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Abstract

In this paper, we study the following robust low-rank matrix approximation prob-
lem: given a matrix A ∈ R

n×d, find a rank-k matrix M , while satisfying dif-
ferential privacy, such that ‖A−M‖p ≤ α · OPTk(A) + τ, where ‖B‖p is the
entry-wise `p-norm of B and OPTk(A) := minrank(X)≤k ‖A−X‖p. It is well
known that low-rank approximation w.r.t. entrywise `p-norm, for p ∈ [1, 2), yields
robustness to gross outliers in the data. We propose an algorithm that guarantees
α = Õ(k2), τ = Õ(k2(n + kd)/ε), runs in Õ((n + d)poly k) time and uses
O(k(n + d) log k) space. We study extensions to the streaming setting where
entries of the matrix arrive in an arbitrary order and output is produced at the very
end or continually. We also study the related problem of differentially private
robust principal component analysis (PCA), wherein we return a rank-k projection
matrix Π such that ‖A−AΠ‖p ≤ α · OPTk(A) + τ.

1 Introduction

Low rank matrix approximation is a well studied problem, where given a data matrix A, the goal is
to find a low-rank matrix B that approximates A in the sense that µ(A − B) is small under some
function µ(·). It finds application in numerous machine learning tasks, such as recommendation
systems [10], clustering [9, 25], and learning distributions [2].

Often, the real-world data used in these applications is plagued with gross outliers, and it is desirable
to impart robustness to low-rank approximation algorithms against such corruptions. Furthermore,
these applications increasingly rely on sensitive data which raises the need for preserving privacy of
the underlying data. The focus of this paper, therefore, is to compute a low-rank approximation of a
given matrix under a strong privacy guarantee while being robust to outliers in data.

For robustness to outliers, we choose the measure µ(·) to be the entrywise `p-norm for p ∈ [1, 2),
defined as ‖A‖p = (

∑
i,j |Ai,j |p)1/p. It is well known that low-rank approximation w.r.t. entrywise

`p-norm, for p ∈ [1, 2), yields robustness to gross outliers in the data [5, 7, 22, 23, 24, 29]. To address
the need for privacy, we rely on the notion of differential privacy [11] that has become the de facto
standard for private data analysis in recent years. Formally, we define differential privacy as follows.

Definition 1. A randomized algorithm M is said to be (ε, δ)-differentially private if for all neigh-
boring datasets, A and A′, and all subsets S ⊆ range(M) in the range of M, we have that
Pr[M(A) ∈ S] ≤ eεPr[M(A′) ∈ S] + δ.

The notion of what makes two datasets neighboring determines the granularity of differential pri-
vacy [13]. At the finest scale, we consider two matrices as neighboring if they differ in at most
one entry by a unit value [17, 19, 20]; this corresponds to feature-level privacy. At the coarsest
granularity, two matrices are deemed neighboring if they differ in one row by a unit norm [18, 14]; this
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corresponds to the user-level privacy. Note that since we do not make any boundedness assumption
on the entries of the data-matrix, we need to establish a normalized scale to limit the influence of a
single entry or a single row of a given matrix. In this paper, we say that two matrices A and A′ are
neighboring if the matrices are within a unit (entrywise) `1 ball of each other, i.e., ‖A−A′‖1 ≤ 1.
This notion of neighboring datasets provides stronger guarantees than the feature-level privacy.

We are interested in private robust data analysis, specifically, robust low-rank approximation of a
matrix with respect to entrywise `p-norm for p ∈ [1, 2), under the constraints of differential privacy.
Even without privacy, low-rank matrix approximation with respect to entrywise `p-norm for p 6= 2 is
a non-trivial problem: it does not have a closed form solution and computing the optimal low-rank
approximation with respect to `1-norm is known to be NP-hard [16]. A natural question then is
whether we can compute a good enough approximation to the best rank-k approximation. This
question has formed the basis for many recent results [5, 7, 22, 23, 24, 29]. However, prior to this
work, differentially private low-rank approximation with respect to entrywise `p-norm has been an
open problem. We give the first time- and space-efficient differentially private algorithm for low-rank
matrix approximation with respect to entrywise `p-norm.

1.1 Formal Problem Statement and Contributions

In this section, we formally define the problem of differentially private robust low-rank matrix
approximation, and state our main results. For the ease of presentation, we assume that δ =

Θ(n− logn). We use the notation Õ(·) to hide poly log factors.

Definition 2 (Robust low-rank approximation). Given a matrix A ∈ R
n×d, and p ∈ [1, 2), output a

rank-k matrix M such that with probability at least 1− β,

‖A−M‖p ≤ αOPTk(A) + τ, where OPTk(A) := min
rank(X)≤k

‖A−X‖p . (1)

Our first contribution is Algorithm 1, ROBUST-LRA, which given an input matrix A ∈ R
n×d returns

a differentially private rank-k approximation to A with a multiplicative approximation factor of α =

O((k log k)
2(2−p)/p

log d log n) and an additive approximation error of τ = Õ
(
ε−1k2(n+ kd)

)
. In

particular, for p = 1, we have α = O(k2 log2 k log d log n) and τ = Õ
(
ε−1k2(n+ kd)

)
. We note

that the best known algorithm in a non-private setting [29] achieves the same multiplicative factor,
albeit with no additive error. Therefore, the price we pay for privacy is in terms of an additional
additive error.

In many machine learning problems, e.g. feature selection and representation learning, all we are
interested in is recovering the low-dimensional subspace spanned by the data. One such example
is principal component analysis using data with gross outliers or corruptions (e.g. face recognition
in the presence of occlusions). Of course, the proposed Algorithm 1 can also output the projection
matrix associated with the right singular vectors of matrix M with the same accuracy guarantee as for
robust low-rank approximation (see Remark 1 for more details). However, the additive error we incur
still scales with n whereas intuitively making the basis for a k-dimensional subspace in R

d should
require only adding noise proportional to k � d. This motivates a slightly different treatment for the
robust principal component analysis problem, which can be formulated as follows.
Definition 3 (Robust principal component analysis). Given a matrix A ∈ R

n×d, output a rank-k
orthonormal projection matrix Π such that with probability at least 1− β,

‖A−AΠ‖p ≤ αOPTk(A) + τ, where OPTk(A) := min
rank(X)≤k

‖A−X‖p . (2)

The second main contribution of this paper is an algorithm that returns a differentially private rank-k
orthonormal projection matrix with α = O((kd log k)

(2−p)/p
log3 d log n) τ = Õ

(
k2d/ε

)
.

Many variants of differentially private low-rank approximation have been studied in the literature [14,
18, 19, 17, 20, 21, 31, 32] for both the Frobenius norm and spectral norm. We give the first (ε, δ)-
differentially private algorithm for robust PCA. Unlike PCA under Frobenius and spectral norm,
computing an exact robust PCA is a computationally hard problem (NP-hard when p = 1).

Besides the objective function, our work differs from existing work also in terms of the privacy
granularity and efficiency. A detailed comparison and review of previous works is presented in
Table 1.
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Table 1: Comparison of Models for Differentially Private k-Rank Approximation (u and v are unit
vectors, es is the s-th standard basis, η is an arbitrary constant, ωk := σk(A) − σk+1(A) is the
singular value separation, µ is coherence of the matrix A, and p ∈ [1, 2)).

