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Abstract. Multithreaded programs generally leverage efficient and thread-safe
concurrent objects like sets, key-value maps, and queues. While some concurrent-
object operations are designed to behave atomically, each witnessing the atomic
effects of predecessors in a linearization order, others forego such strong consis-
tency to avoid complex control and synchronization bottlenecks. For example,
contains (value) methods of key-value maps may iterate through key-value
entries without blocking concurrent updates, to avoid unwanted performance
bottlenecks, and consequently overlook the effects of some linearization-order
predecessors. While such weakly-consistent operations may not be atomic, they
still offer guarantees, e.g., only observing values that have been present.

In this work we develop a methodology for proving that concurrent object
implementations adhere to weak-consistency specifications. In particular, we
consider (forward) simulation-based proofs of implementations against relaxed-
visibility specifications, which allow designated operations to overlook some of
their linearization-order predecessors, i.e., behaving as if they never occurred. Be-
sides annotating implementation code to identify linearization points, i.e., points
at which operations’ logical effects occur, we also annotate code to identify visible
operations, i.e., operations whose effects are observed; in practice this annotation
can be done automatically by tracking the writers to each accessed memory
location. We formalize our methodology over a general notion of transition
systems, agnostic to any particular programming language or memory model,
and demonstrate its application, using automated theorem provers, by verifying
models of Java concurrent object implementations.

1 Introduction

Programming efficient multithreaded programs generally involves carefully organiz-
ing shared memory accesses to facilitate inter-thread communication while avoiding
synchronization bottlenecks. Modern software platforms like Java include reusable
abstractions which encapsulate low-level shared memory accesses and synchronization
into familiar high-level abstract data types (ADTs). These so-called concurrent objects
typically include mutual-exclusion primitives like locks, numeric data types like atomic
integers, as well as collections like sets, key-value maps, and queues; Java’s standard-
edition platform contains many implementations of each. Such objects typically provide
strong consistency guarantees like linearizability [18], ensuring that each operation
appears to happen atomically, witnessing the atomic effects of predecessors according
to some linearization order among concurrently-executing operations.
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While such strong consistency guarantees are ideal for logical reasoning about
programs which use concurrent objects, these guarantees are too strong for many oper-
ations, since they preclude simple and/or efficient implementation — over half of Java’s
concurrent collection methods forego atomicity for weak-consistency [13]. On the one
hand, basic operations like the get and put methods of key-value maps typically admit
relatively-simple atomic implementations, since their behaviors essentially depend
upon individual memory cells, e.g., where the relevant key-value mapping is stored.
On the other hand, making aggregate operations like size and contains (value) atomic
would impose synchronization bottlenecks, or otherwise-complex control structures,
since their atomic behavior depends simultaneously upon the values stored across
many memory cells. Interestingly, such implementations are not linearizable even
when their underlying memory operations are sequentially consistent, e.g., as is the
case with Java 8’s concurrent collections, whose memory accesses are data-race free

For instance, the contains (value) method of Java’s concurrent hash map iterates
through key-value entries without blocking concurrent updates in order to avoid
unreasonable performance bottlenecks. Consequently, in a given execution, a contains-
value-v operation o0; will overlook operation 02’s concurrent insertion of k1 — v for a
key k; it has already traversed. This oversight makes it possible for 0; to conclude that
value v is not present, and can only be explained by o1 being linearized before 02. In the
case that operation o3 removes ks +— v concurrently before 01 reaches key ko, but only
after oo completes, then atomicity is violated since in every possible linearization, either
mapping ko — v or k1 — v is always present. Nevertheless, such weakly-consistent
operations still offer guarantees, e.g., that values never present are never observed, and
initially-present values not removed are observed.

In this work we develop a methodology for proving that concurrent-object imple-
mentations adhere to the guarantees prescribed by their weak-consistency specifica-
tions. The key salient aspects of our approach are the lifting of existing sequential ADT
specifications via visibility relaxation [[13]], and the harnessing of simple and mechaniz-
able reasoning based on forward simulation [25] by relaxed-visibility ADTs. Effectively,
our methodology extends the predominant forward-simulation based linearizability-
proof methodology to concurrent objects with weakly-consistent operations, and
enables automation for proving weak-consistency guarantees.

To enable the harnessing of existing sequential ADT specifications, we adopt the
recent methodology of visibility relaxation [13]]. As in linearizability [18], the return
value of each operation is dictated by the atomic effects of its predecessors in some
(i.e., existentially quantified) linearization order. To allow consistency weakening,
operations are allowed, to a certain extent, to overlook some of their linearization-order
predecessors, behaving as if they had not occurred. Intuitively, this (also existentially
quantified) visibility captures the inability or unwillingness to atomically observe
the values stored across many memory cells. To provide guarantees, the extent of

* Java 8 implementations guarantee data-race freedom by accessing individual shared-memory
cells with atomic operations via volatile variables and compare-and-swap instructions. Starting
with Java 9, the implementations of the concurrent collections use the VarHandle mechanism
to specify shared variable access modes. Java’s official language and API specifications do not
clarify whether these relaxations introduce data races.
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visibility relaxation is bounded to varying degrees. Notably, the visibility of an absolute
operation must include all of its linearization-order predecessors, while the visibility
of a monotonic operation must include all happens-before predecessors, along with
all operations visible to them. The majority of Java’s concurrent collection methods
are absolute or monotonic [13]. For instance, in the contains-value example described
above, by considering that operation o5 is not visible to 01, the conclusion that v is not
present can be justified by the linearization os; 03; 01, in which 01 sees 03’s removal
of ko — v yet not 02’s insertion of k1 +— v. Ascribing the monotonic visibility to
the contains-value method amounts to a guarantee that initially-present values are
observed unless removed (i.e., concurrently).

While relaxed-visibility specifications provide a means to describing the guar-
antees provided by weakly-consistent concurrent-object operations, systematically
establishing implementations’ adherence requires a strategy for demonstrating simula-
tion [125]), i.e., that each step of the implementation is simulated by some step of (an
operational representation of) the specification. The crux of our contribution is thus
threefold: first, to identify the relevant specification-level actions with which to relate
implementation-level transitions; second, to identify implementation-level annotations
relating transitions to specification-level actions; and third, to develop strategies for
devising such annotations systematically. For instance, the existing methodology based
on linearization points [[18] essentially amounts to annotating implementation-level
transitions with the points at which its specification-level action, i.e., its atomic effect,
occurs. Relaxed-visibility specifications require not only a witness for the existentially-
quantified linearization order, but also an existentially-quantified visibility relation,
and thus requires a second kind of annotation to resolve operations’ visibilities. We
propose a notion of visibility actions which enable operations to declare their visibility
of others, e.g., specifying the writers of memory cells it has read.

The remainder of our approach amounts to devising a systematic means for con-
structing simulation proofs to enable automated verification. Essentially, we identify a
strategy for systematically annotating implementations with visibility actions, given
linearization-point annotations and visibility bounds (i.e., absolute or monotonic), and
then encode the corresponding simulation check using an off-the-shelf verification
tool. For the latter, we leverage crvy [[16]], a language and verifier for Owicki-Gries style
modular proofs of concurrent programs with arbitrarily-many threads. In principle,
since our approach reduces simulation to safety verification, any safety verifier could
be used, though c1vL facilitates reasoning for multithreaded programs by capturing
interference at arbitrary program points. Using c1vi, we have verified monotonicity of
the contains-value and size methods of Java’s concurrent hash-map and concurrent
linked-queue, respectively — and absolute consistency of add and remove operations.
Although our models are written in c1vi and assume sequentially-consistent memory
accesses, they capture the difficult aspects of weak-consistency in Java, including heap-
based memory access; furthermore, our models are also sound with respect to Java 8’s
memory model, since their Java 8 implementations guarantee data-race freedom.

