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A REFORMULATED KREIN MATRIX FOR STAR-EVEN
POLYNOMIAL OPERATORS WITH APPLICATIONS\ast 

TODD KAPITULA\dagger , ROSS PARKER\ddagger , AND BJ\"ORN SANDSTEDE\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In its original formulation the Krein matrix was used to locate the spectrum of
first-order star-even polynomial operators where both operator coefficients are nonsingular. Such
operators naturally arise when considering first-order-in-time Hamiltonian PDEs. Herein the matrix
is reformulated to allow for operator coefficients with nontrivial kernel. Moreover, it is extended
to allow for the study of the spectral problem associated with quadratic star-even operators, which
arise when considering the spectral problem associated with second-order-in-time Hamiltonian PDEs.
In conjunction with the Hamiltonian-Krein index (HKI) the Krein matrix is used to study two
problems: conditions leading to Hamiltonian-Hopf bifurcations for small spatially periodic waves,
and the location and Krein signature of small eigenvalues associated with, e.g., n-pulse problems.
For the first case we consider in detail a first-order-in-time fifth-order KdV-like equation. In the latter
case we use a combination of Lin's method, the HKI, and the Krein matrix to study the spectrum
associated with n-pulses for a second-order-in-time Hamiltonian system which is used to model the
dynamics of a suspension bridge.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Krein matrix, multipulses, Hamiltonian PDEs

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35P30, 47A55, 47A56, 70H14

\bfD \bfO \bfI . 10.1137/19M124246X

1. Introduction. Herein we are generally concerned with the spectral stability
of waves that arise as steady-states for a nonlinear Hamiltonian system which is either
first-order or second-order in time. There are two tools which we will use to study
the spectrum. The first is the Hamiltonian-Krein index (HKI), which relates the
number of negative directions associated with the linearized energy evaluated at the
underlying wave to the number of (potentially) unstable point spectra (eigenvalues
with positive real part). If the HKI is zero, then under some fairly generic assumptions
the underlying wave will be orbitally stable. If the HKI is positive, then it provides an
upper bound on the number of unstable point eigenvalues. If it can be shown, either
analytically or numerically, that there are no eigenvalues with positive real part, then
the HKI provides the number of purely imaginary eigenvalues with negative Krein
signature.

The Krein signature of a simple purely imaginary eigenvalue of the linearization
about a wave is defined to be positive (negative) if the Hessian of the energy, also
evaluated at the wave and restricted to the corresponding eigenspace of the lineariza-
tion, is positive (negative) definite. Dynamically, at the linear level, eigenvalues with
negative Krein signature provide temporally oscillatory behavior in an unstable en-
ergy direction. Moreover, these are the foundational eigenvalues associated with the
Hamiltonian-Hopf bifurcation. Such a bifurcation can occur only if purely imaginary
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4706 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

eigenvalues of opposite signature collide when doing some type of parameter continu-
ation. If it can be shown all the purely imaginary eigenvalues have positive signature,
then a Hamiltonian-Hopf bifurcation is not possible. A formal definition of the sig-
nature in the setting of star-even polynomial operators is provided in (1.1).

Now, the purely imaginary eigenvalues with negative Krein signature cannot be
easily detected via a visual examination of the spectra. Consequently, another tool is
needed. Here we use the Krein matrix, an eigenvalue detecting tool which can also
be used to determine the Krein signature of purely imaginary point eigenvalues. The
Krein matrix has properties similar to those of the Evans matrix---in particular, the
determinant being zero means that an eigenvalue has been found---except that it is
meromorphic instead of being analytic. By marrying the HKI with a spectral analysis
via the Krein matrix one can locate all the point spectra associated with dynamical
instabilities. We will illustrate the fruit of this marriage herein by considering two
problems: the spectral stability associated with small spatially periodic waves, and the
location and Krein signature of small eigenvalues associated with tail-tail interactions
in n-pulses.

We now flesh out this preliminary discussion. The linearization of the Hamiltonian
system will yield a star-even operator polynomial,

\scrP n(\lambda ) :=
n\sum 

j=0

\lambda j\scrA j .

On some Hilbert space, X, endowed with inner product, \langle \cdot , \cdot \rangle , which in turn induces
a norm, \| \cdot \| , we assume the operator coefficients \scrA 2\ell are Hermitian, \scrA a

2\ell = \scrA 2\ell , and
the operator coefficients \scrA 2\ell +1 are skew-Hermitian, \scrA a

2\ell +1 =  - \scrA 2\ell +1. Here we let \scrT a

denote the adjoint of the operator \scrT . If n = 1,

\scrP 1(\lambda )\psi = 0 \rightsquigarrow (\scrA 0 + \lambda \scrA 1)\psi = 0.

Assuming \scrA 1 is invertible, this spectral problem is equivalent to

\scrA  - 1
1 \scrA 0\psi = \gamma \psi , \gamma =  - \lambda ,

which, since \scrA  - 1
1 is skew-Hermitian and \scrA 0 is Hermitian, is the canonical form for a

Hamiltonian eigenvalue problem. Indeed, while we will not go into the details here, it
is possible via a change of variables to put any star-even problem into canonical form;
see [18, section 3] and the references therein. For our purposes it is best to leave the
problem in its original formulation.

Values \lambda 0 for which the polynomial \scrP n(\lambda 0) is singular will be called polynomial
eigenvalues. Because of these assumed coefficient properties, the polynomial eigen-
values are symmetric with respect to the imaginary axis of the complex plane. The
eigenvalue symmetry follows from

\scrP n(\lambda )
a = \scrP n( - \lambda ),

so \lambda being a polynomial eigenvalue implies  - \lambda is also a polynomial eigenvalue. In
order to ensure there are no polynomial eigenvalues at infinity, we assume \scrA n is
invertible.

More can be said about the set of polynomial eigenvalues under compactness as-
sumptions (which will henceforth be assumed, except for the example considered in
section 6). Suppose the Hermitian operator \scrA 0 has compact resolvent, so the eigenval-
ues for this operator coefficient are real, are semisimple, and have finite multiplicity.
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A REFORMULATED KREIN MATRIX 4707

Let P\scrA 0
: X \mapsto \rightarrow ker(\scrA 0) be the orthogonal projection, and set P\bot 

\scrA 0
= \scrI  - P\scrA 0

: X \mapsto \rightarrow 
ker(\scrA 0)

\bot . Assuming the operators\bigl( 
P\bot 
\scrA 0

\scrA 0P
\bot 
\scrA 0

\bigr)  - 1
P\bot 
\scrA 0

\scrA jP
\bot 
\scrA 0

: ker(\scrA 0)
\bot \mapsto \rightarrow ker(\scrA 0)

\bot , j = 1, . . . , n,

are compact, the spectrum for \scrP n(\lambda ) is point spectra only [2, Remark 2.2]. Moreover,
each polynomial eigenvalue has finite multiplicity, and infinity is the only possible
accumulation point for the polynomial eigenvalues.

Regarding the number of unstable polynomial eigenvalues, i.e., those polynomial
eigenvalues with positive real part, the total number can be bounded above via the
HKI. Let kr denote the total number (counting multiplicity) of real and positive
polynomial eigenvalues, and let kc be the total number (counting multiplicity) of
polynomial eigenvalues with positive real part and nonzero imaginary part. The total
number of unstable polynomial eigenvalues is kr + kc.

The HKI also takes into account a subset of purely imaginary polynomial eigen-
values, namely, those with negative Krein signature. For each purely imaginary and
nonzero eigenvalue, i\lambda 0 with \lambda 0 \in R, with associated eigenspace Ei\lambda 0

, set

k - i (i\lambda 0) = n
\bigl( 
 - \lambda 0 [iP \prime 

n(i\lambda 0)] | Ei\lambda 0

\bigr) 
.(1.1)

Here n(\bfitS ) denotes the number of negative eigenvalues for the Hermitian matrix \bfitS ,
and  - \lambda 0iP \prime 

n(i\lambda 0)| Ei\lambda 0
is the Hermitian matrix formed by the representation of the

Hermitian operator  - i\lambda 0P
\prime 
n(i\lambda 0) restricted to the eigenspace Ei\lambda 0 . If the polynomial

eigenvalue is simple with associated eigenvector ui\lambda 0 , then

k - i (i\lambda 0) = n (\lambda 0\langle  - iP \prime 
n(i\lambda 0)ui\lambda 0

, ui\lambda 0
\rangle ) ;

in particular, if n = 1, then it takes the more familiar form

k - i (i\lambda 0) = n (\langle \scrA 0ui\lambda 0
, ui\lambda 0

\rangle ) .

See subsection 2.2 for more details. The nonnegative integer k - i (i\lambda 0) is the negative
Krein index associated with the purely imaginary eigenvalue. If k - i (i\lambda 0) = 0, the
polynomial eigenvalue is said to have positive Krein signature; otherwise, it has neg-
ative Krein signature. The total negative Krein index is the sum of the individual
Krein indices,

k - i =
\sum 

k - i (i\lambda 0).

Regarding k - i , consider the collision of two simple polynomial eigenvalues on the
imaginary axis. If they have the same signature, then after the collision they will each
remain purely imaginary. On the other hand, if they have opposite Krein signature,
then it will generically be the case that after the collision the pair will have nonzero
real part, which due to the spectral symmetry means that one of the polynomial eigen-
values will have positive real part. This is the so-called Hamiltonian-Hopf bifurcation.
In the case of n = 1 the interested reader should consult [23, Chapter 7.1] for more
details regarding the case of the collision of two simple polynomial eigenvalues and
[17, 41] for the case of higher-order collisions. The case of n \geq 2 can be reformulated
as an n = 1 problem; see [18] and the references therein. Note that if k - i = 0, then
no polynomial eigenvalues will leave the imaginary axis.

The HKI is defined to be the sum of the three indices,

KHam = kr + kc + k - i .
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4708 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

The HKI is intimately related to the operator coefficients. For the sake of exposition,
first suppose \scrA 0,\scrA n are nonsingular. If X = CN , i.e., the operator is actually a
star-even matrix polynomial with nN polynomial eigenvalues,

KHam =

\Biggl\{ 
n(\scrA 0) + (\ell  - 1)N, n = 2\ell  - 1,

n(\scrA 0) + n
\bigl( 
( - 1)\ell  - 1\scrA n

\bigr) 
+ (\ell  - 1)N, n = 2\ell 

[18, Theorem 3.4]. If n \geq 3 the upper bound for the total number of unstable poly-
nomial eigenvalues depends upon the dimension of the space; consequently, taking
the limit N \rightarrow +\infty provides no meaningful information regarding the limiting case
of operator coefficients which are compact operators. Consequently, we henceforth
assume n \in \{ 1, 2\} .

Now, suppose \scrA 0 has a nontrivial kernel but that the highest-order coefficient is
nonsingular. If n = 1, then under the widely applicable assumptions

(a) \scrA 1 : ker(\scrA 0) \mapsto \rightarrow ker(\scrA 0)
\bot ,

(b) \scrA 1\scrA  - 1
0 \scrA 1| ker(\scrA 0) is invertible,

we know

KHam = n(\scrA 0) - n
\bigl( 
 - \scrA 1\scrA  - 1

0 \scrA 1| ker(\scrA 0)

\bigr) 
;(1.2)

see [15, 31] and the references therein. Regarding the operator \scrA 1, the case where
(a) there is a nontrivial kernel, but where the rest of the spectra are other-

wise uniformly bounded away from the origin, is covered in [8, 22] and [23,
Chapter 5.3],

(b) the spectrum which is not bounded away from the origin is considered in
[24, 32].

If n = 2, then upon replacing condition (b) above with
(b)

\bigl( 
\scrA 2  - \scrA 1\scrA  - 1

0 \scrA 1

\bigr) 
| ker(\scrA 0) is invertible,

we know

KHam = n(\scrA 0) + n(\scrA 2) - n
\bigl( \bigl[ 
\scrA 2  - \scrA 1\scrA  - 1

0 \scrA 1

\bigr] 
| ker(\scrA 0)

\bigr) 
;(1.3)

see [2].
The goal of this paper is to construct a square matrix-valued function, say, \bfitK (\lambda ),

which has the properties that for \lambda \in iR,
(a) \bfitK (\lambda ) is Hermitian and meromorphic,
(b) det\bfitK (\lambda ) = 0 only if \lambda is a polynomial eigenvalue,
(c) \bfitK (\lambda ) can be used to determine the Krein signature of a polynomial eigen-

value.
The matrix \bfitK (\lambda ) is known as the Krein matrix. The properties (a) and (b) listed
above are reminiscent of those possessed by the Evans matrix, except that the Evans
matrix is analytic [23, Chapters 8--10]. Regarding (b) and (c), since the determinant
of a matrix is equal to the product of its eigenvalues, property (b) is satisfied if at
least one of the eigenvalues of the Krein matrix is zero. Henceforth, we will call the
eigenvalues of the Krein matrix, say, rj(\lambda ), the Krein eigenvalues. The determination
of the Krein signature of a purely imaginary polynomial eigenvalue takes place through
the Krein eigenvalues. If rj(\lambda 0) = 0 for some \lambda 0 \in iR, the Krein signature is found
by considering the sign of r\prime j(\lambda 0). Thus, via a plot of the Krein eigenvalues one
can graphically determine the signature of a purely imaginary polynomial eigenvalue
through the slope of the curve at a zero. The interested reader should consult the
beautiful paper by Koll\'ar and Miller [27] for

D
ow

nl
oa

de
d 

09
/3

0/
20

 to
 1

38
.1

6.
12

8.
0.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A REFORMULATED KREIN MATRIX 4709

(a) a graphical perspective on the Krein signature using the eigenvalues of the
self-adjoint operator, \scrA 0 + z(i\scrA 1), for z \in R,

(b) Hamiltonian instability index results which arise from this graphical per-
spective.

A significant difference between our approach and that of [27] is the number of Krein
eigenvalues to be graphed; in particular, our approach gives a finite number, whereas
the approach of [27] yields a number equal to the number of eigenvalues for \scrA 0.

The Krein matrix was first constructed for linear polynomials of the canonical
form

\scrP 1(\lambda ) =

\biggl( 
\scrL + 0
0 \scrL  - 

\biggr) 
+ \lambda 

\biggl( 
0 \scrI 

 - \scrI 0

\biggr) 
,

where \scrL \pm are invertible Hermitian operators with compact resolvent, and \scrI denotes
the identity operator; see [17, 28]. Recent applications of the Krein matrix include a
new proof of the Jones--Grillakis instability criterion,

kr \geq | n(\scrL  - ) - n(\scrL +)| ,

as well as a study of the spectral problem for waves to a mathematical model for
Bose--Einstein condensates [21, 22].

The paper is organized as follows. In section 2 the Krein matrix is constructed for
star-even polynomial operators of any degree. In particular, the previous invertibility
assumption on \scrA 0 is removed. In section 3 the properties of the Krein eigenvalues are
deduced; in particular, their relation to the Krein signature of purely imaginary poly-
nomial eigenvalues is given. In section 4 the Krein eigenvalues are used to study the
Hamiltonian-Hopf bifurcation problem associated with small periodic waves. While
the underlying wave is small, it is possible for the polynomial eigenvalues to have
\scrO (1) imaginary part (see [9, 26, 39] for a similar study using a different approach).
In section 5 we show how the Krein matrix can be used to locate small eigenvalues
which arise from some type of bifurcation. However, the analysis does not use per-
turbation theory, so it is consequently possible to use the resulting Krein matrix to
consider spectral stability for multipulse problems, where the small eigenvalues arise
from the exponentially small tail-tail interactions of a translated base pulse. Finally,
in section 6 we use the Krein matrix to study the spectral problem associated with
n-pulse solutions to the suspension bridge equation, which is a second-order-in-time
Hamiltonian PDE.

2. The Krein matrix. The Krein matrix allows us to reduce the infinite-
dimensional eigenvalue problem,

\scrP n(\lambda )\psi = 0,

to a finite-dimensional problem,

\bfitK S(\lambda )\bfitx = \bfzero .

Here \bfitK S(\lambda ) is the (square) Krein matrix. Whereas the original star-even operator
is analytic in the spectral parameter, the Krein matrix is meromorphic with poles on
the imaginary axis. The presence of these poles is the key to using the Krein matrix
to determine the Krein signature of a purely imaginary eigenvalue.
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4710 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

2.1. General construction. Let S \subset X be a finite-dimensional subspace of
dimension nS with orthonormal basis \{ sj\} , and let PS : X \mapsto \rightarrow X be the orthogonal
projection,

PSu =

nS\sum 
j=1

\langle u, sj\rangle sj .

Denote the complementary orthogonal projection as

PS\bot := \scrI  - PS ,

and write
u = s+ s\bot with PSu = s, PS\bot u = s\bot .

