our proof

methodology is susceptible to two potential sources of incompleteness. First, as men-

tioned in Section 3, methodologies like ours based on forward simulation are only

complete when specifications are return-value deterministic. However, data types are
typically designed to be return-value deterministic and this source of incompleteness

does not manifest in practice.

Second, methodologies like ours based on annotating program commands, e.g., with

linearization points, are generally incomplete since the consistency mechanism em-

ployed by any given implementation may not admit characterization according to a

given static annotation scheme; the Herlihy-Wing Queue, whose linearization points

depend on the results of future actions, is a prototypical example [18]. Likewise, our

systematic strategy for annotating implementations with lin and vis commands (§3)

can fail to prove consistency of future-dependent operations. However, we have yet

to observe any practical occurrence of such exotic objects; our strategy is sufficient

for verifying the weakly-consistent algorithms implemented in the Java development

kit. As a theoretical curiosity for future work, investigating the potential for complete

annotation strategies would be interesting, e.g., for restricted classes of data types

and/or implementations.

Verifying Visibility-Based Weak Consistency 23

Finally, while civl’s high-degree of automation facilitated rapid prototyping of

our simulation proofs, its underlying foundation using Owicki-Gries style proof rules

limits the potential for modular reasoning. In particular, while our weak-consistency

proofs are thread-modular, our invariants and intermediate assertions necessarily talk

about state shared among multiple threads. Since our simulation-based methodology

and annotations are completely orthogonal to the underlying program logic, it would

be interesting future work to apply our methodology using expressive logics like Rely-

Guarantee, e.g. [19, 38], or variations of Concurrent Separation Logic, e.g. [28, 32, 34,

35, 4, 20]. It remains to be seen to what degree increased modularity may sacrifice

automation in the application of our weak-consistency proof methodology.

Acknowledgments This material is based upon work supported by the National

Science Foundation under Grant No. 1816936, and the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation programme

(grant agreement No 678177).

24 S. Krishna et al.

A Appendix: Proofs to Theorems and Lemmas

Lemma 1. The abstract executions E(W) of a specification W are consistent with W .

Proof. Any complete, sequential, and absolute execution is consistent by definition,

since the labeling of its linearization is taken from the sequential specification. Then,

any happens-before weakening is consistent for exactly the same reason as its source

execution, since its linearization and visibility projection are both identical. Finally, any

visibility weakening is consistent by the condition ofW -consistency in its definition.

Lemma 2. A weak-visibility specification and its transition system have identical histo-
ries.

Proof. It follows almost immediately that the abstract executions of JW Ks are identical
to those of W , since JW Ks’s state effectively records the abstract execution of a given

AETS execution, and only enables those returns that are consistent with W . Since

histories are the projections of abstract executions, the corresponding history sets are

also identical.

Theorem 1. A witnessing implementation I is consistent with a weak-visibility specifi-
cationW if the transition system JW Ks ofW simulates I .

Proof. This follows from standard arguments, given that the corresponding SLTSs

include ε transitions to ensure that every move of one system can be matched by

stuttering from the other: since both systems synchronize on the call, ret, hb, lin, and

vis actions, the simulation guarantees that every abstract execution, and thus history,

of I is matched by one of JW Ks. Then by Lemma 2, the histories of I are included in

W .

Theorem 3. Rchm is a simulation relation from Ichm to JWmKs.

Proof Sketch. We show that every step of the implementation, i.e., an atomic section

or a program command, is simulated by JWmKs. Given ⟨q, e⟩ ∈ Rchm, we consider the

different implementation steps which are possible in q.
The case of commands corresponding to procedure calls of put and get is trivial.

Executing a procedure call in q leads to a new state q′ which differs only by having

a new active operation o. We have that e
call(o,_,_)−−−−−−→ e′ and ⟨q′, e′⟩ ∈ Rchm where e′

is obtained from e by adding o with an appropriate value of inv(o) and an empty

visibility.