In summary, we present the first methodology for verifying weakly-consistent op-
erations using sequential specifications and forward simulation. Contributions include:
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— the formalization of our methodology over a general notion of transition systems,
agnostic to any particular programming language or memory model (§3);

— the application of our methodology to verifying a weakly-consistent contains-value
method of a key-value map (§4); and

— amechanization of our methodology used for verifying models of weakly-consistent
Java methods using automated theorem provers (§5).

Aside from the outline above, this article summarizes an existing weak-consistency
specification methodology via visibility relaxation (§2), summarizes related work (§6),
and concludes (§7). Proofs of all theorems and lemmas are listed in Appendix [A]

2 Weak Consistency

Our methodology for verifying weakly-consistent concurrent objects relies both on the
precise characterization of weak consistency specifications, as well as a proof technique
for establishing adherence to specifications. In this section we recall and outline a
characterization called visibility relaxation [13], an extension of sequential abstract
data type (ADT) specifications in which the return values of some operations may not
reflect the effects of previously-effectuated operations.

Notationally, in the remainder of this article, ¢ denotes the empty sequence, ()
denotes the empty set, _ denotes an unused binding, and T and L denote the Boolean
values true and false, respectively. We write R(x) to denote the inclusion x € R of
a tuple x in the relation R; and R[z — y] to denote the extension R U {zy} of R to
include zy; and R | X to denote the projection R N X* of R to set X; and R to denote
the complement {z : © ¢ R} of R; and R(z) to denote the image {y : 2y € R} of Ron
x; and R~ (y) to denote the pre-image {x : 2y € R} of R on y; whether R(x) refers
to inclusion or an image will be clear from its context. Finally, we write z; to refer to
the 7th element of tuple z = zp2; .. ..

2.1 Weak-Visibility Specifications

For a general notion of ADT specifications, we consider fixed sets Ml and X of method
names and argument or return values, respectively. An operation label A = (m, x,y)
is a method name m € M along with argument and return values z,y € X. A read-
only predicate is a unary relation R(\) on operation labels, an operation sequence
5 = ApA1...is a sequence of operation labels, and a sequential specification S =
{s0, 81, - . .} is a set of operation sequences. We say that R is compatible with S when S
is closed under deletion of read-only operations, i.e., Ag... Aj_1Aj41...A; €.S when
Ao... N\ € Sand R(/\])

Example 1. The key-value map ADT sequential specification Sy, is the prefix-closed
set containing all sequences )\ . .. A; such that ), is either:

- (put, kv,b), and b = T iff some (rem, k, _) follows any prior (put, kv, _);

(rem, k,b), and b = T iff no other (rem, k, _) follows some prior (put, kv, _);
(get, k,v), and no (put, kv’, _) nor (rem, k, _) follows some prior {put, kv, _), and
v = L if no such (put, kv, ) exists; or
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- (has, v,b), and b = T iff no prior (put, kv’, _) nor (rem, k, _) follows some prior
(put, kv, _).

The read-only predicate R, holds for the following cases:
Run({put, _,b))if =b Ry ((rem,_,b))if =0 Rn({get,_,_)) Rm((has,_,_)).
This is a simplification of Java’s Map ADT, i.e., with fewer methodsE]

To derive weak specifications from sequential ones, we consider a set V of ex-
actly two visibility labels from prior work [13]]: absolute and monotonicE]A visibility
annotation V' : Ml — V maps each method m € M to a visibility V' (m) € V.

Intuitively, absolute visibility requires operations to observe the effects of all of their
linearization-order predecessors. The weaker monotonic visibility requires operations
to observe the effects of all their happens-before (i.e., program- and synchronization-
order) predecessors, along with the effects already observed by those predecessors,
i.e., so that sets of visible effects are monotonically increasing over happens-before
chains of operations; conversely, operations may ignore effects which have been ignored
by their happens-before predecessors, so long as those effects are not transitively related
by program and synchronization order.

Definition 1. A weak-visibility specification W = (S, R, V') is a sequential specifica-
tion S with a compatible read-only predicate R and a visibility annotation V.

Example 2. The weakly-consistent contains-value map Wy, = (Sm, Rm, Vi) annotates
the key-value map ADT methods of S, from Example [1] with:

Vi (put) = Vin(rem) = Vi, (get) = absolute, Vin(has) = monotonic.
Java’s concurrent hash map appears to be consistent with this specification [13]].

We ascribe semantics to specifications by characterizing the values returned by
concurrent method invocations, given constraints on invocation order. In practice, the
happens-before order among invocations is determined by a program order, i.e., among
invocations of the same thread, and a synchronization order, i.e., among invocations
of distinct threads accessing the same atomic objects, e.g., locks. A history h =
(O, inv, ret, hb) is a set O C N of numeric operation identifiers, along with an invoca-
tion function inv : O — M x X mapping operation identifiers to method names and
argument values, a partial return function ret : O — X mapping operation identifiers
to return values, and a (strict) partial happens-before relation hb C O x O; the empty
history hg has O = inv = ret = hb = (). An operation o € O is complete when ret(0)
is defined, and is otherwise incomplete; then h is complete when each operation is. The
label of a complete operation o with inv(o) = (m,x) and ret(o) = y is (m, x, y).

To relate operations’ return values in a given history back to sequential specifica-
tions, we consider certain sequencings of those operations. A linearization of a history
h = (O, _,_, hb) is a total order lin O hb over O which includes hb, and a visibility

3 For brevity, we abbreviate Java’s remove and contains-value methods by rem and has.
¢ Previous work refers to absolute visibility as complete, and includes additional visibility labels.
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projection vis of lin maps each operation o € O to a subset vis(0) C lin™*(0) of the
operations preceding o in lin; note that (01,02) € vis means 01 observes os. For a
given read-only predicate R, we say o’s visibility is monotonic when it includes every
happens-before predecessor, and operation visible to a happens-before predecessor,
which is not read—only ie., vis(o) 2 (hb~'(0) U vis(hb~"(0))) | R. We says 0’s
visibility is absolute when vis(0) = lin ™" (0), and vis is itself absolute when each vis (o)
is. An abstract execution e = (h, lin, vis) is a history h along with a linearization of
h, and a visibility projection vis of lin. An abstract execution is sequential when hb is
total, complete when h is, and absolute when wis is.

Example 3. An abstract execution can be defined using the linearizatiorﬁ
{put, (1,1), T) (get, 1,1) (put, (0,1), T) (put, (1,0), L) (has, 1, L)

along with a happens-before order that, compared to the linearization order, keeps
(has, 1, L) unordered w.r.t. (put, (0, 1), T) and (put, (1, 0), L), and a visibility projec-
tion where the visibility of every put and get includes all the linearization predecessors
and the visibility of (has, 1, L) consists of (put, (1,1), T) and (put, (1,0), L). Recall
that in the argument (k, v) to put operations, the key k precedes value v.

To determine the consistency of individual histories against weak-visibility spec-
ifications, we consider adherence of their corresponding abstract executions. Let
h = (O, inv, ret, hb) be a history and e = (h, lin, vis) a complete abstract execu-
tion. Then e is consistent with a visibility annotation V' and read-only predicate R if
for each operation 0o € dom(lin) with inv(o) = (m,_), vis(o) is absolute or mono-
tonic, respectively, according to V(m) and R. The labeling A\gA1 ... of a total order
0p < 01 < ... of complete operations is the sequence of operation labels, i.e., \; is the
label of o;. Then e is consistent with a sequential specification S when the labelinéﬂ
of lin | (vis(0) U {o}) is included in S, for each operation o € dom(/in)[[*| Finally, we
say e is consistent with a weak-visibility specification (S, R, V') when it is consistent

with S, R,and V.

Example 4. The execution in Example (3| is consistent with the weakly-consistent
contains-value map W, defined in Example

Remark 1. Consistency models suited for modern software platforms like Java are based
on happens-before relations which abstract away from real-time execution order. Since
happens-before, unlike real-time, is not necessarily an interval order, the composition

7 For convenience we rephrase Emmi and Enea [13]’s notion to ignore read-only predecessors.

& For readability, we list linearization sequences with operation labels in place of identifiers.

