Characterizing the Deployment of Deep Neural
Networks on Commercial Edge Devices

Ramyad Hadidi, Jiashen Cao, Yilun Xie, Bahar Asgari, Tushar Krishna, Hyesoon Kim
Georgia Institute of Technology
Email: rhadidi@gatech.edu

Abstract—The great success of deep neural networks (DNNs)
has significantly assisted humans in numerous applications such
as computer vision. DNNs are widely used in today’s applications
and systems. However, in-the-edge inference of DNNs is still a
severe challenge mainly because of the contradiction between
the inherent intensive resource requirements of DNNs and the
tight resource availability of edge devices. Nevertheless, in-
the-edge inferencing preserves privacy in several user-centric
domains and applies in several scenarios with limited Internet
connectivity (e.g., drones, robots, autonomous vehicles). That is
why several companies have released specialized edge devices
for accelerating the execution performance of DNNs in the
edge. Although preliminary studies have characterized such edge
devices separately, a unified comparison with the same set of
assumptions has not been fully performed. In this paper, we
endeavor to address this knowledge gap by characterizing several
commercial edge devices on popular frameworks using well-
known convolution neural networks (CNNs), a type of DNN. We
analyze the impact of frameworks, their software stack, and their
implemented optimizations on the final performance. Moreover,
we measure energy consumption and temperature behavior of
these edge devices.

I. INTRODUCTION & MOTIVATION

Deep neural networks (DNNs) and machine learning tech-
niques have achieved great success in solving several tradition-
ally challenging problems [1]-[3] such as computer vision [4],
[5] and video recognition [6], [7]. DNNs are widely used today
in numerous applications, from recommender systems [8] to
autonomous vehicles [9], [10]. However, the execution plat-
form of several of these applications lacks the resources for the
efficient execution of DNNs, such as inexpensive robots [11]-
[14], unmanned aerial vehicles (UAVs) [15], [16], and Internet-
of-things (IoT) devices [17]. This is because the fast prediction
of DNNs (i.e., inferencing) is a resource-intensive task [18]
that requires energy, large memories, and capable processors.
The traditional solution to this problem is to offload all the
computations to the cloud. Nevertheless, such offloading is not
possible in several situations because of privacy concerns [19]—
[22], limited Internet connectivity, or tight-timing constraints
(e.g., home video recordings, drones, and robots surveying a
disaster area).

To amortize the cost of DNN, researchers have studied
several machine learning techniques, such as weight prun-
ing [18], [23]-[25], quantization [26]-[29], and mixed pre-
cision inferencing [30]. Furthermore, in-the-edge inferencing
enforces the computation of single-batch inference because
of the limited number of available requests in a given time.

Compared to multi-batch inferencing (the common practice
in cloud servers), single-batch inferencing increases memory
footprint, which is an added challenge for in-the-edge devices.
Therefore, edge specific DNN frameworks, such as Tensor-
Flow Lite [31] and TensorRT [32], integrate and adapt afore-
mentioned techniques for single-batch inference to achieve
high performance. Moreover, companies have started to build
device-specific frameworks for efficient DNN execution, such
as Microsoft ELL [33] for Raspberry Pis [34] with several
compiler- and software-level optimizations. However, using
only software techniques cannot guarantee the fast execution
of DNNs. This is because current hardware platforms are
not specifically designed for DNNs, the execution of which
has unique characteristics. This inefficiency of general-purpose
hardware platforms for DNN execution has led to specialized
hardware designs and ASIC chips targeting high-performance
computing (HPC). Additionally, companies have also released
specialized accelerator devices for performing fast in-the-edge
inferencing, such as Google’s EdgeTPU [35], Nvidia’s Jetson
Nano [36], and Intel’s Movidius Neural Computer Stick [37].
This paper presents a unified comparison between commer-
cial edge devices (Table III) with the same set of assumptions
among several frameworks (Table II) with the same DNN
models (Table I). While focusing on edge-specific single-
batch inferencing, we analyze and compare the performance of
several widely used frameworks and their supported optimiza-
tions for edge devices. To gain better insights, we profile the
software stack of two widely used frameworks (TensrorFlow
and PyTorch) on two CPU- and GPU-based edge devices
(Raspberry Pi 3B and Jetson TX2). Additionally, we study
accelerator-oriented frameworks for edge devices, such as
Movidius toolkit. Besides the characterization of several edge
devices, to the best of our knowledge, this is the first charac-
terization of EdgeTPU and Jetson Nano'. In addition to the
performance characterization of edge devices, we investigate
whether HPC-level devices (Xeon and HPC GPUs) are a good
candidate for single-batch inferencing. Finally, by using a
power analyzer and thermal camera, we measure the energy
per inference and temperature behavior of edge devices. Our
experiments are reproducible and extendable to new platforms
by utilizing our open source project on GitHub?.
The following are the key contributions of this paper:

! Besides the marketing news blogs by companies [35], [38].
2 More info at comparch.gatech.edu/hparch/edgeBench.