The transition corresponding to the atomic section of put is labeled by a sequence

of visibility actions (one for each linearized operation) followed by a linearization

action. Let σ denote this sequence of actions. This transition leads to a state q′ where
the array table may have changed (unless writing the same value), and the history

variable lin is extended with the put operation o executing this step. We define an

abstract execution e′ from e by changing lin to the new value of lin, and defining an

absolute visibility for o. We have that e
σ−→ e′ because e′ is consistent withWm. Also,

⟨q′, e′⟩ ∈ Rchm because the validity of (3), (4), and (5) follow directly from the definition

Verifying Visibility-Based Weak Consistency 25

of e′. The atomic section of get can be handled in a similar way. The simulation of

return actions of get operations is a direct consequence of point (6) which ensures

consistency with S.
For has, we focus on the atomic sections containing vis commands and the lin-

earization commands (the other internal steps are simulated by ϵ steps of JWmKs, and
the simulation of the return step follows directly from (7) which justifies the consis-

tency of the return value). The atomic section around the procedure call corresponds

to a transition labeled by a sequence σ of visibility actions (one for each linearized

modifier) and leads to a state q′ with a new active has operation o (compared to q).

We have that e
σ−→ e′ because e′ is consistent with Wm. Indeed, the visibility of o in

e′ is not constrained since o has not been linearized and the Wm-consistency of e′

follows from theWm-consistency of e. Also, ⟨q′, e′⟩ ∈ Rchm because index (o) = −1
and (7) is clearly valid. The atomic section around the read of table[k] is simulated

by JWmKs in a similar way, noticing that (7) models precisely the effect of the visibility

commands inside this atomic section. For the simulation of the linearization commands

is important to notice that any active has operation in e has a visibility that contains

all modifiers which returned before it was called and as explained above, this visibility

is monotonic.

26 S. Krishna et al.

References

[1] Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.

Sci. 82(2), 253–284 (1991)
[2] Abdulla, P.A., Haziza, F., Holík, L., Jonsson, B., Rezine, A.: An integrated specifica-

tion and verification technique for highly concurrent data structures for highly

concurrent data structures. STTT 19(5), 549–563 (2017)
[3] Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under abstrac-

tion for verifying linearizability. In: CAV. Lecture Notes in Computer Science,

vol. 4590, pp. 477–490. Springer (2007)

[4] Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The vercors tool set: Verification

of parallel and concurrent software. In: IFM. Lecture Notes in Computer Science,

vol. 10510, pp. 102–110. Springer (2017)

[5] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state

reachability. Inf. Comput. 261(Part), 383–400 (2018)
[6] Bouajjani, A., Emmi, M., Enea, C., Mutluergil, S.O.: Proving linearizability using

forward simulations. In: CAV (2). Lecture Notes in Computer Science, vol. 10427,

pp. 542–563. Springer (2017)

[7] Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: specifi-

cation, verification, optimality. In: POPL. pp. 271–284. ACM (2014)

[8] Chakraborty, S., Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented lin-

earizability proofs. Logical Methods in Computer Science 11(1) (2015)
[9] Delbianco, G.A., Sergey, I., Nanevski, A., Banerjee, A.: Concurrent data structures

linked in time. In: ECOOP. LIPIcs, vol. 74, pp. 8:1–8:30. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik (2017)

[10] Derrick, J., Dongol, B., Schellhorn, G., Tofan, B., Travkin, O., Wehrheim, H.: Qui-

escent consistency: Defining and verifying relaxed linearizability. In: FM. Lecture

Notes in Computer Science, vol. 8442, pp. 200–214. Springer (2014)

[11] Dongol, B., Jagadeesan, R., Riely, J., Armstrong, A.: On abstraction and composi-

tionality for weak-memory linearisability. In: VMCAI. Lecture Notes in Computer

Science, vol. 10747, pp. 183–204. Springer (2018)

[12] Dragoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs of con-

current objects with cooperating updates. In: CAV. Lecture Notes in Computer

Science, vol. 8044, pp. 174–190. Springer (2013)

[13] Emmi, M., Enea, C.: Weak-consistency specification via visibility relaxation.

PACMPL 3(POPL), 60:1–60:28 (2019)
[14] Haas, A., Henzinger, T.A., Holzer, A., Kirsch, C.M., Lippautz, M., Payer, H., Sezgin,

A., Sokolova, A., Veith, H.: Local linearizability for concurrent container-type

data structures. In: CONCUR. LIPIcs, vol. 59, pp. 6:1–6:15. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik (2016)

[15] Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors.