° As is standard, adequate labelings of incomplete executions are obtained by completing each
linearized yet pending operation with some arbitrarily-chosen return value [18]. It is sufficient
that one of these completions be included in the sequential specification.

1 We consider a simplification from prior work [13]: rather than allowing the observers of a
given operation to pretend they see distinct return values, we suppose that all observers agree
on return values. While this is more restrictive in principle, it is equivalent for the simple
specifications studied in this article.
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of linearizations of two distinct objects in the same execution may be cyclic, i.e., not
linearizable. Recovering compositionality in this setting is orthogonal to our work of
proving consistency against a given model, and is explored elsewhere [11]].

The abstract executions E(W') of a weak-visibility specification W = (S, R, V)
include those complete, sequential, and absolute abstract executions derived from
sequences of S, i.e., when s = Ag...\, € S then each e, labels each o; by \;, and
orders hb(0;,0;) iff i < j. In addition, when E(W) includes an abstract execution
(h, lin, vis) with h = (O, inv, ret, hb), then E(W) also includes any:

- execution (I, lin, vis) such that b’ = <O, nv, ret, hb'> and hb’' C hb; and
- W-consistent execution (h/, lin, vis') with b’ = (O, inv, ret’, hb) and vis" C vis.

Note that while happens-before weakening hb’ C hb always yields consistent executions,
unguarded visibility weakening vis’ C vis generally breaks consistency with visibility
annotations and sequential specifications: visibilities can become non-monotonic, and
return values can change when operations observe fewer operations’ effects.

Lemma 1. The abstract executions E(W') of a specification W are consistent with W.

Example 5. The abstract executions of Wy, include the complete, sequential, and abso-
lute abstract execution defined by the following happens-before order

(put, (1,1),T) (get, 1,1) (put, (0,1), T) (put, (1,0), L) (has, 1, T)

which implies that it also includes one in which just the happens-before order is modi-
fied such that (has, 1, T) becomes unordered w.r.t. (put, (0, 1), T) and (put, (1,0), L).
Since it includes the latter, it also includes the execution in Example [3| where the
visibility of has is weakened which also modifies its return value from T to L.

Definition 2. The histories of a weak-visibility specification W are the projections
HW)={h:(h,_,_) € E(W)} of its abstract executions.

2.2 Consistency against Weak-Visibility Specifications

To define the consistency of implementations against specifications, we leverage a
general model of computation to capture the behavior of typical concurrent systems,
e.g., including multiprocess and multithreaded systems. A sequence-labeled transition
system (Q, A, q, —) is a set ) of states, along with a set A of actions, initial state ¢ € Q
and transition relation — € @ x A* X ). An execution is an alternating sequence
1N = Qoloq1ds - . - qn of states and action sequences starting with gy = ¢ such that
¢ %y i1 for each 0 < i < n. The trace 7 € A* of the execution 7 is its projection
Qpdy . . . to individual actions.

To capture the histories admitted by a given implementation, we consider sequence-
labeled transition systems (SLTSs) which expose actions corresponding to method call,
return, and happens-before constraints. We refer to the actions call(o, m, x), ret(o, y),
and hb(o,0'), for 0,0’ € N, m € M, and z, y € X, as the history actions, and a history
transition system is an SLTS whose actions include the history actions. We say that an
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action over operation identifier o is an o-action, and assume that executions are well
formed in the sense that for a given operation identifier o: at most one call o-action
occurs, at most one ret o-action occurs, and no ret nor hb o-actions occur prior toa
call o-action. Furthermore, we assume call o-actions are enabled, so long as no prior
call o-action has occurred. The history of a trace 7 is defined inductively by f1,(hg, 7),
where hy is the empty history, and,

fu(hye) =h gn(h,call(o,m, x)) = (O U {o}, invjo — (m,z)], ret, hb)
fh(hv CLT) - fh(gh(h7 a)a T) gh(hv rEt(O7 y)) - <Ov inva 7’625[0 = y]7 hb>
fu(h,ar) = fu(h, 1) gn(h,hb(o,0")) = (O, inv, ret, hb U (0,0'))

where h = (O, inv, ret, hb), and a is a call, ret, or hb action, and a is not. An imple-
mentation [ is a history transition system, and the histories H(I) of I are those of its
traces. Finally, we define consistency against specifications via history containment.

Definition 3. Implementation I is consistent with specification W iff H(I) C H(W).

3 Establishing Consistency with Forward Simulation

To obtain a consistency proof strategy, we more closely relate implementations to
specifications via their admitted abstract executions. To capture the abstract executions
admitted by a given implementation, we consider SLTSs which expose not only history-
related actions, but also actions witnessing linearization and visibility. We refer to
the actions lin(o) and vis(o, o) for 0,0’ € N, along with the history actions, as the
abstract-execution actions, and an abstract-execution transition system (AETS) is an SLTS
whose actions include the abstract-execution actions. Extending the corresponding
notion from history transition systems, we assume that executions are well formed in
the sense that for a given operation identifier o: at most one lin o-action occurs, and no
lin or vis o0-actions occur prior to a call o-action. The abstract execution of a trace 7 is
defined inductively by f.(eg, 7), where ey = (hy, (), }) is the empty execution, and,

fele,e) =e ge(e, @) = (gn(h), lin, vis)
fele,at) = fo(go(e,a),7)  ge(e,lin(o)) = (h,lin U{{d,0) : 0 € lin}, vis)
fe(e,ar) = fe(e, 7) ge(e,vis(0,0")) = (h, lin, vis U {(0,0) })

where e = (h, lin, vis), and a is a call, ret, hb, lin, or vis action, a is not, and @ is a
call, ret, or hb action. A witnessing implementation I is an abstract-execution transition
system, and the abstract executions E(I) of I are those of its traces.

We adopt forward simulation [25] for proving consistency against weak-visibility
specifications. Formally, a simulation relation from one system X = (Q1, A1, X1, —1)
to another Xy = (Q2, As, X2, —>2) is a binary relation R C @)1 X Q)2 such that initial
states are related, R(x1, x2), and: for any pair of related states R(q1, g2) and source-
system transition ¢; 5_1>1 q}, there exists a target-system transition ¢y 5_2>2 q5 to
related states, i.e., R(¢], g5), over common actions, i.e., (@1 | Az) = (@2 | A1). We say
Yo simulates X1 and write ;1 C Y5 when a simulation relation from 3; to Y5 exists.

We derive transition systems to model consistency specifications in simulation. The
following lemma establishes the soundness and completeness of this substitution, and
the subsequent theorem asserts the soundness of the simulation-based proof strategy.
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Definition 4. The transition system [W], of a weak-visibility specification W is the
AETS whose actions are the abstract execution actions, whose states are abstract executions,
whose initial state is the empty execution, and whose transitions include e; %y ey iff
fe(e1, @) = eq and es is consistent with .

Lemma 2. A weak-visibility spec. and its transition system have identical histories.

Theorem 1. A witnessing implementation I is consistent with a weak-visibility specifi-
cation W if the transition system [W]_ of W simulates I.

Our notion of simulation is in some sense complete when the sequential specifica-
tion S of a weak-consistency specification W = (S, R, V') is return-value deterministic,
i.e., there is a single label (m,x,y) such that X (m,x,y) € S for any method m,
argument-value x, and admitted sequence X € S. In particular, [W1], simulates any wit-
nessing implementation I whose abstract executions E([) are included in E([W],)["]
This completeness, however, extends only to inclusion of abstract executions, and not
all the way to consistency, since consistency is defined on histories, and any given
operation’s return value is not completely determined by the other operation labels
and happens-before relation of a given history: return values generally depend on lin-
earization order and visibility as well. Nevertheless, sequential specifications typically
are return-value deterministic, and we have used simulation to prove consistency of
Java-inspired weakly-consistent objects.