Assumptions Accuracy (α, τ ) Metric

Theorem 10 ‖A−A′‖1 = 1
(
Õ(k2p(2−p)/2 log k log d), Õ

(
k2(n+kd)

ε

))
`p-norm

Hardt-Roth [18]
A−A′ = esv

>
(
√
2, Õ(

√
kn
ε

+ k
(

µ‖A‖
F

ε

)1/2 (
d
n

)1/4
))

Frobenius
µ-coherence

Upadhyay [32] A−A′ = uv>
(
(1 + η), Õ

(
ε−1(

√
kn+

√
kd)

))

Kapralov-Talwar [21]
‖A‖op − ‖A′‖op = 1

(
1, Õ

((
nk3

)
ε−1

))
σ-value separation

SpectralHardt-Price [17]
A−A′ = ese

>
t

(1, Õ(
σ1

√
kµ log(log dσk/(ωk))

εωk
))µ-coherence

Dwork et al. [14] A−A′ = esv
>

(
1, Õ

(
ε−1k

√
n
))

Jiang et al. [20] A−A′ = ese
>
t

(
1, Õ

(
nε−1

))

2 Basic Preliminaries

One of the key features of differential privacy is that it is preserved under arbitrary post-processing,
i.e., an analyst, without additional information about the private database, cannot compute a function
that makes an output less differentially private. This is formalized in the form of following lemma:

Lemma 4 (Dwork et al. [11])). Let M(D) be an (ε, δ)-differential private algorithm for a data matrix
D , and let h be any function, then any mechanism M′ := h(M(D)) is also (ε, δ)-differentially
private.

A key ingredient in our algorithms is a p-stable distribution which can be defined in terms of a limit
of normalized sums of i.i.d. random variables [33].

Definition 5 (p-stable distirbution). A distribution Dp over R is called p-stable, if there exists p ≥ 0,
such that for any (v1, · · · , vn) ∈ R

n, and n i.i.d. random variables X1, · · · , Xn with distribution Dp,
the random variable

∑
i viXi has the same distribution as the variable ‖v‖pX , where X ∼ Dp.

We use the notation D(r,c)
p to denote a distribution over r × c random matrices, where every entry

of the matrix is sampled from the distribution Dp. It is known that p-stable distributions exist for
all p ∈ (0, 2] [33], and that Gaussian distribution is 2-stable and the Cauchy distribution is 1-stable.
Moreover, one can use the method of Chambers et al. [8] to sample from Dp (1 < p < 2).

Our analysis uses the fact that S ∼ D(r,c)
p satisfies the no-dilation and no-contraction property [28].

Definition 6 (No-dilation [28]). Given a matrix A ∈ R
n×d, if a matrix S ∈ R

m×n satisfies
‖SA‖p ≤ c1 ‖A‖p , then S has at most c1 dilation on A with respect to entrywise `p-norm.

Definition 7 (No-contraction [28]). Given a matrix A ∈ R
n×d, a matrix S ∈ R

m×n has c2-
contraction on A with respect to the entrywise `p-norm if ∀x ∈ R

d, ‖SAx‖p ≥ c2
−1 ‖Ax‖p .

Our analysis uses recent results from matrix sketching. In particular, we use the fact that we can
approximately solve `p-regression problem using random matrix sketches [29].

Lemma 8 (Song et al. [29]). Let Φ ∈ R
φ×n be a projection matrix that preserves `p-

norm of a vector for p ∈ [1, 2) and let B ∈ R
n×d, C ∈ R

n×c be any matrix. Let

X̃ := argminX∈Rd×c ‖Φ(BX − C)‖p , X̂ := argminX∈Rd×c ‖BX − C‖p , then ‖BX̃ − C‖p ≤
Cφ‖BX̂ − C‖p for some constant Cφ that depends only on log d.

Lemma 9 (Song et al. [29]). Given matrices L,N,A of appropriate dimension, let X∗ :=
argminX ‖LXN −A‖p. Suppose S and T satisfies c1-dilation on LX∗N −A and c2-contraction

property onL. Further if X̂ be such that ‖S(LX̂N−A)T‖p ≤ c·minrank(X)≤k ‖S(LXN −A)T‖p ,
then, we have that ‖LX̂N −A‖p ≤ O(c1c2c) ·minrank(X)≤k ‖LXN −A‖p .
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Algorithm 1 ROBUST-LRA

Input: Input data matrix A ∈ R
n×d, target rank k

Output: Rank-k matrix M ∈ R
n×d

1: Initialization: Set the variables φ, ψ, s, t, Cφ, Cψ, Cs, Ct as in Table 2.
2: Initialization: Sample Φ ∈ R

φ×n, Ψ ∈ R
d×ψ, S ∈ R

s×n, and T ∈ R
d×t from distributions

D(φ,n)
p , D(d,ψ)

p , D(s,n)
p , and D(d,t)

p , respectively. All these matrices are made public.
3: Sample: N1 ∈ R

φ×d, N2 ∈ R
n×ψ, N3 ∈ R

s×t such that N1 ∼ Lap(0, Cψ/ε)
n×ψ, N2 ∼

Lap(0, Cφ/ε)
φ×d, and N3 ∼ Lap(0, CsCt/ε)

s×t. Keep N1, N2, N3 private.
4: Sketch: Compute Yr = ΦA+N1, Yc = AΨ+N2.
5: Sketch: Compute Zr=YrT , Zc=SYc, Z=SAT+N3.
6: SVD: Compute [Uc,Σc, Vc] = SVD(Zc), [Ur,Σr, Vr] = SVD(Zr).
7: `2-LRA: Compute X̂ = VcΣ

†
c[U

T
c ZV

T
r ]kΣ

†
rU

T
r , where [B]k = argminr(X)≤k ‖B −X‖F .

8: Output: M = YcX̂Yr.

Table 2: Values of different variables.

Cφ, Cs Cψ, Ct φ, ψ, s, t
O(log d) O(log n) O(k log k log(1/δ))

3 Differentially private robust LRA

In this section, we give an (ε, δ)-differentially private polynomial-time algorithm for robust low-rank
approximation. We first discuss algorithmic challenges in extending known techniques and analyses
to our problem. We present the proposed algorithm and main results in Section 3.1, and discuss
extensions to the general turnstile model and the continual release model in Section 3.2. Proofs of all
results are deferred to the supplementary material of this paper.

Two common approaches to preserve privacy are output perturbation [11] and input perturbation [3,
30] of the objective function. In output perturbation, we first compute the output (e.g. rank-k
approximation of a given matrix) non-privately and then add appropriately scaled noise to preserve
privacy. In input perturbation, we add noise to the private matrix and then compute the output on the
noisy matrix. Both these approaches require adding noise to every entry of the given input matrix or
to every entry of the non-private output matrix. Consequently, both of these methods would incur an
additive error of O(nd). On the other hand, most existing non-private algorithms for robust low-rank
approximation either use heuristics and do not have provable guarantees, or they make additional
assumptions on the input matrix; the only exception is the work of Song et al. [29]. Again, a naive
mechanism to make the algorithm of Song et al. [29] private would incur an additive error of O(nd).

3.1 Proposed Algorithm

It is somewhat tantalizing, from a computational perspective, to attempt approximating a solution to
the robust LRA problem using a low-rank approximation with respect to `2-norm; however, it is well
understood that the latter is quite sensitive to even a single outlier. A key idea behind the proposed
solution then is based on the following key observation. We can approximate the output of robust low
rank approximation using low rank approximation with respect to `2-norm after sketching the matrix
using S ∼ D(r,n)

p and T ∼ D(c,d)
p for some choice of r and s. In particular, p-stable distribution

imparts robustness, and the effect of outliers is reduced in the lower dimensional space.

In summary, the proposed algorithms are based on the following three algorithmic primitives: (a)
sketching the row-space and column-space of the input matrix, (b) formulating the low-rank matrix
approximation problem as a regression problem, and (c) approximating the solution to `p regression
problem by corresponding `2 regression problem. The analysis, then, carefully bounds the error in
approximation for each of the steps above as well as error resulting from the privacy mechanism.

