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A REFORMULATED KREIN MATRIX FOR STAR-EVEN
POLYNOMIAL OPERATORS WITH APPLICATIONS*
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Abstract. In its original formulation the Krein matrix was used to locate the spectrum of
first-order star-even polynomial operators where both operator coefficients are nonsingular. Such
operators naturally arise when considering first-order-in-time Hamiltonian PDEs. Herein the matrix
is reformulated to allow for operator coefficients with nontrivial kernel. Moreover, it is extended
to allow for the study of the spectral problem associated with quadratic star-even operators, which
arise when considering the spectral problem associated with second-order-in-time Hamiltonian PDEs.
In conjunction with the Hamiltonian-Krein index (HKI) the Krein matrix is used to study two
problems: conditions leading to Hamiltonian-Hopf bifurcations for small spatially periodic waves,
and the location and Krein signature of small eigenvalues associated with, e.g., n-pulse problems.
For the first case we consider in detail a first-order-in-time fifth-order KdV-like equation. In the latter
case we use a combination of Lin’s method, the HKI, and the Krein matrix to study the spectrum
associated with n-pulses for a second-order-in-time Hamiltonian system which is used to model the
dynamics of a suspension bridge.
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1. Introduction. Herein we are generally concerned with the spectral stability
of waves that arise as steady-states for a nonlinear Hamiltonian system which is either
first-order or second-order in time. There are two tools which we will use to study
the spectrum. The first is the Hamiltonian-Krein index (HKI), which relates the
number of negative directions associated with the linearized energy evaluated at the
underlying wave to the number of (potentially) unstable point spectra (eigenvalues
with positive real part). If the HKI is zero, then under some fairly generic assumptions
the underlying wave will be orbitally stable. If the HKI is positive, then it provides an
upper bound on the number of unstable point eigenvalues. If it can be shown, either
analytically or numerically, that there are no eigenvalues with positive real part, then
the HKI provides the number of purely imaginary eigenvalues with negative Krein
signature.

The Krein signature of a simple purely imaginary eigenvalue of the linearization
about a wave is defined to be positive (negative) if the Hessian of the energy, also
evaluated at the wave and restricted to the corresponding eigenspace of the lineariza-
tion, is positive (negative) definite. Dynamically, at the linear level, eigenvalues with
negative Krein signature provide temporally oscillatory behavior in an unstable en-
ergy direction. Moreover, these are the foundational eigenvalues associated with the
Hamiltonian-Hopf bifurcation. Such a bifurcation can occur only if purely imaginary
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eigenvalues of opposite signature collide when doing some type of parameter continu-
ation. If it can be shown all the purely imaginary eigenvalues have positive signature,
then a Hamiltonian-Hopf bifurcation is not possible. A formal definition of the sig-
nature in the setting of star-even polynomial operators is provided in (1.1).

Now, the purely imaginary eigenvalues with negative Krein signature cannot be
easily detected via a visual examination of the spectra. Consequently, another tool is
needed. Here we use the Krein matrix, an eigenvalue detecting tool which can also
be used to determine the Krein signature of purely imaginary point eigenvalues. The
Krein matrix has properties similar to those of the Evans matrix—in particular, the
determinant being zero means that an eigenvalue has been found—except that it is
meromorphic instead of being analytic. By marrying the HKI with a spectral analysis
via the Krein matrix one can locate all the point spectra associated with dynamical
instabilities. We will illustrate the fruit of this marriage herein by considering two
problems: the spectral stability associated with small spatially periodic waves, and the
location and Krein signature of small eigenvalues associated with tail-tail interactions
in n-pulses.

We now flesh out this preliminary discussion. The linearization of the Hamiltonian
system will yield a star-even operator polynomial,

Pa(N) =Y NA;.
=0

On some Hilbert space, X, endowed with inner product, (-,-), which in turn induces
a norm, || - ||, we assume the operator coefficients Ay, are Hermitian, A3, = Az, and
the operator coefficients Az¢ i1 are skew-Hermitian, A3, , = —Agey 1. Here we let T¢
denote the adjoint of the operator 7. If n =1,

PNy =0 ~ (Ao + A1)y =0.
Assuming A; is invertible, this spectral problem is equivalent to

AT Ao =y, v = =),

which, since .Afl is skew-Hermitian and Ag is Hermitian, is the canonical form for a
Hamiltonian eigenvalue problem. Indeed, while we will not go into the details here, it
is possible via a change of variables to put any star-even problem into canonical form;
see [18, section 3] and the references therein. For our purposes it is best to leave the
problem in its original formulation.

Values Ao for which the polynomial P, (\g) is singular will be called polynomial
eigenvalues. Because of these assumed coefficient properties, the polynomial eigen-
values are symmetric with respect to the imaginary axis of the complex plane. The
eigenvalue symmetry follows from

Pr(A)® =P, (=N),

so A being a polynomial eigenvalue implies —\ is also a polynomial eigenvalue. In
order to ensure there are no polynomial eigenvalues at infinity, we assume A, is
invertible.

More can be said about the set of polynomial eigenvalues under compactness as-
sumptions (which will henceforth be assumed, except for the example considered in
section 6). Suppose the Hermitian operator Ag has compact resolvent, so the eigenval-
ues for this operator coefficient are real, are semisimple, and have finite multiplicity.
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Let Py, : X — ker(Ap) be the orthogonal projection, and set Pjo =T —Pyy: X —
ker(Ag)*. Assuming the operators

(P AoP4) "' Px A;P4 ker(Ag)t s ker(Ag)t, j=1,...,n,

are compact, the spectrum for P, () is point spectra only [2, Remark 2.2]. Moreover,
each polynomial eigenvalue has finite multiplicity, and infinity is the only possible
accumulation point for the polynomial eigenvalues.

Regarding the number of unstable polynomial eigenvalues, i.e., those polynomial
eigenvalues with positive real part, the total number can be bounded above via the
HKI. Let k, denote the total number (counting multiplicity) of real and positive
polynomial eigenvalues, and let k. be the total number (counting multiplicity) of
polynomial eigenvalues with positive real part and nonzero imaginary part. The total
number of unstable polynomial eigenvalues is k, + k..

The HKI also takes into account a subset of purely imaginary polynomial eigen-
values, namely, those with negative Krein signature. For each purely imaginary and
nonzero eigenvalue, i\g with g € R, with associated eigenspace E;y,, set
(1.1) ki (iXo) = 1 (=Xo [P (iXo)]

1

Ei/\g) :

Here n(S) denotes the number of negative eigenvalues for the Hermitian matrix S,
and —AoiP;, (Ao)[k;,, is the Hermitian matrix formed by the representation of the
Hermitian operator —iA\g P}, (iAg) restricted to the eigenspace E;y,. If the polynomial
eigenvalue is simple with associated eigenvector wu;y,, then

ki (iXo) = n (Ao (=i, (IAo)uing, Uing)) ;
in particular, if n = 1, then it takes the more familiar form
ki (1xo) = n ((Aotting, tixy)) -

See subsection 2.2 for more details. The nonnegative integer k; (i)¢) is the negative
Krein index associated with the purely imaginary eigenvalue. If &k (i\g) = 0, the
polynomial eigenvalue is said to have positive Krein signature; otherwise, it has neg-
ative Krein signature. The total negative Krein index is the sum of the individual

Krein indices,
ki =Y ki (ido).

Regarding k;, consider the collision of two simple polynomial eigenvalues on the
imaginary axis. If they have the same signature, then after the collision they will each
remain purely imaginary. On the other hand, if they have opposite Krein signature,
then it will generically be the case that after the collision the pair will have nonzero
real part, which due to the spectral symmetry means that one of the polynomial eigen-
values will have positive real part. This is the so-called Hamiltonian-Hopf bifurcation.
In the case of n = 1 the interested reader should consult [23, Chapter 7.1] for more
details regarding the case of the collision of two simple polynomial eigenvalues and
[17, 41] for the case of higher-order collisions. The case of n > 2 can be reformulated
as an n = 1 problem; see [18] and the references therein. Note that if k&~ = 0, then
no polynomial eigenvalues will leave the imaginary axis.

The HKI is defined to be the sum of the three indices,

Kttam = ke + ke + k.
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The HKI is intimately related to the operator coefficients. For the sake of exposition,
first suppose Ag, A,, are nonsingular. If X = CV, i.e., the operator is actually a
star-even matrix polynomial with nN polynomial eigenvalues,

Ko n(Ag) + (¢ — 1)N, n=20—1,
T n(Ao) 40 (1) A + (E— DN, =2

[18, Theorem 3.4]. If n > 3 the upper bound for the total number of unstable poly-
nomial eigenvalues depends upon the dimension of the space; consequently, taking
the limit N — +oo provides no meaningful information regarding the limiting case
of operator coefficients which are compact operators. Consequently, we henceforth
assume n € {1,2}.

Now, suppose Ay has a nontrivial kernel but that the highest-order coefficient is
nonsingular. If n = 1, then under the widely applicable assumptions

(a) A; : ker(Ap) — ker(Ap)t,
(b) A1A61A1|ker(,40) is invertible,

we know
(12) KHam == Il(.Ao) —n (_AIA()_lA1|ker(AO)) ;

see [15, 31] and the references therein. Regarding the operator A, the case where
(a) there is a nontrivial kernel, but where the rest of the spectra are other-
wise uniformly bounded away from the origin, is covered in [8, 22] and [23,
Chapter 5.3],
(b) the spectrum which is not bounded away from the origin is considered in
[24, 32].
If n = 2, then upon replacing condition (b) above with
(b) (.A2 — Ale_l.Al) |ker(A4) is invertible,
we know

(1.3) Ktam = 1n(Ag) + n(Az) —n ([Az — At A7 A1 Jker(ao) ) ;

see [2].
The goal of this paper is to construct a square matrix-valued function, say, K (\),

which has the properties that for A € iR,

(a) K(\) is Hermitian and meromorphic,

(b) det K(\) = 0 only if A is a polynomial eigenvalue,

(¢) K(A) can be used to determine the Krein signature of a polynomial eigen-

value.

The matrix K () is known as the Krein matrix. The properties (a) and (b) listed
above are reminiscent of those possessed by the Evans matrix, except that the Evans
matrix is analytic [23, Chapters 8-10]. Regarding (b) and (c), since the determinant
of a matrix is equal to the product of its eigenvalues, property (b) is satisfied if at
least one of the eigenvalues of the Krein matrix is zero. Henceforth, we will call the
eigenvalues of the Krein matrix, say, r;(\), the Krein eigenvalues. The determination
of the Krein signature of a purely imaginary polynomial eigenvalue takes place through
the Krein eigenvalues. If 7;(Ao) = 0 for some Ay € iR, the Krein signature is found
by considering the sign of r;-(/\o). Thus, via a plot of the Krein eigenvalues one
can graphically determine the signature of a purely imaginary polynomial eigenvalue
through the slope of the curve at a zero. The interested reader should consult the
beautiful paper by Kolldr and Miller [27] for
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(a) a graphical perspective on the Krein signature using the eigenvalues of the
self-adjoint operator, Ay + z(iA41), for z € R,
(b) Hamiltonian instability index results which arise from this graphical per-
spective.
A significant difference between our approach and that of [27] is the number of Krein
eigenvalues to be graphed; in particular, our approach gives a finite number, whereas
the approach of [27] yields a number equal to the number of eigenvalues for Ajg.
The Krein matrix was first constructed for linear polynomials of the canonical

form
L 0 0 7
Pl()\)( N £>+/\<_I 0>’

where L4 are invertible Hermitian operators with compact resolvent, and 7 denotes
the identity operator; see [17, 28]. Recent applications of the Krein matrix include a
new proof of the Jones—Grillakis instability criterion,

ke > (L) —n(Ly)],

as well as a study of the spectral problem for waves to a mathematical model for
Bose-Einstein condensates [21, 22].

The paper is organized as follows. In section 2 the Krein matrix is constructed for
star-even polynomial operators of any degree. In particular, the previous invertibility
assumption on Ay is removed. In section 3 the properties of the Krein eigenvalues are
deduced; in particular, their relation to the Krein signature of purely imaginary poly-
nomial eigenvalues is given. In section 4 the Krein eigenvalues are used to study the
Hamiltonian-Hopf bifurcation problem associated with small periodic waves. While
the underlying wave is small, it is possible for the polynomial eigenvalues to have
O(1) imaginary part (see [9, 26, 39] for a similar study using a different approach).
In section 5 we show how the Krein matrix can be used to locate small eigenvalues
which arise from some type of bifurcation. However, the analysis does not use per-
turbation theory, so it is consequently possible to use the resulting Krein matrix to
consider spectral stability for multipulse problems, where the small eigenvalues arise
from the exponentially small tail-tail interactions of a translated base pulse. Finally,
in section 6 we use the Krein matrix to study the spectral problem associated with
n-pulse solutions to the suspension bridge equation, which is a second-order-in-time
Hamiltonian PDE.

2. The Krein matrix. The Krein matrix allows us to reduce the infinite-
dimensional eigenvalue problem,

to a finite-dimensional problem,
Here K g()\) is the (square) Krein matrix. Whereas the original star-even operator
is analytic in the spectral parameter, the Krein matrix is meromorphic with poles on

the imaginary axis. The presence of these poles is the key to using the Krein matrix
to determine the Krein signature of a purely imaginary eigenvalue.
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2.1. General construction. Let S C X be a finite-dimensional subspace of
dimension ng with orthonormal basis {s;}, and let Ps : X — X be the orthogonal

projection,
ns

Psu = Z(u,sj>sj.