Establishing simulation for an implementation is also helpful when reasoning
about clients of a concurrent object. One can use the specification in place of the
implementation and encode the client invariants using the abstract execution of the
specification in order to prove client properties, following Sergey et al’s approach [35]].

3.1 Reducing Consistency to Safety Verification

Proving simulation between an implementation and its specification can generally be
achieved via product construction: complete the transition system of the specification,
replacing non-enabled transitions with error-state transitions; then ensure the synchro-
nized product of implementation and completed-specification transition systems is safe,
i.e., no error state is reachable. Assuming that the individual transition systems are
safe, then the product system is safe iff the specification simulates the implementation.
This reduction to safety verification is also generally applicable to implementation
and specification programs, though we limit our formalization to their underlying
transition systems for simplicity. By the upcoming Corollary 1] such reductions enable
consistency verification with existing safety verification tools.

3.2 Verifying Implementations

While Theorem [1] establishes forward simulation as a strategy for proving the con-
sistency of implementations against weak-visibility specifications, its application to

! This is a consequence of a generic result stating that the set of traces of an LTS A is included
in the set of traces of an LTS As iff A5 simulates A1, provided that A, is deterministic [25]].
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real-world implementations requires program-level mechanisms to signal the underly-
ing AETS lin and vis actions. To apply forward simulation, we thus develop a notion of
programs whose commands include such mechanisms.

This section illustrates a toy programming language with AETS semantics which
provides these mechanisms. The key features are the lin and vis program commands,
which emit linearization and visibility actions for the currently-executing operation,
along with load, store, and cas (compare-and-swap) commands, which record and return
the set of operation identifiers having written to each memory cell. Such augmented
memory commands allow programs to obtain handles to the operations whose effects
it has observed, in order to signal the corresponding vis actions.

While one can develop similar mechanisms for languages with any underlying
memory model, the toy language presented here assumes a sequentially-consistent
memory. Note that the assumption of sequentially-consistent memory operations is
practically without loss of generality for Java 8’s concurrent collections since they are
designed to be data-race free — their anomalies arise not from weak-memory semantics,
but from non-atomic operations spanning several memory cells.

For generality, we assume abstract notions of commands and memory, using x,
i, ¢, and M respectively to denote a program command, memory command, local
state, and global memory. So that operations can assert their visibilities, we consider
memory which stores, and returns upon access, the identifier(s) of operations which
previously accessed a given cell. A program P = (init,cmd, idle, done) consists of an
init(m, 2) = ¢ function mapping method name m and argument values « to local state
£, along with a cmd(¢) = k function mapping local state ¢ to program command ,
and idle(¢) and done(¥) predicates on local states £. Intuitively, identifying local states
with threads, the idle predicate indicates whether a thread is outside of atomic sections,
and subject to interference from other threads; meanwhile the done predicate indicates
whether whether a thread has terminated.

The denotation of a memory command y is a function [4] , from global memory
M, argument value z, and operation o to a tuple [u], (M1, x,0) = (M>,y) consisting
of a global memory M, along with a return value y.

Example 6. A sequentially-consistent memory system which records the set of oper-
ations to access each location can be captured by mapping addresses x to value and
operation-set pairs M (z) = (y, O), along with three memory commands:

[load] (M, z, )= (M,M(x))
[store] (M, zy,0) = (M[z — (y, M(x)1 U{o})], &)

[ Mz — {(z, M(z)1 U{o})], (true, M (x)1)) f M(x)o =y
[cas],, (M, zyz, 0) = { (M, (false, M (x)1)) ifM(»T)g #Y

where the compare-and-swap (CAS) operation stores value z at address = and returns
true when y was previously stored, and otherwise returns false.

The denotation of a program command & is a function [] from local state ¢; to a
tuple [k].(¢1) = (i, z, f) consisting of a memory command p and argument value z,
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and a update continuation f mapping the memory command’s return value y to a pair
f(y) = (€2, ), where {5 is an updated local state, and «v maps an operation o to an LTS
action av(0). We assume the denotation [ret x] (1) = (nop, e, Ay.(f2, Ao.ret(z))) of
the ret command yields a local state ¢» with done(¢s) without executing memory
commands, and outputs a corresponding LTS ret action.

Example 7. A simple goto language over variables a, b, . .. for the memory system of
Example [l would include the following commands:

nop, &, Ay.(jump (¢, £(a)), Ao.g))
nop, &, \y.(next(f), ho.c)) if £(a) # 0

[goto a] (¢ (
(
(load, ¢(a), Ay1, y2.(next(£[b — y1][c — ya2]), ro.€))
(
(

L
L
14
l

[assume a],

(

a]l(

[b,c = load(a)].( , Ay
[store(a,b)]. ( store, £(a)l(b), \y.{next(£), No.€))

(

[d,e = cas(a,b,c)]

C

) =
) =
) =
)
() =

where the jump and nezt functions update a program counter, and the load command
stores the operation identifier returned from the corresponding memory commands.
Linearization and visibility actions are captured as program commands as follows:

[1in]_(€) = (nop, e, Ay.(next(€), Ao.lin(0)))
[vis(a)].(¢) = (nop, e, Ay.(next(£), Ao.vis(o, 4(a))))

Atomic sections can be captured with a 1ock variable and a pair of program commands,

[begin].(¢) = (nop, e, Ay.(next({[lock — true]), Xo.c))
[end].(£) = (nop, e, Ay.(next({[lock — false]), Xo.€))

such that idle states are identified by not holding the lock, i.e., idle(¢) = —¢(1lock), as
in the initial state init(m, z)(lock) = false.

Figure(1lists the semantics [P]  of a program P as an abstract-execution transition
system. The states (M, L) of [P] | include a global memory M, along with a partial
function L from operation identifiers o to local states L(0); the initial state is (My, 0),
where M is an initial memory state. The transitions for call and hb actions are enabled
independently of implementation state, since they are dictated by implementations’
environments. Although we do not explicitly model client programs and platforms
here, in reality, client programs dictate call actions, and platforms, driven by client
programs, dictate hb actions; for example, a client which acquires the lock released after
operation o1, before invoking operation o9, is generally ensured by its platform that 0,
happens before 05. The transitions for all other actions are dictated by implementation
commands. While the ret, lin, and vis commands generate their corresponding LTS
actions, all other commands generate ¢ transitions.

Each atomic %, step of the AETS underlying a given program is built from a
sequence of ~~ steps for the individual program commands in an atomic section.
Individual program commands essentially execute one small ~~ step from shared
memory and local state (M7, ¢1) to (Ma, {s), invoking memory command p with

cas, £(a)l(b)l(c), Ay1, y2.(next(l[d — y1][e — y2]), Ao.€))
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o & dom(L) £ =init(m, ) done(L(01)) 02 ¢ dom(L)
(M, Ly ZX"D (A Lo v £]) (M, Ly 22 g

<M17€1,078> . <M2,£270,5> idle(fz)
(My, Lo — 01]) & (My, Lo — £5))

cmd(41) = K [£].(61) = (> 2, f)
[ul, (M, z,0) = (M2,y)  f(y) = (b2, )
(Mi,41,0,d) ~ (Ma,£a,0,d - a(0))

Fig. 1. The semantics of program P = (init, cmd, idle, done) as an abstract-execution transition
system, where [-] . and -] are the denotations of program and memory commands, respectively.

argument x, and emitting action a(0). Besides its effect on shared memory, each step
uses the result (M, y) of memory command p to update local state and emit an action
using the continuation f, i.e., f(y) = (¢2, a). Commands which do not access memory
are modeled by a no-op memory commands. We define the consistency of programs by
reduction to their transition systems.

Definition 5. A program P is consistent with a specification iff its semantics [[Pﬂp is.

Thus the consistency of P with W amounts to the inclusion of [[P]]p’s histories
in W’s. The following corollary of Theorem [1|follows directly by Definition [5| and
immediately yields a program verification strategy: validate a simulation relation from
the states of [ ] | to the states of [W] such that each command of P is simulated by
a step of [W1]..