The pseudo-code of the proposed algorithm (ROBUST-LRA) is presented as Algorithm 1. We present
values of various variables used in the algorithm in Table 2. Our main result is as follows.
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Algorithm 2 ROBUST-PCA

Input: Input data matrix A ∈ R
d×n, target rank k

Output: Rank-k projection matrix Π ∈ R
d×d

1: Initialization: Set the variables φ, ψ, t, Cφ, Cψ, Ct as in Table 2.
2: Initialization: Sample Φ ∈ R

φ×d,Ψ ∈ R
n×ψ, S ∈ R

s×d, and T ∈ R
n×t from distributions

D(φ,d)
p ,D(n,ψ)

p ,D(s,d)
p , and D(n,t)

p , respectively. All these matrices are made public.
3: Sample: N1 ∈ R

φ×t, N2 ∈ R
d×ψ such that N1 ∼ Lap(0, CφCt/ε)

φ×t, N2 ∼
Lap(0, Cψ/ε)

d×ψ . Keep N1, N2 private.
4: Sketch: Compute Yr = ΦATT +N1 and Yc = ATΨ+N2. Zc = ΦYc and Z = Yr
5: SVD: Compute [Uc,Σc, Vc] = SVD(Zc),
6: [Ur,Σr, Vr] = SVD(Yr).
7: `2-LRA: Compute X̂ = VcΣ

†
c[U

T
c ZV

T
r ]kΣ

†
rU

T
r , where [B]k = argminr(X)≤k ‖B −X‖F .

8: Pick: a permutation matrix Q ∈ Rφ×φ.

9: Compute: the full SVD of YcX̂ , [U ′,Σ′, V ′]. Set U = U ′Q, Σ = Σ′Q, and P = Φ†(UΣ)†.
10: Output: Π = PUΣ(ΦPUΣ)†Φ.

For outputting a low-rank approximation in the continual release model, we can use the generic
transformation to store a binary tree that is constructed over the privatized sketches of the updates as
its leaves [12]. When a new query for a range of updates is made, we accumulate the sketches of the
dyadic partition of the range to compute the sketches for that range. We then compute the last three
steps of ROBUST-LRA. We have the following result.

Corollary 14. Algorithm ROBUST-LRA is an (ε, δ)-differentially private algorithm that on input
matrix A in a streaming manner, runs in time poly(k, n, d, log T ) and outputs a rank k matrix

M (t) in the continual release model over T time epochs, such that, with probability at least 9/10,

‖A(t) −M (t)‖p ≤ O((k log k log(1/δ))
2(2−p)/p

log d log n)OPTk(A
(t)) + Õ(k2(n + kd) log T ),

where OPTk(A) is as in Theorem 10, and A(t) is the matrix up to t time epochs.

4 Differentially Private Robust Principal Component Analysis

In this section, we focus on the problem of robust PCA under the constraints of differential privacy.
We first present the proposed algorithm and then discuss extensions to the general turnstile model
continual release model. Proofs of all results are deferred to the supplementary material of this paper.

The key ideas underlying the proposed algorithm, ROBUST-PCA (see Algorithm 2 for the pseu-
docode), and its analysis, essentially follow the techniques developed in the previous section for
ROBUST-LRA, but with a couple of small modifications to get a better additive error. First, we
only generate two sketches, Yr = ΦATT +N1 and Yc = ATΨ +N2, where Ψ,Φ, T are random
sketching matrices and N1, N2 are noise matrices as defined in Algorithm 2. Second, we solve a
slightly different optimization problem:

min
rank(Y )≤k

∥∥AT − (PUΣ)Y (ΦAT )
∥∥
F
,

where P,U,Σ are as formed in Algorithm 2. We show that (ΦUΣP )† is an approximate solution
to minX

∥∥Φ(AT − PUΣXΦAT )T
∥∥
p
. The rest of the proof then follows the same steps as in the

proof of Theorem 10. In addition, we also show that Π is an orthonormal rank-k projection matrix.
The above exposition focuses on the non-private setting for the sake of simplicity. The proof is more
involved due to noise matrices added for privacy.

We show the following guarantee for the proposed algorithm.

Theorem 15. Algorithm ROBUST-PCA, (see Algorithm 2), is (ε, δ)-differentially private. Further,

given a matrix A ∈ R
n×d with OPTk(A) := minrank(X)≤k ‖A−X‖p, it runs in time poly(k, n, d),

space Õ(k(n+d)), and outputs a rank k orthonormal projection matrix Π such that, with probability
9/10 over the random coin tosses of the algorithm,

‖A−AΠ‖p ≤ O((k log k log(1/δ))
2(2−p)/p

log n log3 d)OPTk(A) + Õ(k2d log n/ε).
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In particular, when p = 1, we have the following guarantee:

‖A−AΠ‖p ≤ O(k2 log n log3 d log2 k log2(1/δ))OPTk(A) + Õ(k2d log n/ε).

We note that ROBUST-PCA yields a smaller additive error than ROBUST-LRA by a factor of n/d,
but at the expense of an additional multiplicative factor of log2(d). Therefore, in settings where
OPTk(A) is small (e.g. when A is nearly low rank), ROBUST-PCA enjoys a much better accuracy
guarantee.

Extension to Other Models of Differential Privacy. We can extend ROBUST-PCA to the streaming
model of computation [32] and the continual release model [12] as in Section 3.2. We can also extend
ROBUST-PCA to the local model of differential privacy. Local differential privacy has gained a lot
of attention recently [1, 15]. In the local privacy model, there is no central database of private data.
Instead, each individual has its own data element (a database of size one), and sends a report based
on its own datum in a differentially private manner.

Formally, we consider the database X = [x1, · · · , xn]> as a collection of n elements (rows) from
some domain X ⊆ R

d, with each row held by a different individual. The ith individual has access
to εi-local randomizer, Ri : X → W , which is an εi-differentially private algorithm that takes
as input a database of size n = 1. We assume that the algorithms may interact with the database
only through local randomizers. We can then define local differential privacy as follows [13]. An
algorithm is ε-locally differentially private if it accesses the database X via the local randomizers,
R1(x1), . . . , Rn(xn), where max {ε1, . . . , εn} ≤ ε.

We note that what we have defined above is a non-interactive local differential privacy algorithm
where an individual only sends a single message to the server. It was argued in Smith et al. [27] that
it is more desirable to have as few rounds of interactions as possible from an implementation point of
view. In fact, existing large-scale deployments are limited to one that are non-interactive. Therefore,
we limit our study to what is possible in the non-interactive variant of local differential privacy.

We extend Algorithm 2 to an ε-locally-differentially private protocol, LOCAL-ROBUST-PCA, where
every user 1 ≤ i ≤ n has a row Ai: of the data matrix and sends only one message to the server.
We show that the output produced by the server after a run of LOCAL-ROBUST-PCA is a rank-k
orthonormal projection matrix Π ∈ R

d×d such that

‖A−AΠ‖p ≤ O(log n log3 d (k log k log(1/δ))
2(2−p)/p

)OPTk(A) + Õ(k2nd/ε).

The above guarantee is non-trivial when ‖A‖p � nd. Such an assumption is often valid in practical
settings with large corruption to data matrices.

5 Discussion

In this paper, we present differentially private algorithms for robust low-rank approximation and for
robust principal component analysis. In addition, we study extensions of our algorithms to a continual
release model, the streaming model of computation, and the local model of differential privacy.