Jj=1

Denote the complementary orthogonal projection as
PSL =17 — Ps,

and write

u=s+ st with Psu = s, Pgru= st.

In constructing the subspace-dependent Krein matrix, K g(\), for the polyno-
mial eigenvalue problem, we will extensively use the orthogonal projections. We first
rewrite the polynomial eigenvalue problem,

(2.1) Pr(N)s + Pn(N)sT = 0.
Applying the complementary projection to (2.1) yields
(2.2) Pg1Pn(N)s + PgiPp(M\)Pgist =0.

The operator Pg1P,(\)Ps. : St + St is a star-even polynomial operator. Con-
sequently, it has the same spectral properties as the original star-even operator; in
particular, it is invertible except for a countable number of spectral values. If A is not
a polynomial eigenvalue for the operator Pg1 P, (\)Pg., then we can invert to write

st = —(PgLPp(N)Pgr) L PsiPu(N)s,
which leads to
(2.3) st = Pgis™ = —Pg. (P51 Pp(N)Ps1) ' PorPp(N)s.
If we take the inner product of (2.1) with a basis element s;, we get
(55, Pu(N)s) + (55, Pu(N)sT) = 0.
Substitution of the expression in (2.3) into the above provides
(87, Pn(N)s) — (5§, Pn(N) Pgi (Pg1Pp(N)Psi) ' PgiPp(N)s) = 0.

Writing

ns

s = Z ZL'ij,

j=1
the above expression becomes
(2.4) Ks(\Nz =0,
where the Krein matrix K g(A\) € C"s*™s has the form

K 5(A) = Pa(N)|s = Pu(N)Pss(Ps Pa(N)Pss) ™ Psr Pa(N)]s,
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where we use the notation

(Tls)i; = (si:Tsj)-

In conclusion, polynomial eigenvalues for the original problem are found via solving
(2.4), which means
det Kg(A) =0 or z=0.

What does it mean if A\ is a polynomial eigenvalue with & = 07 In this case the
associated eigenfunction for the polynomial eigenvalue, ug, satisfies

Psuo = 07 PsLUO = UgQ-
Going back to (2.1) and (2.2) we see
Pn(/\o)PSLuO =0 ~ PSLPn(AO)PSLU,O = 0.

In other words, \g is also a polynomial eigenvalue for the operator Pg. P, (Ag)Pg..
Thus, if A\g is a polynomial eigenvalue for which the associated eigenfunction resides in
St \g is also a pole for the Krein matrix. Consequently, we cannot expect to capture
such a polynomial eigenvalue by solving det K g(A) = 0. This fact will motivate our
later choice for the subspace S, as we need to know that the polynomial eigenvalues
being missed by considering the zero set of the determinant of the Krein matrix are
somehow unimportant.

The choice of the subspace is determined by looking at the Krein index of a
purely imaginary polynomial eigenvalue, A = i\g. Letting E;5, denote the generalized
eigenspace, the negative Krein index is

ki (iXo) :=n (= Ao[iP;, (iXo)] gy, )

(see [2]). Since the goal is to have the Krein matrix capture all possible polynomial
eigenvalues with negative Krein index through its determinant, we want it to be the
case that if i\g is a polynomial eigenvalue whose associated eigenfunction is in S+,
then the negative Krein index is zero. In other words, we want the Hermitian matrix,
—A0[iPy (iM0)] [k, » to be positive definite whenever i) is also a polynomial eigenvalue
for the operator Pgi P, (A)Pg..

Remark 2.1. In practice, mapping K (\) — MK (\) for some ¢ € N does not
change the above property of the Krein matrix. However, as we will see, an appropriate
choice of ¢ gives better graphical properties regarding the determination of those
polynomial eigenvalues with negative Krein signature.

Remark 2.2. Note that if A = i)\y € iR, so that the operator P,,(i)\g) is Hermitian,
then for A € iR the elements in the second matrix can be rewritten,

((PSJ-Pn<)\)PSJ-)_1|P5l77n()\)s)ij = (P51 Pn(N)si, (P Pp(A)Pgr) ' PsrPr(N)s;).

2.2. Subspace selection. We now see how the operator coefficients may dictate
the choice of the subspace S. First consider the first-order operator,

731(>\) = Ay + )\.A1,

where A( is Hermitian, and A; is skew-Hermitian. Regarding the term associated
with the calculation of the negative Krein index,

—Ao[iPy(iXo)] = —Ao(iA1).
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If 1) is an eigenfunction associated with the polynomial eigenvalue, so Py (iAg)¥o = 0,
then

—Xo(iA1) Yo = Aoto,

so we recover the “standard” definition of the negative Krein index for first-order
star-even operators,

ki (iXo) = n (=Xo[iPf (iro)]

1

]E;,\()) =1 (AO

]Ei/\o) .

We want the matrix Ag to be positive definite if E;y, C S+, If we choose

Eixg
S := N(Ap) @ ker(Ap),

where N(Ap) is the finite-dimensional negative subspace of Ag, and ker(Ag) is the
finite-dimensional kernel, then the fact that A is positive definite on S+ implies
that if i\g is a polynomial eigenvalue whose associated eigenfunction resides in S,
then the negative Krein index will be zero. Note that in this case Ps and Pg. will
be spectral projections. Further note that with this choice of subspace, if a pole of
the Krein matrix corresponds to purely imaginary polynomial eigenvalue, then it will
necessarily have positive Krein index. Consequently, all purely imaginary polynomial
eigenvalues with negative Krein index will be captured by solving det K s(\) = 0.
Now, consider the second-order operator

Pa(A) = Ao + A1 + N Ay,
where Ay, As are Hermitian, and A; is skew-Hermitian. We have
—Mo[iP5(iNo)] = —Ao(iA1) + 2M\3 As.
If ¢ is an eigenfunction associated with the polynomial eigenvalue, so Pa(iXg)1o = 0,
(= Ao(iA1) + 2XA5A2) 1o = (Ao + A§A2) .
The negative Krein index can be alternatively defined,

ki (1Xo) = 1 (=Xo[iPy(iXo)]|Es, ) = 1 ((Ao + AjA2)

1

]Ew\o) .

In order for the matrix (Ag + A3.Az)
that the eigenspace E;y, resides in the positive space of the operator Ay + A3.Az. In
the applications we consider the operator A, will be positive definite. In this case, if
we again choose

E,, t0 be positive definite, it must be true
0

S == N(Ap) @ ker(Ap),

then the operator
Ps. (Ao 4+ AjAs) P = Pgr AgPs: + AjPs: Ay Ps

will be positive definite. Consequently, if i\g is a polynomial eigenvalue whose asso-
ciated eigenfunction resides in S+, then the negative Krein index will be zero.
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3. The Krein eigenvalues. Since P,()) is a star-even polynomial operator,
the Krein matrix is a self-adjoint meromorphic family of operators in the spectral
parameter, A. In particular, the Krein matrix is Hermitian for purely imaginary .
Henceforth, write A = iz for z € R, and write the Krein matrix as

Ks(2) =Pn(i2)|s — Pp(iz) P (PgL Py (i2)Psr) "' Pyi P, (i2)]s-

Since the Krein matrix is Hermitian for real z, for each value of z there are ng
real-valued eigenvalues, r;(z). These eigenvalues of the Krein matrix are called the
Krein eigenvalues. The Krein eigenvalues are real meromorphic, as are the associated
spectral projections. If the Krein eigenvalues are simple, the associated eigenvectors
are real meromorphic. See Kato [25, Chapter VIL.3] for the details.

Since

det Kg(z) = H ri(2),
j=1

finding the zeros of the determinant of the Krein matrix is equivalent to finding the
zero set of each of the Krein eigenvalues. One of the most important properties of the
Krein eigenvalues is that the sign of the derivative at a simple zero is related to the
Krein index of that polynomial eigenvalue. In order to see this, we start with

v;(2)* K (2)v;(2)

v;(2)[7

The latter equality is a solvability condition which follows upon noting that both the
Krein eigenvalue and its associated eigenvector are meromorphic and consequently
have convergent Taylor expansions. If rj(z) = 0, then the components of the associ-
ated eigenvector correspond to the various basis elements in the subspace S; namely,
the associated eigenfunction is given by

(3.1) Ks(2)vj(z) =7j(2)v;(2)  ~ rj(2) =

!
ns j
. v
2
(32) Y= E visk+sT, v = . ,
k=1
'U%S

where the element s is determined via (2.3),

ns
st==> vl (Pss P,(iz)Pg.) " Py P, (iz)sp.
k=1

We now compute K'(z). For the first term in the Krein matrix,

d . ol s
I (0 Puliz)sg) = (si, [Py, (12)]s)-
The operator iP/ (iz) is Hermitian. Differentiating the second term requires repeated
applications of the product rule, as well as using the fact that the operator P, (iz) is
Hermitian. Since

d

&(PSLPn(iz)PSL)—l = —(Pg1Pn(iz)Pgr ) [iP. (i2)](Ps: Pp(iz) Pgi) ™,
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upon some simplification we can write

d

o — (84, Pg1 Py (i2)(Ps1 P (i2) Pgr )t Pgi Py (i2)s;)

= (s, [iP}(i2)] Pss (Pg1 Py (iz) Pg1) "' P Py(iz)s;)
+ (s, Pu(i2) Ps1 (Ps1 Py (iz) Ps1 )~ Pgu [iPy (i2)]s;)
— (84, Pp(i2) Pgs (Pg1 P (i2) Pg) " iP) (12)](Ps1 Pr(iz) Por )~ Por P (i2)s;).
The right-hand side has the compact form

500 Py Poli2) (Pss Pali2) Pos )~ P Puliz)sy) = s (R4 R%)s;) — (50, 85,),
where

R := Py (iz) Ps+ (Ps1 Pa(iz) Ps1) " Psu [iP, (i2)],

S := Py (i2) Ps1 (Ps1 Pn(iz) Ps1 ) " [iP), (12)] (Ps1 Pn(iz) Psr) ™" Psi Py (iz).
In conclusion, the derivative of the Krein matrix is

(3-3) K'(z) = [iP,(iz)]s + S|s — (R + R")[s,

where the operators R, S are defined above.

We now compute the Krein index using our decomposition of an eigenfunction.
For the sake of exposition, let us assume that the polynomial eigenvalue is simple.
Using the decomposition (3.2) with K,(z)v;(z) = 0, we have

1P, (i2)]¢ = Y vl [iP,(2)]sk — > _ vi[iP}(i2)] (Pss Pa(iz) Pss) ™" Pss Py (i2)si
k=1 k=1

Upon taking the inner product with 1, and using the fact that P, (iz) is Hermitian,
(W, [P, (i2)]) = v;(2)" ([P, (i2)]ls + Sls = (R +R?)|s) v;(2).
Upon comparing with (3.3) we conclude

(@, [P (2)]Y) = v;(2)"K'(2)v;(2),

where the eigenfunction ¢ has the expansion provided for in (3.2).
Going back to (3.1), the derivative of the Krein eigenvalue can be expressed in
terms of the eigenfunction as

(v, [iP;, (i2)]9)
|v;(2)[?
Going further back to the definition of the negative Krein index, we can conclude the

desired result. If iz is a polynomial eigenvalue with r;(z) = 0, then the Krein index
is related through the derivative via

T; (2) =
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Since our goal is to quickly and easily read off the Krein signature via a graph of
the Krein eigenvalues, we will redefine the Krein matrix as

Ks(z) = =2 [Pa(i2)|s — Pp(iz) Ps (P51 P (i2) Ps1) ' Per Paliz)|s] -

This redefinition adds a singularity to the Krein matrix at z = 0, but in the search

for nonzero polynomial eigenvalues this is an unimportant consequence. On the other

hand, the Krein eigenvalues for the new matrix are related to the original matrix

via 7;(z) = —zr;(z). Thus, at a zero of the Krein eigenvalue we have the mapping
/

7% (2) = —2r}(2), so for the new Krein matrix we have the relationship

A positive slope of a Krein eigenvalue at a zero corresponds to a polynomial eigenvalue
with positive signature, whereas a negative slope shows that the polynomial eigenvalue
has negative Krein signature.

If the zero of a Krein eigenvalue is not simple, then the corresponding polynomial
eigenvalue has a Jordan chain, and the negative Krein index depends upon the length
of the chain; see [17, section 2.2] and the references therein. For example, if 7;(z) =
7%(2) = 0 with 77/(z) # 0, then there will be a Jordan chain of length two; moreover,
the negative Krein index associated with the Jordan chain will be one. In general,
a zero of order m implies a Jordan chain of length m, and the negative Krein index
associated with that chain will be roughly half the length of the chain. We will not
provide any more details here, as in our examples the polynomial eigenvalues will be
simple. In summary, we have the following result.