In constructing the subspace-dependent Krein matrix, \bfitK S(\lambda ), for the polyno-
mial eigenvalue problem, we will extensively use the orthogonal projections. We first
rewrite the polynomial eigenvalue problem,

\scrP n(\lambda )s+ \scrP n(\lambda )s
\bot = 0.(2.1)

Applying the complementary projection to (2.1) yields

PS\bot \scrP n(\lambda )s+ PS\bot \scrP n(\lambda )PS\bot s\bot = 0.(2.2)

The operator PS\bot \scrP n(\lambda )PS\bot : S\bot \mapsto \rightarrow S\bot is a star-even polynomial operator. Con-
sequently, it has the same spectral properties as the original star-even operator; in
particular, it is invertible except for a countable number of spectral values. If \lambda is not
a polynomial eigenvalue for the operator PS\bot \scrP n(\lambda )PS\bot , then we can invert to write

s\bot =  - (PS\bot \scrP n(\lambda )PS\bot ) - 1PS\bot \scrP n(\lambda )s,

which leads to

s\bot = PS\bot s\bot =  - PS\bot (PS\bot \scrP n(\lambda )PS\bot ) - 1PS\bot \scrP n(\lambda )s.(2.3)

If we take the inner product of (2.1) with a basis element sj , we get

\langle sj ,\scrP n(\lambda )s\rangle + \langle sj ,\scrP n(\lambda )s
\bot \rangle = 0.

Substitution of the expression in (2.3) into the above provides

\langle sj ,\scrP n(\lambda )s\rangle  - \langle sj ,\scrP n(\lambda )PS\bot (PS\bot \scrP n(\lambda )PS\bot ) - 1PS\bot \scrP n(\lambda )s\rangle = 0.

Writing

s =

nS\sum 
j=1

xjsj ,

the above expression becomes

\bfitK S(\lambda )\bfitx = \bfzero ,(2.4)

where the Krein matrix \bfitK S(\lambda ) \in CnS\times nS has the form

\bfitK S(\lambda ) = \scrP n(\lambda )| S  - \scrP n(\lambda )PS\bot (PS\bot \scrP n(\lambda )PS\bot ) - 1PS\bot \scrP n(\lambda )| S ,
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A REFORMULATED KREIN MATRIX 4711

where we use the notation
(\scrT | S)ij = \langle si, \scrT sj\rangle .

In conclusion, polynomial eigenvalues for the original problem are found via solving
(2.4), which means

det\bfitK S(\lambda ) = 0 or \bfitx = \bfzero .

What does it mean if \lambda 0 is a polynomial eigenvalue with \bfitx = \bfzero ? In this case the
associated eigenfunction for the polynomial eigenvalue, u0, satisfies

PSu0 = 0, PS\bot u0 = u0.

Going back to (2.1) and (2.2) we see

Pn(\lambda 0)PS\bot u0 = 0 \rightsquigarrow PS\bot Pn(\lambda 0)PS\bot u0 = 0.

In other words, \lambda 0 is also a polynomial eigenvalue for the operator PS\bot Pn(\lambda 0)PS\bot .
Thus, if \lambda 0 is a polynomial eigenvalue for which the associated eigenfunction resides in
S\bot , \lambda 0 is also a pole for the Krein matrix. Consequently, we cannot expect to capture
such a polynomial eigenvalue by solving det\bfitK S(\lambda ) = 0. This fact will motivate our
later choice for the subspace S, as we need to know that the polynomial eigenvalues
being missed by considering the zero set of the determinant of the Krein matrix are
somehow unimportant.

The choice of the subspace is determined by looking at the Krein index of a
purely imaginary polynomial eigenvalue, \lambda = i\lambda 0. Letting Ei\lambda 0

denote the generalized
eigenspace, the negative Krein index is

k - i (i\lambda 0) := n
\bigl( 
 - \lambda 0[iP \prime 

n(i\lambda 0)]| Ei\lambda 0

\bigr) 
(see [2]). Since the goal is to have the Krein matrix capture all possible polynomial
eigenvalues with negative Krein index through its determinant, we want it to be the
case that if i\lambda 0 is a polynomial eigenvalue whose associated eigenfunction is in S\bot ,
then the negative Krein index is zero. In other words, we want the Hermitian matrix,
 - \lambda 0[i\scrP n(i\lambda 0)]| Ei\lambda 0

, to be positive definite whenever i\lambda 0 is also a polynomial eigenvalue
for the operator PS\bot \scrP n(\lambda )PS\bot .

Remark 2.1. In practice, mapping \bfitK (\lambda ) \mapsto \rightarrow \lambda \ell \bfitK (\lambda ) for some \ell \in N does not
change the above property of the Krein matrix. However, as we will see, an appropriate
choice of \ell gives better graphical properties regarding the determination of those
polynomial eigenvalues with negative Krein signature.

Remark 2.2. Note that if \lambda = i\lambda 0 \in iR, so that the operator \scrP n(i\lambda 0) is Hermitian,
then for \lambda \in iR the elements in the second matrix can be rewritten,\Bigl( 

(PS\bot \scrP n(\lambda )PS\bot ) - 1| P
S\bot \scrP n(\lambda )S

\Bigr) 
ij
= \langle PS\bot \scrP n(\lambda )si, (PS\bot \scrP n(\lambda )PS\bot ) - 1PS\bot \scrP n(\lambda )sj\rangle .

2.2. Subspace selection. We now see how the operator coefficients may dictate
the choice of the subspace S. First consider the first-order operator,

\scrP 1(\lambda ) = \scrA 0 + \lambda \scrA 1,

where \scrA 0 is Hermitian, and \scrA 1 is skew-Hermitian. Regarding the term associated
with the calculation of the negative Krein index,

 - \lambda 0[i\scrP \prime 
1(i\lambda 0)] =  - \lambda 0(i\scrA 1).
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4712 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

If \psi 0 is an eigenfunction associated with the polynomial eigenvalue, so \scrP 1(i\lambda 0)\psi 0 = 0,
then

 - \lambda 0(i\scrA 1)\psi 0 = \scrA 0\psi 0,

so we recover the ``standard"" definition of the negative Krein index for first-order
star-even operators,

k - i (i\lambda 0) = n
\bigl( 
 - \lambda 0[iP \prime 

1(i\lambda 0)]| Ei\lambda 0

\bigr) 
= n

\bigl( 
\scrA 0| Ei\lambda 0

\bigr) 
.

We want the matrix \scrA 0| Ei\lambda 0
to be positive definite if Ei\lambda 0

\subset S\bot . If we choose

S := N(\scrA 0)\oplus ker(\scrA 0),

where N(\scrA 0) is the finite-dimensional negative subspace of \scrA 0, and ker(\scrA 0) is the
finite-dimensional kernel, then the fact that \scrA 0 is positive definite on S\bot implies
that if i\lambda 0 is a polynomial eigenvalue whose associated eigenfunction resides in S\bot ,
then the negative Krein index will be zero. Note that in this case PS and PS\bot will
be spectral projections. Further note that with this choice of subspace, if a pole of
the Krein matrix corresponds to purely imaginary polynomial eigenvalue, then it will
necessarily have positive Krein index. Consequently, all purely imaginary polynomial
eigenvalues with negative Krein index will be captured by solving det\bfitK S(\lambda ) = 0.

Now, consider the second-order operator

\scrP 2(\lambda ) = \scrA 0 + \lambda \scrA 1 + \lambda 2\scrA 2,

where \scrA 0,\scrA 2 are Hermitian, and \scrA 1 is skew-Hermitian. We have

 - \lambda 0[i\scrP \prime 
2(i\lambda 0)] =  - \lambda 0(i\scrA 1) + 2\lambda 20\scrA 2.

If \psi 0 is an eigenfunction associated with the polynomial eigenvalue, so \scrP 2(i\lambda 0)\psi 0 = 0,\bigl( 
 - \lambda 0(i\scrA 1) + 2\lambda 20\scrA 2

\bigr) 
\psi 0 =

\bigl( 
\scrA 0 + \lambda 20\scrA 2

\bigr) 
\psi 0.

The negative Krein index can be alternatively defined,

k - i (i\lambda 0) = n
\bigl( 
 - \lambda 0[i\scrP \prime 

2(i\lambda 0)]| Ei\lambda 0

\bigr) 
= n

\bigl( 
(\scrA 0 + \lambda 20\scrA 2)| Ei\lambda 0

\bigr) 
.

In order for the matrix (\scrA 0 + \lambda 20\scrA 2)| Ei\lambda 0
to be positive definite, it must be true

that the eigenspace Ei\lambda 0 resides in the positive space of the operator \scrA 0 + \lambda 20\scrA 2. In
the applications we consider the operator \scrA 2 will be positive definite. In this case, if
we again choose

S := N(\scrA 0)\oplus ker(\scrA 0),

then the operator

PS\bot 
\bigl( 
\scrA 0 + \lambda 20\scrA 2

\bigr) 
PS\bot = PS\bot \scrA 0PS\bot + \lambda 20PS\bot \scrA 2PS\bot 

will be positive definite. Consequently, if i\lambda 0 is a polynomial eigenvalue whose asso-
ciated eigenfunction resides in S\bot , then the negative Krein index will be zero.
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A REFORMULATED KREIN MATRIX 4713

3. The Krein eigenvalues. Since Pn(\lambda ) is a star-even polynomial operator,
the Krein matrix is a self-adjoint meromorphic family of operators in the spectral
parameter, \lambda . In particular, the Krein matrix is Hermitian for purely imaginary \lambda .
Henceforth, write \lambda = iz for z \in R, and write the Krein matrix as

\bfitK S(z) = \scrP n(iz)| S  - \scrP n(iz)PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz)| S .

Since the Krein matrix is Hermitian for real z, for each value of z there are nS
real-valued eigenvalues, rj(z). These eigenvalues of the Krein matrix are called the
Krein eigenvalues. The Krein eigenvalues are real meromorphic, as are the associated
spectral projections. If the Krein eigenvalues are simple, the associated eigenvectors
are real meromorphic. See Kato [25, Chapter VII.3] for the details.

Since

det\bfitK S(z) =

nS\prod 
j=1

rj(z),

finding the zeros of the determinant of the Krein matrix is equivalent to finding the
zero set of each of the Krein eigenvalues. One of the most important properties of the
Krein eigenvalues is that the sign of the derivative at a simple zero is related to the
Krein index of that polynomial eigenvalue. In order to see this, we start with

\bfitK S(z)\bfitv j(z) = rj(z)\bfitv j(z) \rightsquigarrow r\prime j(z) =
\bfitv j(z)

a\bfitK \prime 
s(z)\bfitv j(z)

| \bfitv j(z)| 2
.(3.1)

The latter equality is a solvability condition which follows upon noting that both the
Krein eigenvalue and its associated eigenvector are meromorphic and consequently
have convergent Taylor expansions. If rj(z) = 0, then the components of the associ-
ated eigenvector correspond to the various basis elements in the subspace S; namely,
the associated eigenfunction is given by

\psi =

nS\sum 
k=1

vjksk + s\bot , \bfitv j =

\left(     
vj1
vj2
...
vjnS

\right)     ,(3.2)

where the element s\bot is determined via (2.3),

s\bot =  - 
nS\sum 
k=1

vjk (PS\bot Pn(iz)PS\bot )
 - 1
PS\bot Pn(iz)sk.

We now compute \bfitK \prime (z). For the first term in the Krein matrix,

d

dz
\langle si,\scrP n(iz)sj\rangle = \langle si, [i\scrP \prime 

n(iz)]sj\rangle .

The operator i\scrP \prime 
n(iz) is Hermitian. Differentiating the second term requires repeated

applications of the product rule, as well as using the fact that the operator \scrP n(iz) is
Hermitian. Since

d

dz
(PS\bot \scrP n(iz)PS\bot ) - 1 =  - (PS\bot \scrP n(iz)PS\bot ) - 1[i\scrP \prime 

n(iz)](PS\bot \scrP n(iz)PS\bot ) - 1,
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4714 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

upon some simplification we can write

d

dz
\langle si, PS\bot \scrP n(iz)(PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz)sj\rangle 

= \langle si, [i\scrP \prime 
n(iz)]PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz)sj\rangle 

+ \langle si,\scrP n(iz)PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1PS\bot [i\scrP \prime 
n(iz)]sj\rangle 

 - \langle si,\scrP n(iz)PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1[i\scrP \prime 
n(iz)](PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz)sj\rangle .

The right-hand side has the compact form

d

dz
\langle si, PS\bot \scrP n(iz)(PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz)sj\rangle = \langle si, (\scrR +\scrR a)sj\rangle  - \langle si,\scrS sj\rangle ,

where

\scrR := \scrP n(iz)PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1PS\bot [i\scrP \prime 
n(iz)],

\scrS := \scrP n(iz)PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1[i\scrP \prime 
n(iz)](PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz).

In conclusion, the derivative of the Krein matrix is

\bfitK \prime (z) = [i\scrP \prime 
n(iz)]S + \scrS | S  - (\scrR +\scrR a)| S ,(3.3)

where the operators \scrR ,\scrS are defined above.
We now compute the Krein index using our decomposition of an eigenfunction.

For the sake of exposition, let us assume that the polynomial eigenvalue is simple.
Using the decomposition (3.2) with \bfitK s(z)\bfitv j(z) = \bfzero , we have

[i\scrP \prime 
n(iz)]\psi =

nS\sum 
k=1

vjk[i\scrP 
\prime 
n(iz)]sk  - 

nS\sum 
k=1

vjk[i\scrP 
\prime 
n(iz)] (PS\bot Pn(iz)PS\bot )

 - 1
PS\bot Pn(iz)sk.

Upon taking the inner product with \psi , and using the fact that \scrP n(iz) is Hermitian,

\langle \psi , [i\scrP \prime 
n(iz)]\psi \rangle = \bfitv j(z)

a ([i\scrP \prime 
n(iz)]| S + \scrS | S  - (\scrR +\scrR a)| S) \bfitv j(z).

Upon comparing with (3.3) we conclude

\langle \psi , [i\scrP \prime 
n(iz)]\psi \rangle = \bfitv j(z)

a\bfitK \prime (z)\bfitv j(z),

where the eigenfunction \psi has the expansion provided for in (3.2).
Going back to (3.1), the derivative of the Krein eigenvalue can be expressed in

terms of the eigenfunction as

r\prime j(z) =
\langle \psi , [i\scrP \prime 

n(iz)]\psi \rangle 
| \bfitv j(z)| 2

.

Going further back to the definition of the negative Krein index, we can conclude the
desired result. If iz is a polynomial eigenvalue with rj(z) = 0, then the Krein index
is related through the derivative via

k - i (iz) =

\Biggl\{ 
0, zr\prime j(z) < 0,

1, zr\prime j(z) > 0.
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Since our goal is to quickly and easily read off the Krein signature via a graph of
the Krein eigenvalues, we will redefine the Krein matrix as

\bfitK S(z) =  - z
\bigl[ 
\scrP n(iz)| S  - \scrP n(iz)PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz)| S

\bigr] 
.

This redefinition adds a singularity to the Krein matrix at z = 0, but in the search
for nonzero polynomial eigenvalues this is an unimportant consequence. On the other
hand, the Krein eigenvalues for the new matrix are related to the original matrix
via rj(z) \mapsto \rightarrow  - zrj(z). Thus, at a zero of the Krein eigenvalue we have the mapping
r\prime j(z) \mapsto \rightarrow  - zr\prime j(z), so for the new Krein matrix we have the relationship

k - i (iz) =

\Biggl\{ 
0, r\prime j(z) > 0,

1, r\prime j(z) < 0.

A positive slope of a Krein eigenvalue at a zero corresponds to a polynomial eigenvalue
with positive signature, whereas a negative slope shows that the polynomial eigenvalue
has negative Krein signature.

If the zero of a Krein eigenvalue is not simple, then the corresponding polynomial
eigenvalue has a Jordan chain, and the negative Krein index depends upon the length
of the chain; see [17, section 2.2] and the references therein. For example, if rj(z) =
r\prime j(z) = 0 with r\prime \prime j (z) \not = 0, then there will be a Jordan chain of length two; moreover,
the negative Krein index associated with the Jordan chain will be one. In general,
a zero of order m implies a Jordan chain of length m, and the negative Krein index
associated with that chain will be roughly half the length of the chain. We will not
provide any more details here, as in our examples the polynomial eigenvalues will be
simple. In summary, we have the following result.