Corollary 1. A program P is consistent with specification W if [W] simulates [P] ..

4 Proof Methodology

In this section we develop a systematic means to annotating concurrent objects for
relaxed-visibility simulation proofs. Besides leveraging an auxiliary memory system
which tags memory accesses with the operation identifiers which wrote read values
(see , annotations signal linearization points with lin commands, and indicate
visibility of other operations with vis commands. As in previous works [3} 37, 2| [18] we
assume linearization points are given, and focus on visibility-related annotations.

As we focus on data-race free implementations (e.g., Java 8’s concurrent collections)
for which sequential consistency is sound, it can be assumed without loss of generality
that the happens-before order is exactly the returns-before order between operations,
which orders two operations 0; and oy iff the return action of 0; occurs in real-time
before the call action of 05. This assumption allows to guarantee that linearizations are
consistent with happens-before just by ensuring that the linearization point of each
operation occurs in between its call and return action (like in standard linearizability).
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var table: array of T; procedure monotonic has(v: T)
vis(getModLin());
procedure absolute put(k: int, v: T) { {
atomic { store(k, 0);
store(tablel[k], v); while (k < table.length) {
vis(getLin()); atomic{
lin(); tv, 0 = load(table[k]);
} vis(0 N getModLin());
} ¥
if (tv = v) then {
procedure absolute get(k: int) { lin();
atomic{ return true;
v, 0 = load(tablel[k]); 3
vis(getLin()); inc(k);
lin(); ¥
3} 1inQ);
return v; return false;
3} 3}

Fig. 2. An implementation I¢hm modeling Java’s concurrent hash map. The command inc (k)
increments counter k, and commands within atomic {...} are collectively atomic.

It is without loss of generality because the clients of such implementations can use
auxiliary variables to impose synchronization order constraints between every two
operations ordered by returns-before, e.g., writing a variable after each operation
returns which is read before each other operation is called (under sequential consistency,
every write happens-before every other read which reads the written value).

We illustrate our methodology with the key-value map implementation Iy, of
Figure [2| which models Java’s concurrent hash map. The lines marked in blue and
red represent linearization/visibility commands added by the instrumentation that
will be described below. Key-value pairs are stored in an array table indexed by keys.
The implementation of put and get are obvious while the implementation of has
returns true iff the input value is associated to some key consists of a while loop
traversing the array and searching for the input value. To simplify the exposition, the
shared memory reads and writes are already adapted to the memory system described
in Section (essentially, this consists in adding new variables storing the set of
operation identifiers returned by a shared memory read). While put and get are
obviously linearizable, has is weakly consistent, with monotonic visibility. For instance,
given the two thread program {get(1);has(1)} || {put(1,1);put(0,1);put(1,0)} it
is possible that get (1) returns 1 while has(1) returns false. This is possible in an
interleaving where has reads table[0] before put (@, 1) writes into it (observing the
initial value 0), and table[1] after put(1,9) writes into it (observing value 0 as well).
The only abstract execution consistent with the weakly-consistent contains-value map
Wi (Example[2) which justifies these return values is given in Example [} We show
that this implementation is consistent with a simplification of the contains-value map
Wi, without remove key operations, and where put operations return no value.

Given an implementation I, let £(I) be an instrumentation of I with program
commands 1in() emitting linearization actions. The execution of 1in() in the context
of an operation with identifier o emits a linearization action lin(0). We assume that £([)
leads to well-formed executions (e.g., at most one linearization action per operation).
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Example 8. For the implementation in Figure [2| the linearization commands of put
and get are executed atomically with the store to table[k] in put and the load of
table[k] in get, respectively. The linearization command of has is executed at any
point after observing the input value v or after exiting the loop, but before the return.
The two choices correspond to different return values and only one of them will be
executed during an invocation.

Given an instrumentation £(I), a visibility annotation V for I’s methods, and a
read-only predicate R, we define a witnessing implementation V(£(I)) according to
a generic heuristic that depends only on V' and R. This definition uses a program
command getLin() which returns the set of operations in the current linearization
sequenceE] The current linearization sequence is stored in a history variable which
is updated with every linearization action by appending the corresponding operation
identifier. For readability, we leave this history variable implicit and omit the corre-
sponding updates. As syntactic sugar, we use a command getModLin() which returns
the set of modifiers (non read-only operations) in the current linearization sequence.
To represent visibility actions, we use program commands vis(A) where A is a set
of operation identifiers. The execution of vis(A) in the context of an operation with
identifier o emits the set of visibility actions vis(o, o) for every operation o’ € A.

Therefore, V(L(I)) extends the instrumentation £(I) with commands generating
visibility actions as follows:

— for absolute methods, each linearization command is preceded by vis(getLin())
which ensures that the visibility of an invocation includes all the predecessors in
linearization order. This is executed atomically with 1in().

— for monotonic methods, the call action is followed by vis(getModLin()) (and
executed atomically with this command) which ensures that the visibility of each
invocation is monotonic, and every read of a shared variable which has been written
by a set of operations O is preceded by vis(0 N getModLin()) (and executed
atomically with this command). The latter is needed so that the visibility of such
an invocation contains enough operations to explain its return value (the visibility
command attached to call actions is enough to ensure monotonic visibilities).

Example 9. The blue lines in Figure 2| demonstrate the visibility commands added by
the instrumentation V(+) to the key-value map in Figure [2|(in this case, the modifiers
are put operations). The first visibility command in has precedes the procedure body
to emphasize the fact that it is executed atomically with the procedure call. Also, note
that the read of the array table is the only shared memory read in has.

Theorem 2. The abstract executions of the witnessing implementation V(L(I)) are
consistent with V' and R.

Proof. Let (h, lin, vis) be the abstract execution of a trace 7 of V(£(I)), and let 0 be
an invocation in h of a monotonic method (w.r.t. V). By the definition of V), the call
action of o is immediately followed in T by a sequence of visibility actions vis(o, o)

12 We rely on retrieving the identifiers of currently-linearized operations. More complex proofs
may also require inspecting, e.g., operation labels and happens-before relationships.
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for every modifier o’ which has been already linearized. Therefore, any operation
which has returned before o (i.e., happens-before o) has already been linearized and it
will necessarily have a smaller visibility (w.r.t. set inclusion) because the linearization
sequence is modified only by appending new operations. The instrumentation of
shared memory reads may add more visibility actions vis(o, _) but this preserves the
monotonicity status of o’s visibility. The case of absolute methods is obvious. O

The consistency of the abstract executions of V(£(I)) with a given sequential
specification .S, which completes the proof of consistency with a weak-visibility speci-
fication W = (S, R, V), can be proved by showing that the transition system [W]_ of
W simulates V(£(I)) (Theorem|[1). Defining a simulation relation between the two
systems is in some part implementation specific, and in the following we demonstrate
it for the key-value map implementation V(£(Iehm))-

We show that [Wy, ], simulates implementation Ichm. A state of Iony, in Figure
is a valuation of table and the history variable 1in storing the current linearization
sequence, and a valuation of the local variables for each active operation. Let ops(q)
denote the set of operations which are active in an implementation state ¢. Also, for
a has operation o € ops(q), let indez(0) be the maximal index k of the array table
such that o has already read table[k] and table[k] # v. We assume index (o) = —1 if
o did not read any array cell.