THEOREM 3.1. For n € {1,2} consider the star-even polynomial,
n )
Pa(N) =) N A;,
§=0

which acts on a Hilbert space, X, with inner product, (-,-). Suppose Ay has compact
resolvent. Set P, : X — ker(Ag) to be the spectral projection onto the kernel, and
Pjo =1 — Py,. Further suppose the operator coefficients satisfy

(a) n(Ap) is finite,

(b) for j = 1,2 the operators,

-1
(Py,AoPx,) Pz, A;Px, :ker(Ag)" — ker(Ag)*t

are compact.
Regarding the Krein matriz, first let S C X be a given finite-dimensional subspace
and Pg. : X — St be the orthogonal projection. The Krein matriz associated with S
18

Ks(z) = =2 [Pu(i2)|s — Pp(iz) Ps (P51 Pn(i2) Ps1) ' Por Po(iz)|s] -

The Krein eigenvalues, r;(z) for j =1,...,dim[S], are the eigenvalues of the Krein
matriz. If z € R, the Krein eigenvalues are meromorphic. Moreover, if A = iz is a
polynomial eigenvalue with P, (iz)y = 0,

(a) then either rj(z) =0 for at least one j, or ¢ € S*,
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(b) if z € R, and if rj(z) = 0 for some j, then the Krein signature of a semi-
simple polynomial eigenvalue is determined by the slope of the graph of the
Krein eigenvalue,

Remark 3.2. Recall that the choice
S = N(Ay) & ker(Ap)

ensures that all polynomial eigenvalues with negative Krein signature are seen as zeros
of one or more Krein eigenvalues.

In its general form the Krein matrix looks to be complicated and does not appear
to have an underlying and intuitively understood structure. However, as we shall see
in our subsequent examples, the Krein matrix can have intimate connections with
dispersion relations, the Hale-Sandstede—Lin method for constructing multipulses,
etc.

4. First application: Modulational instabilities for small amplitude
periodic solutions. For our first application we show how the Krein matrix can
be used to understand the existence of an instability bubble, i.e., a curve of unstable
spectra which is attached to the imaginary axis, for small spatially periodic waves
to dispersive systems. The instabilities will not necessarily be associated with high-
frequency (long wavelength) perturbations. Without loss of generality we will assume
the spatial period is 2.

Regarding the existence problem we will assume it is of the form

(4.1) Lu—cu+ f(u) =0,

where
(a) L= Z;V:o a;j?9% with ¢, (—1)Naay > 0,
(b) ¢ € R is a free parameter (typically the wavespeed),
(¢) f(u) is a smooth nonlinearity with f(0) = f/(0) = 0.
The parameter ¢ can be adjusted via a rescaling of x. The operator L is self-adjoint

under the inner product,
2T

(fig9)= f(z)g(x) da.

0

Remark 4.1. The nonlinearity could be more general, f = f(u, d,u,...). All that
is required is that it be smooth and (at least) quadratic in the arguments near the
origin and that it be unchanged under reversibility, x — —z.

We briefly sketch the argument leading to the existence of a family of small
spatially periodic solutions. The details can be found in [14, Theorem 3.15]. The
characteristic polynomial associated with the ordinary differential operator L is

N
pe(r,0) = a;t¥r%.
j=0

Regarding the characteristic polynomial we assume there is an ¢y such that

(a) Orpe(isfo) # 0,

(b) upon setting the zero amplitude wavespeed,
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N .

(4.2) co=pe(ilo) =Y (~1) a0y,
=0

j=

there is no positive real k # 1 such that p.(ik, €o) — co = 0.
There will then exist a family of 27-periodic solutions, say, U(x), with the properties
(a) Ulx) = U(=a),
(b) U(z) = eAcos(x) + O(e?) for A >0,
(c) £ =1y + O(e) (the O(e) terms depend on A).

If (4.2) above does not hold, i.e., if there are other purely imaginary roots to
pr(r, o) — Bo = 0, then the equations on the center manifold will still be reversible.
However, the dimension of the manifold (equal to the number of purely imaginary
roots, counting multiplicity) increases, and since the reduced system is no longer
planar it is not clear if there are still periodic (versus quasi-periodic) solutions. The
case of a second additional imaginary root, +ig with ¢ > 1, is discussed by [14,
Chapter 4.3.4]. If ¢ is irrational, or if ¢ > 5, only KAM tori are expected, and
consequently only quasi-periodic solutions. In the case of strong resonance, ¢ = 2, the
equations on the center manifold are completely integrable, and there can be periodic
orbits, homoclinic orbits, and orbits homoclinic to periodic orbits. The other resonant
case of ¢ = 3 is still open. In conclusion, we can safely assume the existence of small
2m-periodic solutions to (4.1).

We now consider the spectral stability of these spatially periodic solutions. Con-
sider the KdV-like and first-order-in-time Hamiltonian system,

(4.3) Oru~+ 0y (Lu+ f(u)) =0.

The nonlinearity f(u) satisfies assumption (c) above, while
N

Lu = Zaj(?iju, (—1)Nagn > 0.
j=0

In traveling coordinates, z := x — ct, the equation becomes
o+ 0, (Lu—cu+ f(u) =0, 0% — 9%,
Upon rescaling of time and space,
T=A0t y=1_Lz,
we have the PDE to be studied,
(4.4) Oru~+ 0y (Lu — cu+ f(u)) =0,
where

N
Lu = ZajEQjagjm (—=1)Nazn > 0.
7=0

Following the previous discussion, upon setting
Co = p[,(i7 [0),

where ¢ is chosen so that p,(ik, £y) — ¢o = 0 has no integral solutions for k > 1, we
know there is a family of small 27-periodic solutions, U(z) = O(e), for 0 < e < 1.
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We now consider the spectral stability of such solutions. The linearized problem
is
Orv+ 9y (Lo —cou+ f'(U)v) =0, |f'(U)] = Ofe).
Using separation of variables, v(y,7) = e*"v(y), we arrive at the spectral problem,

(4.5) v+ 0y (Lv—cov+ f/(U)v) =0, |f(U)]=0().

We use a Bloch decomposition to understand the spectral problem; see [23, Chap-
ter 3.3]. Writing for —1/2 < u < 1/2,

v(y) = eMuly), wy +2m) = w(y),
the problem (4.5) becomes
(46) w9y +ip) (Luw — cqw+ /(U0) =0, |f(U)] = Ofe),

where

N
Ly=) azty (9, +inm)™.
=0

Because the underlying wave is even in z, it is sufficient to consider 0 < p < 1/2; in
particular, if ) is an eigenvalue associated with j, then X is an eigenvalue associated
with —p (see [15, section 4]). For fixed p the spectrum will be discrete, countable, and
have an accumulation point only at co. The full spectrum, which is essential spectra
only, will be the union of all the point spectra as p is varied over the range.

We are henceforth interested only in sideband instabilities, p > 0. Set

AQ = EM —co + f/(U)

The operator Ay is self-adjoint on the space of 27-periodic functions endowed with
the natural L?[0, 2] inner product. The invertible operator 9, +ip is skew-Hermitian.
Since Ay is self-adjoint with smooth dependence on parameters, each of the eigenvalues
of Ay is smooth in (u,€) [25]. The same can be said of the composition, (9, +
ip) Ao, except at possibly the finite number of points where there are Jordan chains.
Consequently, we will first consider the spectral problem when € = 0. Afterward, we
will make generic statements about what will happen for € > 0 small.
For 0 < u < 1/2 we rewrite the spectral problem in the star-even form,

(4.7) Aow + AAw =0, Ay = (0, +in) .

The boundary conditions associated with this problem are periodic, w(y+27) = w(y).
First assume € = 0, so that f/(U) = 0. The spectrum for (4.7) is straightforward to
compute using a Fourier analysis. Letting w(y) = ™Y for n € Z we get a sequence of
problems,
(4.8) d(n, 1) + A =

. n, - =0,

ST

where the first term is the dispersion relation associated with the steady-state problem,

N

) = (a4
§=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/30/20 to 138.16.128.0. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A REFORMULATED KREIN MATRIX 4719

We first show that the spectrum of Ay has a nonzero and finite number of negative ei-
genvalues for at least some values of u. First suppose € = 0. The existence assumption
implies d(£1,0) = 0. For small x we have the expansions

N
(4.9) A1) = % | 23 (=1)jay | i+ O,

Consequently, d(+1,u)d(—1,u) < 0 for small p, so one of d(+1, u) is negative for
small p. Consequently, n(Ag) > 1. The assumption (—1)¥asy > 0 implies there
is an Ny such that d(n,u) > 0 for |n| > Ny. Consequently, there can be at most a
finite number of negative eigenvalues, so n(Ap) < co. By continuity n(Ap) will remain
unchanged for € > 0 and small.

We now construct the Krein matrix, and then use it to analyze the spectrum. As-
sume there is a sequence ni,no, ..., nq such that d(n, x) < 0 for n € {n1,n9,...,nq},
and d(n,p) > 0 for n ¢ {n1,ng,...,n,}. Clearly, n(Ag) = q. We take as our space
S = N(Ao),

S = span{e™¥ "2V . eMaV},
Since
Pi(iz)S =S, Pi(iz)S*t =S+,

the Krein matrix as described in Theorem 3.1 collapses to

Ks(z) = 7ZP1(iZ)|S

z z
= —zdiag | d(n1, ) + e, d(ng, 1) + .
g((w) oy (g, 1) nqﬂ)

The expected poles, which are the eigenvalues of the sandwiched operator,
PgiPi(iz) Py = Pi(i2)St,

are located at 22 = —(n 4+ wp)d(n,u) for n ¢ {ni,na,...,ne} and are removable
singularities. All of the poles are polynomial eigenvalues for the spectral problem.
Since they correspond to removable singularities, the polynomial eigenvalues all have
positive Krein signature.

Remark 4.2. The poles are removable when € = 0 because [P1(\)S] N S+ = {0}.
In particular, it follows from the fact that the e = 0 problem has constant coefficients.
One expects that for € > 0, [P1(A)S] NS+ has a nontrivial intersection. Thus, the
expectation is that the poles will no longer be removable for small amplitude waves.

The Krein eigenvalues are

z
ri(z) =—z(d(n;,pn) + , J=1,...,q.
(6 === (dlngep+ =) =1
The nonzero zeros of the Krein eigenvalues,

Z;]:_(nj+u)d(nj>u)7 jzlv'-'a(L

satisfy

ri(z7) = d(nj, 1) <0,
so these zeros correspond to polynomial eigenvalues with negative Krein signature. In
conclusion, via Fourier analysis we have located all of the polynomial eigenvalues, and
through the Krein eigenvalues we have identified those which have a negative Krein
index.
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Remark 4.3. Note that for constant states, e = 0, the Krein signature can be
directly computed from the dispersion relation. For fixed p the Krein eigenvalues
are dispersion curves that correspond to polynomial eigenvalues with negative Krein
index, and the poles correspond to dispersion curves with positive Krein index. If the
two curves intersect, then there is a collision of polynomial eigenvalues with opposite
Krein signature. Consequently, for a small amplitude wave the intersection of a Krein
eigenvalue with a (potentially) removable singularity of the Krein matrix can be noted
without actually computing a Krein eigenvalue. This graphical approach toward spec-
tral stability by looking at the dispersion curves is the one taken by [9, 26, 39]. The
Krein matrix approach is more robust in the sense that while it, too, is graphical in
nature, it does not necessarily assume that the underlying waves have small ampli-
tude. In particular, the smallness assumption allows for an analytic construction
of the matrix; however, if the wave has an O(1) amplitude, then the Krein matrix
can still be constructed numerically, and the graphical analysis will still hold for this
numerically constructed matrix.

When e = 0 the wave is spectrally stable, and all of the spectra is purely imaginary.
For € > 0 a spectral instability can arise for the small amplitude wave only through the
collision of a purely imaginary polynomial eigenvalue with positive Krein index and
one with negative Krein index. This collision generically leads to a Hamiltonian-Hopf
bifurcation; see [23, Chapter 7.1.2] and the references therein. If for a fixed pg there is
a polynomial eigenvalue with positive real part, then such polynomial eigenvalues will
exist for p in a neighborhood of pp. If for po the polynomial eigenvalue with positive
real part is simple, then the union of all polynomial eigenvalues for p in a neighborhood
of pp will form a smooth curve. We will call this curve an instability bubble. In our
example any instability bubble will have an O(1) imaginary part; consequently, they
will not be related to instability curves coming from the origin which arise due to a
long wavelength modulational instability. A bubble intersects the imaginary axis, and
because of the {)\, —\} reflection symmetry about the imaginary axis, the curve on
the left of the imaginary axis is a mirror image of that on the right.

The Krein eigenvalues reflect this collision of polynomial eigenvalues with opposite
index in one of two possible ways. The first is that a Krein eigenvalue has a double
zero at the time of collision; see [17, Lemma 2.8]. For small waves this cannot happen,
as the explicit form of the Krein eigenvalues shows that all of the zeros are simple for
the limiting zero amplitude wave.

As for the other possible collision scenario, recall that when ¢ = 0 a zero of a
Krein eigenvalue corresponds to a polynomial eigenvalue with negative Krein signa-
ture, while all the removable singularities, i.e., polynomial eigenvalues of the operator
Pg.1 Py (iz) Py, correspond to polynomial eigenvalues with positive Krein signature. If
a simple zero is isolated, then the Krein matrix being meromorphic implies via a wind-
ing number calculation that the zero remains simple for small perturbations. More-
over, the spectral symmetry implies the polynomial eigenvalue must remain purely
imaginary. Now, suppose that a simple zero coincides with a simple removable sin-
gularity, so when € = 0 the winding number is again one. For the problem at hand
this situation is realized when a zero of one of the Krein eigenvalues intersects one
of the removable singularities, zP. In general, this intersection must be computed
numerically. Assume that upon perturbation the singularity is no longer removable—
it will remain simple. In this case the invariance of the winding number to small
perturbation implies there must now be two zeros. The spectral symmetry implies
these correspond to either two purely imaginary polynomial eigenvalues or a pair of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/30/20 to 138.16.128.0. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A REFORMULATED KREIN MATRIX 4721

polynomial eigenvalues with nonzero real part. In the former case, the invariance
of the HKI to small perturbation implies that one polynomial eigenvalue will have
positive Krein signature, whereas the other will have negative Krein signature. The
latter case corresponds to the onset of a Hamiltonian-Hopf bifurcation. An analytic
argument which leads to the same conclusion is presented in [17, section 2.4].