Theorem 3.1. For n \in \{ 1, 2\} consider the star-even polynomial,

\scrP n(\lambda ) =
n\sum 

j=0

\lambda j\scrA j ,

which acts on a Hilbert space, X, with inner product, \langle \cdot , \cdot \rangle . Suppose \scrA 0 has compact
resolvent. Set P\scrA 0 : X \mapsto \rightarrow ker(\scrA 0) to be the spectral projection onto the kernel, and
P\bot 
\scrA 0

= \scrI  - P\scrA 0
. Further suppose the operator coefficients satisfy

(a) n(\scrA 0) is finite,
(b) for j = 1, 2 the operators,\bigl( 

P\bot 
\scrA 0

\scrA 0P
\bot 
\scrA 0

\bigr)  - 1
P\bot 
\scrA 0

\scrA jP
\bot 
\scrA 0

: ker(\scrA 0)
\bot \mapsto \rightarrow ker(\scrA 0)

\bot 

are compact.
Regarding the Krein matrix, first let S \subset X be a given finite-dimensional subspace
and PS\bot : X \mapsto \rightarrow S\bot be the orthogonal projection. The Krein matrix associated with S
is

\bfitK S(z) =  - z
\bigl[ 
\scrP n(iz)| S  - \scrP n(iz)PS\bot (PS\bot \scrP n(iz)PS\bot ) - 1PS\bot \scrP n(iz)| S

\bigr] 
.

The Krein eigenvalues, rj(z) for j = 1, . . . , dim[S], are the eigenvalues of the Krein
matrix. If z \in R, the Krein eigenvalues are meromorphic. Moreover, if \lambda = iz is a
polynomial eigenvalue with \scrP n(iz)\psi = 0,

(a) then either rj(z) = 0 for at least one j, or \psi \in S\bot ,
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(b) if z \in R, and if rj(z) = 0 for some j, then the Krein signature of a semi-
simple polynomial eigenvalue is determined by the slope of the graph of the
Krein eigenvalue,

k - i (iz) =

\Biggl\{ 
0, r\prime j(z) > 0,

1, r\prime j(z) < 0.

Remark 3.2. Recall that the choice

S = N(\scrA 0)\oplus ker(\scrA 0)

ensures that all polynomial eigenvalues with negative Krein signature are seen as zeros
of one or more Krein eigenvalues.

In its general form the Krein matrix looks to be complicated and does not appear
to have an underlying and intuitively understood structure. However, as we shall see
in our subsequent examples, the Krein matrix can have intimate connections with
dispersion relations, the Hale--Sandstede--Lin method for constructing multipulses,
etc.

4. First application: Modulational instabilities for small amplitude
periodic solutions. For our first application we show how the Krein matrix can
be used to understand the existence of an instability bubble, i.e., a curve of unstable
spectra which is attached to the imaginary axis, for small spatially periodic waves
to dispersive systems. The instabilities will not necessarily be associated with high-
frequency (long wavelength) perturbations. Without loss of generality we will assume
the spatial period is 2\pi .

Regarding the existence problem we will assume it is of the form

\scrL u - cu+ f(u) = 0,(4.1)

where
(a) \scrL =

\sum N
j=0 aj\ell 

2j\partial 2jx with \ell , ( - 1)Na2N > 0,
(b) c \in R is a free parameter (typically the wavespeed),
(c) f(u) is a smooth nonlinearity with f(0) = f \prime (0) = 0.

The parameter \ell can be adjusted via a rescaling of x. The operator \scrL is self-adjoint
under the inner product,

\langle f, g\rangle =
\int 2\pi 

0

f(x)g(x) dx.

Remark 4.1. The nonlinearity could be more general, f = f(u, \partial xu, . . . ). All that
is required is that it be smooth and (at least) quadratic in the arguments near the
origin and that it be unchanged under reversibility, x \mapsto \rightarrow  - x.

We briefly sketch the argument leading to the existence of a family of small
spatially periodic solutions. The details can be found in [14, Theorem 3.15]. The
characteristic polynomial associated with the ordinary differential operator \scrL is

p\scrL (r, \ell ) =
N\sum 
j=0

aj\ell 
2jr2j .

Regarding the characteristic polynomial we assume there is an \ell 0 such that
(a) \partial rp\scrL (i, \ell 0) \not = 0,
(b) upon setting the zero amplitude wavespeed,
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c0 := p\scrL (i, \ell 0) =
N\sum 
j=0

( - 1)jaj\ell 
2j
0 ,(4.2)

there is no positive real k \not = 1 such that p\scrL (ik, \ell 0) - c0 = 0.
There will then exist a family of 2\pi -periodic solutions, say, U(x), with the properties

(a) U(x) = U( - x),
(b) U(x) = \epsilon A cos(x) +\scrO (\epsilon 2) for A > 0,
(c) \ell = \ell 0 +\scrO (\epsilon ) (the \scrO (\epsilon ) terms depend on A).
If (4.2) above does not hold, i.e., if there are other purely imaginary roots to

p\scrL (r, \ell 0)  - \beta 0 = 0, then the equations on the center manifold will still be reversible.
However, the dimension of the manifold (equal to the number of purely imaginary
roots, counting multiplicity) increases, and since the reduced system is no longer
planar it is not clear if there are still periodic (versus quasi-periodic) solutions. The
case of a second additional imaginary root, \pm iq with q > 1, is discussed by [14,
Chapter 4.3.4]. If q is irrational, or if q \geq 5, only KAM tori are expected, and
consequently only quasi-periodic solutions. In the case of strong resonance, q = 2, the
equations on the center manifold are completely integrable, and there can be periodic
orbits, homoclinic orbits, and orbits homoclinic to periodic orbits. The other resonant
case of q = 3 is still open. In conclusion, we can safely assume the existence of small
2\pi -periodic solutions to (4.1).

We now consider the spectral stability of these spatially periodic solutions. Con-
sider the KdV-like and first-order-in-time Hamiltonian system,

\partial tu+ \partial x (\scrL u+ f(u)) = 0.(4.3)

The nonlinearity f(u) satisfies assumption (c) above, while

\scrL u =

N\sum 
j=0

aj\partial 
2j
x u, ( - 1)Na2N > 0.

In traveling coordinates, z := x - ct, the equation becomes

\partial tu+ \partial z (\scrL u - cu+ f(u)) = 0, \partial 2jx \mapsto \rightarrow \partial 2jz .

Upon rescaling of time and space,

\tau = \ell t, y = \ell z,

we have the PDE to be studied,

\partial \tau u+ \partial y (\scrL u - cu+ f(u)) = 0,(4.4)

where

\scrL u =
N\sum 
j=0

aj\ell 
2j\partial 2jx u, ( - 1)Na2N > 0.

Following the previous discussion, upon setting

c0 := p\scrL (i, \ell 0),

where \ell 0 is chosen so that p\scrL (ik, \ell 0)  - c0 = 0 has no integral solutions for k > 1, we
know there is a family of small 2\pi -periodic solutions, U(x) = \scrO (\epsilon ), for 0 < \epsilon \ll 1.
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4718 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

We now consider the spectral stability of such solutions. The linearized problem
is

\partial \tau v + \partial y (\scrL v  - c0v + f \prime (U)v) = 0, | f \prime (U)| = \scrO (\epsilon ).

Using separation of variables, v(y, \tau ) = e\lambda \tau v(y), we arrive at the spectral problem,

\lambda v + \partial y (\scrL v  - c0v + f \prime (U)v) = 0, | f \prime (U)| = \scrO (\epsilon ).(4.5)

We use a Bloch decomposition to understand the spectral problem; see [23, Chap-
ter 3.3]. Writing for  - 1/2 < \mu \leq 1/2,

v(y) = ei\mu yw(y), w(y + 2\pi ) = w(y),

the problem (4.5) becomes

\lambda w + (\partial y + i\mu ) (\scrL \mu w  - c0w + f \prime (U)w) = 0, | f \prime (U)| = \scrO (\epsilon ),(4.6)

where

\scrL \mu =
N\sum 
j=0

a2j\ell 
2j
0 (\partial y + i\mu )2j .

Because the underlying wave is even in x, it is sufficient to consider 0 \leq \mu \leq 1/2; in
particular, if \lambda is an eigenvalue associated with \mu , then \lambda is an eigenvalue associated
with  - \mu (see [15, section 4]). For fixed \mu the spectrum will be discrete, countable, and
have an accumulation point only at \infty . The full spectrum, which is essential spectra
only, will be the union of all the point spectra as \mu is varied over the range.

We are henceforth interested only in sideband instabilities, \mu > 0. Set

\scrA 0 := \scrL \mu  - c0 + f \prime (U).

The operator \scrA 0 is self-adjoint on the space of 2\pi -periodic functions endowed with
the natural L2[0, 2\pi ] inner product. The invertible operator \partial y+i\mu is skew-Hermitian.
Since\scrA 0 is self-adjoint with smooth dependence on parameters, each of the eigenvalues
of \scrA 0 is smooth in (\mu , \epsilon ) [25]. The same can be said of the composition, (\partial y +
i\mu )\scrA 0, except at possibly the finite number of points where there are Jordan chains.
Consequently, we will first consider the spectral problem when \epsilon = 0. Afterward, we
will make generic statements about what will happen for \epsilon > 0 small.

For 0 < \mu \leq 1/2 we rewrite the spectral problem in the star-even form,

\scrA 0w + \lambda \scrA 1w = 0, \scrA 1 := (\partial y + i\mu )
 - 1
.(4.7)

The boundary conditions associated with this problem are periodic, w(y+2\pi ) = w(y).
First assume \epsilon = 0, so that f \prime (U) \equiv 0. The spectrum for (4.7) is straightforward to
compute using a Fourier analysis. Letting w(y) = einy for n \in Z we get a sequence of
problems,

d(n, \mu ) + \lambda 
1

i(n+ \mu )
= 0,(4.8)

where the first term is the dispersion relation associated with the steady-state problem,

d(n, \mu ) :=
N\sum 
j=0

( - 1)ja2j\ell 
2j
0 (n+ \mu )2j  - c0.
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We first show that the spectrum of \scrA 0 has a nonzero and finite number of negative ei-
genvalues for at least some values of \mu . First suppose \epsilon = 0. The existence assumption
implies d(\pm 1, 0) = 0. For small \mu we have the expansions

d(\pm 1, \mu ) = \pm 

\left(  2
N\sum 
j=1

( - 1)jjaj

\right)  \mu +\scrO (\mu 2).(4.9)

Consequently, d(+1, \mu )d( - 1, \mu ) < 0 for small \mu , so one of d(\pm 1, \mu ) is negative for
small \mu . Consequently, n(\scrA 0) \geq 1. The assumption ( - 1)Na2N > 0 implies there
is an N0 such that d(n, \mu ) > 0 for | n| \geq N0. Consequently, there can be at most a
finite number of negative eigenvalues, so n(\scrA 0) <\infty . By continuity n(\scrA 0) will remain
unchanged for \epsilon > 0 and small.

We now construct the Krein matrix, and then use it to analyze the spectrum. As-
sume there is a sequence n1, n2, . . . , nq such that d(n, \mu ) < 0 for n \in \{ n1, n2, . . . , nq\} ,
and d(n, \mu ) > 0 for n /\in \{ n1, n2, . . . , nq\} . Clearly, n(\scrA 0) = q. We take as our space
S = N(\scrA 0),

S = span\{ ein1y, ein2y, . . . , einqy\} .
Since

P1(iz)S = S, P1(iz)S
\bot = S\bot ,

the Krein matrix as described in Theorem 3.1 collapses to

\bfitK S(z) =  - z\scrP 1(iz)| S

=  - z diag
\biggl( 
d(n1, \mu ) +

z

n1 + \mu 
, . . . , d(nq, \mu ) +

z

nq + \mu 

\biggr) 
.

The expected poles, which are the eigenvalues of the sandwiched operator,

PS\bot \scrP 1(iz)PS\bot = P1(iz)S
\bot ,

are located at zpn =  - (n + \mu )d(n, \mu ) for n /\in \{ n1, n2, . . . , nq\} and are removable
singularities. All of the poles are polynomial eigenvalues for the spectral problem.
Since they correspond to removable singularities, the polynomial eigenvalues all have
positive Krein signature.

Remark 4.2. The poles are removable when \epsilon = 0 because [\scrP 1(\lambda )S] \cap S\bot = \{ 0\} .
In particular, it follows from the fact that the \epsilon = 0 problem has constant coefficients.
One expects that for \epsilon > 0, [\scrP 1(\lambda )S] \cap S\bot has a nontrivial intersection. Thus, the
expectation is that the poles will no longer be removable for small amplitude waves.

The Krein eigenvalues are

rj(z) =  - z
\biggl( 
d(nj , \mu ) +

z

nj + \mu 

\biggr) 
, j = 1, . . . , q.

The nonzero zeros of the Krein eigenvalues,

znj =  - (nj + \mu )d(nj , \mu ), j = 1, . . . , q,

satisfy
r\prime j(z

n
j ) = d(nj , \mu ) < 0,

so these zeros correspond to polynomial eigenvalues with negative Krein signature. In
conclusion, via Fourier analysis we have located all of the polynomial eigenvalues, and
through the Krein eigenvalues we have identified those which have a negative Krein
index.
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Remark 4.3. Note that for constant states, \epsilon = 0, the Krein signature can be
directly computed from the dispersion relation. For fixed \mu the Krein eigenvalues
are dispersion curves that correspond to polynomial eigenvalues with negative Krein
index, and the poles correspond to dispersion curves with positive Krein index. If the
two curves intersect, then there is a collision of polynomial eigenvalues with opposite
Krein signature. Consequently, for a small amplitude wave the intersection of a Krein
eigenvalue with a (potentially) removable singularity of the Krein matrix can be noted
without actually computing a Krein eigenvalue. This graphical approach toward spec-
tral stability by looking at the dispersion curves is the one taken by [9, 26, 39]. The
Krein matrix approach is more robust in the sense that while it, too, is graphical in
nature, it does not necessarily assume that the underlying waves have small ampli-
tude. In particular, the smallness assumption allows for an analytic construction
of the matrix; however, if the wave has an \scrO (1) amplitude, then the Krein matrix
can still be constructed numerically, and the graphical analysis will still hold for this
numerically constructed matrix.

When \epsilon = 0 the wave is spectrally stable, and all of the spectra is purely imaginary.
For \epsilon > 0 a spectral instability can arise for the small amplitude wave only through the
collision of a purely imaginary polynomial eigenvalue with positive Krein index and
one with negative Krein index. This collision generically leads to a Hamiltonian-Hopf
bifurcation; see [23, Chapter 7.1.2] and the references therein. If for a fixed \mu 0 there is
a polynomial eigenvalue with positive real part, then such polynomial eigenvalues will
exist for \mu in a neighborhood of \mu 0. If for \mu 0 the polynomial eigenvalue with positive
real part is simple, then the union of all polynomial eigenvalues for \mu in a neighborhood
of \mu 0 will form a smooth curve. We will call this curve an instability bubble. In our
example any instability bubble will have an \scrO (1) imaginary part; consequently, they
will not be related to instability curves coming from the origin which arise due to a
long wavelength modulational instability. A bubble intersects the imaginary axis, and
because of the \{ \lambda , - \lambda \} reflection symmetry about the imaginary axis, the curve on
the left of the imaginary axis is a mirror image of that on the right.

The Krein eigenvalues reflect this collision of polynomial eigenvalues with opposite
index in one of two possible ways. The first is that a Krein eigenvalue has a double
zero at the time of collision; see [17, Lemma 2.8]. For small waves this cannot happen,
as the explicit form of the Krein eigenvalues shows that all of the zeros are simple for
the limiting zero amplitude wave.

As for the other possible collision scenario, recall that when \epsilon = 0 a zero of a
Krein eigenvalue corresponds to a polynomial eigenvalue with negative Krein signa-
ture, while all the removable singularities, i.e., polynomial eigenvalues of the operator
PS\bot P1(iz)PS\bot , correspond to polynomial eigenvalues with positive Krein signature. If
a simple zero is isolated, then the Krein matrix being meromorphic implies via a wind-
ing number calculation that the zero remains simple for small perturbations. More-
over, the spectral symmetry implies the polynomial eigenvalue must remain purely
imaginary. Now, suppose that a simple zero coincides with a simple removable sin-
gularity, so when \epsilon = 0 the winding number is again one. For the problem at hand
this situation is realized when a zero of one of the Krein eigenvalues intersects one
of the removable singularities, zpn. In general, this intersection must be computed
numerically. Assume that upon perturbation the singularity is no longer removable---
it will remain simple. In this case the invariance of the winding number to small
perturbation implies there must now be two zeros. The spectral symmetry implies
these correspond to either two purely imaginary polynomial eigenvalues or a pair of
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polynomial eigenvalues with nonzero real part. In the former case, the invariance
of the HKI to small perturbation implies that one polynomial eigenvalue will have
positive Krein signature, whereas the other will have negative Krein signature. The
latter case corresponds to the onset of a Hamiltonian-Hopf bifurcation. An analytic
argument which leads to the same conclusion is presented in [17, section 2.4].