TABLE I
AN ovErVIEW OF DNN' MODELS USED IN THE PAPER.
Model InPut FLOP Number of FLOPparam,
Name Size (giga) Parameters

ResNet-18 [44] 224x224 1.83 11.69m 156.54
ResNet-50 [44] 224x224 4.14 25.56m 161.97
ResNet-101 [44] 224x224 7.87 44.55m 176.66
Xception [45] 224x224 4.65 2291 m 202.97
MobileNet-v2 [46] 224x224 0.32 3.53m 90.65
Inception-v4 [47] 224x224 12.27 4271 m 287.29

AlexNet [48] 224x224 0.72 102.14m 7.05
VGGI16 [5] 224x224 15.47 138.36m 111.81
VGGI19 [5] 224x224 19.63 143.66m 136.64

VGG-S [5] 32x32 0.11 32.11m 3.42
VGG-S [5] 224x224 3.27 10291 m 31.77
CifarNet [49] 32x32 0.01 0.79m 12.65

SSD [39] with

MobileNet-v1 [40] 300x300 0.98 423m 236.07
YOLOV3 [41], [42] 224x224 38.97 62.00m 628.54
TinyYolo [42] 224x224 5.56 15.87m 350.35
C3D [43] 12x112x112 57.99 89.00m 734.05

"In this paper, we focus on convolution neural network (CNN) models, a type
of DNN, because of their popularity and support in several studied frameworks.
Nevertheless, most of the computations in CNNs, similar to other DNNs, are
dominated by matrix-matrix and matrix-vector multiplications.

<]
©

Nl

& ©

&)
R\ ‘;_,

Fig. 1. DNN models of this paper, sorted by FLOF/param for one inference.

o Analyzing commonly used frameworks, their optimiza-
tions for in-the-edge inferencing, and their software stack.

« Studying the impact of edge-specific frameworks on the
performance of single-batch inference.

« Measuring energy consumption per inference and tem-
perature behavior of edge devices.

« Comparing performance of single-batch inference of
HPC-level and edge devices.

« Characterizing EdgeTPU and Jetson Nano for the first
time, to the best of our knowledge.

II. DNN MobEeLS OVERVIEW

In the Table I, we present a brief overview of the DNN
models used in this paper. We choose several computer vi-
sion models for object recognition, one for object detection
(SSD [39] with feature extractor based on MobileNet-v1 [40])
and three for video recognition (YOLO [41], TinyYolo [42],
and C3D [43]). All the models are based on convolution neural
network (CNN), which mainly utilize convolution and fully-
connected layers. The C3D model uses 3D convolution layers
to process time series. We select computer vision DNN models
since most frameworks support CNNs and their underlying
implementations are optimized. We plan to extend our models
to include more varieties of DNN models, such as RNNs
and LSTMs, in the future work. We ensure that all the
implementations are in fact identical for performing single-
batch inferences across all framework implementations.
Table I lists the DNN models used in this paper, along with
their number of parameters and their total floating operations

(FLOP) per one inference, a proxy for memory, and a proxy
for computation footprints, respectively. Additionally, in the
table, we calculate FLOP per parameter (for one inference),
which shows the degree of the compute intensity of the model.
Figure 1 illustrates models sorted by their FLOP/param. From
purely an execution performance perspective, a model with
higher FLOF/param is more compute-intensive than a model with
lower FLOFparam, which is more memory-intensive. From a
machine learning performance perspective, one can argue that
a relatively high number of parameters could indicate a poorly
designed model that does not efficiently uses the full potential
of its parameters. For instance, a model that has a higher top-
1 accuracy density (%parameter) [50] could be more efficient.
However, there is no clear consensus on this topic and such
discussion is out of the scope of this paper. Therefore, we
chose DNN models that are popular and are actively referenced
and studied in the research community.

III. DNN FRAMEWORKS

This paper seeks to cover the most popular off-the-shelf
DNN frameworks actively used in the industry or academia.
Yet, setting up all the possible combinations of frameworks,
devices, models, and weights is a highly time-consuming
process, given that each framework usually requires its own
model description format. Recent endeavors such as ONNX
ecosystem [51] try to address this issue, but they are still
in the introduction stage. Although some frameworks provide
a predefined set of models, ensuring a unified model across
all of frameworks is also time-consuming. Even after putting
aside FPGA-based frameworks, which create custom hardware
designs that are highly dependent on the model parameters,
device-specific frameworks, such as TensorFlow Lite [31] used
for EdgeTPU and NCSDK toolkit [52] used for Intel Movidius
Stick, require extra steps (e.g., quantization-aware training,
recompiling the model) for deployment. This section briefly
describes the frameworks used in this paper.