In conclusion, the total number of bubbles that can form is bounded above by
the number of intersections of Krein eigenvalues with poles. Supposing that the HKI
is fixed for all p, this leaves open the possibility that the number of bubbles is greater
than Kygam. For example, suppose Kyam = 2, so that for each u there can be at most
two polynomial eigenvalues with positive real part. Since there will be two Krein
eigenvalues, for each p there can be at most two associated bubbles. However, overall
there can be more than two bubbles. Suppose there is a sequence 0 < p1 < g < -+ <
pun for which a Krein eigenvalue intersects a pole. A Hamiltonian-Hopf bifurcation is
then possible for ;1 near each p;, which leaves open the possibility of having up to N
bubbles.

Remark 4.4. More generally, if k£ polynomial eigenvalues with negative signature
coincide with a removable singularity for the Krein matrix of order ¢, then upon
perturbation the invariance of the winding number implies that k£ + ¢ polynomial ei-
genvalues will be created via the collision. The invariance of the HKI implies that
k = kc+k;, where here k;” corresponds to the number of purely imaginary polynomial
eigenvalues with negative Krein signature which are close to the unperturbed eigen-
value, and k. is the number of polynomial eigenvalues with positive real part which
are close to the unperturbed eigenvalue. As for the number of polynomial eigenvalues
associated with the order of the removable singularity, ¢ = k. + k1+ , Where k1+ corre-
sponds to the number of purely imaginary polynomial eigenvalues with positive Krein
signature which are close to the unperturbed eigenvalue.

For a particular example, consider the fifth-order KdV-like equation,

(4.10) O+ 0y <1258§u — b02u + qu + %[&Du]2 + u@%u) =0.

This weakly nonlinear long-wave equation arises as an approximation to the classical
gravity-capillary water-wave problem [5]. Here u(x,t) is the surface elevation with
respect to the underlying normal water height, and b € R is the offset of the Bond
number (a measure of surface tension) from the value 1/3. In traveling coordinates,
z =z — ct, (4.10) becomes

411
(4.11) O + 9, (15 = 2 2

2 3 1
= 0% — b0%u — cu + ~u* + Z[0.u)* + u&fu) =0.

The wavespeed ¢ is a free parameter. To the best of our knowledge the spectral
stability of small periodic waves to (4.10) has not yet been studied. However, the
spectral stability of small spatially periodic waves to the Kawahara equation, which
is (4.10) with the last two terms in the open brackets removed, was recently studied
by [39].

First consider the existence problem. As discussed by [36, section 4] (also see [5]),
the fourth-ODE;,

2 4 2 3 o 1 2 2 _
1582u b@zu+2u +2[8zu] + ud;u =0,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/30/20 to 138.16.128.0. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4722 TODD KAPITULA, ROSS PARKER, AND BJORN SANDSTEDE

is a reversible Hamiltonian system. The position and momentum variables are
2 5 2 5
G =u, @g2=0u, p= —1—56Zu + b0, u — ud,u, p2 = 1—56Zu,

and the (analytic) Hamiltonian is

1 1 1 15 1
H= —5(1;’ - 50‘1% +p1q1 — ibqg + ZP% + 5(]1(]%'

The symplectic matrix for the system is the canonical one. Setting

2
c=co ::1—5+b,

the eigenvalues for the linearization of this Hamiltonian system about the origin satisfy
15
r? =1, 7‘2:1—|—?b.

If b > —2/15, then the center manifold is two-dimensional, and the existence of a fam-
ily of periodic orbits follows from reversibility. If b < —2/15, but b # —2(1 +m?)/15
for m = 1,2,... (the nonresonance condition), then one can invoke the Lyapunov
center theorem to conclude the existence of a family of small periodic orbits with
period close to 27 (see [3, 42] for a discussion). In either case, the period can be
fixed to be 27 via a rescaling of the spatial variable. We will assume for the sake of
exposition that b = —8/15, so ¢y = —6/15. For this value of b the ODE system is not
in resonance.

We now consider the spectral stability of the periodic wave. For the unperturbed
problem the operator Ajg is

o 2 . 4 8 . 2 6
Ag = 15(8z+1,u) +15(3z+1u) +15,

so the dispersion relationship is

2 8 6
d(n, p) = E(”+H)4 - B(”*‘H)Q T 15

It is straightforward to check that d(n,u) > 0 for pn ¢ {—2,+1}. Moreover, we have
d(+1,p4) <0, and

>0, 0< H < fheh,

<0,  pen <p<1/2,

where
fheh =2 — V3 ~ 0.26795.

Consequently,

1, 0 < i < phen,s
H(AO): % Hch
2, feh < < 1/2.

Since the negative index of an invertible operator is unchanged for small perturbations,
we know there is a 0 < pg < 1 such that if g is in one of two intervals,

JURS (:u(]nufch - :U'O) U (:U'ch + Mo, 1/2) )
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then n(Ap) remains unchanged for sufficiently small e. Going back to (1.2), we then
know that for small € the HKI is

kr+kc+ki‘={1’ po < < fch,

2, ten < < 1/2.

If there are instability bubbles for the perturbed problem, there can be at most one
for p < pen, and at most two for pen < p < 1/2. For 0 < pu < po a curve of unstable
spectra may arise from the origin. We will not consider that here, but an example
calculation for the KdV with general nonlinearity is provided in [15, section 4].

Remark 4.5. The transition point in the index, pc,, depends on e. For our pur-
poses it is sufficient to consider how the number of instability bubbles depends on
the change in n(Ap) between the two p-intervals without worrying about the precise
boundary between the intervals.

A picture of the dispersion curves for the full problem,

zn(p) = —(n+p)d(n, n), n€Z,

is provided in Figure 1 for relevant values of n. If the curve is dotted, then for fixed
that corresponds to a polynomial eigenvalue with negative Krein signature. The solid
curves correspond to polynomial eigenvalues with positive Krein signature. There are
two possible values for which a bubble may appear:

1
o) =znln) = p=15 (5 —/5 (2\/129 - 21)) ~ 0.20711,

0.2f ' ' '
\
O. l | N uuo-uu of / -
.
N O |
_

“a

|
o
to

:

.

0 0.1 0.2 0.3 0.4 0.5
u

F1G. 1. (color online) Plots of the dispersion relations, zn(u), for the linearization of (4.11)
for relevant values of n when b = —8/15. A dotted curve corresponds to an eigenvalue with negative
Krein index, while a solid curve shows an eigenvalue with positive index. Not only is a Hamiltonian-
Hopf bifurcation possible for small u, it is possible for p ~ 0.21 and p ~ 0.37.
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Fi1a. 2. (color online) Plots of the absolute value of the real part of the spectrum for various
values of p for a wave with approzimate amplitude 2.3 x 10~2. The plot on the left is for p values
near the zero/pole collision point p ~ 0.207, and the plot on the right is for u values mear the
zero/pole collision point p ~ 0.368. The u value for which the collision occurs is marked by a (red)
cross.

and 1
2o(p) = z—o(p) ~ p=1- gﬁ ~ 0.36754.

Consequently, for small waves there are at most two instability bubbles. For a wave
with approximate amplitude 2.3 x 1072 we have the spectral magnitude plots of
Figure 2. There we show the maximal value of the absolute value of the real part of
a polynomial eigenvalue for various values of y near the predicted bifurcation points,
u~ 0.207 and g ~ 0.368. In both cases the range of u values for which there is an
instability is O(1073).

We conclude by showing plots of the Krein eigenvalues for the situation in the right
panel, ;1 ~ 0.36. In Figure 3 we see a plot of the Krein eigenvalues for p ~ 0.368. The
panel on the left shows the plot for the trivial state, and the panel on the right shows
the plot for a small wave. Since this value of i is not associated with an instability
(see the right panel of Figure 2), the zeros of the Krein eigenvalues are purely real.
One of the zeros corresponds to a polynomial eigenvalue with negative Krein index.
In Figure 4 we see a plot of the Krein eigenvalues for p = 0.3585. The panel on the
left shows the plot for the trivial state, and the panel on the right shows the plot for
a small wave. Here there is not a zero/pole collision for the Krein eigenvalues. In the
bottom left figure we see a polynomial eigenvalue with negative Krein signature, and
a removable singularity which corresponds to a polynomial eigenvalue with positive
Krein signature. For € > 0 a zero of the Krein eigenvalue emerges from the pole (e.g.,
see the bottom right figure in Figure 3), and this zero corresponds to a polynomial
eigenvalue with positive Krein signature. As e increases these two zeros of the Krein
eigenvalue collide and leave the real axis through a saddle-node bifurcation. Since the
zeros of the Krein eigenvalues now have nonzero imaginary part, for this value of u
there is a spectral instability (see the right panel of Figure 2).
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F1a. 3. (color online) Plots of the Krein eigenvalues for the trivial state (left figures) and for a
wave with approzimate amplitude 2.3 x 1072 (right figures). The top two figures show the situation
at the zero/pole collision point, p ~ 0.368. The (red) circles correspond to polynomial eigenvalues,
and the (red) cross is the spurious zero of the Krein eigenvalues. The (green) vertical lines are
poles of the Krein matriz. In each quadrant the bottom figure is a blow-up of the top figure near
the polynomial etgenvalues of interest. Upon perturbation the zeros of the Krein eigenvalues remain
purely real.

5. Application: Location of small eigenvalues. The goal here is to use the
Krein matrix to locate small polynomial eigenvalues. We start by assuming that the
operator Ay has a collection of arbitrarily small eigenvalues. These eigenvalues may
arise, e.g., when looking at

(a) modulational stability problems for spatially periodic waves,

(b) sideband (transverse) stability problems for unidirectional waves,

(¢) interaction stability problems for multipulses.
For multipulse problems, the stability of multipulses that arise from a stable single
pulse is determined solely by the location of eigenvalues near the origin [35]. These
eigenvalues reflect interaction properties of the individual pulses which make up a
multipulse. Multipulses have been a topic of interest since at least [10], which proves
the existence of a double pulse traveling wave in nerve axon equations. A summary
of early results related to multipulses can be found in [35, section 1].

Nl 2NG

Assumption 5.1. For each € > 0 there exist N eigenvalues of Ay = Ay(e), say,
M, .-, N, which satisfy |pu;| < e. The number N is independent of e. Moreover,
there exists a positive constant C, independent of ¢, such that all other eigenvalues of
Ag satisty |p| > C.

We will let sq,...,sy be the normalized set of associated eigenfunctions,

Aosj = i85, (85, 5k) = Ojk,
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F1G. 4. (color online) Plots of the Krein eigenvalues for the trivial state (left figures) and for a
wave with approzimate amplitude 2.3 x 1072 (right figures). The top two figures show the situation
at the zero/pole collision point, p = 0.3585. The (red) circles correspond to polynomial eigenvalues,
and the (red) cross is the spurious zero of the Krein eigenvalues. The (green) vertical lines are
poles of the Krein matriz. In each quadrant the bottom figure is a blow-up of the top figure near the
polynomial eigenvalues of interest. Note the existence of a Hamiltonian-Hopf bifurcation upon the
perturbation.

and the subspace S used in the construction of the Krein matrix will be a spectral
subspace, S = span{si,...,sn}. Letting Pg represent the spectral projection for Ay,
we have

PSA0:A0P5'7 PsLAOZAopsL.

The Krein matrix, Kg(z) for z = —i)\, associated with this subspace is given in
Theorem 3.1, and the eigenvalues for the star-even operator are found by solving
(5.1) Kgs(z)x =0.

We start with a preliminary result concerning the part of the Krein matrix which
generates poles.

LEMMA 5.2. There exists a constant Cy > 0, independent of €, such that for
n = 1,2 and |z| < 1/Cy, Pg1 P, (iz)Pgy is invertible. Moreover, for |z| sufficiently
small there is the expansion

(Ps: Pa(iz)Ps:) ™" = [Z 4 O(|z])] (Ps: AoPss) ™.
Proof. First suppose n = 1. Then
Pg. Py(iz)Ps. = Pgi AgPsi |T + 2 (Pgi AoPs.) ™" Pg. (iAl)PSL} .

The operator Pgi AgPg1 is invertible with bounded inverse, as S is a spectral sub-
space associated with the small eigenvalues. Since (PgiAgPg.)” ! Pgi(iA1)Pg. is a
compact operator, it too is uniformly bounded. Setting
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Co = || (Ps1 AgPgs) " Psi(iA1)Ps. ]|,
the operator Z+z (Ps. AgPg:)” " Pgy (iA;)Pgv. is invertible for |z| < 1/Cy. Moreover,
a first-order Taylor expansion provides

-1
(z+ 2 (P AgPsi) " Pg. (iAl)PsL) =T+ 0(]z)).

Taking the inverse yields the desired result.
If n = 2 a similar argument gives the same result once one writes

Py Py(i2)Pg: = Pgi AgPs. [I 4 2 (Pgi AgPgi) " Pou (141 — 2A5) PSL}

and then notes that by assumption (Pg. AQPSJ_)_l Pg1 A3 Pg1 is also compact. d

Since Pgi P, (iz)Pg. is invertible for small z, we know through the argument in
subsection 2.1 that the following holds.

COROLLARY 5.3. g is a small polynomial eigenvalue if and only if det K g(zo) =
0 for zog = —i)g.

We now use the result of Lemma 5.2 to find an approximation of the Krein matrix
for small z.