The bounds we provide involve a multiplicative factor that depends on the target rank k. Such a
dependence was deemed necessary in non-private settings. In particular, Song et al. [29] show that if
the exponential time hypothesis is true, then any linear-sketch based polynomial time algorithm for
robust rank-k factorization incurs an Ω(k1/2−γ) multiplicative approximation for some γ ∈ (0, 0.5)
that can be arbitrarily small. It is not clear immediately if such a result still holds when we allow an
additive error in the approximation, as is the case here.
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Supplementary Material to “Differentially Private Robust
Low-Rank Approximation"

A Auxiliary Lemma

We need the following results about product of pseudo-inverse.

Fact 16. If A has a left-inverse, then A† = (ATA)−1AT and if A has right-inverse, then A† =
AT(AAT)−1.

Theorem 17 (Product of pseudoinverse). Let A and B be conforming matrices and either,

1. A has orthonormal columns (i.e., ATA is an identity matrix) or,

2. B has orthonormal rows (i.e., BBT is an identity matrix),

3. A has all columns linearly independent (full column rank) and B has all rows linearly
independent (full row rank) or,

4. B = AT (i.e., B is the conjugate transpose of A),

then (AB)† = B†A†.

The following lemma follows from Holder’s inequality and minimality of x̂.

Lemma 18 (`2 relaxation of `p regression). Let p ∈ [1, 2). For any A ∈ R
n×d and b ∈ R

n,
define x∗ = argmin ‖Ax− b‖p and x̂ = argmin ‖Ax− b‖2. Then, ‖Ax∗ − b‖p ≤ ‖Ax̂− b‖p ≤
n1/p−1/2 ‖Ax∗ − b‖p.

Lemma 19 (Subsampling and rescaling lemma). Let k be a parameter and s = O(k log k). Let

S ∈ R
s×d be a random matrix with every entries sampled i.i.d. from C(0, 1), Cauchy distribution

with variance 1, and scaled by 1/s. LetA,B ∈ R
d×p be real-valued matrices such that rank(A) ≤ k.

Let S′ ∈ R
s×d be a matrix with i-th row S′

i: defined using the following probability distribution

S′
i: =

{
s
kSi: with probability k/s

0d otherwise

Then with probability 24/25, ‖S′A− SB‖1 ≤ O(log d) ‖A−B‖1.

Proof. Let p̃ = sp. We use the notation C(0, 1) to define Cauchy random variable with variance 1.
We call a random variable c half clipped Cauchy random variable if c ∼ |C(0, 1)|. Define Gu to be
event when half clipped random Cauchy variable cu, such that cu < 100p̃. Let Good = ∩Gu. We
can easily compute the probability that Gu and Good happens. Using the pdf of Cauchy, we have

Pr[Gu] = 1− 2

π
tan−1(1/100sp) ≥ 1− 1

50πp̃
.

Union bound then implies that Pr[¬Good] ≤ 1
50π . Using total probability theorem and Markov’s

inequality, we have

Pr[‖S′A− SB‖1 ≥ (100 log p) ‖A−B‖1] ≤ Pr[‖S′A− SB‖1 ≥ (100 log p) ‖A−B‖1 |Good]

+ Pr[¬Good] ≤ E[‖S′A− SB‖1 |Good]
100 log p ‖A−B‖1

+
1

50π
(3)
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Let A:i denote the i-th column of the matrix A. Then

E[‖S′A− SB‖1 |Good] =
p∑

i=1

E[‖S′A:i − SB:i‖1 |Good]

=

p∑

i=1

E




s∑

j=1

∣∣∣∣∣

d∑

`=1

1

s
S′
j,`A`,i − Sj,`B`,i

∣∣∣∣∣ |Good




=
1

s

p∑

i=1

s∑

j=1

E[s̄i,j |Good]

=
1

s

p∑

i=1

s∑

j=1

‖A:i −B:i‖E[ci+p(j−1)|Good], (4)

where s̄i,j ∼ |C(0, ‖A:i −B:i‖1)| and ci+p(j−1) is half clipped Cauchy random variable, i.e.,
ci+p(j−1) ∼ |C(0, 1)|. We next compute E[ci+p(j−1)|Good]. Let u = i+ p(j − 1).

Since for any random variable X and Y , E[X] =
∑
y Pr[Y = y]E[X|Y = y]), we have

E[cu|Gu] = Pr[Good|Gu]E[cu|Gu ∩ Good] + Pr[¬Good|Gu]E[cu|Gu ∩ ¬Good]
≥ E[cu|Gu ∩ Good]Pr[Good|Gu] = E[cu|Good]Pr[Good|Gu],

In other words,

E[cu|Good] ≤
E[cu|Gu]Pr[Gu]
Pr[Good|Gu]

.

Now E[cu|Gu] = log(1+(sp)2)
πPr[Gu]

. Using Bayes theorem and the fact that Pr[Good] = Pr[Good ∩ Gu],
this implies that

E[cu|Good] ≤
E[cu|Gu]Pr[Gu]

Pr[Good]
=

log(1 + (sp)2)

πPr[Gu]

Pr[Gu]

Pr[Good]

≤ log(1 + (sp)2)

π(1− 1/(50π))
≤ 2 log(sp).

We can now bound equation (4) as below:

E [‖S′A− SB‖1 |Good] =
1

s

p∑

i=1

s∑

j=1

‖A:i −B:i‖1 E[ci+p(j−1)|Good] = 2 log p‖A−B‖1.

Plugging this in equation (3), we have

Pr[‖S′A− SB‖1 ≥ 100 log p ‖A−B‖1] ≤
E[‖S′A− SB‖1 |Good]

50 log p ‖A−B‖1
+

1

5π

≤ 2 log sp

100 log p
+

1

50π
≤ 1

25
,

where the last inequality holds because s ≤ p. This completes the proof.

B Missing Proofs

B.1 Proof of Theorem 10

Reminder of Theorem 10. Algorithm ROBUST-LRA, (see Algorithm 1), is (ε, δ)-differentially
private. Furthermore, given a matrix A ∈ R

n×d, it runs in poly(k, n, d) time, Õ(k(n+d)) space, and
outputs a rank k matrix M such that, with probability 9/10 over the randomness of the algorithm,

‖A−M‖p ≤ O((k log k log(1/δ))
2(2−p)/p

log d log n)OPTk(A) + Õ(k2(n+kd) log2(1/δ)/ε),
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Proof of Theorem 10. We first give the privacy proof of Theorem 10. Let A and A′ be neighboring
matrices, i.e., ‖A−A′‖ 1 ≤ 1. We argue the privacy result for p = 1 (the case for p ∈ (1, 2)
follows from invoking Holder’s inequality. The private matrix is used to generate three sketches:
Yc, Yr, and Z. Since Φ,Ψ, S, and T are sampled from distribution of random matrices that preserves
the `1-norm, we have that ‖Φ(A−A′)‖ 1 ≤ Cφ ‖A−A′‖ 1 = Cφ with probabilty at least 1 − δ.
The privacy proof now follows from Laplace mechanism. Note that for p ∈ (1, 2), we have
‖Φ(A−A′)‖p ≤ Cφ ‖(A−A′)‖p ≤ Cφ ‖(A−A′)‖1.

We now give the utility proof of Theorem 10. Let

U∗, V ∗ := argmin
U∈Rn×k

V ∈Rk×d

‖UV −A)‖p

Our proof relies on three fundamental techniques.

Two fundamental techniques. The first fundamental technique is to use the fact that solving
generalized linear regression problem in the projected space gives an approximate solution to the
original generalized regression problem. The second main idea is the reduction from low-rank
approximation to a generalized linear regression problem.