A. Description of Frameworks

(1) TensorFlow: TensorFlow [53] is a widely used framework
developed by Google. The majority of the software is available
as open source with an Apache 2.0 license. The TensorFlow
engine is written in C/C++ (CPU) and CUDA (GPU), and
has several interfacing languages, including Python. Addition-
ally, the TensorFlow ecosystem provides several visualizing
(e.g., TensorBoard) and cross-platform compilation tools (e.g.,
EdgeTPU and TPU). For execution, TensorFlow generates a
static computational graph (after the acceptance of this paper,
a beta version of TensorFlow 2.0 [54] has been announced that
supports dynamic graphs besides Eager execution mode [55]).
Similar to all frameworks that train a network, TensorFlow
adds automatic differentiation [56] to this graph for training.
The automatic differentiation of TensorFlow eases the design
of new models and introducing new learnable parameters
since backpropagation operations for computing gradients are
automatically defined in the computational graph.

(2) TensorFlow-Lite: TensorFlow-Lite [31] (TFLite) is the
wrapper of the TensorFlow engine for mobile and IoT devices.
To reduce the memory and computation footprints, TFLite
performs various optimizations on the computation graph and
weights of the model. For instance, TFLite offers pruning,
structured pruning, and quantization (both post-training and
during the training). For deployment, TFLite freezes the com-
putation graph by removing several redundant and unnecessary
operations (e.g., converting variable to constant operations).
(3) Keras: Keras [57] is a high-level deep learning API that
is built on top of TensorFlow. It is written in Python and is
released under the MIT license. The interface of Keras has
been developed to provide easy and fast prototyping and to
minimize the idea-to-result time. Keras is now integrated into
TensorFlow. Therefore, for some models for which Keras has
an implementation, we use Keras and TensorFlow implemen-
tations interchangeably.

(4) Caffe/2: Caffe2 [58] is the successor and a lightweight
version of Caffe [59], an academic endeavor, now supported
by Facebook. While Caffe supports deploying CNN models
on clusters or mobile devices, it is more useful for large-scale
use cases rather than mobile, distributed computation, and
reduced precision computation use cases. To this end, Caffe2
supports large-scale distributed training, mobile deployment,
new hardware, and quantized computation. Moreover, Caffe2
is intended to be modular to enable the fast prototyping of
ideas and scalability. Caffe and Caffe2 are written in C++ and
CUDA and are open sourced under the Apache 2.0 license.
Caffe2 offers Python APIs for its engine.

(5) Movidius NCSDK Toolkit: The neural computing de-
vice of Intel, known as Movidius Neural Compute Stick
(see Section IV), requires its compatible toolkit, Movidius
Neural Compute SDK (NCSDK) [52], to run DNNs. Since
the optimizations supported by the NCSDK toolkit are hand-
tuned, importing and compiling a new model is a strenuous
process [60] (NCS2 [61], announced after this paper accep-
tance, claims supporting popular frameworks).

(6) PyTorch: PyTorch [62], the Python version of Torch, a
computational framework written in Lua, was open-sourced by
Facebook in 2017 under the BSD license. Caffe2 (in C/C++)
was merged into PyTorch in Facebook in 2018. Since Torch
was originally developed as an academic project, it features
a large number of community-driven packages and tools.
PyTorch, in contrast with TensorFlow, closely represents the
Python scientific computing library (i.e., numpy). Internally,
PyTorch constructs dynamic computation graphs, which means
that during each inference, the computation graph is defined,
utilized, and freed. Thus, constructing the entire graph is
not necessary for execution. The advantage of such dynamic
graphs is the efficient use of memory in cases where the input
may vary. On the other hand, the disadvantage of dynamic
graphs is the limited opportunities for global optimizations
because the entire graph is not known during the execution.
(7) TensorRT: NVidia TensorRT [32] is built on CUDA and
includes several optimizations to deliver high throughputs and
low latencies for DNN applications. The focus of TenorRT

TABLE II
THE SPECIFICATIONS OF FRAMEWORKS USED IN THIS PAPER.
Elelslsle]g]s
& =l O = | & & a
Languaget Python C
Industry Backed 4 X
Training Framework v X v
Adding k% % sk % ok *x KKk
New Models
Pre-Defined . * ok s - sk %
Models
Documentation ok * * * ek * *
No Extra Steps 4 X v X v v v
Mobile Device X v X
Deployment
Low-Level % * *k * * * Kk
Modifications
Compatibility « y « y « . «
with Others
Quantization v v v v v v X
2 Mixed-Precision: X X X X X v X
-% Dynamic Graph xS x3 X X v 4 X
E Pruningi: 4l v X X X v X
g Fusion V4al v X v X 4 X
=) Auto Tuning X X X X X v X
Half-Precision v v v v v v X

o

 Main interfacing language. More stars represents higher/easier/better.