LEMMA 5.4. Suppose that n = 1. The Krein matriz is analytic for |z| < 1/Cy.
Moreover, if |z| is sufficiently small the Krein matriz has the expansion

Ks(z) = —2| diag(u, .., pv) + % (1As]s)
(5.2) B . s
3 {fAlpsi (Ps. AgPs.) PSLA1|S} +0O(7] )]

Proof. Analyticity follows from the fact that Pg. Py (iz)Pg. is invertible for |z] <
1/Cy. Regarding the expansion, we first note that for the first term in the Krein
matrix,

(P1(i2)[s) 5 = (85, [Ao + 2(1A1)]sk) = (s, sk) + Z(s;, (141)sk),
so upon using the fact the eigenfunctions for Ay form an orthonormal basis,
Pl(iz)|5 = diag(m, ... ,,uN) —|—§(iA1|S) .

Regarding the second term of the Krein matrix, first recall that we saw in the
proof of Lemma 5.2 that for small |z|,

Pg. Py(iz)Ps. = Pgi AgPgi |T + 2 (Pgi AgPs.) ™" P (iAl)PsL}
= Pg1 AgPg. [T+ O(2])],
so upon using a Taylor expansion in z,
(PstPy(iz)Ps:) ™" = [T+ O(|2])] (Pg: AgPs:) ™" .
Second, since Pg. is a spectral projection, for any s € S,

Psipl (IZ)S = ZPSL (iAl)S.
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Combining these two facts,
(P1(i2) Ps1 (Ps1P1(i2) Pgr) ™ Por Py (i2)| S)j .

= (sj, P1(iz) Pg1 (Pg1P1(i2) Pg1) "' Py Py (i2)sk)

= (Pg1Py(—i%)*s, (P P1(i2) Py ) "' Py Py (iz)sk)

= (ZPs. (iA1)s;, 2 [T + O(|2])] (Ps: Ao Ps2) ™" Psx (iA1)sk)

=7%(s;, (1A1)Pg: (Pgi AoPg.) " Pgi(iAy)si) + O(|2%),
which provides,

P (i2) Pg1 (Pgi Py (i2) Psi ) "t Py Pi(i2)|s

=2%(iA1) Ps1 (Psi AgPss) ™' Por(iA)|s + O(|2%).

The final result follows upon combining the above two calculations. 0

Upon setting v = iz the bracketed part of the Krein matrix (5.2) is approximated
by a quadratic star-even polynomial matrix,

diag(p1, ..., un) + 7 (Ails) + 72 [—AlPsL (Ps:AgPss) ™! PoiAsls| .

Since || = O(e), the polynomial eigenvalues for this matrix will be O(e!/?); conse-
quently, the smallness assumption of Lemma 5.2 regarding the polynomial eigenvalues
is satisfied. Moreover, to leading order the polynomial eigenvalues are found by ig-
noring the middle term, so the small polynomial eigenvalues are found by solving the
generalized linear eigenvalue problem,

(5.3)
diag (i, ..., un)v = @ [—AlpsL (Poi AgPgi) " Poi Ails| v, a=—n2 =72

In conclusion, the N small eigenvalues for Ay will generate 2N small polynomial
eigenvalues, and to leading order these small polynomial eigenvalues are realized as the
eigenvalues for the generalized eigenvalue problem (5.3). Since det K g(7y) is analytic,
and the winding number is invariant under small perturbations, the result is robust;
in other words, we can conclude that there will be precisely 2N small polynomial
eigenvalues for P;(iz), and these polynomial eigenvalues will be O(e'/2).

Remark 5.5. If S = ker(Ap), then under the assumption Aj|ier(4,) is the zero
matrix

7A1Ps¢ (PslA()Psl)il PsiA1|S = *A1A61A1|ker(,40)a

which is precisely the constraint matrix associated with the HKI calculation for linear
star-even problems; see (1.2).

If n = 2, then an argument similar to that provided for Lemma 5.4 provides the
approximate Krein matrix for small |z|. The details of the proof will be left for the
interested reader.

LEMMA 5.6. Suppose that n = 2. If |z| is sufficiently small the Krein matriz can
be written

Ks(z) = —2| diag(u, .. pv) + % (1As]s)

= 2% (A2 = AiPss (Psr AgPs) ™ Psir) |s + O(12%)]
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Remark 5.7. If S = ker(Ap), then under the assumption A |ier(4,) is the zero
matrix

(Az — A1 Ps1 (Psi AgPs) ™! Psh‘h) ls = (A2 — A1 Ay " A1) Jker(ao)»

which is precisely the constraint matrix associated with the HKI calculation for qua-
dratic star-even problems; see (1.3).

6. Example: Suspension bridge equation. Motivated by observations of
traveling waves on suspension bridges, McKenna and Walter [29] proposed the model

(6.1) Ofu+0ju+ut —1=0

to describe waves propagating on an infinitely long suspended beam, where ut =
max(u,0). To reduce the complexity due to the nonsmooth term u*, Chen and
McKenna [6] introduced the regularized equation,

(6.2) OPu+dtu+e* P —1=0.

Making the change of variables u — 1 — u in (6.2), so that localized solutions will
decay to a baseline of 0, we will consider the equation

6.3 Ofu+ 0fu+e* —1=0.
t T
Writing this in a co-moving frame with speed ¢ by letting £ = « — ¢t, (6.3) becomes
6.4 0%u — 2¢0%u + *u+ Pu+e* —1 =0,
t xt T x

where we have renamed the independent variable back to x.
An equilibrium solution to (6.4) satisfies the ODE

(6.5) Obu+ 0*u+e" —1=0.

Smets and van den Berg [38, Theorem 11] prove the existence of a localized, symmetric
solution U(z) to (6.5) for almost all wavespeeds ¢ € (0,v/2). Van den Berg et al.
[40, Theorem 1] use a computer-assisted proof technique to show existence of such
solutions to (6.5) for all speeds ¢ with ¢ € [0.5,1.9]. Equation (6.5) can be written
as a first-order system in the standard way as

(6.6) Y' = F(Y;c),
where Y = (y1,¥2,¥3, 1) = (4, Opu, 02u, 02u) and F : R* x R — R*%, given by
(6.7) F(y1,92,y3,y4; ¢) = (y2,Y3, Y4, —*y3 — 1 + 1),

is smooth. Furthermore, F' has the reversible symmetry F(R(Y)) = —R(F(Y)),
where R : R* — R* is the standard reversor operator defined by

R(y1,92,y3,Y1) = (Y1, —Y2,Y3, —Ya)-
Equation (6.6) is Hamiltonian with energy H : R* x R — R given by

C2

2?J§+ey1 — Y1

1
(6.8) H(Y;¢) = yoys — §y§ +
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We note that for all ¢ € (0,1/2), Y = 0 is a hyperbolic equilibrium of (6.6), and the
spectrum of DF'(0;¢) is the quartet of eigenvalues

_ 2 :t 4 4
(6.9) p=t Cf Ve —taxif
for v, 8 > 0. Thus the equilibrium at 0 has a two-dimensional stable manifold 1W*(0; ¢)
and two-dimensional unstable manifold W*(0; c).
We take the following hypothesis concerning the existence of a localized, symmet-
ric, primary pulse solution to (6.6).

Hypothesis 6.1. For some ¢g € (0, \/i), there exists a nontrivial, symmetric homo-
clinic orbit solution Y (z;¢co) € W*(0;¢o) N W%(0;¢0) C H=1(0;¢) to (6.6). Further-
more, the stable manifold W#(0;cg) and the unstable manifold W*(0;¢) intersect
transversely in H~1(0;¢p) at Y(0;¢o).

We have the following result, which proves the existence of homoclinic orbits
Y (z;¢) for ¢ near cy.

LEMMA 6.2. Assume Hypothesis 6.1. Then there exists an open interval (c—,cy)
containing co such that for all c € (c_, cy) the stable and unstable manifolds W*(0; c)
and W*(0; ¢) have a one-dimensional transverse intersection in H—1(0;c) which is a
homoclinic orbit Y (x;c). Y(x;c) is symmetric with respect to the standard reversor
operator R, and the map ¢+~ Y (x;¢) from (c_,cy) to C(R,R*) is smooth.

Proof. Briefly, Y (0;¢9) # 0, and it follows from the form of the Hamiltonian
in (6.8) that Vy H(Y (0;¢9); o) # 0. By the implicit function theorem, for ¢ close
to cg, the O-level set H~!(0;c) contains a smooth three-dimensional manifold K (c),
with K (co) containing Y (0;cg). The result follows from the transverse intersection of
W#(0;co) and W¥(0;¢o) in K(co) € H1(0;¢p), the smoothness of F, and the implicit
function theorem. Symmetry with respect to the reversor R follows from symmetry
of Y'(0;¢p) and the reversibility of (6.6). |

Remark 6.3. We can choose (c_,c4) to be the maximal open interval for which
Lemma 6.2 holds. Given the existence results of [38, 40] and our own numerical
analysis, it is likely that (c_,c;) = (0,v/2).

It follows from the stable manifold theorem that for ¢ € (c—,cy), Y(x;c) is
exponentially localized, i.e., for any ¢ > 0,

(6.10) Y (;¢)] < Ce (@9l z € R,

where « depends on ¢ and is given by (6.9). In the next lemma, we prove that
0.Y (x; ¢) is also exponentially localized.

LEMMA 6.4. The function 0.Y (x;c) is exponentially localized, i.e., for each ¢ €
(c—,cq) and € > 0 there is a constant C so that

(6.11) 18.Y (x;¢)| < Ce (@9l reR.

Proof. Fix ¢ € (c_,cy). Since Y (z;¢) solves (6.6), Y (z;¢c) € C*(R,R*). Differen-
tiating (6.6) with respect to ¢, which we can do by Lemma 6.2, we have

(6.12) Yi(w;¢) = Fy (Y(w;0); ) Ye(ws¢) + Fe(Y (w5¢)3 0).

It follows from the form of F' given in (6.7) and (6.10) that F.(Y (z;c); c) is exponen-
tially localized, i.e., for each € > 0 there is a constant C' with
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6.13 F.(Y(x;¢);0)| < Ce_(a_e)‘xl, z € R.
(6.13) | ;
Define the linear operator £ by

Z
(6.14) L:CYR,RY) - C'R,RY), Zw— LZ= fo — Fy (Y (z;¢);¢)Z.

By (6.12), F.(Y(x;¢);c) € ran L. Since DF(0;c) is hyperbolic, [30, Lemma 4.2] and
the roughness theorem for exponential dichotomies [7] imply that £ is Fredholm with
index 0. By Hypothesis 6.1, we have ker £ = span{Y’(z;¢)}. Thus the set of all
bounded solutions to (6.12) is {Y.(x;c) + RY'(z;¢)}.

Next, we recast the problem in an exponentially weighted space. Choose any

e € (0,a) and let n(x) be a standard mollifier function [11, section C.5]; then we
consider

(6.15) Y(x;c) = Z(x; c)e—(a—e)r(m)

with r(z) = n(x) * |z|. Note that r(z) is smooth and that r(z) = |z| and 7'(x) = 1
for |z| > 1. Substituting (6.15) into (6.12) and simplifying, we obtain the weighted
equation

(6.16)  Z'(x;¢) = [Fy (Y (z;¢);¢) + (o — )1’ ()] Z (x5 ¢) 4+ " @ (Y (25 ¢); ¢).
By (6.13) and the definition of r(z), the function e(*=97®) F (Y (z;¢); c) is bounded.
Define the weighted linear operator L,_. : C1(R,R*) — C°(R,R*) by

@
dx
Equations (6.16) and (6.13) imply that e(@=<7"®) F (Y (x;¢);c) € ranL,_.. Since
DF(0;c) — (o — €)Z is still hyperbolic with the same unstable dimension as DF'(0; ¢),
it follows again from [30, Lemma 4.2] that L4_. is Fredholm with index 0. Next, we

note that the stable manifold theorem implies that Y’ (x; ¢) is exponentially localized
so that

(6.18) [V (25¢)] < Ce~(@lzl, z €R.

(6.17) Lo—e=——Fy(Y(z;c);c) — (a—e)r'(x)L.

Since Y'(2;¢) € ker £ and e(*~97(®) Y (x; ¢) is bounded, it is straightforward to verify
that e(*=9"(®) Y (x;¢) € ker Lo_.. Since any element in ker £,_. gives an element of
ker £ via (6.15), we conclude that

ker Lo_ = span{e(®~9" @y (z:¢)}.
Since e(*=I"@) (Y (z;¢);¢) € ran L., the set of all bounded solutions to (6.16) is

{Z.(x;¢) + Rel=m @)Y (2 ¢)}, which implies that Ye(z;¢) = Z.(x;c)e” (@97 g
exponentially localized as claimed. 0

For ¢ € (c_,c4), let
(6.19) U(z;c) = yi(x; ).

Then U(x;c) is an even function and is an exponentially localized traveling wave
solution to (6.4). For the remainder of this section, we will fix ¢ € (c_, c;) and write
the primary pulse solution corresponding to wavespeed ¢ as U(x). We are interested in
the existence and stability of multipulse equilibrium solutions to (6.4). A multipulse
is a localized, multimodal solution U, (x) to (6.5) which resembles multiple, well-
separated copies of the primary pulse U(x).
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6.1. Existence of pulses. First, we look at the existence of such pulses. The
linearization of (6.5) about a given solution U, of (6.5) is the operator Ag(U*) :
H4R) c L*(R) — L?*(R), given by

(6.20) Ao(U*) = 02 + 202 + Y-,

It follows from Lemma 6.2 that Ag(U) has a one-dimensional kernel spanned by
9.U(x). Since Ay(U) is self-adjoint, its spectrum is real. We take the following
additional hypothesis concerning the point spectrum of Ay (U).