Let B = A+ S†N3T
†, then SBT = Z. Also let C = A+Φ†N1, then ΦC = Yr. Let

Ṽ := argmin
V ∈Rk×d

‖Φ(U∗V − C)‖p ,

V̂ := argmin
V ∈Rk×d

‖Φ(U∗V − C)‖F ,

V ′ := argmin
V ∈Rk×d

‖U∗V − C)‖p

Then using Lemma 8 and the fact that ‖U∗V ′ −B)‖p ≤ ‖U∗V −B)‖p for all V (and in particular,
V ∗), we have

∥∥∥U∗Ṽ − C)
∥∥∥
p
≤ O(Cφ) ‖U∗V ′ − C)‖p

≤ O(Cφ)
(
‖U∗V ∗ −A)‖p +

∥∥Φ†N1

∥∥
p

)
. (5)

Since V̂:i = (ΦU∗)†ΦC:i = argminx ‖Φ(U∗x− C:i)‖F , using Holder’s inequality, we have

∥∥∥(U∗V̂ − C)
∥∥∥
p
=

d∑

i=1

∥∥∥(U∗V̂ ′
:i − C:i)

∥∥∥
p

≤
√
φ

d∑

i=1

∥∥∥(U∗Ṽ:i − C)
∥∥∥
p

(Lemma 18)

=
√
φ
∥∥∥U∗Ṽ − C)

∥∥∥
p
.

Combining this with equation (5), we have
∥∥∥(U∗V̂ − C)

∥∥∥
p
≤ O(Cφ

√
φ) ‖U∗V ∗ −A)‖p +O(Cφ

√
φ)

∥∥Φ†N1

∥∥
p
.

Moreover, ∥∥∥(U∗V̂ − C)
∥∥∥
p
≥

∥∥∥U∗V̂ −A)
∥∥∥
p
−

∥∥Φ†N1

∥∥
p
.

Combining the last two inequalities gives us
∥∥∥(U∗V̂ −A)

∥∥∥
p
≤ O(Cφ

√
φ) ‖U∗V ∗ −A)‖p +O(Cφ

√
φ)

∥∥Φ†N1

∥∥
p
. (6)
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Further let,

Ũ := argmin
U∈Rn×k

∥∥∥(UV̂ −A)Ψ
∥∥∥
p
,

Û := argmin
U∈Rn×k

∥∥∥(UV̂ −A)Ψ
∥∥∥
F
,

U ′ := argmin
U∈Rn×k

∥∥∥UV̂ −A)
∥∥∥
p

Then using Lemma 8 and the fact that
∥∥∥U ′V̂ −B)

∥∥∥
p
≤

∥∥∥UV̂ −B)
∥∥∥
p

for all U (and in particular,

U∗), we have
∥∥∥Ũ V̂ −A)

∥∥∥
p
≤ O(Cψ)

∥∥∥U ′V̂ −A)
∥∥∥
p

≤ O(Cψ)
∥∥∥(U∗V̂ −A)

∥∥∥
p
. (7)

We know that Ûi: = A:iΨ(V̂Ψ)† = argminx

∥∥∥(xV̂ −Ai:)Ψ
∥∥∥
F

. Equation (7) then gives us

∥∥∥(Û V̂ −A)
∥∥∥
p
=

n∑

i=1

∥∥∥(Ûi:V̂ −Ai:)
∥∥∥
p

≤
√
ψ

d∑

i=1

∥∥∥(Ũi:V̂ −Ai:)
∥∥∥
p

(Lemma 18)

=
√
ψ
∥∥∥Ũ V̂ −A)

∥∥∥
p

≤ O(Cψ
√
ψ)

∥∥∥(U∗V̂ −A)
∥∥∥
p
. (8)

Substituting the value of Û = AΨ(V̂Ψ)†,
∥∥∥AΨ(V̂Ψ)†V̂ −A

∥∥∥
p
≤ O(CφCψ

√
ψφ) ‖U∗V ∗ −A‖p +O(CφCψ

√
ψφ)

∥∥Φ†N1

∥∥
p

(9)

Recall that Yc = AΨ+N by the construction in the algorithm. Using subadditivity of norms and
substituting V̂ = (ΦU∗)†Yr, we have

∥∥∥Yc(V̂Ψ)†V̂ −A
∥∥∥
p
≤

∥∥∥AΨ(V̂Ψ)†V̂ −A
∥∥∥
p
+
∥∥∥N(V̂Ψ)†V̂

∥∥∥
p

(subadditivity)

≤ O(CφCψ
√
ψφ) ‖U∗V ∗ −A)‖p +

∥∥∥N2(V̂Ψ)†V̂
∥∥∥
p

(equation (9))

+O(CφCψ
√
ψφ)

∥∥Φ†N1

∥∥
p

(10)

Now again from subadditivity, we have
∥∥∥Yc(V̂Ψ)†V̂ −B

∥∥∥
p
≤

∥∥∥Yc(V̂Ψ)†V̂ −A
∥∥∥
p
+
∥∥S†N3T

†
∥∥
p

Combining equation (10) with the above inequality, we get
∥∥∥Yc(V̂Ψ)†V̂ −B

∥∥∥
p
≤ O(CφCψ

√
ψφ) ‖U∗V ∗ −A)‖p

+
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p
+
∥∥S†N3T

†
∥∥
p

+O(CφCψ
√
ψφ)

∥∥Φ†N1

∥∥
p
.
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Further, since U∗ has rank at most k and V̂ = (ΦU∗)†Yr, (V̂Ψ)†(ΦU∗)†Φ has rank at most k. This
implies that

min
r(X)≤k

‖YcXYr −B‖p ≤
∥∥∥Yc(V̂Ψ)†(ΦU∗)†Yr −B

∥∥∥
p

(minimality)

≤ O(CφCψ
√
ψφ) ‖U∗V ∗ −A)‖p +

∥∥∥N2(V̂Ψ)†V̂
∥∥∥
p

+
∥∥S†N3T

†
∥∥
p
+O(CφCψ

√
ψφ)

∥∥Φ†N1

∥∥
p

(11)

Third fundamental technique. The last fundamental technique that we use is that an approximate
solution of low-rank problem in the projected space also gives an approximate solution of the original
low-rank problem. Let Q = SAT and

X̂ = VcΣ
†
c[U

T
c ZV

T
r ]kΣ

†
rU

T
r .

Let X̃ := argminrank(Y )≤k ‖SYcXYrT − Z‖p. To show that we can achieve an approximate
solution of a low-rank problem in the projected space, we use Holder’s inequality. More precisely,
we have the following set of inequalities:

∥∥∥SYcX̂YrT − Z
∥∥∥
p
≤

√
st
∥∥∥SYcX̂YrT − Z

∥∥∥
F

=
√
st min

rank(Y )≤k

∥∥∥SYcX̂YrT − Z
∥∥∥
F

(by definition)

≤
√
st
∥∥∥SYcX̃YrT − Z

∥∥∥
F

(by minimality)

≤
√
st
∥∥∥SYcX̃YrT − Z

∥∥∥
p

=
√
st min

rank(Y )≤k
‖SYcXYrT − Z‖p , (12)

where the first and last inequalites follow from Holder’s inequality, second inequality from the
minimality, the first equality is due to [32], and the last equality is by definition. Using Lemma 9, we
have

∥∥∥YcX̂Yr −B
∥∥∥
p
≤ Õ(

√
st) min

rank(X)≤k
‖YcXYr −B‖p .

Now, we have from subadditivity of norm,
∥∥∥YcX̂Yr −A

∥∥∥
p
−
∥∥S†N3T

†
∥∥
p
≤

∥∥∥YcX̂Yr −B
∥∥∥
p
.

Combining this with equation (11), we have
∥∥∥YcX̂Yr −B

∥∥∥
p
≤ Õ(CφCψ

√
ψφst) ‖U∗V ∗ −A)‖p +

√
st
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p

+ 2
√
st
∥∥S†N3T

†
∥∥
p
+O(CφCψ

√
ψφst)

∥∥Φ†N1

∥∥
p

(13)

Note that YcX̂Yr is the output of the algorithm. Therefore, all that remain is to bound each of the
above additive term. The following claim does this.