Definition 6. Let R.y, be a relation which associates every implementation state ¢ with
a state of [Wy|, i.e, an (S, R, V')-consistent abstract execution e = (h, lin, vis) with

h = {0, inv, ret, hb), such that:

~

O is the set of identifiers occurring in ops(q) or the history variable lin,
for each operation o € ops(q), inv(o) is defined according to its local state, et (o) is
undefined, and o is maximal in the happens-before order hb,
3. the value of the history variable 1in in q equals the linearization sequence lin,
4. every invocationo € ops(q) of an absolute method (put or get) has absolute visibility
if linearized, otherwise, its visibility is empty,
5. table is the array obtained by executing the sequence of operations lin,
6. for every linearized get (k) operation o € ops(q), the put(k,_) operation in vis(0)
which occurs last in lin writes v to key k, where v is the local variable of o,
7. for every has operation o € ops(q), vis(o) consists of:
— all the put operations o' which returned before o was invoked,
- for each i < index (o), all the put(i,_) operations from a prefix of lin that
wrote a value different from v,
— all the put(index (o) + 1,_) operations from a prefix of lin that ends with a
put (index (o) + 1,v) operation, provided that tv = v.
Above, the linearization prefix associated to an index j1 < jo should be a prefix of
the one associated to jo.

N

A large part of this definition is applicable to any implementation, only points (5),
(6). and (7) being specific to the implementation we consider. The points (6) and
ensure that the return values of operations are consistent with S and mimic the effect
of the vis commands from Figure

Theorem 3. Ry, is a simulation relation from V(L (Ichm)) to [Wi],.
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5 Implementation and Evaluation

In this section we effectuate our methodology by verifying two weakly-consistent
concurrent objects: Java’s ConcurrentHashMap and ConcurrentLinkedQueueE] We
use an off-the-shelf deductive verification tool called crvi [16]], though any concurrent
program verifier could suffice. We chose civL because comparable verifiers either
require a manual encoding of the concurrency reasoning (e.g. Dafny or Viper) which
can be error-prone, or require cumbersome reasoning about interleavings of thread-
local histories (e.g. VerCors). An additional benefit of crvwy is that it directly proves
simulation, thereby tying the mechanized proofs to our theoretical development. Our
proofs assume no bound on the number of threads or the size of the memory.

Our use of cIvL imposes two restrictions on the implementations we can verify.
First, cvL uses the Owicki-Gries method [29] to verify concurrent programs. These
methods are unsound for weak memory models [22]], so c1vi, and hence our proofs,
assume a sequentially-consistent memory model. Second, c1vL’s strategy for building
the simulation relation requires implementations to have statically-known linearization
points because it checks that there exists exactly one atomic section in each code path
where the global state is modified, and this modification is simulated by the specification.

Given these restrictions, we can simplify our proof strategy of forward refinement
by factoring the simulations we construct through an atomic version of the specification
transition system. This atomic specification is obtained from the specification AETS
[W1], by restricting the interleavings between its transitions.

Definition 7. The atomic transition system of a specification W is the AETS [W], =
(Q,A,q,—q), where[W], = (Q, A, q,—) isthe AETS of W and e, 3, e ifand only if
e1 % ez andd € {call(o,m, z) }U{ret(o,y) }U{hb(o, o) }U{dj lin(o) : di € {vis(o,_)}"}.

Note that the language of [W] is included in the language of [W], and simulation
proofs towards [W], apply to [W], as well.

Our c1vL proofs show that there is a simulation from an implementation to its atomic
specification, which is encoded as a program whose state consists of the components
of an abstract execution, i.e., (O, inv, ret, hb, lin, vis). These were encoded as maps
from operation identifiers to values, sequences of operation identifiers, and maps from
operation identifiers to sets of operation identifiers respectively. Our axiomatization
of sequences and sets were adapted from those used by the Dafny verifier [23]]. For
each method in M, we defined atomic procedures corresponding to call actions, return
actions, and combined visibility and linearization actions in order to obtain exactly the
atomic transitions of [W7],.

It is challenging to encode Java implementations faithfully in c1vi, as the latter’s
input programming language is a basic imperative language lacking many Java features.
Most notable among these is dynamic memory allocation on the heap, used by almost
all of the concurrent data structure implementations. As c1vi is a first-order prover,
we needed an encoding of the heap that lets us perform reachability reasoning on the

3 Our verified implementations are open source, and available at:
https://github.com/siddharth-krishna/weak-consistency-proofs,
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heap. We adapted the first-order theory of reachability and footprint sets from the
GRASShopper verifier [30] for dynamically allocated data structures. This fragment is
decidable, but relies on local theory extensions [36]], which we implemented by using
the trigger mechanism of the underlying SMT solver [27,[15] to ensure that quantified
axioms were only instantiated for program expressions. For instance, here is the “cycle”
axiom that says that if a node x has a field f[x] that points to itself, then any y that
it can reach via that field (encoded using the between predicate Btwn(f, x, y, y))
must be equal to x:

axiom (forall f: [Ref]Ref, x: Ref, y:Ref :: {known(x), known(y)3}
fIx] == x && Btwn(f, x, y, y) ==> x == y);

We use the trigger known(x), known(y) (known is a dummy function that maps every
reference to true) and introduce known(t) terms in our programs for every term t of
type Ref (for instance, by adding assert known(t) to the point of the program where
t is introduced). This ensures that the cycle axiom is only instantiated for terms that
appear in the program, and not for terms that are generated by instantations of axioms
(like f[x] in the cycle axiom). This process was key to keeping the verification time
manageable.

Since we consider fine-grained concurrent implementations, we also needed to
reason about interference by other threads and show thread safety. civi provides
Owicki-Gries [29] style thread-modular reasoning, by means of demarcating atomic
blocks and providing preconditions for each block that are checked for stability under
all possible modifications by other threads. One of the consequences of this is that
these annotations can only talk about the local state of a thread and the shared global
state, but not other threads. To encode facts such as distinctness of operation identifiers
and ownership of unreachable nodes (e.g. newly allocated nodes) in the shared heap,
we use CIVL’s linear type system [40]].

For instance, the proof of the push method needs to make assertions about the value
of the newly-allocated node x. These assertions would not be stable under interference
of other threads if we didn’t have a way of specifying that the address of the new node
is known only by the push thread. We encode this knowledge by marking the type of
the variable x as linear — this tells civi that all values of x across all threads are distinct,
which is sufficient for the proof. c1vi ensures soundness by making sure that linear
variables are not duplicated (for instance, they cannot be passed to another method
and then used afterwards).

We evaluate our proof methodology by considering models of two of Java’s weakly-
consistent concurrent objects.

Concurrent Hash Map One is the ConcurrentHashMap implementation of the Map
ADT, consisting of absolute put and get methods and a monotonic has method that
follows the algortihm given in Figure [2| For simplicity, we assume here that keys are
integers and the hash function is identity, but note that the proof of monotonicity of
has is not affected by these assumptionsE]

* Our crvr implementation assumes the hash function is injective to avoid reasoning about the
dynamic bucket-list needed to resolve hash collisions. While such reasoning is possible within
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Module Code Proof Total Time (s)
Sets and Sequences - 8 85 -
Executions and Consistency - 30 30 -
Heap and Reachability - 35 35 -
Map ADT 51 34 85 -
Array-map implementation 138 175 313 6
Queue ADT 50 22 72 -
Linked Queue implementation 280 325 605 13

Fig. 3. Case study detail: for each object we show lines of code, lines of proof, total lines, and
verification time in seconds. We also list common definitions and axiomatizations separately.

CIVL can construct a simulation relation equivalent to the one defined in Definition 6]
automatically, given an inductive invariant that relates the state of the implementation
to the abstract execution. A first attempt at an invariant might be that the value stored
at table[k] for every key k is the same as the value returned by adding a get operation
on k by the specification AETS. This invariant is sufficient for c1vL to prove that the
return value of the absolute methods (put and get) is consistent with the specification.

However, it is not enough to show that the return value of the monotonic has
method is consistent with its visibility. This is because our proof technique constructs
a visibility set for has by taking the union of the memory tags (the set of operations
that wrote to each memory location) of each table entry it reads, but without additional
invariants this visibility set could entail a different return value. We thus strengthen
the invariant to say that tableTags[k], the memory tags associated with hash table
entry k, is exactly the set of linearized put operations with key k. A consequence of
this is that the abstract state encoded by tableTags[k] has the same value for key k as
the value stored at table[k]. cIvL can then prove, given the following loop invariant,
that the value returned by has is consistent with its visibility set.