Hypothesis 6.5. The following hold concerning the spectrum of Ag(U):
(a) n[Ao(U)] =1, i.e., Ap(U) has a unique, simple negative eigenvalue A_.
(b) There exists dg > 0 such that the only spectrum of Ag(U) in (—o0, dp) is two
simple eigenvalues at 0 and A_.

We now have the following theorem, which is adapted from [34, Theorem 3.6]. In
all that follows, the norm || - || is the supremum norm on C'(R), (-,-) is the inner
product on L?(R), and || - || is the norm on L?(R) induced from the inner product.

THEOREM 6.6. Assume Hypotheses 6.1 and 6.5, and let 69 > 0 be as in Hypoth-
esis 6.5. Fix a wavespeed ¢, and let U(x) be an exponentially localized solution to
(6.5). Then for any n > 2 and any sequence of nonnegative integers ki, ..., kp_1 with
at least one of the k; € {0,1}, there exists a nonnegative integer my and 6 > 0 with
0 < dg such that the following hold:

(a) For any integer m with m > myg, there exists a unique n-modal solution
U, (z) to (6.5) which is of the form

(6.21) Un(x) =Y U () +r(z),
j=1

where each U (x) is a translate of the primary pulse U(x). The distance
between the peaks of U7 and U™ is 2X;, where

il
B

B is defined in (6.9), and X is a constant. The remainder term r(x) satisfies

X; = —(2m+kj) + X,

(6.22) 7|0 < Co™Xmin

where « is defined in (6.9), and Xpnin = min{Xy,...,X,_1}. This bound
holds for all derivatives with respect to x.
(b) The point spectrum of the linear operator Ay(U,) on L*(R) contains 2n
eigenvalues in the interval (—oo,dp), which are as follows:
(1) There are n real eigenvalues vy, ..., v, with |v;| < §, where v, =0 is a
simple eigenvalue, and for j=1,...,n—1,

v < 0 if /{Jj is odd,
v; > 0 if k; is even.

We will refer to these as the small magnitude eigenvalues of Ag(Up,).

Forj=1,...,n—1, v; = O(e”2Xmin) " and the corresponding eigen-
functions s; are given by
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(623) S5 = ZdjkaxUk + wj,
k=1

where dj, € C are constants, and the remainder terms w; satisfy
(6.24) | wjleo < Ce™20Xmin,
This bound holds for all derivatives with respect to x. In particular,

”aij”m < Ce_2axmin.

The eigenfunction corresponding to v, is 8, = 0,U,.
(2) There are n negative eigenvalues which are 0-close to A_.
(c) The essential spectrum of Aog(Uy,) is

(6.25) Tess(Ao(Un)) = [1 — 64/4a 00).

which is positive and bounded away from 0.

Proof. Using (6.9), the Hamiltonian (6.8), the fact that the kernel is simple, and
the fact that the Melnikov integral M = [ (0,U)*dx is positive, (a) follows from
[34, Theorem 3.6], except for the bound on r(z) and its derivatives with respect to x,
which follows from [33] and [35]. All eigenvalues are real since Ay (U,,) is self-adjoint
on L*(R). From Hypotheses 6.1 and 6.5, Ag(U) has a simple eigenvalue at 0 and a
simple negative eigenvalue at A_. It follows from [1] that A4¢(U,) has n eigenvalues
near 0 and n negative eigenvalues near A_. This proves the eigenvalue count on
(—00,60) and part (b)(2). Part (b)(1) follows from [35]. We can verify directly that
Ao(Up)0,U, = 0. Part (c) follows from the Weyl essential spectrum theorem [23,
Theorem 2.2.6] and [23, Theorem 3.1.11], since Ag(U,,) is exponentially asymptotic
to Ag(0). O

Remark 6.7. Ag(U,) may in fact have additional eigenvalues A with A > &g > 0,
but these do not matter for the analysis. Our numerical analysis suggests that there
are in fact no additional eigenvalues.

6.2. Stability of pulses. Now that we know about the existence of single and
multiple pulses, we consider their spectral stability. To determine linear PDE stability
of the multipulse solutions constructed in Theorem 6.6, we look at the linearization of
the PDE (6.4) about U, (z), which is the quadratic operator polynomial Pa(A;U,,) :
H*R,C) Cc L*(R,C) — L*(R,C) given by

(6.26) Pa(\Uy) = IN? + At + Ao(Uy),

where Ag(U,,) is defined in (6.20), Z refers to the identity, and A; = —2¢d,.
First, we consider the essential spectrum. Since U, is exponentially localized,
Pa(A; Uy,) is exponentially asymptotic to the operator

(6.27) Pa(X;0) = 02 4 ?0% — 2eMd, + (A2 +1).

By [23, Theorem 3.1.11], P2(A; Uy,) is a relatively compact perturbation of Pa(A;0);
thus by the Weyl essential spectrum theorem [23, Theorem 2.2.6], P2(X\;U,) an
P2(A; 0) have the same essential spectrum. To find the essential spectrum of Py(A;0),
consider the related first-order operator 7(\) : HY(R,C*) c L?(R,C*) — L*(R,C*)
given by
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0 1 0 0
d 0 0 1 0

(6.28) T = Fr 0 0 o 1|
—1-=X2 2eA =% 0

which we obtain by writing P2(X;0) as a first-order system. By a straightforward
adaptation of [37, Theorem A.1] (the only difference being the presence of the fourth-
order differential operator), the operators 7 (A) and Pa(A;0) have the same Fredholm
properties, thus the same essential spectrum. By a straightforward calculation,

(6.29) Tess(P2(A;Un)) = 0ess(T(N)) = {ir : [r| > p},

where p > 0 is the minimum of the function A(r) = ¢r + v/1 + r%. The value of p is
positive for ¢ € (0, \/5), and p — 0 as ¢ — /2, so the essential spectrum is purely
imaginary and bounded away from 0. Spectral stability thus depends entirely on the
point spectrum.

6.2.1. Single pulse. Before considering the spectral stability of the n-pulse, we
must show the stability of the primary pulse, U(z). In addition to Hypotheses 6.1
and 6.5, our assumptions are as follows.

Hypothesis 6.8. Regarding the PDE (6.4) and the base solution U(z),
(a) for every initial condition u(x,0) and d;u(x,0) there exists a solution u(z,t)
to (6.4) on the interval I = [0,T], where

T =T (max{||u(z, 0)], [|9ru(z, 0)[I}) ;

(b) the constrained energy evaluated on the wave, d(c) (see [12, equation (2.16)]
for the exact expression), is concave up,

(6.30) d"(c) = =0 (|0, U|*) >0, 0<c*<2.

We will provide numerical evidence that these hypotheses are met in subsec-
tion 6.3.

Under these assumptions, we will prove the spectral and orbital stability of the
single pulse using the HKI. However, there are first two issues that must be resolved.
First, the HKI as discussed in section 1 assumes that Ay has a compact resolvent,
which is certainly not true for the operator associated with this problem. This com-
pactness assumption is taken primarily for the sake of convenience and to remove the
possibility of a point spectrum being embedded in the essential spectrum. However,
as seen in the original formulation of the HKI for solitary waves (see [19, 20]), this
is not a necessary condition. It is sufficient to assume that the origin is an isolated
eigenvalue, and Ag is a higher-order differential operator than A; with n[A4y] < +oo.
The interested reader should consult [24] for the case where the origin is not isolated.
The second difficulty is that these previous results for solitary waves do not immedi-
ately apply to quadratic eigenvalue problems. However, as seen in [2, section 4.1] one
can easily convert a quadratic star-even eigenvalue problem into a linear star-even
eigenvalue problem, and then apply the index theory to the reformulated problem.
Thus, we can conclude the index theory is applicable to the problem at hand, which
allows for the following stability result.

LEMMA 6.9. Let ¢® € (0,2), and let U(x) be the primary pulse solution to (6.5).
Then U(z) is spectrally and orbitally stable if and only if
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(6.31) d"(c) = =0, (c|0,U|*) > 0,

where d(c) is defined in [12, equation (2.16)].

Proof. First, (6.31) is well-defined since both U and 9,U are smooth in ¢ by
Lemma 6.2. Next, we check that the origin is an isolated eigenvalue. The essential
spectrum of Ay(U) is the same as that of Ay(U,) and is given by (6.25), which is
positive and bounded away from 0. By assumption, Ag(U) has a single negative
eigenvalue.

We now use the HKI to complete the proof, in particular, the formulation as
presented in (1.3). First, we note that

A1|span{3mU} - <7208x (&CU) 3 3EU> - 0,

where the equality follows from the fact that the primary pulse is even. Since Ay =7
is positive definite, we can write

Kxam = H(Ao) —n ( [I - AlAalAl} ’span{axU})

— ]_ —n ( [I - AlAalAl] |spal’l{81U})

for by assumption, n(Ag) = 1.
Regarding the second term,
[T — A AG A | = [|0.U|)? — ((—2¢0x) Ag H(—2¢0,)0,U, 8,U)

= |0, U||? + 2¢(9,. Ay * (—2c02U), 0,U).

span{d, U}

Going back to the existence equation (6.5) and differentiating with respect to ¢ yields
Ao(U)0U +2¢02U =0 ~ Ag(U)~H(—2c02U) = 0..U.

Substitution and changing the order of differentiation provides
1
(0. Ao(U) 1 (—=2c02U),0,U) = (0.0,U, 0,U) = 560||6$UH2.

In conclusion,

[T - A1 A AL = 0.U1? + 0| 0. U = 0e (c|| 0:,U||?) -

span{9, U}

We now have for the primary pulse,
KHam = 1 —n [ac (C”a@UHQ)] N

If d’(c) < 0, then Kpam = 1, and there is one positive real polynomial eigenvalue. If
d"(c) > 0, the HKI is zero. Consequently, the wave is spectrally stable. Appealing to
[2, Theorem 4.1] we can further state that the wave is orbitally stable. O

6.2.2. n-pulse. We now locate all potentially unstable eigenvalues of (6.26) for
an n-pulse. These include polynomial eigenvalues with positive real part, as well as
purely imaginary polynomial eigenvalues with negative Krein signature. To accom-
plish this task we use the HKI in combination with the Krein matrix. First, we
compute the HKI for (6.26), so that we have an exact count of the number of poten-
tially unstable polynomial eigenvalues. We then use the Krein matrix to find (n — 1)
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pairs of eigenvalues close to 0; each pair is either real or purely imaginary with neg-
ative Krein signature. We refer to these as small magnitude polynomial eigenvalues,
or interaction polynomial eigenvalues, since heuristically they result from interactions
between neighboring pulses. We then show that the number of potentially unstable
interaction polynomial eigenvalues is exactly the same as the HKI, from which we
conclude that we have found all of the potentially unstable eigenvalues. By Hamil-
tonian reflection symmetry, all other point spectra must be purely imaginary with
positive Krein signature.

We start with the calculation of the HKI. By Theorem 6.6 we know that Aq(Uy,)
has precisely n eigenvalues near the origin. Let 0 < ng < n — 1 represent the number
of these eigenvalues which are negative. We have the following result concerning the
HKIT for the n-pulse.

LEMMA 6.10. Assume Hypotheses 6.1, 6.5, and 6.8, and let U, (z) be an n-modal
solution to (6.5). Then
KHam =1+ ng — 1.

Proof. From Theorem 6.6, part (b), and the definition of ns, n[Ay(U,)] = n + ns,
so for the HKI,

Kiam =n+ns—n ( [I - A1A61A1] |span{f9mUn}> ’

where Ay = Ag(Uy,). In the proof of Lemma 6.9 we saw that when the wave depends
smoothly on ¢,

[Z - A A e (cl|0:Un|?) -

span{9, Uy } =

Since to leading order the n-pulse is n copies of the original pulse, we have
10U 1? = nl|0zU||* + O(e™¥min).
Consequently, we can write

9e (c)|0:Un|1?) = nde (c|0,U|1%) + O(e™*Xmin)
= —nd’(c) + O(e~Kmin),

Since d”(c) > 0 by assumption, we have to leading order
e (c|0:Uy,|1?) < 0.

For sufficiently well-separated pulses the sign will not change even when incorporating
the higher-order terms in the asymptotic expansion. The result now follows. ]

We now locate the potentially unstable polynomial eigenvalues of the quadratic
eigenvalue problem (6.26). This will be accomplished through the Krein matrix. For
the sake of exposition only we will henceforth assume that each of the small magnitude
eigenvalues vy, ..., v, of Ag(U,) is simple. For each of these eigenvalues, denote the
associated normalized eigenfunctions as sq,. .., s,. Since Ay(U,) is self-adjoint, these
eigenfunctions are pairwise orthogonal. In the construction of the Krein matrix the
relevant subspace for the spectral problem is the span of this set of eigenfunctions
associated with the small magnitude eigenvalues of Ao,

(6.32) S =span{sy,...,sn}.

We now present the following theorem, which is the main result of this section.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/30/20 to 138.16.128.0. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A REFORMULATED KREIN MATRIX 4737

THEOREM 6.11. Assume Hypotheses 6.1, 6.5, and 6.8. Let U, (x) be an n-pulse
solution to (6.5), and let v1,...,v, be the small magnitude eigenvalues of Ao(U,),
as defined in Theorem 6.6. Under a suitable normalization of the eigenfunctions s;,
near the origin the Krein matriz has the asymptotic expansion

Ks(2)

= (|18,U|2diag(v1, . . ., vpn) + d"(e) I,Z% + O(e~ /2 Xmin
z

(6.33) — 2l +121%),

which is diagonal to leading order.