Claim 20. With probability at least 24/25,

∥∥Φ†N1

∥∥
p
≤ Õ(Cφdφ/ε),

∥∥∥N2(V̂Ψ)†V̂
∥∥∥
p
≤ Õ(Cψkn/ε),

∥∥S†N3T
†
∥∥
p
≤ Õ(CsCtst/ε).
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Proof. Now N2(V̂Ψ)†V̂Ψ = N̂2. Using no dilation property of Φ, we have
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p
≤

O(Cψ)
∥∥∥N̂2

∥∥∥
p
. This can be bound using the standard tail inequality for Laplace mechanism, i.e,

with probability at least 99/100,
∥∥∥N̂1

∥∥∥
p
= Õ(kn). Similarly, ΦΦ†N1 = N̂1 and SS†N3T

†T = N3.

Using dilation and contraction properties of Φ,Ψ, S, and T completes the proof of claim.

Using Claim 20 in equation (13) completes the proof of Theorem 10.

B.2 Proof of Theorem 15

Restatement of Theorem 15. Algorithm ROBUST-PCA, (see Algorithm 2), is (ε, δ)-differentially
private. Further, given a matrix A ∈ R

n×d with OPTk(A) := minrank(X)≤k ‖A−X‖p, it runs in

time poly(k, n, d), space Õ(k(n+ d)), and outputs a rank k orthonormal projection matrix Π such
that, with probability 9/10 over the random coin tosses of the algorithm,

‖A−AΠ‖p ≤ O((k log k log(1/δ))
2(2−p)/p

log n log3 d)OPTk(A) + Õ(k2d log n/ε).

Proof of Theorem 15. We start by giving the privacy proof. Let A and A′ be neighboring matrices,
i.e., ‖A−A′‖1 ≤ 1. We argue the privacy result for p = 1 (the case for p ∈ (1, 2) follows from
invoking Holder’s inequality. The private matrix is used to generate two sketches: Yc, Yr. Since Φ,Ψ,
and T are sampled from distribution of random matrices that preserves the `p-norm, we have that
‖Φ(A−A′)‖1 ≤ Cφ ‖A−A′‖1 = Cφ with probabilty at least 1− δ. The privacy proof now follows
from Laplace mechanism. Note that for p ∈ (1, 2), we have ‖Φ(A−A′)‖p ≤ Cφ ‖(A−A′)‖p ≤
Cφ ‖(A−A′)‖1.

We now move to prove the utility guarantee. For the ease of presentation, we just present the case for
p = 1. The case for p ∈ (1, 2) follows similarly.

Let us define X̂ = VcΣ
†
c[U

T
c ZV

T
r ]kΣ

†
rU

T
r . Further, let

U∗, V ∗ := argmin
U∈Rn×k

V ∈Rk×d

‖UV −A)‖p

Two fundamental techniques. The first fundamental technique is to use the fact that solving
generalized linear regression problem in the projected space gives an approximate solution to the
original generalized regression problem. Then we use the reduction from low-rank approximation to
a generalized linear regression problem.

Let B = AT +Φ†N1T
†, then ΦBT = Z. We now define the following optimization problems:

Ṽ := argmin
V ∈Rk×d

‖Φ(U∗V −B)‖p ,

V̂ := argmin
V ∈Rk×d

‖Φ(U∗V −B)‖F ,

V ′ := argmin
V ∈Rk×d

‖U∗V −B)‖p

Then using Lemma 8 and the fact that ‖U∗V ′ −B)‖p ≤ ‖U∗V −B)‖p for all V (and in particular,
V ∗), we have

∥∥∥U∗Ṽ −B)
∥∥∥
p
≤ O(log d) ‖U∗V ′ −B)‖p (Lemma 8)

≤ O(log d)
∥∥U∗V ∗ −AT )

∥∥
p
+O(log d)

∥∥Φ†N1T
†
∥∥
p
.
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Since V̂:i = (ΦU∗)†ΦB:i = minx ‖Φ(U∗x−B:i)‖F , using Holder’s inequality, we have

∥∥∥(U∗V̂ −B)
∥∥∥
p
=

d∑

i=1

∥∥∥(U∗V̂ ′
:i −B:i)

∥∥∥
p

≤
√
φ

d∑

i=1

∥∥∥(U∗Ṽ:i −B)
∥∥∥
p

(Lemma 18)

=
√
φ
∥∥∥U∗Ṽ −B)

∥∥∥
p
. (14)

In other words,
∥∥∥(U∗V̂ −B)

∥∥∥
p
≤ O(

√
φ log d)

∥∥U∗V ∗ −AT )
∥∥
p
+O(

√
φ log d)

∥∥Φ†N1T
†
∥∥
p
.

Moreover, ∥∥∥(U∗V̂ −B)
∥∥∥
p
≥

∥∥∥U∗V̂ −AT )
∥∥∥
p
+
∥∥Φ†N1T

†
∥∥
p
.

Combining the last two inequalities gives us
∥∥∥(U∗V̂ −AT )

∥∥∥
p
≤ O(

√
φ log d)

∥∥U∗V ∗ −AT )
∥∥
p
+O(

√
φ log d)

∥∥Φ†N1T
†
∥∥
p
. (15)

Now define the following optimization problems:

Ũ := argmin
U∈Rn×k

∥∥∥(UV̂ −AT )Ψ
∥∥∥
p
,

Û := argmin
U∈Rn×k

∥∥∥(UV̂ −AT )Ψ
∥∥∥
F
,

U ′ := argmin
U∈Rn×k

∥∥∥UV̂ −AT )
∥∥∥
p

with solutions Ũ , Û , and U ′. Then using Lemma 8 and the fact that
∥∥∥U ′V̂ −AT )

∥∥∥
p

≤
∥∥∥UV̂ −AT )

∥∥∥
p

for all U (and in particular, U∗), we have

∥∥∥Ũ V̂ −AT )
∥∥∥
p
≤ O(log n)

∥∥∥U ′V̂ −AT )
∥∥∥
p

(Lemma 8)

≤ O(log n)
∥∥∥(U∗V̂ −AT )

∥∥∥
p
. (minimality) (16)

We know that Ûi: = AT:iΨ(V̂Ψ)† = minx

∥∥∥(xV̂ −ATi: )Ψ
∥∥∥
F

. Using Holder’s inequality and equa-

tion (16), we have
∥∥∥(Û V̂ −AT )

∥∥∥
p
=

n∑

i=1

∥∥∥(Ûi:V̂ −ATi: )
∥∥∥
p

≤
√
ψ

d∑

i=1

∥∥∥(Ũi:V̂ −ATi: )
∥∥∥
p

(Lemma 18)

=
√
ψ
∥∥∥Ũ V̂ −AT )

∥∥∥
p

≤ O(
√
ψ log n)

∥∥∥(U∗V̂ −AT )
∥∥∥
p
, (17)

where the last inequality follows from equation (16). Substituting the value of Û = ATΨ(V̂Ψ)†,
∥∥∥ATΨ(V̂Ψ)†V̂ −AT

∥∥∥
p
≤ O(log d log n

√
φψ)

∥∥U∗V ∗ −AT )
∥∥
p

+O(
√
φψ log d log n)

∥∥Φ†N1T
†
∥∥
p

16



Recall that Yc = ATΨ + N2 by construction in the algorithm. Using subadditivity of norms and
substituting V̂ = (ΦU∗)†ΦAT , we have