Support for mixed-precision inferencing, and not training.

§ TensorFlow Eager execution [55] provides dynamic graphs, but for debugging pur-
poses. After the acceptance of this paper, a beta version of TensorFlow 2.0 [54] has
been announced that supports dynamic graphs. * Every framework supports pruning
by zeroing out weights. Here, we show if a framework can automatically benefit from
such fragmented weights. ¥ Experimental implementation.

is end-user performance. Therefore, TensorRT can optimize
models that are trained on other frameworks after they are
imported. Besides mixed-precision computation and quanti-
zation in INT8 and FP16, TensorRT tries to minimize the
memory footprint by reusing memory and fusion operations.
Although all other major frameworks support some part of
these optimizations, we find TensorRT to be more user-friendly
and easier to deploy.

(8) DarkNet: DarkNet [63] is a standalone open-source frame-
work written in C and CUDA. The project code base is small
and thus is understandable and modifiable. Since DarkNet is
written in C without using high-level languages, it is a good
candidate for low-level hardware and software optimizations
and creating micro-benchmarks.

(9) FPGA Frameworks: To utilize an FPGA-based edge
device, PYNQ board [64], we use a set of frameworks,
FINN [65] and TVM VTA [66], [67] stack. FINN uses bina-
rized weights for its implementations. TVM uses a customized
RISC-based instruction set but on tensor registers. VTA de-
ploys a custom-hardware design on the FPGA by utilizing
a PYNQ overlay [68], which enables the offloading of pre-
defined functions to the FPGA. Then, by utilizing the TVM
just-in-time compiler, a user can offload the computations of
a DNN model to the FPGA without interacting with any
hardware-level code.

TABLE III

THE SPECIFICATIONS OF HARDWARE PLATFORMS USED IN THIS PAPER.

Categor ToT/Edge GPU-Based Custom-ASIC FPGA HPC Platforms
gory Devices Edge Devices Edge Accelerators Based CPU | GPU
Raspberry Jetson Jetson Movidius PYNQ-Z1 RTX
Platform H Pi 3B [34]* ‘ TX2 [69] ‘ Nano [36] ‘ EdgeTPU [35] ‘ NCS [37]* ‘ [64] Xeon 2080 Tltan X Titan Xp
4-core 4-core Ctx.A57 4-core 4-core Ctx.A53 4-core 2x 22-core
Ctx.A53 2-core Denver2 Ctx.A57 & Ctx.-M4 N/Ap Ctx.A9 E5-2696 v4 N/Ap* N/Ap N/Ap
@1.2 GHz* @2GHz @1.43GHz @1.5GHz @650 MHz @2.20GHz
256-core 128-core 2944-core 3072-core 3840-core
GPU ‘ ‘ No GPGPU ‘ Pascal uA ‘ Maxwell uA ‘ N/Ap ‘ N/Ap ‘ N/Ap ‘ N/Ap ‘ TuringuA | Maxwell uA ‘ Pascal uA
Myriad 2 ZYNQ
Accelerator ‘ N/Ap ‘ N/Ap ‘ N/Ap ‘ EdgeTPU ‘ VPU ‘ XC77020 ‘ N/Ap ‘ N/Ap ‘ N/Ap ‘ N/Ap
" 1GB 8GB 4GB « 630 KB BRAM 264 GB 8GB 12GB 12GB
Memoryf H LPDDR2 ‘ LPDDR4 ‘ LPDDR4 ‘ N/AY ‘ N/Av ‘ 512MB DDR3 ‘ DDR4 ‘ GDDR6 ‘ GDDRS ‘ GDDRSX
ldle 133 1.90 1.25 324 2.65 ~70 ~15
Poweri:
Average 273 9.65 4.58 414 1.52 524 300 TDP ~ ~100 ~
Power::
Platform All | All | All | TFLite | NCSDK | TVM/FINN | All | All | All | All

T Effective memory size used for acceleration/execution of DNNG, e.g., GPU/CPU/Accelerator memory size.
*: Raspberry Pi 4B [70], with 4-core Ctx.A72 and maximum of 4 GB LPDDR4, was released after this paper
acceptance. With better memory technology and out-of-order execution, Raspberry Pi 4B is expected to perform better.