The proof of this result is left to subsection 6.4. As a corollary, we have the fol-
lowing criteria for spectral stability and instability of the multipulse solutions U, (x).

COROLLARY 6.12. Let U, (z) be an n-pulse solution to (6.5) constructed as in
Theorem 6.6 using the sequence of nonnegative integers {ki, ..., kn—1}. Assume the
same hypotheses as in Theorem 6.11. Let vy,...,v, be the small magnitude eigenval-
ues of Ao(Uy,), where v, = 0. Then there are (n — 1) pairs of eigenvalues of (6.26)
close to 0, which we will term interaction polynomial eigenvalues. These are described
as follows. For each j =1,2,...,n—1,

(a) if k; is odd (equivalently, v; < 0), there is a corresponding pair of purely
imaginary interaction polynomial eigenvalues,

L. 21 ~(30/2) Xmin
(6.34) A; =i (IamUll 7 O (e ) ’

each of which has negative Krein signature;
(b) if k; is even (equivalently, v; > 0), there is a corresponding pair of real
interaction polynomial eigenvalues,

Vi —(3a min
Aj :i<||8wU|| d/,(fc) +o(e (30/2)X ))

In particular, there exists a positive, real eigenvalue.
In addition, there is a geometrically simple polynomial eigenvalue at A = 0 with
corresponding eigenfunction 0,U,. All other point spectra are purely imaginary and
have positive Krein signature.

Remark 6.13. In other words, if all the small magnitude eigenvalues of Ay(U,,) are
negative, and if the individual pulses are sufficiently well-separated, then the n-pulse
is spectrally stable; otherwise, it is unstable.

While we can find the interaction polynomial eigenvalues using Lin’s method as
in [35], using the Krein matrix allows us to also determine the Krein signatures of any
purely imaginary interaction polynomial eigenvalues. This additional information is
needed to ensure that via the HKI all of the potentially unstable point spectra have
small magnitude.

Proof. By Corollary 5.3 the small polynomial eigenvalues are found by solving
det Kg(z) = 0. This is equivalent to finding zeros of the Krein eigenvalues. For
7=12,...,n set

ri(z -
) .0y, + a0 4 7).

where
Pj(2) = O (o7 (/D X2 4 |27}
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Note that the first two terms in —r;(z)/z are the diagonal entries of the Krein matrix.
Since to leading order the Krein matrix is diagonal, by [16] these are valid asymptotic
expressions for the Krein eigenvalues. The small and nonzero polynomial eigenvalues
are found by solving

(6.35) 10:U|Pv; +d"(c)Z* +7i(2) =0, j=1,2,...,n.

First suppose that z is real, so the Krein matrix is Hermitian. The Krein eigen-
values are then real-valued; in particular, the error term, 7;(2), is real-valued. Recall
that d”(c) > 0. Suppose that v; < 0, and set

o 10:U]Py;
(6.36) R et
Equation (6.35) can then be rewritten
(6.37) Z2 — 6? + O (67(304/2)Xmin Z‘ + |Z|3) — 0.

Letting y = ¢,z and noting that €; = O(e~*¥min) (6.37) becomes

(6.38) y? —1+@(e}/2|y\ +e\y3\) —0.

1/2

For sufficiently small €;, (6.38) has two roots, y = £1+ O(e;’”). Thus, for sufficiently

large Xmin, (6.35) has two solutions,
Vi

+ _ —(3c/2) X min
5 =0Vl |- s + Ole ).

The Krein eigenvalue, 7;(z), has a simple zero at zji Since to leading order,
ri(z5) = =10:U11Pv; = 3d"(¢)(25)* = 2|0:U]|*v; <0,

each of these polynomial eigenvalues has negative Krein signature.

Now suppose v; > 0, and assume z is purely imaginary, z = iZ. In this case the
Krein matrix is no longer Hermitian, which implies that the remainder term associated
with each Krein eigenvalue is no longer necessarily real-valued. Define e? as in (6.36),
but this time e? < 0. The two zeros of the Krein eigenvalue are now

s+ _ Vj —(30/2) Xmmin
5 =001 s +0 (o 7
which to leading order are purely real. Going back to the original problem, there are
two interaction polynomial eigenvalues given by

)\?E = z]jE
To leading order these eigenvalues are real-valued. Under the assumption that the
small magnitude eigenvalues of Ay(U,,) are simple, via the asymptotic expansion )\ji
will also then be simple. By the Hamiltonian reflection symmetry of the polynomial
eigenvalues about the real axis, the fact they are real-valued to leading order implies
they are truly real-valued and come in opposite-sign pairs.

Since the kernels of (6.26) and Ay(U,,) are the same, we can verify directly that
A = 0 is an eigenvalue of (6.26) with eigenfunction 9,U,,. We now show that all other
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point spectra are purely imaginary. We have for the small magnitude polynomial
eigenvalues, k; = 2ng, and k; = n—1—ng. Thus, for the small magnitude polynomial
eigenvalues,

ke +k-=n—1-—ng)+ (2ng) =n—1+n,.

By Lemma 6.10 this is the HKI for the n-pulse. Consequently, there are no other point
polynomial eigenvalues which have positive real part, or which are purely imaginary
and have negative Krein signature. ]

6.3. Numerical results. In this section, we show numerical results to illustrate
the theoretical results of the previous section. First, we can construct a primary pulse
solution U(x) numerically using the string method from [4]. The top two panels of
Figure 5 show these solutions for the same values of ¢ as in [6, Figure 3]. Next, we
compute the spectrum of the operator Ag(U) numerically using the MATLAB eig
function. In the bottom panel of Figure 5 we note the presence of a simple eigenvalue
at the origin and a simple negative eigenvalue, which supports our hypotheses on the
spectrum of Ay(U). As expected, we also see that the essential spectrum is positive
and bounded away from 0.

We can construct multipulse solutions numerically by joining together multiple
copies of the primary pulse and using the MATLAB fsolve function. Consecutive
distances between peaks are given by Theorem 6.6. The first four double pulse solu-
tions are shown in the top two panels of Figure 6. These double pulses are numbered

e — 0.75
0.5t ] 05t
0 025t
0.5 ¢ 0
-1 -0.25
-1.5 -0.5
2| u 1 -0.75 |
2.5 -1

-30 -20 -10 0 10 20 30 50 25 0 25 50

[0 &  ewwemonce » wow

-0.2 0 0.2 0.4 0.6 0.8 1
A

Fic. 5. Primary pulse solutions U(z) to (6.5) for ¢ = 1.354 (top left) and ¢ = 1.40 (top right).
In the bottom panel there is the spectrum of Ao(U), the linearization of (6.5) about a single pulse
U(x) for ¢ = 1.3. For the spectral plot we use finite difference methods with N = 512 and periodic
boundary conditions. The left boundary of the essential spectrum is A ~ 0.286. The spectrum to the
right of the boundary is discrete instead of continuous because of the boundary conditions.
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2 ' ' ' ' 1 — ' ' ' '
Ir 1 0 —/J\ (\/\__
0 a1t
a1t
20+
2+
3F
3t
4 ; 4T
_5 | -5 - U U
-6 — : : : : -6 — : : : :
20 -10 0 10 20 20 -10 0 10 20
L X ] [ ] [ ] | ] [ X ) ]
0.2 -0 ] 0.1 0.2 0.2 0.1 ] 0.1 0.2
A A

F1G. 6. Double pulse solutions Uz(x) to (6.5) for c = 1.2. The top left panel shows double pulse
0, and the top right panel shows double pulse 1. In the bottom two panels we see the associated
spectra for Ag(Uz): double pulse 0 on the left, and double pulse 1 on the right.

using the integer k; from Theorem 6.6. We verify Theorem 6.6(b) numerically by
computing the spectrum of Ag(Us). The spectra of Ay(Us) for double pulses 0 and 1
are shown in the bottom two panels of Figure 6. In both cases, there is an eigenvalue
at 0. For double pulse 0, there is an additional positive eigenvalue near 0, and for
double pulse 1, there is an additional negative eigenvalue near 0.

We verify Corollary 6.12 by computing the polynomial eigenvalues of (6.26) di-
rectly using the MATLAB package quadeig from [13]. For double pulse 0, Ay(U2)
has one positive small magnitude eigenvalue; thus, by Corollary 6.12, (6.26) has a
polynomial eigenvalue with positive real part. For double pulse 1, the small mag-
nitude eigenvalue of Ag(Us) is negative; thus by Corollary 6.12, since the distance
between the two peaks is sufficiently large, the polynomial eigenvalues of (6.26) are
purely imaginary. These are shown in Figure 7.

6.4. Proof of Theorem 6.11. Using Theorem 6.6, let U, (z) be an n-modal
solution to (6.5), and let {v1,...,v,} be the small magnitude eigenvalues of Ay(U,,)

with corresponding eigenfunctions {si,...,s,}. Since Ay(U,) is self-adjoint, the s;
are orthogonal, and for the sake of convenience we scale them so that
(6.39) (36, 85) = 10:U1*6y;.

Typically, we assume these eigenfunctions also have unit length. However, this is not
important in the construction of the Krein matrix, nor in the derived properties. Let
S = span{sy,...S,}.

By Lemma 5.6, and using the normalization of (6.39), for small |z| the Krein
matrix is the n X n matrix,
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Fic. 7. Polynomial eigenvalues of (6.26) for double pulses 0 (left) and 1 (right) for ¢ = 1.2.
The eigenvalues are marked with a filled (blue) circle, and the edge of the essential spectrum is
marked with a (red) cross. The essential spectrum is discrete instead of continuous because of the
boundary conditions. For the right panel the two purely imaginary polynomial eigenvalues nearest
the origin have negative Krein signature. Here we use finite difference methods with N = 512 and
periodic boundary conditions.

(6.40)
S o, g, ) + 2K~ 2100~ ) + O,
where
(6.41) (K1) = (s5,1A158),
and
(6.42) (K2)jx = (A154, Pgi (Pg1 Ag(Uy,) Py ) ' Pgi Ay sy).

This is, to leading order, a matrix-valued quadratic polynomial in z (and its complex
conjugate). The factors ||0,U,||* on the RHS of (6.40) come from using the scaling
(6.39) for the eigenfunctions s; of Ag(U,). We now prove Theorem 6.11 in a series of
lemmas. In all that follows, C refers to a constant independent of x, but it may have
a different value each time it is used. The first lemma is a bound on the product of
exponentially separated pulses.

LEMMA 6.14. Let Uy (x) and U_(x) be localized pulses which decay exponentially
with rate o and whose peaks are separated by a distance 2X. We have the following
bounds:

(6.43) sup |U_(z)Uy (z)| < Ce™ 20X
z€R

and

(6.44) (U- (&), Uy (@))] < Ce /DX,
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Proof. Without loss of generality, let Uy(xz) be exponentially localized peaks
centered at +X, thus |U_(x)| < Ce **X| and |U,(2)] < Ce=*=Xl. For z €
(—OO, _X]a

(6.45) |U_(2)U, ()] < CetlmtX)eale=X) — ge2aw < Ce=20X
and for z € [-X, 0],
(6.46) |U_(2)U, (z)] < Cem@+X)gale=X) — gg=2aX

Bounds on [0, X] and [X, 00) are similar. Since these are independent of z, we obtain
the bound (6.43).
For the bound (6.44), we split the integral into four pieces:

0

U@ @)do+ [ V- @V, @)

-X

(U-(2), Uy (2))] <
(6.47) : /*°°

X [eS)
+/0 |U_(x)U+(x)|d;1:+/X |U_(z)U(z)|dx.

For the first integral, we use (6.45) to get
s s
/ U_(2)U s (2)|de < C / (207 4y — Co~20X

For the second integral, we use (6.46) to get
0 0 0
/ |U_(2)Uy(x)|dx < C/ e @t Xealz=X)qy < C/ e a@tX)/2ga(z=X)qy
-X -X -X

0
< Ce_(g(,/g)x/ ol@/2)z 40 < Ce—(Ba/2)X
_x

The third and fourth integrals are similar. Combining these, we obtain (6.44). |

Remark 6.15. If the hypotheses of Lemma 6.14 are satisfied, we say that Uy (x)
and U_(z) are exponentially separated by 2X.

Next, we obtain a bound on the matrix K.
LEMMA 6.16. For the matriz K4 in (6.40),
(6.48) Kl = O(ei(ga/2)xmin).

Proof. Substituting A; = —2¢0, into (6.41), (K1);r = i2¢(s;j, 0zsk). Using the
expansion (6.23) from Theorem 6.6,

(55, 005k) = > djm i (0:U™, 2U™) + Y djmdie (.U, 03U")
(6.49) m=l mE

+ (55, Opwr) + Y _ die(w;, 02U").
/=1

By translation invariance of the inner product on L?(R),

(0, U™, 0°U™) = (9,U, 8,(0,U)) = 0,
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since the operator 9, is skew-symmetric. For m # ¢, U™ and U’ are exponentially
separated by at least 2X;,; thus, by Lemma 6.14,

(0,U™,02U") = O(e~ B/ Xmin),

The last two terms in (6.49) are O(e~2%Xmin) using Holder’s inequality and the bound
(6.24) from Theorem 6.6, which applies to O wy as well as w;. Combining these
estimates we obtain (6.48). ad

Using the expansion (6.23) from Theorem 6.6, the matrix Ko in (6.40) becomes

(6.50)

(KQ)jk = 402 <Z d]mazUm + 8ij,

m=1

> " dnePsi (Psy Ag(Uyn)Pss) ™' Psr02U" + Pgy (Psr Ag(Un)Pss) ™ Py amwk> :
(=1

Before we can evaluate this expression, we need to look at (Pg..Ag(U,)Pss) ™!,

LEMMA 6.17. Pgi Ag(U,)Pss : ST — S+ is an invertible linear operator with
bounded inverse.