∥∥∥Yc(V̂Ψ)†V̂ −AT
∥∥∥
p
=

∥∥∥Yc(V̂Ψ)†(ΦU∗)†ΦB −AT
∥∥∥
p

≤
∥∥∥ATΨ(V̂Ψ)†V̂ −AT

∥∥∥
p
+
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p

≤ O(
√
φψ log d log n)

∥∥U∗V ∗ −AT )
∥∥
p
+
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p

+O(
√
φψ log d log n)

∥∥Φ†N1T
†
∥∥
p

(18)

Now,

∥∥∥Yc(V̂Ψ)†V̂ −B
∥∥∥
p
≤

∥∥∥Yc(V̂Ψ)†V̂ −AT
∥∥∥
p
+
∥∥Φ†N1T

†
∥∥
p

Combining the above two inequalities, we get

∥∥∥Yc(V̂Ψ)†V̂ −B
∥∥∥
p
≤ O(

√
φψ log d log n)

∥∥U∗V ∗ −AT )
∥∥
p
+

∥∥∥N2(V̂Ψ)†V̂
∥∥∥
p

+O(
√
φψ log d log n)

∥∥Φ†N1T
†
∥∥
p

Further, since U∗ has rank at most k, we have that V̂ = (ΦU∗)†ΦB has rank at most k. This implies
that

min
rank(X)≤k

‖YcXB −B‖p ≤
∥∥∥Yc(V̂Ψ)†(ΦU∗)†ΦB −B

∥∥∥
p

≤ O(
√
φψ log d log n)

∥∥U∗V ∗ −AT )
∥∥
p
+
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p

+O(
√
φψ log d log n)

∥∥Φ†N1T
†
∥∥
p

(19)

Third fundamental technique. The last fundamental technique that we use is that an approximate
solution of low-rank problem in the projected space also gives an approximate solution of the
original low-rank problem. Let R = PUΣ(ΦPUΣ)†Φ, where X̂ = VcΣ

†
c[U

T
c ZV

T
r ]sΣ

†
rU

T
r . Let

X̄ = argminX

∥∥∥Φ(PYcX̂XΦB −B)T
∥∥∥
1
. We have the following:

‖Φ(RB −B)T‖1 ≤
√
st
∥∥Φ(PUΣ(ΦPUΣ)†ΦB −B)T

∥∥
F

(definition of P )

=
√
stmin

X
‖Φ(PUΣXΦB −B)T‖F (by definition of normal form)

≤
√
st
∥∥Φ(PUΣX̄ΦB −B)T

∥∥
F

≤
√
st
∥∥Φ(PUΣX̄ΦB −B)T

∥∥
1

=
√
stmin

X
‖Φ(PUΣXΦB −B)T‖1 . (definition of X̄)

This implies that (ΦUΣP )† is the approximate solution of minX ‖Φ(PUΣXΦB −B)T‖1. Us-
ing Lemma 9, we have

∥∥∥PUΣ(ΦPYcX̂)†ΦB −B
∥∥∥
p
≤

√
stmin

X
‖PUΣXΦB −B‖p

17



Let Φ̄ =

(
Φk
0

)
and Φ′ be the matrix such that Φ′

i: = Φ̄π(i):. Then we have the following set of

inequalities

min
X

‖PUΣXΦB −B‖p ≤
∥∥∥∥
φ

k
Φ†(UΣ)†(UΣ)ΦYc(V̂Ψ)†ΦB −B

∥∥∥∥
1

(by minimality)

≤ O(log d)

∥∥∥∥
φ

k
ΦΦ†(UΣ)†(UΣ)ΦYc(X̂Ψ)†ΦB − ΦB

∥∥∥∥
1

(no-dilation property)

≤ O(log d)

∥∥∥∥
φ

k
(UΣ)†(UΣ)ΦYc(X̂Ψ)†ΦB − ΦB

∥∥∥∥
1

(ΦΦ† = I)

= O(log d)

∥∥∥∥
φ

k
Φ′Yc(V̂Ψ)†ΦB − ΦB

∥∥∥∥
1

(definition)

≤ O(log2 d)
∥∥∥Yc(X̂Ψ)†ΦB −B

∥∥∥
1

(Lemma 19).

Combining this with equation (19) and using the value of Π gives
∥∥ΠAT −AT

∥∥
p
≤ O(log3 d log n

√
stφψ)

∥∥U∗V ∗ −AT )
∥∥
p
+O(

√
st log2 d)

∥∥∥N2(V̂Ψ)†V̂
∥∥∥
p

+O(
√
st log2 d)

∥∥∥YcX̂(ΦYcX̂)†N1T
†
∥∥∥
p
+O(

√
stφψ log3 d log n)

∥∥Φ†N1T
†
∥∥
p

(20)

All that remain is to bound each of the above additive term. The following claim does this.

Claim 21. With probability at least 97/100,
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p
≤ Õ(kd log n/ε),

∥∥Φ†N1T
†
∥∥
p
≤ Õ(CsCtst/ε),

∥∥∥YcX̂(ΦYcX̂)†N1T
†
∥∥∥
p
≤ Õ(Ctst/ε).

Proof. Now N2(V̂Ψ)†V̂Ψ = N̂2. Using no dilation property of Ψ, we have
∥∥∥N2(V̂Ψ)†V̂

∥∥∥
p
≤

log n
∥∥∥N̂2

∥∥∥
p

This can be bound using the standard tail inequality for Laplace mechanism, i.e,

with probability at least 99/100,
∥∥∥N̂2

∥∥∥
p
= Õ(kd). Similarly, ΦYcX̂(ΦYcX̂)†N1T

†T = N̂1 and

ΦΦ†N1T
†T = N1. Using dilation and contraction properties of Φ,Ψ, and T completes the proof of

claim.

We finish the proof by proving that the projection matrix is an orthonormal projection matrix with
high probability.

Claim 22. PUΣ(ΦPUΣ)†Φ is an orthonormal projection matrix with probability 99/100.

Proof. Since Φ is a Cauchy matrix with i.i.d. entries, Φ is a full row matrix with probability 99/100.
Therefore, it follows from the definition of P that

Π = PUΣ(ΦPUΣ)†Φ

= Φ†(UΣ)†UΣ(ΦΦ†(UΣ)†UΣ)†Φ

= Φ†(UΣ)†UΣ((UΣ)†UΣ)†Φ

= Φ†(UΣ)†UΣ(Φ†(UΣ)†UΣ)†

with probability 99/100. This completes the proof.
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The next proposition follows from the definition of X̂ and the fact that N,N1, and N2 are i.i.d.
Laplace matrix.

Proposition 23. YcX̂ has rank-k with probability at least 1− δ, where the probability is over the
randomness of the algorithm.

Using Claim 21 in equation (20) completes the proof of Theorem 15.

C Local Learning

Local differential privacy, a stronger variant of privacy, has gained a lot of attention recently. For
e.g., it is the privacy guarantee employed by Apple in their new iOS [1] and has been used by Google
for various data analysis [15]. In the local privacy model, there is no central database of private
data. Instead, each individual has its own data element (a database of size one), and sends a report
based on its own datum in a differentially private manner. The local model allows individuals to
retain control of their data since privacy guarantees are enforced directly by their devices. However,
it entails a different set of algorithmic techniques from the central model. In principle, one could
also use cryptographic techniques to simulate central model algorithms in a local model, but such
algorithms currently impose bandwidth and liveness constraints that make them impractical for large
deployments.

Formally, we consider the database X = [x1, · · · , xn]> as a collection of n elements (rows) from
some domain X ⊆ R

d, with each row held by a different individual. The ith individual has access
to εi-local randomizer, Ri : X → W which is an εi-differentially private algorithm that takes
as input a database of size n = 1. We assume that the algorithms may interact with the database
only through local randomizers. We can then define local differential privacy as follows [13]. An
algorithm is ε-locally differentially private if it accesses the database X via the local randomizers,
R1(x1), · · · , Rn(xn), where Ri is an εi-local randomizer, and max {ε1, · · · , εn} ≤ ε.