In conclusion, the total number of bubbles that can form is bounded above by
the number of intersections of Krein eigenvalues with poles. Supposing that the HKI
is fixed for all \mu , this leaves open the possibility that the number of bubbles is greater
than KHam. For example, suppose KHam = 2, so that for each \mu there can be at most
two polynomial eigenvalues with positive real part. Since there will be two Krein
eigenvalues, for each \mu there can be at most two associated bubbles. However, overall
there can be more than two bubbles. Suppose there is a sequence 0 < \mu 1 < \mu 2 < \cdot \cdot \cdot <
\mu N for which a Krein eigenvalue intersects a pole. A Hamiltonian-Hopf bifurcation is
then possible for \mu near each \mu j , which leaves open the possibility of having up to N
bubbles.

Remark 4.4. More generally, if k polynomial eigenvalues with negative signature
coincide with a removable singularity for the Krein matrix of order \ell , then upon
perturbation the invariance of the winding number implies that k + \ell polynomial ei-
genvalues will be created via the collision. The invariance of the HKI implies that
k = kc+k

 - 
i , where here k

 - 
i corresponds to the number of purely imaginary polynomial

eigenvalues with negative Krein signature which are close to the unperturbed eigen-
value, and kc is the number of polynomial eigenvalues with positive real part which
are close to the unperturbed eigenvalue. As for the number of polynomial eigenvalues
associated with the order of the removable singularity, \ell = kc + k+i , where k

+
i corre-

sponds to the number of purely imaginary polynomial eigenvalues with positive Krein
signature which are close to the unperturbed eigenvalue.

For a particular example, consider the fifth-order KdV-like equation,

\partial tu+ \partial x

\biggl( 
2

15
\partial 4xu - b\partial 2xu+

3

2
u2 +

1

2
[\partial xu]

2 + u\partial 2xu

\biggr) 
= 0.(4.10)

This weakly nonlinear long-wave equation arises as an approximation to the classical
gravity-capillary water-wave problem [5]. Here u(x, t) is the surface elevation with
respect to the underlying normal water height, and b \in R is the offset of the Bond
number (a measure of surface tension) from the value 1/3. In traveling coordinates,
z = x - ct, (4.10) becomes

\partial tu+ \partial z

\biggl( 
2

15
\partial 4zu - b\partial 2zu - cu+

3

2
u2 +

1

2
[\partial zu]

2 + u\partial 2zu

\biggr) 
= 0.(4.11)

The wavespeed c is a free parameter. To the best of our knowledge the spectral
stability of small periodic waves to (4.10) has not yet been studied. However, the
spectral stability of small spatially periodic waves to the Kawahara equation, which
is (4.10) with the last two terms in the open brackets removed, was recently studied
by [39].

First consider the existence problem. As discussed by [36, section 4] (also see [5]),
the fourth-ODE,

2

15
\partial 4zu - b\partial 2zu+

3

2
u2 +

1

2
[\partial zu]

2 + u\partial 2zu = 0,
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is a reversible Hamiltonian system. The position and momentum variables are

q1 = u, q2 = \partial zu, p1 =  - 2

15
\partial 3zu+ b\partial zu - u\partial zu, p2 =

2

15
\partial 2zu,

and the (analytic) Hamiltonian is

H =  - 1

2
q31  - 

1

2
cq21 + p1q1  - 

1

2
bq22 +

15

4
p22 +

1

2
q1q

2
2 .

The symplectic matrix for the system is the canonical one. Setting

c = c0 :=
2

15
+ b,

the eigenvalues for the linearization of this Hamiltonian system about the origin satisfy

r2 =  - 1, r2 = 1 +
15

2
b.

If b >  - 2/15, then the center manifold is two-dimensional, and the existence of a fam-
ily of periodic orbits follows from reversibility. If b <  - 2/15, but b \not =  - 2(1 +m2)/15
for m = 1, 2, . . . (the nonresonance condition), then one can invoke the Lyapunov
center theorem to conclude the existence of a family of small periodic orbits with
period close to 2\pi (see [3, 42] for a discussion). In either case, the period can be
fixed to be 2\pi via a rescaling of the spatial variable. We will assume for the sake of
exposition that b =  - 8/15, so c0 =  - 6/15. For this value of b the ODE system is not
in resonance.

We now consider the spectral stability of the periodic wave. For the unperturbed
problem the operator \scrA 0 is

\scrA 0 =
2

15
(\partial z + i\mu )4 +

8

15
(\partial z + i\mu )2 +

6

15
,

so the dispersion relationship is

d(n, \mu ) =
2

15
(n+ \mu )4  - 8

15
(n+ \mu )2 +

6

15
.

It is straightforward to check that d(n, \mu ) > 0 for \mu /\in \{  - 2,+1\} . Moreover, we have
d(+1, \mu ) < 0, and

d( - 2, \mu )

\Biggl\{ 
> 0, 0 < \mu < \mu ch,

< 0, \mu ch < \mu < 1/2,

where
\mu ch := 2 - 

\surd 
3 \sim 0.26795.

Consequently,

n(\scrA 0) =

\Biggl\{ 
1, 0 < \mu < \mu ch,

2, \mu ch < \mu < 1/2.

Since the negative index of an invertible operator is unchanged for small perturbations,
we know there is a 0 < \mu 0 \ll 1 such that if \mu is in one of two intervals,

\mu \in (\mu 0, \mu ch  - \mu 0) \cup (\mu ch + \mu 0, 1/2) ,
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then n(\scrA 0) remains unchanged for sufficiently small \epsilon . Going back to (1.2), we then
know that for small \epsilon the HKI is

kr + kc + k - i =

\Biggl\{ 
1, \mu 0 < \mu < \mu ch,

2, \mu ch < \mu < 1/2.

If there are instability bubbles for the perturbed problem, there can be at most one
for \mu < \mu ch, and at most two for \mu ch < \mu < 1/2. For 0 \leq \mu < \mu 0 a curve of unstable
spectra may arise from the origin. We will not consider that here, but an example
calculation for the KdV with general nonlinearity is provided in [15, section 4].

Remark 4.5. The transition point in the index, \mu ch, depends on \epsilon . For our pur-
poses it is sufficient to consider how the number of instability bubbles depends on
the change in n(\scrA 0) between the two \mu -intervals without worrying about the precise
boundary between the intervals.

A picture of the dispersion curves for the full problem,

zn(\mu ) =  - (n+ \mu )d(n, \mu ), n \in Z,

is provided in Figure 1 for relevant values of n. If the curve is dotted, then for fixed \mu 
that corresponds to a polynomial eigenvalue with negative Krein signature. The solid
curves correspond to polynomial eigenvalues with positive Krein signature. There are
two possible values for which a bubble may appear:

z - 2(\mu ) = z+1(\mu ) \rightsquigarrow \mu =
1

10

\Biggl( 
5 - 

\sqrt{} 
5
\Bigl( 
2
\surd 
129 - 21

\Bigr) \Biggr) 
\sim 0.20711,

0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.1

0

0.1

0.2

μ

z

n=−2

n=−1

n=+1

n=0

Fig. 1. (color online) Plots of the dispersion relations, zn(\mu ), for the linearization of (4.11)
for relevant values of n when b =  - 8/15. A dotted curve corresponds to an eigenvalue with negative
Krein index, while a solid curve shows an eigenvalue with positive index. Not only is a Hamiltonian-
Hopf bifurcation possible for small \mu , it is possible for \mu \sim 0.21 and \mu \sim 0.37.
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0.2021 0.2046 0.2071 0.2096
0

1

x 10−4

μ

R
e(

λ)

0.3525 0.3575 0.3625 0.3675 0.3725
0

2

4

x 10−4

μ

R
e(

λ)

Fig. 2. (color online) Plots of the absolute value of the real part of the spectrum for various
values of \mu for a wave with approximate amplitude 2.3\times 10 - 2. The plot on the left is for \mu values
near the zero/pole collision point \mu \sim 0.207, and the plot on the right is for \mu values near the
zero/pole collision point \mu \sim 0.368. The \mu value for which the collision occurs is marked by a (red)
cross.

and

z0(\mu ) = z - 2(\mu ) \rightsquigarrow \mu = 1 - 1

5

\surd 
10 \sim 0.36754.

Consequently, for small waves there are at most two instability bubbles. For a wave
with approximate amplitude 2.3 \times 10 - 2 we have the spectral magnitude plots of
Figure 2. There we show the maximal value of the absolute value of the real part of
a polynomial eigenvalue for various values of \mu near the predicted bifurcation points,
\mu \sim 0.207 and \mu \sim 0.368. In both cases the range of \mu values for which there is an
instability is \scrO (10 - 3).

We conclude by showing plots of the Krein eigenvalues for the situation in the right
panel, \mu \sim 0.36. In Figure 3 we see a plot of the Krein eigenvalues for \mu \sim 0.368. The
panel on the left shows the plot for the trivial state, and the panel on the right shows
the plot for a small wave. Since this value of \mu is not associated with an instability
(see the right panel of Figure 2), the zeros of the Krein eigenvalues are purely real.
One of the zeros corresponds to a polynomial eigenvalue with negative Krein index.
In Figure 4 we see a plot of the Krein eigenvalues for \mu = 0.3585. The panel on the
left shows the plot for the trivial state, and the panel on the right shows the plot for
a small wave. Here there is not a zero/pole collision for the Krein eigenvalues. In the
bottom left figure we see a polynomial eigenvalue with negative Krein signature, and
a removable singularity which corresponds to a polynomial eigenvalue with positive
Krein signature. For \epsilon > 0 a zero of the Krein eigenvalue emerges from the pole (e.g.,
see the bottom right figure in Figure 3), and this zero corresponds to a polynomial
eigenvalue with positive Krein signature. As \epsilon increases these two zeros of the Krein
eigenvalue collide and leave the real axis through a saddle-node bifurcation. Since the
zeros of the Krein eigenvalues now have nonzero imaginary part, for this value of \mu 
there is a spectral instability (see the right panel of Figure 2).

D
ow

nl
oa

de
d 

09
/3

0/
20

 to
 1

38
.1

6.
12

8.
0.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A REFORMULATED KREIN MATRIX 4725

−0.2 −0.1 0 0.1 0.2

−0.1

0

0.1

z

−0.12
−5

0
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x 10−3

z

−0.2 −0.1 0 0.1 0.2

−0.1

0

0.1

z

−0.12
−5

0

5
x 10−3

z

Fig. 3. (color online) Plots of the Krein eigenvalues for the trivial state (left figures) and for a
wave with approximate amplitude 2.3\times 10 - 2 (right figures). The top two figures show the situation
at the zero/pole collision point, \mu \sim 0.368. The (red) circles correspond to polynomial eigenvalues,
and the (red) cross is the spurious zero of the Krein eigenvalues. The (green) vertical lines are
poles of the Krein matrix. In each quadrant the bottom figure is a blow-up of the top figure near
the polynomial eigenvalues of interest. Upon perturbation the zeros of the Krein eigenvalues remain
purely real.

5. Application: Location of small eigenvalues. The goal here is to use the
Krein matrix to locate small polynomial eigenvalues. We start by assuming that the
operator \scrA 0 has a collection of arbitrarily small eigenvalues. These eigenvalues may
arise, e.g., when looking at

(a) modulational stability problems for spatially periodic waves,
(b) sideband (transverse) stability problems for unidirectional waves,
(c) interaction stability problems for multipulses.

For multipulse problems, the stability of multipulses that arise from a stable single
pulse is determined solely by the location of eigenvalues near the origin [35]. These
eigenvalues reflect interaction properties of the individual pulses which make up a
multipulse. Multipulses have been a topic of interest since at least [10], which proves
the existence of a double pulse traveling wave in nerve axon equations. A summary
of early results related to multipulses can be found in [35, section 1].

Assumption 5.1. For each \epsilon > 0 there exist N eigenvalues of \scrA 0 = \scrA 0(\epsilon ), say,
\mu 1, . . . , \mu N , which satisfy | \mu j | < \epsilon . The number N is independent of \epsilon . Moreover,
there exists a positive constant C, independent of \epsilon , such that all other eigenvalues of
\scrA 0 satisfy | \mu | > C.

We will let s1, . . . , sN be the normalized set of associated eigenfunctions,

\scrA 0sj = \mu jsj , \langle sj , sk\rangle = \delta jk,
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Fig. 4. (color online) Plots of the Krein eigenvalues for the trivial state (left figures) and for a
wave with approximate amplitude 2.3\times 10 - 2 (right figures). The top two figures show the situation
at the zero/pole collision point, \mu = 0.3585. The (red) circles correspond to polynomial eigenvalues,
and the (red) cross is the spurious zero of the Krein eigenvalues. The (green) vertical lines are
poles of the Krein matrix. In each quadrant the bottom figure is a blow-up of the top figure near the
polynomial eigenvalues of interest. Note the existence of a Hamiltonian-Hopf bifurcation upon the
perturbation.

and the subspace S used in the construction of the Krein matrix will be a spectral
subspace, S = span\{ s1, . . . , sN\} . Letting PS represent the spectral projection for \scrA 0,
we have

PS\scrA 0 = \scrA 0PS , PS\bot \scrA 0 = \scrA 0PS\bot .

The Krein matrix, \bfitK S(z) for z =  - i\lambda , associated with this subspace is given in
Theorem 3.1, and the eigenvalues for the star-even operator are found by solving

\bfitK S(z)\bfitx = 0.(5.1)

We start with a preliminary result concerning the part of the Krein matrix which
generates poles.

Lemma 5.2. There exists a constant C0 > 0, independent of \epsilon , such that for
n = 1, 2 and | z| < 1/C0, PS\bot Pn(iz)PS\bot is invertible. Moreover, for | z| sufficiently
small there is the expansion

(PS\bot Pn(iz)PS\bot )
 - 1

= [\scrI +\scrO (| z| )] (PS\bot \scrA 0PS\bot )
 - 1
.

Proof. First suppose n = 1. Then

PS\bot P1(iz)PS\bot = PS\bot \scrA 0PS\bot 

\Bigl[ 
\scrI + z (PS\bot \scrA 0PS\bot )

 - 1
PS\bot (i\scrA 1)PS\bot 

\Bigr] 
.

The operator PS\bot \scrA 0PS\bot is invertible with bounded inverse, as S is a spectral sub-
space associated with the small eigenvalues. Since (PS\bot \scrA 0PS\bot )

 - 1
PS\bot (i\scrA 1)PS\bot is a

compact operator, it too is uniformly bounded. Setting
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C0 = \| (PS\bot \scrA 0PS\bot )
 - 1
PS\bot (i\scrA 1)PS\bot \| ,

the operator \scrI +z (PS\bot \scrA 0PS\bot )
 - 1
PS\bot (i\scrA 1)PS\bot is invertible for | z| < 1/C0. Moreover,

a first-order Taylor expansion provides\Bigl( 
\scrI + z (PS\bot \scrA 0PS\bot )

 - 1
PS\bot (i\scrA 1)PS\bot 

\Bigr)  - 1

= \scrI +\scrO (| z| ).

Taking the inverse yields the desired result.
If n = 2 a similar argument gives the same result once one writes

PS\bot P2(iz)PS\bot = PS\bot \scrA 0PS\bot 

\Bigl[ 
\scrI + z (PS\bot \scrA 0PS\bot )

 - 1
PS\bot (i\scrA 1  - z\scrA 2)PS\bot 

\Bigr] 
and then notes that by assumption (PS\bot \scrA 0PS\bot )

 - 1
PS\bot \scrA 2PS\bot is also compact.

Since PS\bot Pn(iz)PS\bot is invertible for small z, we know through the argument in
subsection 2.1 that the following holds.

Corollary 5.3. \lambda 0 is a small polynomial eigenvalue if and only if det\bfitK S(z0) =
0 for z0 =  - i\lambda 0.

We now use the result of Lemma 5.2 to find an approximation of the Krein matrix
for small z.

Lemma 5.4. Suppose that n = 1. The Krein matrix is analytic for | z| < 1/C0.
Moreover, if | z| is sufficiently small the Krein matrix has the expansion

\bfitK S(z) =  - z
\Bigl[ 
diag(\mu 1, . . . , \mu N ) + z (i\scrA 1| S)

 - z2
\Bigl\{ 
 - \scrA 1PS\bot (PS\bot \scrA 0PS\bot )

 - 1
PS\bot \scrA 1| S

\Bigr\} 
+\scrO (| z| 3)

\Bigr] 
.

(5.2)

Proof. Analyticity follows from the fact that PS\bot P1(iz)PS\bot is invertible for | z| <
1/C0. Regarding the expansion, we first note that for the first term in the Krein
matrix,

(\scrP 1(iz)| S)jk = \langle sj , [\scrA 0 + z(i\scrA 1)]sk\rangle = \mu k\langle sj , sk\rangle + z\langle sj , (i\scrA 1)sk\rangle ,

so upon using the fact the eigenfunctions for \scrA 0 form an orthonormal basis,

\scrP 1(iz)| S = diag(\mu 1, . . . , \mu N ) + z (i\scrA 1| S) .