Proof. By (6.25), the essential spectrum of Ag(U,,) is 0ess = [1,00), which is
bounded away from 0. Thus the operator Ay(U,) is Fredholm with index 0. Since
for the small magnitude eigenvalues v; of Ag(U,,) we have v; ¢ [1,00), the operator
Ao(Uy) — ;1 is also Fredholm with index 0. Since Ag(U, ) — ;1 is Fredholm, its range
is closed. Thus by the closed range theorem [43, p. 205], since v; € R and Ag(gy) is
self-adjoint, we have

(6.51) ran(Ao(gn) — vid) = (ker(Ao(gn) — 1)) ™.

Next, we look at the operator PgiAg(Upy). Since Ag(Up,) is self-adjoint and
Pg. commutes with Ag(U,), PsiAo(U,) is also self-adjoint. Since Pgi Ag(U,) =
Ao(Up)Ps., the kernel of Pgi Ag(U,) contains S as well as the kernel of Ay(U,),
which is contained in S. The only other elements in the kernel of Pg.Ag(U,,) are
functions y for which (Ao(gn) — viI)y = s;, since that will be annihilated by the
projection Pg.. But such a function cannot exist, since by (6.51), we would have
s; L ker(Ao(gn) — v:I), which contains s;. We conclude that ker Psi Ag(g,) = S.

Since the range of Ag(g,) is closed and Pg. is bounded, the range of Pgsi Ao(gy)
is also closed. Thus by the closed range theorem and the fact that PgiAg(g,) is
self-adjoint,

ran Pg: Ag(gn) = (ker(Ps: Ag(gn))*)" = (ker(Pgr Ao(gn)))" = S

Since dim ker Py Ag(gn) = codim Pg1 Ag(g,) = 2, the operator Pg. Ag(gy) is a Fred-
holm operator with index 0 and kernel S.

Thus the restriction Pgi Ag(U,)|s: = PgiAg(U,)Pg1 is invertible on S+. By
the definition of S and Theorem 6.6, Pg1 Ag(U,)Ps: has no eigenvalues of magni-
tude less than §. By the resolvent bound for normal operators, the linear operator
(Ps1.Ao(Uy,)Pg1)~ 1t is bounded on S+. O

Before we can evaluate the term (Pgi.Ag(U,)Pg1) tPgi02U* from (6.50), we
will need the following lemma, which gives an expansion for eV ().
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LEMMA 6.18. For the n-pulse, U, (x), and for alli=1,...,n,

exp(Uy () = exp(U*(z)) + Z (exp(U(z)) — 1) + O(e™Xmin),
J#i

Proof. Fix i in the expansion (6.21) and let S(x) = >_,; U;(z), so that U, =
Ul + S+ O(e~*Xmin). Since U, (x) is bounded,

exp(Un (x)) = exp(U () exp(S(x)) (1 + O(e™0¥min))
= exp(U'(x)) exp(S(x)) + O(e™*Xmin).

Using the Taylor expansion for the exponential,

exp(U'(z)) exp(S(z)) = > U'(z)™ Z S(x)"

= m! o n!
m_oU ZUS;) ;S(nx‘)
= exp(U'(z)) + exp(S —1+szz mis(n!)n‘
n=1
For the last term on the RHS,
3T L | mwsel X S

< |U(2) ()] el @lelS @I

< Ce*QQXmiu ,

where in the last line we used the fact that U, (x) is bounded together with the bound
(6.43) from Lemma 6.14, since U’ and each peak in S are exponentially separated.
Combining all of this,

exp(Un () = exp(U'(2)) + exp(S(z)) — 1 + O(e*Xmin),

Repeat this procedure n — 2 more times to get the result. 0
We can now evaluate (Pg1.Ag(U,)Pg) 1 Pgi02U*.
LEMMA 6.19.

1
6.52 Pgi Ag(Up)Psr ) Py 02U" = — — Py 0.U* + O(e™ 20X min),
r 2c

Proof. Let y = (Pg1Ao(U,)Pg1) 'Pg10?U*. By Lemma 6.17, this is well-
defined, and y € SJ‘ Since Pg102U* is smooth and (Pg1 Ag(U,)Pg1)~! is bounded,
y is smooth as well and is the unique solution to the equation

(Ps1Ao(Up)Pss )y = Ps 93U,

which simplifies to

(6.53) Psi Ag(Uy)y = Pg1 92U,
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since y € S*. Using Lin’s method as in [35], we will look for a solution to (6.53) of
the form

1

(6.54) j=——Pg0.U"+,
2c

where @ € S+. This ansatz is suggested by

(6.55) Ao(0)0.U = —2c02U,

which we obtain by taking v = U in (6.5) and differentiating with respect to ¢, which
we can do since U is smooth in ¢ by Hypothesis 6.1. Substituting (6.54) into (6.53)
and simplifying, we have

1
(6.56) Py Ao(Uy,) <—2cach> + Pgr Ao(Up)w = PgL?U*.
Using Lemma 6.18, for j = 1,...,n we can write the operator Ay (U,,) as
(6.57) Ao(Un) = Ag(U") + > (V™) —1) + h(),
k£l
where h(z) is a small remainder term with uniform bound [|Alle = O(e=@Xmin),

Substituting (6.57) into the first term on the LHS of (6.56),
(6.58)

<Ao U+ @ —1) + h(z )) (—2168ch> + Pg1 Ag(Up)w = Pg192U*.

=,
Since (6.55) holds for U = U¥,

(6.59) Pa Ao(U") (—i@ﬂ) — Pe. 20",

where we divided by —2c¢ and applied the projection Pg. on the left. Using this,
(6.58) simplifies to

600 AT+ P | S -0 i) | (<g007) <o

kL

where we use the fact that Py commutes with A (U, ), since it is a spectral projection
for Ag(U,), and that @ € S*. Since 9.U* and U* are exponentially separated for
k # £, using Lemma 6.14 and the same argument as in the proof of Lemma 6.18,

(6.61) Pou > (7" = 1) + h(x) (—;Cach) — O (e Kmm)

ke

Since 8,U* is bounded and ||iL||OO = O(e=Xmin),
~ 1
(662) PsJ.h(LL') (_266[][) -0 (e—aXmin> )
c

Using (6.61) and (6.62), equation (6.60) simplifies to the equation for @
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(6.63) Ao(U)ib + h(z) = 0,

where h(z) is a small remainder term with uniform bound ||h(z)||s = O(e™*Xmin),

We now follow the procedure in [35], which we briefly outline below. Let W =
(@, Op0, 0%, D20). As in [35], we rewrite (6.63) as a first-order system for W, and
we take W to be a piecewise function consisting of the 2n pieces Wji,j =1,...,n,
where

W (2) € C°([~X;-1,0)),

Wit () € C°([0, X))

with Xy = X,, = co. We note the domains of the functions Wji(:z:) overlap at the
endpoints; the second and third equations in the system (6.64) are matching conditions
for these pieces at the appropriate endpoints. Following this procedure, and using the
expansions (6.57) for Ay(U,,) on the jth piece, we obtain the system of equations

(W) () = AU (@)W} () + G, (2)W;"(x) + H;(x),
(6.64) Wi (Xi) = Wi, (=X;) =0,

W7 (0) — W (0) = 0,

where
0 1 0 O 0 0 0 O
0 0 1 0 0 0 0 O
A(U(x)): 0 0 0 11> Gj(x): 0 0O 0 0}
—eU@ 0 —¢2 0 S (1—eVE=rrad)y 00 0

and py; is the signed distance from peak of U* to peak of U7 in U,. H; is a re-
mainder term which comes from the term h(x) in (6.63) and the remainder term in
the expansion (6.57), and we have the estimate ||Hj|loc = O(e™Xmin). For k # j,
|pkj| = 2Xmin. This implies eV@=rki) = O(e=Xmin) on the jth piece, thus we can use
a Taylor expansion to show ||G;| = O(e~@Xmin). Following the procedure in [35], we
obtain a unique piecewise solution I/Vji to the first two equations of (6.64). The third
equation is generally not satisfied, so what we have constructed is a unique solution ¥
of the form (6.54) to (6.53) which is continuous except for n—1 jumps. By uniqueness,
we must have § = y, thus y is actually of the form (6.54) with @ smooth. Finally,
Lin’s method gives us the uniform bound |[1|lee = O(e™2%Xmin) from which (6.52)
follows. a

We prove one more lemma before we evaluate the matrix Ko from (6.40).
LEMMA 6.20. For the coefficients dji in (6.23) from Theorem 6.6,

(6.65) Z djmdkm = ik =+ O(e_(?’a/Q)Xmiu).
m=1
Proof. Using the expansion (6.23) from Theorem 6.6,
(sj,56) = 3 i (0:U™, 0,U™) + Y djpndie(0,U™, 0,U°)

m=1 m#L

+ <sj,wk> + Zd}%(ﬂ)j, 8IUZ>
=1
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As in Lemma 6.16, the second term on the RHS is O(e~(3*/2)Xmin) and the last
two terms on the RHS are O(e=2¢Xmin). By translation invariance, (9,U™,d,U™) =
(0,U,0,U) = ||0,U||? for all m. This reduces to

(55 55) = [0:UI1° > djmdgm + Oe™ G/ Xmin),
m=1
Dividing by [|0,U||? and using the orthogonality relation (6.39) gives us (6.65). ad
Finally, we can evaluate the matrix Ko from (6.40).

LEMMA 6.21. For the matriz Ko in (6.40),
(6.66) (K2)ji = —2¢(02U, 0,U)0 + O(e~ B/2) Xmin)

Proof. By Lemma 6.17, (Pg. Ag(U,)Pg1)~! is a bounded linear operator. Using
the bound (6.24) from Theorem 6.6,

PSL (PsL Ao(Un) |SL )71PSL Opwy = O(eiQaX“‘i“).

Using this and (6.52) from Lemma 6.19, (6.50) becomes

n 1
(Kg)jk = 42 <Z djmaiUm + &ij, —% Z diePgi 8CU£ + O(e_QaX“‘i“)>

m=1 =1

==2¢ | Y djmdim(O2U™, PsOU™) + Y djmdre(02U™, Ps.0.U")
m=1 m#L

+ Z<aijv dkéacUZ> + 0(67204)("“‘")_
(=1

By (6.10) and Lemma 6.4, 92U and 9.U are exponentially localized; thus for m #
¢, Q2U™ and 0.U" are exponentially separated. It follows from Lemma 6.14 that
the second term on the RHS is O(e*(BO‘/Q)X“““). Using Holder’s inequality and the
remainder bound (6.24), the third term on the RHS is O(e~2%Xmin). Thus we are left
with

(6.67) (K2)jr = —2c Z djmdkm@ﬁU’”, Ps.0.U™) + O(e_(Sa/Q)Xmin).

m=1
To evaluate the inner product, we first evaluate Psd.U™. Recalling the normalization

(6.39) and using the expansion (6.23), since the s; are orthogonal,

1 n
Pso U™ = —— s5,0.U™

n n

1 k m
:WZZ@@U + w, OU™)

j=1k=1

=1 =1 k#m

1 n . . n n - ) |
= Ha UH (Zd]m<azU 78cU >+sz]k<azUk,aCU >> -I-O(e 2Xmm)
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B m Z djm(0:U, 9:U) + O(e_(3°‘/2)xmin)

— O(e*(30¢/2)Xmin)'
The third line follows from Lemma 6.14, since by (6.10) and Lemma 6.4, 9, U and
0.U are exponentially localized, thus 9,U" and 0,U™ are exponentially separated for

k # m. In the fourth line we use (9,U, d.U) = 0, since 0, U is an odd function and
0.U is an even function. From this, we have

P 0.U™ = (T = Ps)0.U™ = 0.U™ + O (o7 (02X}

Substituting this into (6.67) and using Lemma 6.20 and translation invariance, this
becomes

(K2)jk=—2¢ Y djmdm (03U™,0.U™) = = 2¢(02U,0.U) > djmdim

m=1 m=1

== 2C<63U; aCU>5]k =+ @) (e*(?ﬂ/?)Xmin) ,

which is (6.66). O
Using (6.48) from Lemma 6.16 and (6.66) from Lemma 6.21, the Krein matrix
(6.40) becomes

_KST(Z) = 0. U ||*diag (v, . .., vn) — (|0.U|> = 2¢(02U, 8, U I, Z>

n O(e,(ga/Z)Xmin 2| + |z|3)

Integrating by parts,

_KST(Z) 0,V |2diag(vy, . .., vm) — (9uU, DU + 200,05 U, DUY) I, 32

+ Oe~ B/ Xmin 5] 4 |]3)

= [|0,U|*diag(v1, - - ., vn) — Oc (cl|0:U ) I2* + o(e—(?’a/%xmin

2|+ 1)

= |0, U2 diag(v1, . . ., vp) + d"(c)I,Z% + O(e~ B/ D Xmin| 2| 4 |2]%),

which is (6.33) in Theorem 6.11.
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