We note that what we have defined above is a non-interactive local differential privacy algorithm
where an individual only sends a single message to the server. Another well studied variant is that of
interactive local differential privacy where the server sends several query messages, each to a subset
of users. Each such message, together with responses from users, counts as a round of interaction.
In the end, the server aggregates and summarizes the messages it received from every user (over
possibly multiple rounds), and uses it to answer queries about the data. It was argued in [27] that
from an implementation point of view, it is more desirable to have as few rounds of interactions
as possible because interaction introduces latency, synchronization, and bandwidth issues. In fact,
existing large-scale deployments [1, 15] are limited to one that are noninteractive. Therefore, we
limit our study to what is possible in the noninteractive variant of local differential privacy. We study
robust principal component analysis in local model of differential privacy. We show that with high
probability, we have that ‖AΠ−A‖p ≤ ` · OPTk(A) + Õ(ε−1knd).

Our result is applicable in the setting when ‖A‖p � O(nd). We note that, in practice, robust LRA is
used on corrupted data matrix with a reasonable fraction of entries corrupted by large values. There
are other scenarios, like network analysis, where private matrices have large entries. In such scenarios,
typically ‖A‖p � O(nd), and outputting an all zero matrix would incur an error far greater than
what we incurred. If we wish to output a rank-k matrix with provable guarantees, the naive algorithm
that works as follows: every user add Laplace vector to their data and send the report to the server,
and the server runs a non-private algorithm leads to worse additive error. This is because the low-rank
approximation is now done on A+N for N ∼ Lap(0, 1/ε)n×d. We next show that we can convert
ROBUST-PCA to the model of local differential privacy. See Figure 3 for details. Our algorithm is
non-interactive; therefore, we can use the generic transformation of [6] to get an ε-local differentially
private algorithm.

Theorem 24. Algorithm LOCAL-ROBUST-PCA (see Figure 3) is an ε-local differentially private
algorithm. Furthermore, given a matrix A ∈ R

n×d with OPTk(A) := minrank(X)≤k ‖A−X‖p,

LOCAL-ROBUST-PCA runs in time poly(k, n, d), space Õ(k(n+d)), and outputs a rank k projection
matrix Π such that, with probability 9/10 over the randomoziation of the algorithm,

‖A−AΠ‖p ≤ O(log n log3 d (k log k log(1/δ))
2(2−p)/p

)OPTk(A) + Õ(k2nd/ε).
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Algorithm 3 LOCAL-ROBUST-PCA

Input: Every user i ∈ [n] having access to a row Ai, target rank k
Output: Rank-k projection matrix Π ∈ R

d×d

1: Initialization. Sample Φ ∈ R
φ×d,Ψ ∈ R

n×ψ, S ∈ R
s×d, and T ∈ R

n×t with every entry
sampled iid from Dp. All these matrices are publicly available.

2: user side computation: every user i, do
3: Sample private noise. Sample N1,i ∼ Lap(0, CφCt)

φ×t, N0,i ∼ Lap(0, Cψ)
d×ψ, N2,i ∼

Lap(0, CsCt)
s×t using its private coin.

4: Construct. A(i) ∈ R
d×n with all zero entries except the column i has entry Ai.

5: Compute. Yr,i = ΦA(i)T + N1,i, Yc,i = A(i)Ψ + N0,i and Zi = Yr,i, where Φ, T and Ψ
are sketching matrices with every entries sampled i.i.d. from a p-stable distribution.

6: Send. (Yr,i, Yc,i, Zi) to the server.
7: end user side computation:
8: server’s computation: get {Yr,i, Yc,i, Zi}ni=1, do
9: Compute. Yc =

∑
Yc,i, Yr =

∑
Yr,i, and Z =

∑
Zi.

10: Compute. SVD(ΦYc) = [Uc,Σc, Vc]. and SVD(Yr) = [Ur,Σr, Vr].
11: Set. X̂ = VcΣ

†
c[U

T
c ZV

T
r ]kΣ

†
rU

T
r , where [B]k = argminr(X)≤k ‖B −X‖F .

12: Pick: a permutation matrix Q ∈ Rφ×φ.

13: Compute: the full SVD of YcX̂ , [U ′,Σ′, V ′]. Set U = U ′Q, Σ = Σ′Q, and P = Φ†(UΣ)†.
14: Output: Π = PUΣ(ΦPUΣ)†Φ.
15: end server’s computation:

Note that the naive algorithm that works as follows: every user add Laplace vector to their data and
send the report to the server, and the server runs a non-private algorithm leads to a slight worse additive
error. This is because the low-rank approximation is now done on A+N for N ∼ Lap(0, 1/ε)n×d.
Song et al. [29] would then imply that the additive error would be about O(CφCψ

√
stψφnd).

Proof of Theorem 24. Using the same arithmetic as in the proof of Theorem 15, the error incurred
would be

‖A−AΠ‖p ≤ O(CφCψ
√
stφψ)OPTk,p(A) + c2

(
2n

∥∥∥Ñ1

∥∥∥
p
+ 2n

∥∥∥Ñ2

∥∥∥
p

)
,

where Π := PUΣ(ΦPUΣ)†Φ, OPTk,p(A) := ‖U∗V ∗ −A)‖p, N1 is an n times a d × ψ random

Laplace matrix, Ñ1 and Ñ2 are as formed in the proof of Theorem 15. Using the same calculation
completes the proof of Theorem 24.

D A Closer Look on Current Techniques

We first give the argument we made in the main text for the accuracy guarantees by using the ζ-net
mechanism of Blum et al. [4]. To apply Blum et al. [4] in our setting, we need to compute the number
of k-tuples of unit vectors in R

d and R
n. The size of ζ-net of unit vectors in R

d (for row space) is

p = ζ1−d. Hence, number of k-tuples of unit vectors is
(
p
k

)
. Similarly, for column space, it is

(
ζ1−n

k

)
.

This gives us the error claimed earlier in the introduction.

There are two main approaches for efficient private algorithms – output perturbation and input
perturbation. In output perturbation, we first compute the output (e.g. rank-k approximation of a
given matrix) non-privately and then add appropriately scaled noise to preserve privacy. In input
perturbation, we add noise to the private matrix and then compute the output on the noisy matrix.
Both these approaches require adding noise to every entry of the given input matrix or to every entry
of the non-private output matrix. Consequently, both of these methods would incur an additive error
of O(nd).

Alternatively, one could consider iterative approaches, such as noisy Krylov subspace iteration [19],
for finding low-rank matrix approximation with respect to spectral norm. However, it is not imme-
diately clear how to adapt such an algorithm for `p low-rank approximation. The methods used in
known results for differentially private low-rank approximation with respect to entrywise `2-norm,
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say [18, 14, 32], also has some hurdles. The main problem here is that the given objective is not
rotationally invariant. If we just use the output produced in any of the results for Frobenius norm and
then use, say Holder’s inequality, then the accuracy would depreciate proportional to (nd)

1/p−1/2.

One may then argue that we can solve robust low-rank approximation for constant dimension by
using exponential mechanism [26]. For using exponential mechanism, we need to find a suitable
scoring function, which is not clear in the case of entrywise `p-norm. Even if we are able to find a
scoring function analogous to one used in [21], it is not clear whether we can iterate it for k rounds to
get all the top-k subspace. More precisely, it is not clear whether a result analogous to the Deflation
lemma of [21] holds in the case of entrywise `p approximation.
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