Regarding the second term of the Krein matrix, first recall that we saw in the
proof of Lemma 5.2 that for small | z| ,

PS\bot P1(iz)PS\bot = PS\bot \scrA 0PS\bot 

\Bigl[ 
\scrI + z (PS\bot \scrA 0PS\bot )

 - 1
PS\bot (i\scrA 1)PS\bot 

\Bigr] 
= PS\bot \scrA 0PS\bot [\scrI +\scrO (| z| )] ,

so upon using a Taylor expansion in z,

(PS\bot P1(iz)PS\bot )
 - 1

= [\scrI +\scrO (| z| )] (PS\bot \scrA 0PS\bot )
 - 1
.

Second, since PS\bot is a spectral projection, for any s \in S,

PS\bot \scrP 1(iz)s = zPS\bot (i\scrA 1)s.
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4728 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

Combining these two facts,\bigl( 
\scrP 1(iz)PS\bot (PS\bot \scrP 1(iz)PS\bot ) - 1PS\bot \scrP 1(iz)| S

\bigr) 
jk

= \langle sj ,\scrP 1(iz)PS\bot (PS\bot \scrP 1(iz)PS\bot ) - 1PS\bot \scrP 1(iz)sk\rangle 
= \langle PS\bot \scrP 1( - iz)asj , (PS\bot \scrP 1(iz)PS\bot ) - 1PS\bot \scrP 1(iz)sk\rangle 

= \langle zPS\bot (i\scrA 1)sj , z [\scrI +\scrO (| z| )] (PS\bot \scrA 0PS\bot )
 - 1
PS\bot (i\scrA 1)sk\rangle 

= z2\langle sj , (i\scrA 1)PS\bot (PS\bot \scrA 0PS\bot )
 - 1
PS\bot (i\scrA 1)sk\rangle +\scrO (| z| 3),

which provides,

\scrP 1(iz)PS\bot (PS\bot \scrP 1(iz)PS\bot ) - 1PS\bot \scrP 1(iz)| S
= z2(i\scrA 1)PS\bot (PS\bot \scrA 0PS\bot )

 - 1
PS\bot (i\scrA 1)| S +\scrO (| z| 3).

The final result follows upon combining the above two calculations.

Upon setting \gamma = iz the bracketed part of the Krein matrix (5.2) is approximated
by a quadratic star-even polynomial matrix,

diag(\mu 1, . . . , \mu N ) + \gamma (\scrA 1| S) + \gamma 2
\Bigl[ 
 - \scrA 1PS\bot (PS\bot \scrA 0PS\bot )

 - 1
PS\bot \scrA 1| S

\Bigr] 
.

Since | \mu j | = \scrO (\epsilon ), the polynomial eigenvalues for this matrix will be \scrO (\epsilon 1/2); conse-
quently, the smallness assumption of Lemma 5.2 regarding the polynomial eigenvalues
is satisfied. Moreover, to leading order the polynomial eigenvalues are found by ig-
noring the middle term, so the small polynomial eigenvalues are found by solving the
generalized linear eigenvalue problem,

diag(\mu 1, . . . , \mu N )\bfitv = \alpha 
\Bigl[ 
 - \scrA 1PS\bot (PS\bot \scrA 0PS\bot )

 - 1
PS\bot \scrA 1| S

\Bigr] 
\bfitv , \alpha =  - \gamma 2 = z2.

(5.3)

In conclusion, the N small eigenvalues for \scrA 0 will generate 2N small polynomial
eigenvalues, and to leading order these small polynomial eigenvalues are realized as the
eigenvalues for the generalized eigenvalue problem (5.3). Since det\bfitK S(\gamma ) is analytic,
and the winding number is invariant under small perturbations, the result is robust;
in other words, we can conclude that there will be precisely 2N small polynomial
eigenvalues for \scrP 1(iz), and these polynomial eigenvalues will be \scrO (\epsilon 1/2).

Remark 5.5. If S = ker(\scrA 0), then under the assumption \scrA 1| ker(\scrA 0) is the zero
matrix

 - \scrA 1PS\bot (PS\bot \scrA 0PS\bot )
 - 1
PS\bot \scrA 1| S =  - \scrA 1\scrA  - 1

0 \scrA 1| ker(\scrA 0),

which is precisely the constraint matrix associated with the HKI calculation for linear
star-even problems; see (1.2).

If n = 2, then an argument similar to that provided for Lemma 5.4 provides the
approximate Krein matrix for small | z| . The details of the proof will be left for the
interested reader.

Lemma 5.6. Suppose that n = 2. If | z| is sufficiently small the Krein matrix can
be written

\bfitK S(z) =  - z
\Bigl[ 
diag(\mu 1, . . . , \mu N ) + z (i\scrA 1| S)

 - z2
\Bigl( 
\scrA 2  - \scrA 1PS\bot (PS\bot \scrA 0PS\bot )

 - 1
PS\bot \scrA 1

\Bigr) 
| S +\scrO (| z| 3)

\Bigr] 
.
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Remark 5.7. If S = ker(\scrA 0), then under the assumption \scrA 1| ker(\scrA 0) is the zero
matrix \Bigl( 

\scrA 2  - \scrA 1PS\bot (PS\bot \scrA 0PS\bot )
 - 1
PS\bot \scrA 1

\Bigr) 
| S =

\bigl( 
\scrA 2  - \scrA 1\scrA  - 1

0 \scrA 1

\bigr) 
| ker(\scrA 0),

which is precisely the constraint matrix associated with the HKI calculation for qua-
dratic star-even problems; see (1.3).

6. Example: Suspension bridge equation. Motivated by observations of
traveling waves on suspension bridges, McKenna and Walter [29] proposed the model

\partial 2t u+ \partial 4xu+ u+  - 1 = 0(6.1)

to describe waves propagating on an infinitely long suspended beam, where u+ =
max(u, 0). To reduce the complexity due to the nonsmooth term u+, Chen and
McKenna [6] introduced the regularized equation,

\partial 2t u+ \partial 4xu+ eu - 1  - 1 = 0.(6.2)

Making the change of variables u  - 1 \mapsto \rightarrow u in (6.2), so that localized solutions will
decay to a baseline of 0, we will consider the equation

\partial 2t u+ \partial 4xu+ eu  - 1 = 0.(6.3)

Writing this in a co-moving frame with speed c by letting \xi = x - ct, (6.3) becomes

\partial 2t u - 2c\partial 2xtu+ \partial 4xu+ c2\partial 2xu+ eu  - 1 = 0,(6.4)

where we have renamed the independent variable back to x.
An equilibrium solution to (6.4) satisfies the ODE

\partial 4xu+ c2\partial 2xu+ eu  - 1 = 0.(6.5)

Smets and van den Berg [38, Theorem 11] prove the existence of a localized, symmetric
solution U(x) to (6.5) for almost all wavespeeds c \in (0,

\surd 
2). Van den Berg et al.

[40, Theorem 1] use a computer-assisted proof technique to show existence of such
solutions to (6.5) for all speeds c with c2 \in [0.5, 1.9]. Equation (6.5) can be written
as a first-order system in the standard way as

Y \prime = F (Y ; c),(6.6)

where Y = (y1, y2, y3, y4) = (u, \partial xu, \partial 
2
xu, \partial 

3
xu) and F : R4 \times R \rightarrow R4, given by

F (y1, y2, y3, y4; c) = (y2, y3, y4, - c2y3  - ey1 + 1),(6.7)

is smooth. Furthermore, F has the reversible symmetry F (R(Y )) =  - R(F (Y )),
where R : R4 \rightarrow R4 is the standard reversor operator defined by

R(y1, y2, y3, y4) = (y1, - y2, y3, - y4).

Equation (6.6) is Hamiltonian with energy H : R4 \times R \rightarrow R given by

H(Y ; c) = y2y4  - 
1

2
y23 +

c2

2
y22 + ey1  - y1.(6.8)
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4730 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

We note that for all c \in (0,
\surd 
2), Y = 0 is a hyperbolic equilibrium of (6.6), and the

spectrum of DF (0; c) is the quartet of eigenvalues

\mu = \pm 

\sqrt{} 
 - c2 \pm 

\surd 
c4  - 4

2
= \pm \alpha \pm i\beta (6.9)

for \alpha , \beta > 0. Thus the equilibrium at 0 has a two-dimensional stable manifoldW s(0; c)
and two-dimensional unstable manifold Wu(0; c).

We take the following hypothesis concerning the existence of a localized, symmet-
ric, primary pulse solution to (6.6).

Hypothesis 6.1. For some c0 \in (0,
\surd 
2), there exists a nontrivial, symmetric homo-

clinic orbit solution Y (x; c0) \in W s(0; c0) \cap Wu(0; c0) \subset H - 1(0; c0) to (6.6). Further-
more, the stable manifold W s(0; c0) and the unstable manifold Wu(0; c0) intersect
transversely in H - 1(0; c0) at Y (0; c0).

We have the following result, which proves the existence of homoclinic orbits
Y (x; c) for c near c0.

Lemma 6.2. Assume Hypothesis 6.1. Then there exists an open interval (c - , c+)
containing c0 such that for all c \in (c - , c+) the stable and unstable manifolds W s(0; c)
and Wu(0; c) have a one-dimensional transverse intersection in H - 1(0; c) which is a
homoclinic orbit Y (x; c). Y (x; c) is symmetric with respect to the standard reversor
operator R, and the map c \mapsto \rightarrow Y (x; c) from (c - , c+) to C(R,R4) is smooth.

Proof. Briefly, Y (0; c0) \not = 0, and it follows from the form of the Hamiltonian
in (6.8) that \nabla YH(Y (0; c0); c0) \not = 0. By the implicit function theorem, for c close
to c0, the 0-level set H - 1(0; c) contains a smooth three-dimensional manifold K(c),
with K(c0) containing Y (0; c0). The result follows from the transverse intersection of
W s(0; c0) andW

u(0; c0) in K(c0) \subset H - 1(0; c0), the smoothness of F , and the implicit
function theorem. Symmetry with respect to the reversor R follows from symmetry
of Y (0; c0) and the reversibility of (6.6).

Remark 6.3. We can choose (c - , c+) to be the maximal open interval for which
Lemma 6.2 holds. Given the existence results of [38, 40] and our own numerical
analysis, it is likely that (c - , c+) = (0,

\surd 
2).

It follows from the stable manifold theorem that for c \in (c - , c+), Y (x; c) is
exponentially localized, i.e., for any \epsilon > 0,

| Y (x; c)| \leq Ce - (\alpha  - \epsilon )| x| , x \in R,(6.10)

where \alpha depends on c and is given by (6.9). In the next lemma, we prove that
\partial cY (x; c) is also exponentially localized.

Lemma 6.4. The function \partial cY (x; c) is exponentially localized, i.e., for each c \in 
(c - , c+) and \epsilon > 0 there is a constant C so that

| \partial cY (x; c)| \leq Ce - (\alpha  - \epsilon )| x| , x \in R.(6.11)

Proof. Fix c \in (c - , c+). Since Y (x; c) solves (6.6), Y (x; c) \in C1(R,R4). Differen-
tiating (6.6) with respect to c, which we can do by Lemma 6.2, we have

Y \prime 
c (x; c) = FY (Y (x; c); c)Yc(x; c) + Fc(Y (x; c); c).(6.12)

It follows from the form of F given in (6.7) and (6.10) that Fc(Y (x; c); c) is exponen-
tially localized, i.e., for each \epsilon > 0 there is a constant C with
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| Fc(Y (x; c); c)| \leq Ce - (\alpha  - \epsilon )| x| , x \in R.(6.13)

Define the linear operator \scrL by

\scrL : C1(R,R4) \rightarrow C0(R,R4), Z \mapsto \rightarrow \scrL Z =
dZ

dx
 - FY (Y (x; c); c)Z.(6.14)

By (6.12), Fc(Y (x; c); c) \in ran\scrL . Since DF (0; c) is hyperbolic, [30, Lemma 4.2] and
the roughness theorem for exponential dichotomies [7] imply that \scrL is Fredholm with
index 0. By Hypothesis 6.1, we have ker\scrL = span\{ Y \prime (x; c)\} . Thus the set of all
bounded solutions to (6.12) is \{ Yc(x; c) + RY \prime (x; c)\} .

Next, we recast the problem in an exponentially weighted space. Choose any
\epsilon \in (0, \alpha ) and let \eta (x) be a standard mollifier function [11, section C.5]; then we
consider

Y (x; c) = Z(x; c)e - (\alpha  - \epsilon )r(x)(6.15)

with r(x) = \eta (x) \ast | x| . Note that r(x) is smooth and that r(x) = | x| and r\prime (x) = 1
for | x| > 1. Substituting (6.15) into (6.12) and simplifying, we obtain the weighted
equation

Z \prime (x; c) = [FY (Y (x; c); c) + (\alpha  - \epsilon )r\prime (x)]Z(x; c) + e(\alpha  - \epsilon )r(x)Fc(Y (x; c); c).(6.16)

By (6.13) and the definition of r(x), the function e(\alpha  - \epsilon )r(x)Fc(Y (x; c); c) is bounded.
Define the weighted linear operator \scrL \alpha  - \epsilon : C

1(R,R4) \mapsto \rightarrow C0(R,R4) by

\scrL \alpha  - \epsilon =
d

dx
 - FY (Y (x; c); c) - (\alpha  - \epsilon )r\prime (x)\scrI .(6.17)

Equations (6.16) and (6.13) imply that e(\alpha  - \epsilon )r(x)Fc(Y (x; c); c) \in ran\scrL \alpha  - \epsilon . Since
DF (0; c) - (\alpha  - \epsilon )\scrI is still hyperbolic with the same unstable dimension as DF (0; c),
it follows again from [30, Lemma 4.2] that \scrL \alpha  - \epsilon is Fredholm with index 0. Next, we
note that the stable manifold theorem implies that Y \prime (x; c) is exponentially localized
so that

| Y \prime (x; c)| \leq Ce - (\alpha  - \epsilon )| x| , x \in R.(6.18)

Since Y \prime (x; c) \in ker\scrL and e(\alpha  - \epsilon )r(x)Y \prime (x; c) is bounded, it is straightforward to verify
that e(\alpha  - \epsilon )r(x)Y \prime (x; c) \in ker\scrL \alpha  - \epsilon . Since any element in ker\scrL \alpha  - \epsilon gives an element of
ker\scrL via (6.15), we conclude that

ker\scrL \alpha  - \epsilon = span\{ e(\alpha  - \epsilon )r(x)Y \prime (x; c)\} .

Since e(\alpha  - \epsilon )r(x)Fc(Y (x; c); c) \in ran\scrL \alpha  - \epsilon , the set of all bounded solutions to (6.16) is
\{ Zc(x; c) + Re(\alpha  - \epsilon )r(x)Y \prime (x; c)\} , which implies that Yc(x; c) = Zc(x; c)e

 - (\alpha  - \epsilon )r(x) is
exponentially localized as claimed.

For c \in (c - , c+), let

U(x; c) = y1(x; c).(6.19)

Then U(x; c) is an even function and is an exponentially localized traveling wave
solution to (6.4). For the remainder of this section, we will fix c \in (c - , c+) and write
the primary pulse solution corresponding to wavespeed c as U(x). We are interested in
the existence and stability of multipulse equilibrium solutions to (6.4). A multipulse
is a localized, multimodal solution Un(x) to (6.5) which resembles multiple, well-
separated copies of the primary pulse U(x).
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6.1. Existence of pulses. First, we look at the existence of such pulses. The
linearization of (6.5) about a given solution U\ast of (6.5) is the operator \scrA 0(U

\ast ) :
H4(R) \subset L2(R) \mapsto \rightarrow L2(R), given by

\scrA 0(U
\ast ) = \partial 4x + c2\partial 2x + eU\ast .(6.20)

It follows from Lemma 6.2 that \scrA 0(U) has a one-dimensional kernel spanned by
\partial xU(x). Since \scrA 0(U) is self-adjoint, its spectrum is real. We take the following
additional hypothesis concerning the point spectrum of \scrA 0(U).

Hypothesis 6.5. The following hold concerning the spectrum of \scrA 0(U):
(a) n[\scrA 0(U)] = 1, i.e., \scrA 0(U) has a unique, simple negative eigenvalue \lambda  - .
(b) There exists \delta 0 > 0 such that the only spectrum of \scrA 0(U) in ( - \infty , \delta 0) is two

simple eigenvalues at 0 and \lambda  - .

We now have the following theorem, which is adapted from [34, Theorem 3.6]. In
all that follows, the norm | | \cdot | | \infty is the supremum norm on C(R), \langle \cdot , \cdot \rangle is the inner
product on L2(R), and | | \cdot | | is the norm on L2(R) induced from the inner product.