(forall i: int :: @ <= 1 & i < k ==> Map.ofVis(my_vis, lin)[i] != v)

This loop invariant says that among the entries scanned thus far, the abstract map
given by the projection of 1lin to the current operation’s visibility my_vis does not
include value v.

Concurrent Linked Queue Our second case study is the ConcurrentLinkedQueue
implementation of the Queue ADT, consisting of absolute push and pop methods and
a monotonic size method that traverses the queue from head to tail without any locks
and returns the number of nodes it sees (see Figure[4]for the full code). We again model
the core algorithm (the Michael-Scott queue [26]) and omit some of Java’s optimizations,
for instance to speed up garbage collection by setting the next field of popped nodes
to themselves, or setting the values of nodes to null when popping values.

The invariants needed to verify the absolute methods are a straightforward combi-
nation of structural invariants (e.g. that the queue is composed of a linked list from
the head to null, with the tail being a member of this list) and a relation between the

CIVL, see our queue case study, this issue is orthogonal to the weak-consistency reasoning
that we study here.
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var head, tail: Ref; struct Node { var data: K; var next: Ref; }

procedure absolute push(k: K) { procedure absolute pop() { procedure monotonic size()
x = new Node(k, null); while (true) { vis(getModLin());
while (true) { h, _ = load(head); {
t, _ = load(tail); t, _ = load(tail); store(s, 0);
tn, _ = load(tail.next); hn, _ = load(h.next); c, _ = load(head);
if (tn == null) { if (h!=1t) { atomic {
atomic { k, _ = load(hn.data); cn, 0 = load(c.next);
b, _ = cas(t.next, tn, x); atomic { vis(0 N getModLin());
if (b) { b, _ = cas(head, h, hn); 3
vis(getLin()); if (b) { while (cn != null) {
1lin(); vis(getLin()); inc(s);
3 1lin(); c = cn;
3 atomic {
if (b) then break; 3 cn, 0 = load(c.next);
if (b) then return k; vis(0 N getModLin());
} else { } }
b, _ = cas(tail, t, tn); 3 3
3 3 lin();
} return s;
3 }

Fig. 4. The simplified implementation of Java’s ConcurrentLinkedQueue that we verify.

abstract and concrete states. Once again, we need to strengthen this invariant in order
to verify the monotonic size method, because otherwise we cannot prove that the
visibility set we construct (by taking the union of the memory tags of nodes in the list
during traversal) justifies the return value.

The key additional invariant is that the memory tags for the next field of each node
(denoted x.nextTags for each node x) in the queue contain the operation label of the
operation that pushed the next node into the queue (if it exists). Further, the sequence
of push operations in 1in are exactly the operations in the nextTags field of nodes in
the queue, and in the order they are present in the queue.

Figure [5| shows a simplified version of the civiL encoding of these invariants. In
it, we use the following auxiliary variables in order to avoid quantifier alternation:
nextInvoc maps nodes to the operation label (type Invoc in c1vL) contained in the
nextTags field; nextRef maps operations to the nodes whose nextTags field contains
them, i.e. it is the inverse of nextInvoc; and absRefs maps the index of the abstract
queue (represented as a mathematical sequence) to the corresponding concrete heap
node. We omit the triggers and known predicates for readability; the full invariant can
be found in the accompanying proof scripts.

Given these invariants, one can show that the return value s computed by size
is consistent with the visibility set it constructs by picking up the memory tags from
each node that it traverses. The loop invariant is more involved, as due to concurrent
updates size could be traversing nodes that have been popped from the queue; see
our c1vL proofs for more details.

Results Figure[3|provides a summary of our case studies. We separate the table into
sections, one for each case study, and a common section at the top that contains the
common theories of sets and sequences and our encoding of the heap. In each case study
section, we separate the definitions of the atomic specification of the ADT (which can
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// nextTags only contains singleton sets of push operations
(forall y: Ref ::
(Btwn(next, start, y, null) & y != null && next[y] != null
==> nextTags[y] == Set(nextInvoc[y])
&& invoc_m(nextInvoc[y]) == Queue.push))

// nextTags of the last node is the empty set
&& nextTags[absRefs[Queue.stateTail(Queue.ofSeq(lin)) - 11]
== Set_empty()

// lin is made up of nextInvoc[y] for y in the queue
&& (forall n: Invoc :: invoc_m(n) == Queue.push
==> (Seq_elem(n, lin)
<==> Btwn(next, start, nextRef[n], null)
&& nextRef[n] != null && next[nextRef[n]] != null))

// lin is ordered by order of nodes in queue
&& (forall n1, n2: Invoc ::
(invoc_m(n1) == Queue.push && invoc_m(n2) == Queue.push
&& Seq_elem(n1, lin) && Seqg_elem(n2, 1lin)
==> (Seq_ord(lin, n1, n2)
<==> Btwn(next, nextRef[n1], nextRef[n1], nextRef[n2])
&& nextRef[n1] != nextRef[n2])))

Fig. 5. A snippet from the c1vL invariant for the queue.

be reused for other implementations) from the code and proof of the implementation
we consider. For each resulting module, we list the number of lines of code, lines of
proof, total lines, and c1vL’s verification time in seconds. Experiments were conducted
on an Intel Core 17-4470 3.4 GHz 8-core machine with 16GB RAM.

Our two case studies are representative of the weakly-consistent behaviors exhibited
by all the Java concurrent objects studied in [13]], both those using fixed-size arrays
and those using dynamic memory. As c1vL does not direclty support dynamic memory
and other Java language features, we were forced to make certain simplifications
to the algorithms in our verification effort. However, the assumptions we make are
orthogonal to the reasoning and proof of weak consistency of the monotonic methods.
The underlying algorithm used by, and hence the proof argument for monotonicity
of, hash map’s has method is the same as that in the other monotonic hash map
operations such as elements, entrySet, and toString. Similarly, the argument used
for the queue’s size can be adapted to other monotonic ConcurrentlLinkedQueue
and LinkedTransferQueue operations like toArray and toString. Thus, our proofs
carry over to the full versions of the implementations as the key invariants linking the
memory tags and visibility sets to the specification state are the same.

In addition, c1viL does not currently have any support for inferring the preconditions
of each atomic block, which currently accounts for most of the lines of proof in our case
studies. However, these problems have been studied and solved in other tools [30] [39],
and in theory can be integrated with c1vL in order to simplify these kinds of proofs.
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In conclusion, our case studies show that verifying weakly-consistent operations
introduces little overhead compared to the proofs of the core absolute operations. The
additional invariants needed to prove monotonicity were natural and easy to construct.
We also see that our methodology brings weak-consistency proofs within the scope of
what is provable by off-the-shelf automated concurrent program verifiers in reasonable
time.

6 Related Work

Though linearizability [18] has reigned as the de-facto concurrent-object consistency
criterion, several recent works proposed weaker criteria, including quantitative re-
laxation [[17]], quiescent consistency [10]], and local linearizability [14]]; these works
effectively permit externally-visible interference among threads by altering objects’ se-
quential specifications, each in their own way. Motivated by the diversity of these
proposals, Sergey et al. [35] proposed the use of Hoare logic for describing a custom
consistency specification for each concurrent object. Raad et al. [31] continued in this
direction by proposing declarative consistency models for concurrent objects atop
weak-memory platforms. One common feature between our paper and this line of
work (see also [2119])) is encoding and reasoning directly about the concurrent history.
The notion of visibility relaxation [[13] originates from Burckhardt et al’s axiomatic
specifications [[7], and leverages traditional sequential specifications by allowing certain
operations to behave as if they are unaware of concurrently-executed linearization-
order predecessors. The linearization (and visibility) actions of our simulation-proof
methodology are unique to visibility-relaxation based weak-consistency, since they
refer to a global linearization order linking executions with sequential specifications.