#: Measured idle and average power while executing DNNs, in Watts.

“Ctx.: Arm Cortex. N/Ap: Not applicable. N/Av: Not available.

¢ Intel Neural Compute Stick 2 [61] with a new VPU chip

and support for several frameworks was announced during paper submission, but the product was not released.

B. Framework Comparisons and Optimizations

This section compares the preceding frameworks from various
points of view. In addition to some general aspects such
as their programming language, development support from
industry, training capability, usability, supported computations
for models, and available documentations, Table II summarizes
some relative technical advantages and disadvantages of the
aforementioned frameworks>. For instance, TFLite and Mo-
vidius (i.e., NCSDK) require extra steps to configure a model
for execution. As a result of such steps, both frameworks
provide more optimizations for edge devices. For example,
quantization-aware training and freezing a graph in TFLite
considerably reduce the memory footprint of the DNN models
implemented by TensorFlow. TensorRT also provides the same
set of optimizations with less programming effort (and thus
less aggressive benefits) with auto-tuning. On the other hand,
the full support for mobile-device deployment is available only
on TFLite, and partially on other frameworks such as Caffe2.

Low-level modifications, such as changing data ordering,
optimizing for cache hits, and performing kernel fusion, are
cumbersome tasks. For all DNN frameworks, such modi-
fications are even harder because of their implementation
in a high-level language (except DarkNet, which is written
in C). Another aspect is the compatibility of frameworks
with each other (e.g., the same model description format as
input and similar output format). For this paper, we work
with several frameworks. Unfortunately, we find limited com-
patibility among frameworks. Additionally, each framework
assumes a set of hyperparameters that might be different in
other frameworks. TensorRT provides better compatibly in
importing models from other frameworks (including ONNX
format); however, this is mainly because TensorRT is an

3 Please note that these frameworks are actively being developed. As a
result of that, although the technical statements about each framework might
change, the discussions about the mentioned optimizations still hold true.

inference-oriented framework, the main purpose of which is
efficient inferencing. Similarly, TFLite is an inference-oriented
framework backed by TensorFlow training procedures and its
model description.

We also study the implemented state-of-the-art optimiza-
tions in each framework in their code base. Particularly, we
study weight quantization, mixed-precision inferencing, dy-
namic construction/deconstruction/allocation of computation
graph, ability to leverage pruned wights, kernel fusion for
efficient caching and use of computing units, auto-tuning to
hardware platforms, and support for half-precision numbers
(FP16). Each optimization can be implemented in various
methods with numerous tradeoffs. Additionally, several of
such optimizations can be implemented by users in their
application. In Table II, we address only the existence of such
optimizations that are officially implemented by the authors
of the each framework. Quantization to common datatypes
is implemented for all frameworks that are supported by the
industry. Quantization is popular because, as several studies
show [18], [27], [28], using smaller datatypes can significantly
reduce pressure on memory and storage in all systems. Further-
more, implementing quantization to a fixed data type is a fairly
easy task for industry. On the other hand, mixed-precision
inferencing requires several software-hardware co-designs, and
the benefit is limited to specific hardware platforms (e.g.,
Nvidia Turing pArchitecture [71]) that can exploit such an
imbalance in their computational units.

The dynamic manipulation of computation graphs enables
efficient memory reuse and minimizes memory footprint.
Therefore, increasing the performance of inference. TensorRT
supports dynamic graphs, and PyTorch supports them by
design choice. The static computational graph could also
be beneficial, for example, by enabling offline optimizations
(e.g.,TFLite). Thus, both options are viable choices for con-
structing a computational graph. Another optimization, weight

TABLE IV
THE SUMMARY OF EXPERIMENTS DONE IN THIS PAPER.

Experiments Ex;f:‘t;on Framework Analysis) ‘ Edge vs. HPC Vl:)t:]l::;‘z:;:ion Energy Measurments ‘ Temperature
Section/Figure || VLA | VIB3 | VIB4 | VIB6 | VLB | VIBS | VIB5S | VICS | VILC/I0 | VID/13 | VLE/11 | VLE/12 | VLF/14
. e Latency Inference | Speedup Inference Energy per Inf. Time (ms) Temp-
Metric H Inference Time (ms or £) Breakdown Time (ms) Over TX2 Time (s) Inference (mJ) vs. Power (w) erature (°C)
RPi/TFLite, TF RPi/DarkNet TX2/DarkNet GTX/TF Nano/T-RT RPi/TF RPi/PT TX2/PT TX2/PT Bare Metal RPi/TFLite RPi/TFLite RPi/TFLite
Nano/T-RT RPi/Caffe TX2/Caffe GTX/PT | Nano/PT | RPi/T-Lite RPi/TF Xeon/PT Xeon/PT RPi/TF Nano/T-RT Nano/T-RT Nano/T-RT
FW/Devices TX2/PT RPi/TF TX2/TF TX2/PT GTX/PT GTX/PT TX2/PT TX2/PT TX2/PT
EdgeTPU/TFLite RPi/PT TX2/PT TX2/TF T-XP/PT T-XP/PT Docker EdgeTPU/T-Lite EdgeTPU/T-Lite EdgeTPU/T-Lite
Mavidus/NCSDK 2080/PT 2080/PT RPi/TF Mavidus/NCSDK Mavidus/NCSDK | Mavidus/NCSDK
PYNQ/TVM GTX/PT GTX/PT GTX/PT