Theorem 6.6. Assume Hypotheses 6.1 and 6.5, and let \delta 0 > 0 be as in Hypoth-
esis 6.5. Fix a wavespeed c, and let U(x) be an exponentially localized solution to
(6.5). Then for any n \geq 2 and any sequence of nonnegative integers k1, . . . , kn - 1 with
at least one of the kj \in \{ 0, 1\} , there exists a nonnegative integer m0 and \delta > 0 with
\delta < \delta 0 such that the following hold:

(a) For any integer m with m \geq m0, there exists a unique n-modal solution
Un(x) to (6.5) which is of the form

Un(x) =
n\sum 

j=1

U j(x) + r(x),(6.21)

where each U j(x) is a translate of the primary pulse U(x). The distance
between the peaks of U j and U j+1 is 2Xj, where

Xj \approx 
\pi 

\beta 
(2m+ kj) + \~X,

\beta is defined in (6.9), and \~X is a constant. The remainder term r(x) satisfies

\| r\| \infty \leq Ce - \alpha Xmin ,(6.22)

where \alpha is defined in (6.9), and Xmin = min\{ X1, . . . , Xn - 1\} . This bound
holds for all derivatives with respect to x.

(b) The point spectrum of the linear operator \scrA 0(Un) on L2(R) contains 2n
eigenvalues in the interval ( - \infty , \delta 0), which are as follows:
(1) There are n real eigenvalues \nu 1, . . . , \nu n with | \nu j | < \delta , where \nu n = 0 is a

simple eigenvalue, and for j = 1, . . . , n - 1,

\nu j < 0 if kj is odd,
\nu j > 0 if kj is even.

We will refer to these as the small magnitude eigenvalues of \scrA 0(Un).
For j = 1, . . . , n  - 1, \nu j = \scrO (e - 2\alpha Xmin), and the corresponding eigen-
functions sj are given by
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sj =
n\sum 

k=1

djk\partial xU
k + wj ,(6.23)

where djk \in C are constants, and the remainder terms wj satisfy

\| wj\| \infty \leq Ce - 2\alpha Xmin .(6.24)

This bound holds for all derivatives with respect to x. In particular,

\| \partial xwj\| \infty \leq Ce - 2\alpha Xmin .

The eigenfunction corresponding to \nu n is sn = \partial xUn.
(2) There are n negative eigenvalues which are \delta -close to \lambda  - .

(c) The essential spectrum of \scrA 0(Un) is

\sigma ess(\scrA 0(Un)) = [1 - c4/4,\infty ).(6.25)

which is positive and bounded away from 0.

Proof. Using (6.9), the Hamiltonian (6.8), the fact that the kernel is simple, and
the fact that the Melnikov integral M =

\int \infty 
 - \infty (\partial xU)2 dx is positive, (a) follows from

[34, Theorem 3.6], except for the bound on r(x) and its derivatives with respect to x,
which follows from [33] and [35]. All eigenvalues are real since \scrA 0(Un) is self-adjoint
on L2(R). From Hypotheses 6.1 and 6.5, \scrA 0(U) has a simple eigenvalue at 0 and a
simple negative eigenvalue at \lambda  - . It follows from [1] that \scrA 0(Un) has n eigenvalues
near 0 and n negative eigenvalues near \lambda  - . This proves the eigenvalue count on
( - \infty , \delta 0) and part (b)(2). Part (b)(1) follows from [35]. We can verify directly that
\scrA 0(Un)\partial xUn = 0. Part (c) follows from the Weyl essential spectrum theorem [23,
Theorem 2.2.6] and [23, Theorem 3.1.11], since \scrA 0(Un) is exponentially asymptotic
to \scrA 0(0).

Remark 6.7. \scrA 0(Un) may in fact have additional eigenvalues \lambda with \lambda > \delta 0 > 0,
but these do not matter for the analysis. Our numerical analysis suggests that there
are in fact no additional eigenvalues.

6.2. Stability of pulses. Now that we know about the existence of single and
multiple pulses, we consider their spectral stability. To determine linear PDE stability
of the multipulse solutions constructed in Theorem 6.6, we look at the linearization of
the PDE (6.4) about Un(x), which is the quadratic operator polynomial \scrP 2(\lambda ;Un) :
H4(R,C) \subset L2(R,C) \rightarrow L2(R,C) given by

\scrP 2(\lambda ;Un) = \scrI \lambda 2 +\scrA 1\lambda +\scrA 0(Un),(6.26)

where \scrA 0(Un) is defined in (6.20), \scrI refers to the identity, and \scrA 1 =  - 2c\partial x.
First, we consider the essential spectrum. Since Un is exponentially localized,

\scrP 2(\lambda ;Un) is exponentially asymptotic to the operator

\scrP 2(\lambda ; 0) = \partial 4x + c2\partial 2x  - 2c\lambda \partial x + (\lambda 2 + 1).(6.27)

By [23, Theorem 3.1.11], \scrP 2(\lambda ;Un) is a relatively compact perturbation of \scrP 2(\lambda ; 0);
thus by the Weyl essential spectrum theorem [23, Theorem 2.2.6], \scrP 2(\lambda ;Un) and
\scrP 2(\lambda ; 0) have the same essential spectrum. To find the essential spectrum of \scrP 2(\lambda ; 0),
consider the related first-order operator \scrT (\lambda ) : H1(R,C4) \subset L2(R,C4) \rightarrow L2(R,C4)
given by
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\scrT (\lambda ) =
d

dx
 - 

\left(    
0 1 0 0
0 0 1 0
0 0 0 1

 - 1 - \lambda 2 2c\lambda  - c2 0

\right)    ,(6.28)

which we obtain by writing \scrP 2(\lambda ; 0) as a first-order system. By a straightforward
adaptation of [37, Theorem A.1] (the only difference being the presence of the fourth-
order differential operator), the operators \scrT (\lambda ) and \scrP 2(\lambda ; 0) have the same Fredholm
properties, thus the same essential spectrum. By a straightforward calculation,

\sigma ess(\scrP 2(\lambda ;Un)) = \sigma ess(\scrT (\lambda )) = \{ ir : | r| \geq \rho \} ,(6.29)

where \rho > 0 is the minimum of the function \lambda (r) = cr +
\surd 
1 + r4. The value of \rho is

positive for c \in (0,
\surd 
2), and \rho \rightarrow 0 as c \rightarrow 

\surd 
2, so the essential spectrum is purely

imaginary and bounded away from 0. Spectral stability thus depends entirely on the
point spectrum.

6.2.1. Single pulse. Before considering the spectral stability of the n-pulse, we
must show the stability of the primary pulse, U(x). In addition to Hypotheses 6.1
and 6.5, our assumptions are as follows.

Hypothesis 6.8. Regarding the PDE (6.4) and the base solution U(x),
(a) for every initial condition u(x, 0) and \partial tu(x, 0) there exists a solution u(x, t)

to (6.4) on the interval I = [0, T ], where

T = T (max\{ | | u(x, 0)| | , | | \partial tu(x, 0)| | \} ) ;

(b) the constrained energy evaluated on the wave, d(c) (see [12, equation (2.16)]
for the exact expression), is concave up,

d\prime \prime (c) =  - \partial c
\bigl( 
c\| \partial xU\| 2

\bigr) 
> 0, 0 < c2 < 2.(6.30)

We will provide numerical evidence that these hypotheses are met in subsec-
tion 6.3.

Under these assumptions, we will prove the spectral and orbital stability of the
single pulse using the HKI. However, there are first two issues that must be resolved.
First, the HKI as discussed in section 1 assumes that \scrA 0 has a compact resolvent,
which is certainly not true for the operator associated with this problem. This com-
pactness assumption is taken primarily for the sake of convenience and to remove the
possibility of a point spectrum being embedded in the essential spectrum. However,
as seen in the original formulation of the HKI for solitary waves (see [19, 20]), this
is not a necessary condition. It is sufficient to assume that the origin is an isolated
eigenvalue, and \scrA 0 is a higher-order differential operator than \scrA 1 with n[\scrA 0] < +\infty .
The interested reader should consult [24] for the case where the origin is not isolated.
The second difficulty is that these previous results for solitary waves do not immedi-
ately apply to quadratic eigenvalue problems. However, as seen in [2, section 4.1] one
can easily convert a quadratic star-even eigenvalue problem into a linear star-even
eigenvalue problem, and then apply the index theory to the reformulated problem.
Thus, we can conclude the index theory is applicable to the problem at hand, which
allows for the following stability result.

Lemma 6.9. Let c2 \in (0, 2), and let U(x) be the primary pulse solution to (6.5).
Then U(x) is spectrally and orbitally stable if and only if
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d\prime \prime (c) =  - \partial c
\bigl( 
c\| \partial xU\| 2

\bigr) 
> 0,(6.31)

where d(c) is defined in [12, equation (2.16)].

Proof. First, (6.31) is well-defined since both U and \partial xU are smooth in c by
Lemma 6.2. Next, we check that the origin is an isolated eigenvalue. The essential
spectrum of \scrA 0(U) is the same as that of \scrA 0(Un) and is given by (6.25), which is
positive and bounded away from 0. By assumption, \scrA 0(U) has a single negative
eigenvalue.

We now use the HKI to complete the proof, in particular, the formulation as
presented in (1.3). First, we note that

\scrA 1| span\{ \partial xU\} = \langle  - 2c\partial x (\partial xU) , \partial xU\rangle = 0,

where the equality follows from the fact that the primary pulse is even. Since \scrA 2 = \scrI 
is positive definite, we can write

KHam = n(\scrA 0) - n
\Bigl( \bigl[ 

\scrI  - \scrA 1\scrA  - 1
0 \scrA 1

\bigr] \bigm| \bigm| 
span\{ \partial xU\} 

\Bigr) 
= 1 - n

\Bigl( \bigl[ 
\scrI  - \scrA 1\scrA  - 1

0 \scrA 1

\bigr] \bigm| \bigm| 
span\{ \partial xU\} 

\Bigr) 
for by assumption, n(\scrA 0) = 1.

Regarding the second term,\bigl[ 
\scrI  - \scrA 1\scrA  - 1

0 \scrA 1

\bigr] \bigm| \bigm| 
span\{ \partial xU\} = \| \partial xU\| 2  - \langle ( - 2c\partial x)\scrA  - 1

0 ( - 2c\partial x)\partial xU, \partial xU\rangle 

= \| \partial xU\| 2 + 2c\langle \partial x\scrA  - 1
0 ( - 2c\partial 2xU), \partial xU\rangle .

Going back to the existence equation (6.5) and differentiating with respect to c yields

\scrA 0(U)\partial cU + 2c\partial 2xU = 0 \rightsquigarrow \scrA 0(U) - 1( - 2c\partial 2xU) = \partial cU.

Substitution and changing the order of differentiation provides

\langle \partial x\scrA 0(U) - 1( - 2c\partial 2xU), \partial xU\rangle = \langle \partial c\partial xU, \partial xU\rangle = 1

2
\partial c\| \partial xU\| 2.

In conclusion,\bigl[ 
\scrI  - \scrA 1\scrA  - 1

0 \scrA 1

\bigr] \bigm| \bigm| 
span\{ \partial xU\} = \| \partial xU\| 2 + c \partial c\| \partial xU\| 2 = \partial c

\bigl( 
c\| \partial xU\| 2

\bigr) 
.

We now have for the primary pulse,

KHam = 1 - n
\bigl[ 
\partial c
\bigl( 
c\| \partial xU\| 2

\bigr) \bigr] 
.

If d\prime \prime (c) < 0, then KHam = 1, and there is one positive real polynomial eigenvalue. If
d\prime \prime (c) > 0, the HKI is zero. Consequently, the wave is spectrally stable. Appealing to
[2, Theorem 4.1] we can further state that the wave is orbitally stable.

6.2.2. \bfitn -pulse. We now locate all potentially unstable eigenvalues of (6.26) for
an n-pulse. These include polynomial eigenvalues with positive real part, as well as
purely imaginary polynomial eigenvalues with negative Krein signature. To accom-
plish this task we use the HKI in combination with the Krein matrix. First, we
compute the HKI for (6.26), so that we have an exact count of the number of poten-
tially unstable polynomial eigenvalues. We then use the Krein matrix to find (n - 1)
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pairs of eigenvalues close to 0; each pair is either real or purely imaginary with neg-
ative Krein signature. We refer to these as small magnitude polynomial eigenvalues,
or interaction polynomial eigenvalues, since heuristically they result from interactions
between neighboring pulses. We then show that the number of potentially unstable
interaction polynomial eigenvalues is exactly the same as the HKI, from which we
conclude that we have found all of the potentially unstable eigenvalues. By Hamil-
tonian reflection symmetry, all other point spectra must be purely imaginary with
positive Krein signature.

We start with the calculation of the HKI. By Theorem 6.6 we know that \scrA 0(Un)
has precisely n eigenvalues near the origin. Let 0 \leq ns \leq n - 1 represent the number
of these eigenvalues which are negative. We have the following result concerning the
HKI for the n-pulse.

Lemma 6.10. Assume Hypotheses 6.1, 6.5, and 6.8, and let Un(x) be an n-modal
solution to (6.5). Then

KHam = n+ ns  - 1.

Proof. From Theorem 6.6, part (b), and the definition of ns, n[\scrA 0(Un)] = n+ns,
so for the HKI,

KHam = n+ ns  - n
\Bigl( \bigl[ 

\scrI  - \scrA 1\scrA  - 1
0 \scrA 1

\bigr] \bigm| \bigm| 
span\{ \partial xUn\} 

\Bigr) 
,

where \scrA 0 = \scrA 0(Un). In the proof of Lemma 6.9 we saw that when the wave depends
smoothly on c, \bigl[ 

\scrI  - \scrA 1\scrA  - 1
0 \scrA 1

\bigr] \bigm| \bigm| 
span\{ \partial xUn\} 

= \partial c
\bigl( 
c\| \partial xUn\| 2

\bigr) 
.

Since to leading order the n-pulse is n copies of the original pulse, we have

\| \partial xUn\| 2 = n\| \partial xU\| 2 +\scrO (e - \alpha Xmin).

Consequently, we can write

\partial c
\bigl( 
c\| \partial xUn\| 2

\bigr) 
= n\partial c

\bigl( 
c\| \partial xU\| 2

\bigr) 
+\scrO (e - \alpha Xmin)

=  - nd\prime \prime (c) +\scrO (e - \alpha Xmin).

Since d\prime \prime (c) > 0 by assumption, we have to leading order

\partial c
\bigl( 
c\| \partial xUn\| 2

\bigr) 
< 0.

For sufficiently well-separated pulses the sign will not change even when incorporating
the higher-order terms in the asymptotic expansion. The result now follows.

We now locate the potentially unstable polynomial eigenvalues of the quadratic
eigenvalue problem (6.26). This will be accomplished through the Krein matrix. For
the sake of exposition only we will henceforth assume that each of the small magnitude
eigenvalues \nu 1, . . . , \nu n of \scrA 0(Un) is simple. For each of these eigenvalues, denote the
associated normalized eigenfunctions as s1, . . . , sn. Since \scrA 0(Un) is self-adjoint, these
eigenfunctions are pairwise orthogonal. In the construction of the Krein matrix the
relevant subspace for the spectral problem is the span of this set of eigenfunctions
associated with the small magnitude eigenvalues of \scrA 0,

S = span\{ s1, . . . , sn\} .(6.32)

We now present the following theorem, which is the main result of this section.
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Theorem 6.11. Assume Hypotheses 6.1, 6.5, and 6.8. Let Un(x) be an n-pulse
solution to (6.5), and let \nu 1, . . . , \nu n be the small magnitude eigenvalues of \scrA 0(Un),
as defined in Theorem 6.6. Under a suitable normalization of the eigenfunctions sj,
near the origin the Krein matrix has the asymptotic expansion

 - \bfitK S(z)

z
= | | \partial xU | | 2diag(\nu 1, . . . , \nu n) + d\prime \prime (c)\bfitI nz

2 +\scrO (e - (3\alpha /2)Xmin | z| + | z| 3),(6.33)

which is diagonal to leading order.

The proof of this result is left to subsection 6.4. As a corollary, we have the fol-
lowing criteria for spectral stability and instability of the multipulse solutions Un(x).

Corollary 6.12. Let Un(x) be an n-pulse solution to (6.5) constructed as in
Theorem 6.6 using the sequence of nonnegative integers \{ k1, . . . , kn - 1\} . Assume the
same hypotheses as in Theorem 6.11. Let \nu 1, . . . , \nu n be the small magnitude eigenval-
ues of \scrA 0(Un), where \nu n = 0. Then there are (n  - 1) pairs of eigenvalues of (6.26)
close to 0, which we will term interaction polynomial eigenvalues. These are described
as follows. For each j = 1, 2, . . . , n - 1,

(a) if kj is odd (equivalently, \nu j < 0), there is a corresponding pair of purely
imaginary interaction polynomial eigenvalues,

\lambda \pm j = \pm i

\Biggl( 
\| \partial xU\| 

\sqrt{} 
| \nu j | 
d\prime \prime (c)

+\scrO 
\Bigl( 
e - (3\alpha /2)Xmin

\Bigr) \Biggr) 
,(6.34)

each of which has negative Krein signature;
(b) if kj is even (equivalently, \nu j > 0), there is a corresponding pair of real

interaction polynomial eigenvalues,

\lambda j = \pm 
\biggl( 
\| \partial xU\| 

\sqrt{} 
\nu j

d\prime \prime (c)
+\scrO 

\Bigl( 
e - (3\alpha /2)Xmin

\Bigr) \biggr) 
.