Logical Methods in Computer Science 6(3) (2010)
[16] Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refine-

ment reasoning for concurrent programs. In: CAV (2). Lecture Notes in Computer

Science, vol. 9207, pp. 449–465. Springer (2015)

REFERENCES 27

[17] Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative

relaxation of concurrent data structures. In: POPL. pp. 317–328. ACM (2013)

[18] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
[19] Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress. pp.

321–332. North-Holland/IFIP (1983)

[20] Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J.

Funct. Program. 28, e20 (2018)
[21] Khyzha, A., Dodds, M., Gotsman, A., Parkinson, M.J.: Proving linearizability using

partial orders. In: ESOP. Lecture Notes in Computer Science, vol. 10201, pp. 639–

667. Springer (2017)

[22] Lahav, O., Vafeiadis, V.: Owicki-gries reasoning for weak memory models. In:

ICALP (2). Lecture Notes in Computer Science, vol. 9135, pp. 311–323. Springer

(2015)

[23] Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.

In: LPAR (Dakar). Lecture Notes in Computer Science, vol. 6355, pp. 348–370.

Springer (2010)

[24] Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-

tion points. In: PLDI. pp. 459–470. ACM (2013)

[25] Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. untimed

systems. Inf. Comput. 121(2), 214–233 (1995)
[26] Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In: PODC. pp. 267–275. ACM (1996)

[27] Moskal, M., Lopuszanski, J., Kiniry, J.R.: E-matching for fun and profit. Electr.

Notes Theor. Comput. Sci. 198(2), 19–35 (2008)
[28] O’Hearn, P.W.: Resources, concurrency and local reasoning. In: CONCUR. Lecture

Notes in Computer Science, vol. 3170, pp. 49–67. Springer (2004)

[29] Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic

approach. Commun. ACM 19(5), 279–285 (1976)
[30] Piskac, R., Wies, T., Zufferey, D.: Grasshopper - complete heap verification with

mixed specifications. In: TACAS. Lecture Notes in Computer Science, vol. 8413,

pp. 124–139. Springer (2014)

[31] Raad, A., Doko, M., Rozic, L., Lahav, O., Vafeiadis, V.: On library correctness under

weak memory consistency: specifying and verifying concurrent libraries under

declarative consistency models. PACMPL 3(POPL), 68:1–68:31 (2019)
[32] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

LICS. pp. 55–74. IEEE Computer Society (2002)

[33] Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable. In:

CAV. Lecture Notes in Computer Science, vol. 7358, pp. 243–259. Springer (2012)

[34] Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained

concurrent programs. In: PLDI. pp. 77–87. ACM (2015)

[35] Sergey, I., Nanevski, A., Banerjee, A., Delbianco, G.A.: Hoare-style specifications

as correctness conditions for non-linearizable concurrent objects. In: OOPSLA.

pp. 92–110. ACM (2016)

28 S. Krishna et al.

[36] Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:

CADE. Lecture Notes in Computer Science, vol. 3632, pp. 219–234. Springer (2005)

[37] Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: VMCAI.

Lecture Notes in Computer Science, vol. 5403, pp. 335–348. Springer (2009)

[38] Vafeiadis, V.: Automatically proving linearizability. In: CAV. Lecture Notes in

Computer Science, vol. 6174, pp. 450–464. Springer (2010)

[39] Vafeiadis, V.: Rgsep action inference. In: VMCAI. Lecture Notes in Computer

Science, vol. 5944, pp. 345–361. Springer (2010)

[40] Wadler, P.: Linear types can change the world! In: Programming Concepts and

Methods. p. 561. North-Holland (1990)

[41] Zhu, H., Petri, G., Jagannathan, S.: Poling: SMT aided linearizability proofs. In:

CAV (2). Lecture Notes in Computer Science, vol. 9207, pp. 3–19. Springer (2015)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-

mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not in-

cluded in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Verifying Visibility-Based Weak Consistency
	Introduction
	Weak Consistency
	Weak-Visibility Specifications
	Consistency against Weak-Visibility Specifications

	Establishing Consistency with Forward Simulation
	Reducing Consistency to Safety Verification
	Verifying Implementations

	Proof Methodology
	Implementation and Evaluation
	Related Work
	Conclusion and Future Work
	Appendix: Proofs to Theorems and Lemmas