FW: Framework, TX2: Jetson TX2, Nano: Jetson Nano, PT: PyTorch, TF: TensorFlow, TFLite: TensorFlow Lite, T-RT: Tensor RT, GTX: GTX Titan X, T-XP: Titan Xp, 2080: RTX 2080

pruning [18], [23]-[25], [72], [73], reduces the storage and
computation footprints by removing some of the network
connections. However, a framework needs to take further
steps to exploit these benefits (e.g., change data representation
format to match underlying hardware [73]). This is because
data and computations are now in sparse format. Although
all frameworks benefit from pruning in reducing their storage
footprint, only TensorFlow, TFLite, and TensorRT take further
steps in exploiting it for sparse computations.

Another essential optimization is kernel fusions [74], which
reduces memory traffic by reusing data that are already
populated and eliminating redundant loads and stores. The
effectiveness of kernel fusions depends on several factors,
such as hardware resources and applied software techniques.
Therefore, kernel fusions are mostly supported on platform-
specific frameworks (e.g., TFLite, Movidius SDK, and Ten-
sorRT). Usually, each framework requires careful tuning to
particular hardware by an experienced engineer. After tuning,
the models and weights are released for use by users. However,
in this approach, generally, users cannot create new efficient
models since they have limited knowledge of both hardware
and framework. Auto-tuning support in TensorRT tries to solve
this issue so that users create relatively tuned models. Finally,
inferencing using half-precision floating numbers (FP16) is
supported by almost all frameworks, similar to quantization.

IV. EDGE DEVICES

This section provides an overview of our hardware plat-
forms, including edge devices and edge accelerators, as well
as FPGA-based and CPU/GPU high-performance computing
(HPC) platforms. Table III summarizes their internal organi-
zation and their measured idle and average power usage.

(1) Raspberry Pi 3B: Raspberry Pi 3B [34] is a small
and affordable single-board computer. On a Broadcom SoC,
Raspberry Pi has a quad-core ARM Cortex-AS53 processor
clocking at 1.2GHz connected to a 1 GB LPDDR2 RAM.
Raspberry Pi has no GPGPU capability and no specialized
hardware accelerator. Raspberry Pi and Arduino [75], with
similar specifications, are good representations of IoT/Edge
devices and are the main platforms for portable robots (See
Table III footnotes about next generation of Raspberry Pi).
(2) Jetson TX2: Jetson TX2 [69] is a high-performance
embedded platform with a 256-core Pascal architecture GPU.
Jetson TX2 has two sets of CPUs, quad-core ARM Cortex-
AS7 processor at 2.0 GHz and dual-core Nvidia Denver 2 at
2.0 GHz. The total available memory is 8 GB LPDDR4 with

a 128-bit interface. The memory is hard-wired to the memory
controller and is shared between the ARM processor and GPU.
Thus, the memory transfer speed of the GPU is not limited
by conventional PClIe bus speeds. Jetson TX2 does not utilize
hardware accelerators.

(3) Jetson Nano: Nvidia Jetson Nano [36] board is a smaller
version of Jetson TX2 for edge applications. Jetson Nano is a
GPU-based single-board computer with a 128-core Maxwell
architecture GPU and a quad-core ARM Cortex-A57 clocking
at 1.43 GHz. The total available memory is 4 GB LPDDR4
with a 64-bit interface. Similar to Jetson TX?2, Jetson Nano’s
memory is shared between the processor and GPU.

(4) EdgeTPU: Edge TPU [35] is a small ASIC designed by
Google that provides high-performance DNN acceleration for
low-power and edge devices. The ASIC design is hosted on
a single-board computer, similar to Raspberry Pi. With an
NXP SoC, the host computer has a quad-core ARM Cortex-
AS53 processor and one Cortex-M4 processor. The available
memory for the processors is 1 GB LPDDR4. The design of
EdgeTPU and its specifications have not been released.