In particular, there exists a positive, real eigenvalue.
In addition, there is a geometrically simple polynomial eigenvalue at \lambda = 0 with
corresponding eigenfunction \partial xUn. All other point spectra are purely imaginary and
have positive Krein signature.

Remark 6.13. In other words, if all the small magnitude eigenvalues of \scrA 0(Un) are
negative, and if the individual pulses are sufficiently well-separated, then the n-pulse
is spectrally stable; otherwise, it is unstable.

While we can find the interaction polynomial eigenvalues using Lin's method as
in [35], using the Krein matrix allows us to also determine the Krein signatures of any
purely imaginary interaction polynomial eigenvalues. This additional information is
needed to ensure that via the HKI all of the potentially unstable point spectra have
small magnitude.

Proof. By Corollary 5.3 the small polynomial eigenvalues are found by solving
det\bfitK S(z) = 0. This is equivalent to finding zeros of the Krein eigenvalues. For
j = 1, 2, . . . , n set

 - rj(z)
z

= | | \partial xU | | 2\nu j + d\prime \prime (c)z2 + \~rj(z),

where
\~rj(z) = \scrO 

\Bigl( 
e - (3\alpha /2)Xmin | z| + | z| 3

\Bigr) 
.
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Note that the first two terms in  - rj(z)/z are the diagonal entries of the Krein matrix.
Since to leading order the Krein matrix is diagonal, by [16] these are valid asymptotic
expressions for the Krein eigenvalues. The small and nonzero polynomial eigenvalues
are found by solving

| | \partial xU | | 2\nu j + d\prime \prime (c)z2 + \~rj(z) = 0, j = 1, 2, . . . , n.(6.35)

First suppose that z is real, so the Krein matrix is Hermitian. The Krein eigen-
values are then real-valued; in particular, the error term, \~rj(z), is real-valued. Recall
that d\prime \prime (c) > 0. Suppose that \nu j < 0, and set

\epsilon 2j =  - | | \partial xU | | 2\nu j
d\prime \prime (c)

> 0.(6.36)

Equation (6.35) can then be rewritten

z2  - \epsilon 2j +\scrO 
\Bigl( 
e - (3\alpha /2)Xmin | z| + | z| 3

\Bigr) 
= 0.(6.37)

Letting y = \epsilon jz and noting that \epsilon j = \scrO (e - \alpha Xmin), (6.37) becomes

y2  - 1 +\scrO 
\Bigl( 
\epsilon 
1/2
j | y| + \epsilon | y3| 

\Bigr) 
= 0.(6.38)

For sufficiently small \epsilon j , (6.38) has two roots, y = \pm 1+\scrO (\epsilon 
1/2
j ). Thus, for sufficiently

large Xmin, (6.35) has two solutions,

z\pm j = \pm | | \partial xU | | 
\sqrt{} 
 - \nu j
d\prime \prime (c)

+\scrO (e - (3\alpha /2)Xmin).

The Krein eigenvalue, rj(z), has a simple zero at z\pm j . Since to leading order,

r\prime j(z
\pm 
j ) =  - | | \partial xU | | 2\nu j  - 3d\prime \prime (c)(z\pm j )2 = 2| | \partial xU | | 2\nu j < 0,

each of these polynomial eigenvalues has negative Krein signature.
Now suppose \nu j > 0, and assume z is purely imaginary, z = i\~z. In this case the

Krein matrix is no longer Hermitian, which implies that the remainder term associated
with each Krein eigenvalue is no longer necessarily real-valued. Define \epsilon 2j as in (6.36),

but this time \epsilon 2j < 0. The two zeros of the Krein eigenvalue are now

\~z\pm j = \pm | | \partial xU | | 
\sqrt{} 

\nu j
d\prime \prime (c)

+\scrO 
\Bigl( 
e - (3\alpha /2)Xmin

\Bigr) 
,

which to leading order are purely real. Going back to the original problem, there are
two interaction polynomial eigenvalues given by

\lambda \pm j = \~z\pm j .

To leading order these eigenvalues are real-valued. Under the assumption that the
small magnitude eigenvalues of \scrA 0(Un) are simple, via the asymptotic expansion \lambda \pm j
will also then be simple. By the Hamiltonian reflection symmetry of the polynomial
eigenvalues about the real axis, the fact they are real-valued to leading order implies
they are truly real-valued and come in opposite-sign pairs.

Since the kernels of (6.26) and \scrA 0(Un) are the same, we can verify directly that
\lambda = 0 is an eigenvalue of (6.26) with eigenfunction \partial xUn. We now show that all other
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point spectra are purely imaginary. We have for the small magnitude polynomial
eigenvalues, k - i = 2ns, and kr = n - 1 - ns. Thus, for the small magnitude polynomial
eigenvalues,

kr + k - i = (n - 1 - ns) + (2ns) = n - 1 + ns.

By Lemma 6.10 this is the HKI for the n-pulse. Consequently, there are no other point
polynomial eigenvalues which have positive real part, or which are purely imaginary
and have negative Krein signature.

6.3. Numerical results. In this section, we show numerical results to illustrate
the theoretical results of the previous section. First, we can construct a primary pulse
solution U(x) numerically using the string method from [4]. The top two panels of
Figure 5 show these solutions for the same values of c as in [6, Figure 3]. Next, we
compute the spectrum of the operator \scrA 0(U) numerically using the MATLAB eig

function. In the bottom panel of Figure 5 we note the presence of a simple eigenvalue
at the origin and a simple negative eigenvalue, which supports our hypotheses on the
spectrum of \scrA 0(U). As expected, we also see that the essential spectrum is positive
and bounded away from 0.

We can construct multipulse solutions numerically by joining together multiple
copies of the primary pulse and using the MATLAB fsolve function. Consecutive
distances between peaks are given by Theorem 6.6. The first four double pulse solu-
tions are shown in the top two panels of Figure 6. These double pulses are numbered

-30 -20 -10 0 10 20 30
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-50 -25 0 25 50
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Fig. 5. Primary pulse solutions U(x) to (6.5) for c = 1.354 (top left) and c = 1.40 (top right).
In the bottom panel there is the spectrum of \scrA 0(U), the linearization of (6.5) about a single pulse
U(x) for c = 1.3. For the spectral plot we use finite difference methods with N = 512 and periodic
boundary conditions. The left boundary of the essential spectrum is \lambda \sim 0.286. The spectrum to the
right of the boundary is discrete instead of continuous because of the boundary conditions.
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Fig. 6. Double pulse solutions U2(x) to (6.5) for c = 1.2. The top left panel shows double pulse
0, and the top right panel shows double pulse 1. In the bottom two panels we see the associated
spectra for \scrA 0(U2): double pulse 0 on the left, and double pulse 1 on the right.

using the integer k1 from Theorem 6.6. We verify Theorem 6.6(b) numerically by
computing the spectrum of \scrA 0(U2). The spectra of \scrA 0(U2) for double pulses 0 and 1
are shown in the bottom two panels of Figure 6. In both cases, there is an eigenvalue
at 0. For double pulse 0, there is an additional positive eigenvalue near 0, and for
double pulse 1, there is an additional negative eigenvalue near 0.

We verify Corollary 6.12 by computing the polynomial eigenvalues of (6.26) di-
rectly using the MATLAB package quadeig from [13]. For double pulse 0, \scrA 0(U2)
has one positive small magnitude eigenvalue; thus, by Corollary 6.12, (6.26) has a
polynomial eigenvalue with positive real part. For double pulse 1, the small mag-
nitude eigenvalue of \scrA 0(U2) is negative; thus by Corollary 6.12, since the distance
between the two peaks is sufficiently large, the polynomial eigenvalues of (6.26) are
purely imaginary. These are shown in Figure 7.

6.4. Proof of Theorem 6.11. Using Theorem 6.6, let Un(x) be an n-modal
solution to (6.5), and let \{ \nu 1, . . . , \nu n\} be the small magnitude eigenvalues of \scrA 0(Un)
with corresponding eigenfunctions \{ s1, . . . , sn\} . Since \scrA 0(Un) is self-adjoint, the si
are orthogonal, and for the sake of convenience we scale them so that

\langle si, sj\rangle = \| \partial xU\| 2\delta ij .(6.39)

Typically, we assume these eigenfunctions also have unit length. However, this is not
important in the construction of the Krein matrix, nor in the derived properties. Let
S = span\{ s1, . . . sn\} .

By Lemma 5.6, and using the normalization of (6.39), for small | z| the Krein
matrix is the n\times n matrix,
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Fig. 7. Polynomial eigenvalues of (6.26) for double pulses 0 (left) and 1 (right) for c = 1.2.
The eigenvalues are marked with a filled (blue) circle, and the edge of the essential spectrum is
marked with a (red) cross. The essential spectrum is discrete instead of continuous because of the
boundary conditions. For the right panel the two purely imaginary polynomial eigenvalues nearest
the origin have negative Krein signature. Here we use finite difference methods with N = 512 and
periodic boundary conditions.

 - \bfitK S(z)

z
= \| \partial xUn\| 2diag(\nu 1, . . . , \nu n) + z\bfitK 1  - z2(\| \partial xUn\| 2\bfitI n  - \bfitK 2) +\scrO (| z| 3),

(6.40)

where

(\bfitK 1)jk = \langle sj , i\scrA 1sk\rangle ,(6.41)

and

(\bfitK 2)jk = \langle \scrA 1sj , PS\bot (PS\bot \scrA 0(Un)PS\bot ) - 1PS\bot \scrA 1sk\rangle .(6.42)

This is, to leading order, a matrix-valued quadratic polynomial in z (and its complex
conjugate). The factors \| \partial xUn\| 2 on the RHS of (6.40) come from using the scaling
(6.39) for the eigenfunctions si of \scrA 0(Un). We now prove Theorem 6.11 in a series of
lemmas. In all that follows, C refers to a constant independent of x, but it may have
a different value each time it is used. The first lemma is a bound on the product of
exponentially separated pulses.

Lemma 6.14. Let U+(x) and U - (x) be localized pulses which decay exponentially
with rate \alpha and whose peaks are separated by a distance 2X. We have the following
bounds:

sup
x\in R

| U - (x)U+(x)| \leq Ce - 2\alpha X(6.43)

and

| \langle U - (x), U+(x)\rangle | \leq Ce - (3\alpha /2)X .(6.44)
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4742 TODD KAPITULA, ROSS PARKER, AND BJ\"ORN SANDSTEDE

Proof. Without loss of generality, let U\pm (x) be exponentially localized peaks
centered at \pm X, thus | U - (x)| \leq Ce - \alpha | x+X| and | U+(x)| \leq Ce - \alpha | x - X| . For x \in 
( - \infty , - X],

| U - (x)U+(x)| \leq Ce\alpha (x+X)e\alpha (x - X) = Ce2\alpha x \leq Ce - 2\alpha X ,(6.45)

and for x \in [ - X, 0],

| U - (x)U+(x)| \leq Ce - \alpha (x+X)e\alpha (x - X) = Ce - 2\alpha X .(6.46)

Bounds on [0, X] and [X,\infty ) are similar. Since these are independent of x, we obtain
the bound (6.43).

For the bound (6.44), we split the integral into four pieces:

| \langle U - (x), U+(x)\rangle | \leq 
\int  - X

 - \infty 
| U - (x)U+(x)| dx+

\int 0

 - X

| U - (x)U+(x)| dx

+

\int X

0

| U - (x)U+(x)| dx+

\int \infty 

X

| U - (x)U+(x)| dx.
(6.47)

For the first integral, we use (6.45) to get\int  - X

 - \infty 
| U - (x)U+(x)| dx \leq C

\int  - X

 - \infty 
e2\alpha xdx = Ce - 2\alpha X .

For the second integral, we use (6.46) to get\int 0

 - X

| U - (x)U+(x)| dx \leq C

\int 0

 - X

e - \alpha (x+X)e\alpha (x - X)dx \leq C

\int 0

 - X

e - \alpha (x+X)/2e\alpha (x - X)dx

\leq Ce - (3\alpha /2)X

\int 0

 - X

e(\alpha /2)xdx \leq Ce - (3\alpha /2)X .

The third and fourth integrals are similar. Combining these, we obtain (6.44).

Remark 6.15. If the hypotheses of Lemma 6.14 are satisfied, we say that U+(x)
and U - (x) are exponentially separated by 2X.

Next, we obtain a bound on the matrix \bfitK 1.

Lemma 6.16. For the matrix \bfitK 1 in (6.40),

\bfitK 1 = \scrO (e - (3\alpha /2)Xmin).(6.48)

Proof. Substituting \scrA 1 =  - 2c\partial x into (6.41), (\bfitK 1)jk = i2c\langle sj , \partial xsk\rangle . Using the
expansion (6.23) from Theorem 6.6,

\langle sj , \partial xsk\rangle =
n\sum 

m=1

djmdkm\langle \partial xUm, \partial 2xU
m\rangle +

\sum 
m\not =\ell 

djmdk\ell \langle \partial xUm, \partial 2xU
\ell \rangle 

+ \langle sj , \partial xwk\rangle +
n\sum 

\ell =1

dk\ell \langle wj , \partial 
2
xU

\ell \rangle .
(6.49)

By translation invariance of the inner product on L2(R),

\langle \partial xUm, \partial 2xU
m\rangle = \langle \partial xU, \partial x(\partial xU)\rangle = 0,
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since the operator \partial x is skew-symmetric. For m \not = \ell , Um and U \ell are exponentially
separated by at least 2Xmin; thus, by Lemma 6.14,

\langle \partial xUm, \partial 2xU
\ell \rangle = \scrO (e - (3\alpha /2)Xmin).

The last two terms in (6.49) are \scrO (e - 2\alpha Xmin) using H\"older's inequality and the bound
(6.24) from Theorem 6.6, which applies to \partial xwk as well as wj . Combining these
estimates we obtain (6.48).

Using the expansion (6.23) from Theorem 6.6, the matrix \bfitK 2 in (6.40) becomes

(\bfitK 2)jk = 4c2

\Biggl\langle 
n\sum 

m=1

djm\partial 
2
xU

m + \partial xwj ,

n\sum 
\ell =1

dk\ell PS\bot (PS\bot \scrA 0(Un)PS\bot ) - 1PS\bot \partial 2xU
\ell + PS\bot (PS\bot \scrA 0(Un)PS\bot ) - 1PS\bot \partial xwk

\Biggr\rangle 
.

(6.50)

Before we can evaluate this expression, we need to look at (PS\bot \scrA 0(Un)PS\bot ) - 1.

Lemma 6.17. PS\bot \scrA 0(Un)PS\bot : S\bot \rightarrow S\bot is an invertible linear operator with
bounded inverse.

Proof. By (6.25), the essential spectrum of \scrA 0(Un) is \sigma ess = [1,\infty ), which is
bounded away from 0. Thus the operator \scrA 0(Un) is Fredholm with index 0. Since
for the small magnitude eigenvalues \nu i of \scrA 0(Un) we have \nu i /\in [1,\infty ), the operator
A0(Un) - \nu iI is also Fredholm with index 0. Since A0(Un) - \nu iI is Fredholm, its range
is closed. Thus by the closed range theorem [43, p. 205], since \nu i \in R and A0(qn) is
self-adjoint, we have

ran(A0(qn) - \nu iI) = (ker(A0(qn) - \nu iI))
\bot 
.(6.51)

Next, we look at the operator PS\bot \scrA 0(Un). Since \scrA 0(Un) is self-adjoint and
PS\bot commutes with \scrA 0(Un), PS\bot \scrA 0(Un) is also self-adjoint. Since PS\bot A0(Un) =
A0(Un)PS\bot , the kernel of PS\bot \scrA 0(Un) contains S as well as the kernel of \scrA 0(Un),
which is contained in S. The only other elements in the kernel of PS\bot \scrA 0(Un) are
functions y for which (A0(qn)  - \nu iI)y = si, since that will be annihilated by the
projection PS\bot . But such a function cannot exist, since by (6.51), we would have
si \bot ker(A0(qn) - \nu iI), which contains si. We conclude that kerPS\bot A0(qn) = S.