Typical methodologies for proving linearizability are based on reductions to safety
verification [[8 5] and forward simulation [3l 37, [2]], the latter generally requiring
the annotation of per-operation linearization points, each typically associated with
a single program statement in the given operation, e.g., a shared memory access.
Extensions to this methodology include cooperation [38}[12}/41]], i.e., allowing operations’
linearization points to coincide with other operations’ statements, and prophecy [33}[24],
i.e., allowing operation’ linearization points to depend on future events. Such extensions
enable linearizability proofs of objects like the Herlihy-Wing Queue (HWQ). While
prophecy [25], alternatively backward simulation [25]], is generally more powerful
than forward simulation alone, Bouajjani et al. [[6] described a methodology based on
forward simulation capable of proving seemingly future-dependent objects like HWQ
by considering fixed linearization points only for value removal, and an additional
kind of specification-simulated action, commit points, corresponding to operations’
final shared-memory accesses. Our consideration of specification-simulated visibility
actions follows this line of thinking, enabling the forward-simulation based proof of
weakly-consistent concurrent objects.
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7 Conclusion and Future Work

This work develops the first verification methodology for weakly-consistent operations
using sequential specifications and forward simulation, thus reusing existing sequential
ADT specifications and enabling simple reasoning, i.e., without prophecy [1]] or back-
ward simulation [25]. This paper demonstrates the application of our methodology to
absolute and monotonic methods on sequentially-consistent memory, as these are the
consistency levels demonstrated in actual Java implementations of which we are aware.
Our formalization is general, and also applicable to the other visibility relaxations,
e.g., the peer and weak visibilities [13], and weaker memory models, e.g., the Java
memory model.

Extrapolating, we speculate that handling other visibilities amounts to adding anno-
tations and auxiliary state which mirrors inter-operation communication. For example,
while monotonic operations on shared-memory implementations observe mutating
linearization-order predecessors — corresponding to a sequence of shared-memory up-
dates — causal operations with message-passing based implementations would observe
operations whose messages have (transitively) propagated. The corresponding anno-
tations may require auxiliary state to track message propagation, similar in spirit to
the getModLin () auxiliary state that tracks mutating linearization-order predecessors
(§4). Since weak memory models essentially alter the mechanics of inter-operation
communication, the corresponding visibility annotations and auxiliary state may simi-
larly reflect this communication. Since this communication is partly captured by the
denotations of memory commands (, these denotations would be modified, e.g., to
include not one value and tag per memory location, but multiple. While variations are
possible depending on the extent to which the proof of a given implementation relies
on the details of the memory model, in the worst case the auxiliary state could capture
an existing memory model (e.g., operational) semantics exactly.

As with systematic or automated linearizability-proof methodologies, our proof
methodology is susceptible to two potential sources of incompleteness. First, as men-
tioned in Section 3] methodologies like ours based on forward simulation are only
complete when specifications are return-value deterministic. However, data types are
typically designed to be return-value deterministic and this source of incompleteness
does not manifest in practice.

Second, methodologies like ours based on annotating program commands, e.g., with
linearization points, are generally incomplete since the consistency mechanism em-
ployed by any given implementation may not admit characterization according to a
given static annotation scheme; the Herlihy-Wing Queue, whose linearization points
depend on the results of future actions, is a prototypical example [18]]. Likewise, our
systematic strategy for annotating implementations with lin and vis commands (§3)
can fail to prove consistency of future-dependent operations. However, we have yet
to observe any practical occurrence of such exotic objects; our strategy is sufficient
for verifying the weakly-consistent algorithms implemented in the Java development
kit. As a theoretical curiosity for future work, investigating the potential for complete
annotation strategies would be interesting, e.g., for restricted classes of data types
and/or implementations.
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Finally, while c1vi’s high-degree of automation facilitated rapid prototyping of
our simulation proofs, its underlying foundation using Owicki-Gries style proof rules
limits the potential for modular reasoning. In particular, while our weak-consistency
proofs are thread-modular, our invariants and intermediate assertions necessarily talk
about state shared among multiple threads. Since our simulation-based methodology
and annotations are completely orthogonal to the underlying program logic, it would
be interesting future work to apply our methodology using expressive logics like Rely-
Guarantee, e.g. [191[38]], or variations of Concurrent Separation Logic, e.g. [28| 32, 34}
351 [4} [20]. It remains to be seen to what degree increased modularity may sacrifice
automation in the application of our weak-consistency proof methodology.
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A Appendix: Proofs to Theorems and Lemmas

Lemmall] The abstract executions E(W') of a specification W are consistent with W.

Proof. Any complete, sequential, and absolute execution is consistent by definition,
since the labeling of its linearization is taken from the sequential specification. Then,
any happens-before weakening is consistent for exactly the same reason as its source
execution, since its linearization and visibility projection are both identical. Finally, any
visibility weakening is consistent by the condition of W-consistency in its definition.

O

Lemmal2} A weak-visibility specification and its transition system have identical histo-
ries.

Proof. It follows almost immediately that the abstract executions of [J/], are identical
to those of W, since [W]’s state effectively records the abstract execution of a given
AETS execution, and only enables those returns that are consistent with . Since
histories are the projections of abstract executions, the corresponding history sets are
also identical. O

Theorem[1} A witnessing implementation I is consistent with a weak-visibility specifi-
cation W' if the transition system [W]_ of W simulates I.

Proof. This follows from standard arguments, given that the corresponding SLTSs
include ¢ transitions to ensure that every move of one system can be matched by
stuttering from the other: since both systems synchronize on the call, ret, hb, lin, and
vis actions, the simulation guarantees that every abstract execution, and thus history,
of I is matched by one of [W]_. Then by Lemma 2] the histories of I are included in
w. O

Theorem Renm is a simulation relation from Ienm, to [Wi].

Proof Sketch. We show that every step of the implementation, i.e., an atomic section
or a program command, is simulated by [Wy,].. Given (g, ) € Rchm, we consider the
different implementation steps which are possible in q.

The case of commands corresponding to procedure calls of put and get is trivial.

Executing a procedure call in ¢ leads to a new state ¢’ which differs only by having

. . 1(o,_,_
a new active operation 0. We have that e M e’ and (¢, €’) € Renm where €

is obtained from e by adding o with an appropriate value of inv(0) and an empty
visibility.

The transition corresponding to the atomic section of put is labeled by a sequence
of visibility actions (one for each linearized operation) followed by a linearization
action. Let o denote this sequence of actions. This transition leads to a state ¢’ where
the array table may have changed (unless writing the same value), and the history
variable 1in is extended with the put operation o executing this step. We define an
abstract execution ¢’ from e by changing lin to the new value of 1in, and defining an
absolute visibility for 0. We have that e Z, ¢’ because €’ is consistent with W,,. Also,
(¢, €') € Renm because the validity of , , and (5) follow directly from the definition



Verifying Visibility-Based Weak Consistency 25

of €’. The atomic section of get can be handled in a similar way. The simulation of
return actions of get operations is a direct consequence of point (6) which ensures
consistency with S.

For has, we focus on the atomic sections containing vis commands and the lin-
earization commands (the other internal steps are simulated by e steps of [IW,,], and
the simulation of the return step follows directly from (7) which justifies the consis-
tency of the return value). The atomic section around the procedure call corresponds
to a transition labeled by a sequence o of visibility actions (one for each linearized
modifier) and leads to a state ¢’ with a new active has operation o (compared to q).
We have that e 2 ¢’ because ¢’ is consistent with W,,. Indeed, the visibility of o0 in
¢’ is not constrained since o has not been linearized and the W, -consistency of ¢’
follows from the Wy,,-consistency of e. Also, (¢’,€’) € Rcnm because index (o) = —1
and (7) is clearly valid. The atomic section around the read of table[k] is simulated
by [Wi], in a similar way, noticing that (7) models precisely the effect of the visibility
commands inside this atomic section. For the simulation of the linearization commands
is important to notice that any active has operation in e has a visibility that contains
all modifiers which returned before it was called and as explained above, this visibility
is monotonic. O
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