(5) Movidius Neural Compute Stick: Intel’s Movidius Neural
Compute Stick (NCS) [37] is a plug-and-play USB device
that connects to any platform for accelerating DNNs. It is
based on the Intel Movidius Myriad 2 vision processing unit
(VPU), which has 12 Streaming Hybrid Architecture Vector
Engine (SHAVE) Cores. The internal core architecture of
SHAVE is VLIW, with single instruction multiple data (SIMD)
functional units. VPU natively supports mixed precisions, 32-,
16-, and some 8-bit datatypes. NCS was among the first special
hardware designs for edge devices. (See Table III footnotes
about next NCS).

(6) PYNQ: PYNQ [64] board is an open-source endeavor
from Xilinx that provides SoCs integrated with FPGA fabric
(Zynq series). PYNQ is designed for embedded applications.
We use the PYQN-Z1 board that has a dual-core Cortex-A9
processor at 650 MHz and a 512 MB DDR3 memory with a
16-bit interface. The FPGA is from the Artix-7 family with
13,300 logic slices, 220 DSP slices, and 630 KB BRAM.

(7) HPC Platforms: As a point of comparison with the
lightweight edge devices and accelerators, Table III also lists
the characteristics and power usage of a Xeon CPU and three
GPUs that are known platforms for running DNN computa-
tions in the cloud and on servers.

V. EXPERIMENTAL SETUPS

Execution Time: For each experiment, the execution time is
measured by running several single-batch inferences in a loop.

To accurately measure time per inference as an end user, we
do not include any initialization time (e.g., library loading,
live input setup, and model weight loading) because this is a
one-time cost that occurs during device setup. For frameworks
that permit us to bypass initialization time in their code, we
time their inferences by only accounting for inference time.
For other frameworks, we run single-batch inferences several
times (200-1000) to reduce the impact of initialization.
Power Measurements: For devices, the power of which is
supplied through USB ports, we measure power using a USB
digital multimeter [76] that records voltage and current every
second. The accuracy of the multimeter for voltage and current
are +(0.05% + 2digits) and +(0.1% + 4digits), respectively. For
devices, the power of which is supplied with an outlet, we use
a power analyzer, with an accuracy of +0.005 W.

Thermal Measurements: For thermal evaluations, each ex-
periment runs until the temperature reaches steady-state in the
room temperature. We measure the processor surface tempera-
ture of each device using a thermal camera, Flir One [77]. For
devices with heatsink (see Table VI), the measured temperature
is the surface temperature of the heatsink. Since the thermal
resistance of a transistor chip is smaller than that of the
heatsink, the temperature of the heatsink surface is 5-10
degrees Celsius lower than that of the in-package junction [78].

VI. CHARACTERIZATION

This section studies the characteristics of edge devices and
frameworks for DNN inference. Table IV summarizes all
experiments and refers to the related sub-sections and figures.

A. Execution Time Analysis

To choose a well-performing framework for each device
(see Section VI-B for cross-framework analysis), this section
evaluates them by measuring the inference time of several
models. Before analyzing the results, Table V summarizes
the compatibility of models and platforms. For instance, on
RPi, we deployed all models, but larger models required a
dynamic computation graph because of the small memory size
of RPi. Such models experience an order of magnitude higher
inference time, marked with ¢ (i.e., AlexNet, VGG16, and
C3D). In these scenarios, PyTorch uses its dynamic graph to

TABLE V
MODELS AND PLATFORMS COMPATIBILITY MATRIX.

22 lo | 2
ot || g S 2B S
Model I~ 5) 2 e
AR ER
= -
ResNet-18 v v v A v v
ResNet-50 v v v v v OO
MobileNet-v2 v v v v v OO
Inception-v4 v v 4 v v OO
AlexNet i v v A v OO
VGG16 & v v v v OO
SSD MobileNet-v1 v v v v v OO
Tiny Yolo v v 4 A v OO
C3D O v v A v OO

¢ Large memory usage, uses dynamic graph.

Y Code incompatibility. ~ ®® Large BRAM usage. Requires accessing host
DDR3, considerably slowdowns execution.

 Barriers in converting models to TFLite. Check §VI-A.

manage limited memory availability, whereas TensorFlow fails
to run such models. For smaller models, however, TensorFlow
achieves better performance than PyTorch.