Since the range of A0(qn) is closed and PS\bot is bounded, the range of PS\bot A0(qn)
is also closed. Thus by the closed range theorem and the fact that PS\bot A0(qn) is
self-adjoint,

ranPS\bot A0(qn) = (ker(PS\bot A0(qn))
\ast )\bot = (ker(PS\bot A0(qn)))

\bot = S\bot .

Since dimkerPS\bot A0(qn) = codim PS\bot A0(qn) = 2, the operator PS\bot A0(qn) is a Fred-
holm operator with index 0 and kernel S.

Thus the restriction PS\bot \scrA 0(Un)| S\bot = PS\bot \scrA 0(Un)PS\bot is invertible on S\bot . By
the definition of S and Theorem 6.6, PS\bot \scrA 0(Un)PS\bot has no eigenvalues of magni-
tude less than \delta . By the resolvent bound for normal operators, the linear operator
(PS\bot \scrA 0(Un)PS\bot ) - 1 is bounded on S\bot .

Before we can evaluate the term (PS\bot \scrA 0(Un)PS\bot ) - 1PS\bot \partial 2xU
\ell from (6.50), we

will need the following lemma, which gives an expansion for eUn(x).
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Lemma 6.18. For the n-pulse, Un(x), and for all i = 1, . . . , n,

exp(Un(x)) = exp(U i(x)) +
\sum 
j \not =i

(exp(U j(x)) - 1) +\scrO (e - \alpha Xmin).

Proof. Fix i in the expansion (6.21) and let S(x) =
\sum 

j \not =i Uj(x), so that Un =

U i + S +\scrO (e - \alpha Xmin). Since Un(x) is bounded,

exp(Un(x)) = exp(U i(x)) exp(S(x))(1 +\scrO (e - \alpha Xmin))

= exp(U i(x)) exp(S(x)) +\scrO (e - \alpha Xmin).

Using the Taylor expansion for the exponential,

exp(U i(x)) exp(S(x)) =
\infty \sum 

m=0

U i(x)m

m!

\infty \sum 
n=0

S(x)n

n!

=
\infty \sum 

m=0

U i(x)m

m!
+

\infty \sum 
n=0

S(x)n

n!
 - 1 +

\infty \sum 
m=1

U i(x)m

m!

\infty \sum 
n=1

S(x)n

n!

= exp(U i(x)) + exp(S(x)) - 1 +
\infty \sum 

m=1

U i(x)m

m!

\infty \sum 
n=1

S(x)n

n!
.

For the last term on the RHS,\bigm| \bigm| \bigm| \bigm| \bigm| 
\infty \sum 

m=1

U i(x)m

m!

\infty \sum 
n=1

S(x)n

n!

\bigm| \bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| U i(x)S(x)
\bigm| \bigm| \infty \sum 
m=0

| U i(x)| m

(m+ 1)!

\infty \sum 
n=0

| S(x)| n

(n+ 1)!

\leq 
\bigm| \bigm| U i(x)S(x)

\bigm| \bigm| e| Ui(x)| e| S(x)| 

\leq Ce - 2\alpha Xmin ,

where in the last line we used the fact that Un(x) is bounded together with the bound
(6.43) from Lemma 6.14, since U i and each peak in S are exponentially separated.
Combining all of this,

exp(Un(x)) = exp(U i(x)) + exp(S(x)) - 1 +\scrO (e - \alpha Xmin).

Repeat this procedure n - 2 more times to get the result.

We can now evaluate (PS\bot \scrA 0(Un)PS\bot ) - 1PS\bot \partial 2xU
\ell .

Lemma 6.19.

(PS\bot \scrA 0(Un)PS\bot ) - 1PS\bot \partial 2xU
\ell =  - 1

2c
PS\bot \partial cU

\ell +\scrO (e - 2\alpha Xmin).(6.52)

Proof. Let y = (PS\bot \scrA 0(Un)PS\bot ) - 1PS\bot \partial 2xU
\ell . By Lemma 6.17, this is well-

defined, and y \in S\bot . Since PS\bot \partial 2xU
\ell is smooth and (PS\bot \scrA 0(Un)PS\bot ) - 1 is bounded,

y is smooth as well and is the unique solution to the equation

(PS\bot \scrA 0(Un)PS\bot )y = PS\bot \partial 2xU
\ell ,

which simplifies to

PS\bot \scrA 0(Un)y = PS\bot \partial 2xU
\ell ,(6.53)
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since y \in S\bot . Using Lin's method as in [35], we will look for a solution to (6.53) of
the form

\~y =  - 1

2c
PS\bot \partial cU

\ell + \~w,(6.54)

where \~w \in S\bot . This ansatz is suggested by

\scrA 0(U)\partial cU =  - 2c\partial 2xU,(6.55)

which we obtain by taking u = U in (6.5) and differentiating with respect to c, which
we can do since U is smooth in c by Hypothesis 6.1. Substituting (6.54) into (6.53)
and simplifying, we have

PS\bot \scrA 0(Un)

\biggl( 
 - 1

2c
\partial cU

\ell 

\biggr) 
+ PS\bot \scrA 0(Un) \~w = PS\bot \partial 2xU

\ell .(6.56)

Using Lemma 6.18, for j = 1, . . . , n we can write the operator \scrA 0(Un) as

\scrA 0(Un) = \scrA 0(U
\ell ) +

\sum 
k \not =\ell 

(eU
k(x)  - 1) + \~h(x),(6.57)

where \~h(x) is a small remainder term with uniform bound \| \~h\| \infty = \scrO (e - \alpha Xmin).
Substituting (6.57) into the first term on the LHS of (6.56),

PS\bot 

\Biggl( 
\scrA 0(U

\ell ) +
\sum 
k \not =\ell 

(eU
k(x)  - 1) + \~h(x)

\Biggr) \biggl( 
 - 1

2c
\partial cU

\ell 

\biggr) 
+ PS\bot \scrA 0(Un) \~w = PS\bot \partial 2xU

\ell .

(6.58)

Since (6.55) holds for U = U \ell ,

PS\bot \scrA 0(U
\ell )

\biggl( 
 - 1

2c
\partial cU

\ell 

\biggr) 
= PS\bot \partial 2xU

\ell ,(6.59)

where we divided by  - 2c and applied the projection PS\bot on the left. Using this,
(6.58) simplifies to

\scrA 0(Un) \~w + PS\bot 

\left(  \sum 
k \not =\ell 

(eU
k(x)  - 1) + \~h(x)

\right)  \biggl(  - 1

2c
\partial cU

\ell 

\biggr) 
= 0,(6.60)

where we use the fact that PS\bot commutes with \scrA 0(Un), since it is a spectral projection
for \scrA 0(Un), and that \~w \in S\bot . Since \partial cU

\ell and Uk are exponentially separated for
k \not = \ell , using Lemma 6.14 and the same argument as in the proof of Lemma 6.18,

PS\bot 

\sum 
k \not =\ell 

\Bigl( 
eU

k(x)  - 1
\Bigr) 
+ \~h(x)

\biggl( 
 - 1

2c
\partial cU

\ell 

\biggr) 
= \scrO 

\bigl( 
e - \alpha Xmin

\bigr) 
.(6.61)

Since \partial cU
\ell is bounded and \| \~h\| \infty = \scrO (e - \alpha Xmin),

PS\bot \~h(x)

\biggl( 
 - 1

2c
\partial cU

\ell 

\biggr) 
= \scrO 

\bigl( 
e - \alpha Xmin

\bigr) 
.(6.62)

Using (6.61) and (6.62), equation (6.60) simplifies to the equation for \~w
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\scrA 0(Un) \~w + h(x) = 0,(6.63)

where h(x) is a small remainder term with uniform bound \| h(x)\| \infty = \scrO (e - \alpha Xmin).
We now follow the procedure in [35], which we briefly outline below. Let W =

( \~w, \partial x \~w, \partial 
2
x \~w, \partial 

3
x \~w). As in [35], we rewrite (6.63) as a first-order system for W , and

we take W to be a piecewise function consisting of the 2n pieces W\pm 
j , j = 1, . . . , n,

where

W - 
j (x) \in C0([ - Xj - 1, 0]),

W+
j (x) \in C0([0, Xj ])

with X0 = Xn = \infty . We note the domains of the functions W\pm 
j (x) overlap at the

endpoints; the second and third equations in the system (6.64) are matching conditions
for these pieces at the appropriate endpoints. Following this procedure, and using the
expansions (6.57) for \scrA 0(Un) on the jth piece, we obtain the system of equations

(W\pm 
j )\prime (x) = A(U(x))W\pm 

j (x) +Gj(x)W
\pm 
j (x) +Hj(x),

W+
j (Xi) - W - 

j+1( - Xj) = 0,

W - 
j (0) - W+

j (0) = 0,

(6.64)

where

A(U(x)) =

\left(    
0 1 0 0
0 0 1 0
0 0 0 1

 - eU(x) 0  - c2 0

\right)    , Gj(x) =

\left(    
0 0 0 0
0 0 0 0
0 0 0 0\sum 

k \not =j(1 - eU(x - \rho kj)) 0 0 0

\right)    ,

and \rho kj is the signed distance from peak of Uk to peak of U j in Un. Hj is a re-
mainder term which comes from the term h(x) in (6.63) and the remainder term in
the expansion (6.57), and we have the estimate \| Hj\| \infty = \scrO (e - \alpha Xmin). For k \not = j,
| \rho kj | \geq 2Xmin. This implies eU(x - \rho kj) = \scrO (e - \alpha Xmin) on the jth piece, thus we can use
a Taylor expansion to show \| Gj\| = \scrO (e - \alpha Xmin). Following the procedure in [35], we
obtain a unique piecewise solution W\pm 

j to the first two equations of (6.64). The third
equation is generally not satisfied, so what we have constructed is a unique solution \~y
of the form (6.54) to (6.53) which is continuous except for n - 1 jumps. By uniqueness,
we must have \~y = y, thus y is actually of the form (6.54) with \~w smooth. Finally,
Lin's method gives us the uniform bound \| \~w\| \infty = \scrO (e - 2\alpha Xmin), from which (6.52)
follows.

We prove one more lemma before we evaluate the matrix \bfitK 2 from (6.40).

Lemma 6.20. For the coefficients djk in (6.23) from Theorem 6.6,

n\sum 
m=1

djmdkm = \delta jk +\scrO (e - (3\alpha /2)Xmin).(6.65)

Proof. Using the expansion (6.23) from Theorem 6.6,

\langle sj , sk\rangle =
n\sum 

m=1

djmdkm\langle \partial xUm, \partial xU
m\rangle +

\sum 
m\not =\ell 

djmdk\ell \langle \partial xUm, \partial xU
\ell \rangle 

+ \langle sj , wk\rangle +
n\sum 

\ell =1

dk\ell \langle wj , \partial xU
\ell \rangle .

D
ow

nl
oa

de
d 

09
/3

0/
20

 to
 1

38
.1

6.
12

8.
0.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A REFORMULATED KREIN MATRIX 4747

As in Lemma 6.16, the second term on the RHS is \scrO (e - (3\alpha /2)Xmin), and the last
two terms on the RHS are \scrO (e - 2\alpha Xmin). By translation invariance, \langle \partial xUm, \partial xU

m\rangle =
\langle \partial xU, \partial xU\rangle = \| \partial xU\| 2 for all m. This reduces to

\langle sj , sk\rangle = \| \partial xU\| 2
n\sum 

m=1

djmdkm +\scrO (e - (3\alpha /2)Xmin).

Dividing by \| \partial xU\| 2 and using the orthogonality relation (6.39) gives us (6.65).

Finally, we can evaluate the matrix \bfitK 2 from (6.40).

Lemma 6.21. For the matrix \bfitK 2 in (6.40),

(\bfitK 2)jk =  - 2c\langle \partial 2xU, \partial cU\rangle \delta jk +\scrO (e - (3\alpha /2)Xmin).(6.66)

Proof. By Lemma 6.17, (PS\bot \scrA 0(Un)PS\bot ) - 1 is a bounded linear operator. Using
the bound (6.24) from Theorem 6.6,

PS\bot (PS\bot \scrA 0(Un)| S\bot ) - 1PS\bot \partial xwk = \scrO (e - 2\alpha Xmin).

Using this and (6.52) from Lemma 6.19, (6.50) becomes

(\bfitK 2)jk = 4c2

\Biggl\langle 
n\sum 

m=1

djm\partial 
2
xU

m + \partial xwj , - 
1

2c

n\sum 
\ell =1

dk\ell PS\bot \partial cU
\ell +\scrO (e - 2\alpha Xmin)

\Biggr\rangle 

=  - 2c

\left(  n\sum 
m=1

djmdkm\langle \partial 2xUm, PS\bot \partial cU
m\rangle +

\sum 
m\not =\ell 

djmdk\ell \langle \partial 2xUm, PS\bot \partial cU
l\rangle 

+
n\sum 

\ell =1

\langle \partial xwj , dk\ell \partial cU
\ell \rangle 

\right)  +\scrO (e - 2\alpha Xmin).

By (6.10) and Lemma 6.4, \partial 2xU and \partial cU are exponentially localized; thus for m \not =
\ell , \partial 2xU

m and \partial cU
\ell are exponentially separated. It follows from Lemma 6.14 that

the second term on the RHS is \scrO (e - (3\alpha /2)Xmin). Using H\"older's inequality and the
remainder bound (6.24), the third term on the RHS is \scrO (e - 2\alpha Xmin). Thus we are left
with

(\bfitK 2)jk =  - 2c
n\sum 

m=1

djmdkm\langle \partial 2xUm, PS\bot \partial cU
m\rangle +\scrO (e - (3\alpha /2)Xmin).(6.67)

To evaluate the inner product, we first evaluate PS\partial cU
m. Recalling the normalization

(6.39) and using the expansion (6.23), since the sj are orthogonal,

PS\partial cU
m =

1

\| \partial xU\| 

n\sum 
j=1

\langle sj , \partial cU
m\rangle 

=
1

\| \partial xU\| 

n\sum 
j=1

n\sum 
k=1

\langle djk\partial xU
k + wk, \partial cU

m\rangle 

=
1

\| \partial xU\| 

\left(  n\sum 
j=1

djm\langle \partial xU
m, \partial cU

m\rangle +
n\sum 

j=1

n\sum 
k \not =m

djk\langle \partial xU
k, \partial cU

m\rangle 

\right)  +\scrO (e - 2Xmin)
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=
1

\| \partial xU\| 

n\sum 
j=1

djm\langle \partial xU, \partial cU\rangle +\scrO (e - (3\alpha /2)Xmin)

= \scrO (e - (3\alpha /2)Xmin).

The third line follows from Lemma 6.14, since by (6.10) and Lemma 6.4, \partial xU and
\partial cU are exponentially localized, thus \partial xU

k and \partial cU
m are exponentially separated for

k \not = m. In the fourth line we use \langle \partial xU, \partial cU\rangle = 0, since \partial xU is an odd function and
\partial cU is an even function. From this, we have

PS\bot \partial cU
m = (\scrI  - PS)\partial cU

m = \partial cU
m +\scrO 

\Bigl( 
e - (3\alpha /2)Xmin

\Bigr) 
.

Substituting this into (6.67) and using Lemma 6.20 and translation invariance, this
becomes

(\bfitK 2)jk =  - 2c
n\sum 

m=1

djmdkm\langle \partial 2xUm, \partial cU
m\rangle =  - 2c\langle \partial 2xU, \partial cU\rangle 

n\sum 
m=1

djmdkm

=  - 2c\langle \partial 2xU, \partial cU\rangle \delta jk +\scrO 
\Bigl( 
e - (3\alpha /2)Xmin

\Bigr) 
,

which is (6.66).

Using (6.48) from Lemma 6.16 and (6.66) from Lemma 6.21, the Krein matrix
(6.40) becomes

 - \bfitK S(z)

z
= \| \partial xU\| 2diag(\nu 1, . . . , \nu n) - (\| \partial xU\| 2  - 2c\langle \partial 2xU, \partial cU\rangle )\bfitI nz

2

+\scrO (e - (3\alpha /2)Xmin | z| + | z| 3).

Integrating by parts,

 - \bfitK S(z)

z
= \| \partial xU\| 2diag(\nu 1, . . . , \nu n) - (\langle \partial xU, \partial xU\rangle + 2c\langle \partial c\partial xU, \partial xU\rangle ) \bfitI nz

2

+\scrO (e - (3\alpha /2)Xmin | z| + | z| 3)

= \| \partial xU\| 2diag(\nu 1, . . . , \nu n) - \partial c
\bigl( 
c| | \partial xU | | 2

\bigr) 
\bfitI nz

2 +\scrO 
\Bigl( 
e - (3\alpha /2)Xmin | z| + | z| 3

\Bigr) 
= \| \partial xU\| 2diag(\nu 1, . . . , \nu n) + d\prime \prime (c)\bfitI nz

2 +\scrO (e - (3\alpha /2)Xmin | z| + | z| 3),

which is (6.33) in Theorem 6.11.
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