Moreover, as Table V lists, we were unable to run a few
models on some platforms. As an example, for the SSD model
on RPi and C3D on Movidius, marked with v, we face several
code incompatibility issues in the base code implementation
— SSD uses an extra image processing library on top of
DNN frameworks. On EdgeTPU, several reasons prevented
us from converting models to TFLite, marked with A. This
is because (i) only the quantized model is supported by the
edgeTPU compiler; (ii) in some cases, the quantized model
can only be obtained by a quantization-aware training, not
post-training quantization; (iii) quantization-aware training or
freezing the graph in TensorFlow does not necessarily create
compatible quantized models for the EdgeTPU compilation
tool; and (iv) obtaining the compatible TFLite model is
possible with careful fine-tuning, but we were unable to find
such parameters*. For PYQN board experiments, although
the frameworks we use (FINN and TVM) have implemented
small models (CifarNet, and ResNet-18), we face challenges in
extending their framework to larger models. This is because of
limited resources on the FPGA for larger models (for TVM
VTA) and retraining requirements (for FINN). Additionally,
not every model currently complies to VTA compatible code,
since some parameters of the model must match the hardware
specification [79]. Besides, large models require runtime data
transfer between the host memory and the FPGA, which
causes severe slowdowns.’

Figure 2 illustrates time per inference in milliseconds (ms)
for several models on edge devices. Time per inference per
model varies widely across devices (Figure 2). In most cases,
either GPU-based devices or EdgeTPU provides the best
performance. However, as shown in Table V, EdgeTPU faces
several barriers in compiling new models to TFLite. Although
this is an engineering problem, it limits EdgeTPU end-user
usability, especially for new models. On the other hand, the
models in Jetson Nano/Jetson TX work out of the shelf with
automatic tuning. For Jetson Nano, TensorRT yields the best
performance numbers by applying several optimizations (see
Table II), whereas, for Jetson TX2, most of the results are
with PyTorch with no optimization. As shown, the Jetson TX2

4Although it is a common practice to use randomized weights for the
performance evaluation of a model, such evaluations are not close to reality.
This is because TFLite uses quantized weights. So, the final performance
is directly proportional to the sparsity of weights and their sparsity pattern.
So, although using randomized weights is a proxy/shortcut to the final
performance number, it would not be realistic data.

3 After the paper acceptance, based on reviewers’ comments, we tried to
add some data points for additional small models for the PYNQ board.
However, first, we could not find a suitable frontend that could compile
the models without tight hardware/software constraints. Regularly, we had
to change a model to be able to execute it on the board, which required
training. Second, even after changing the model, we found that a non-
optimized hardware implementation could be slower than its CPU-based
implementations. Therefore, for optimizing the hardware implementation, one
must profile several implementations to tune hardware parameters, a time-
consuming task. Nevertheless, we believe the endeavors to bridge the gap
between software and hardware for DNNs are instrumental.

| ARPi3 OlJetson TX2 @Jetson Nano EEdgeTPU @ Movidius BPYNQ |

|A 8 & V Implementation Details, See Table IlI |

o) ©° 3
R g8 g & S a8
00 © — © ~
200 BA]
— & 8
@ =
£ PA
= P
@ =
£ & -
= = S 7
~ =8 o
A
2 8 [l |_| 8
ResNet-18 ResNet-50 MobileNet-v2 Inception-v4
Fig. 2.

results are as close as possible to the best inference time. The
Movidius Stick performance results in some cases are close to
the best case (i.e., MobileNet-v2 and C3D), but in others, they
are much higher (i.e., ResNet-50 and Inception-v4) compared
to the best cases. This is because (i) Movidius models require
careful fine-tuning by experts, which in the case of new models
has not been fully done; and (ii) the design of Movidius Stick
is older than that of other devices. In fact, at the time of writing
this paper, Intel released news about the second generation of
these sticks, claiming an 8x speedup [80].

B. Frameworks Analysis

In this subsection, we aim to study how the choice of DNN
frameworks affects execution performance. Section III-B pro-
vided a high-level overview of each framework implementa-
tion. This section first presents a framework comparison and
then analyzes the benefit of using edge-specific frameworks
(i.e., TFLite and TensorRT), and finally analyzes the software
stack of two popular frameworks (i.e., TensroFlow and Py-
Torch) on edge GPU and CPU platforms.

1) Frameworks Comparisons: Figures 3 and 4 depict cross-
platform time per inference on RPi and Jetson TX2, respec-
tively. Since DarkNet is not industry-backed, we were not
able to find/implement some complex models. The results on
RPi show that TensorFlow is the fastest among the frame-
works (we compare edge-specific frameworks, TFLite and
TensorRT, in Section VI-B2). For instance, MobileNet-v2 on
TensorFlow achieves 1.40 seconds per inference, while Caffe
and PyTorch achieve 2.27 and 8.25 seconds per inference,
respectively. However, as discussed, PyTorch can execute
large models, such as VGG16, that TensorFlow cannot run
because of limited memory errors. On our GPU platform,
Jetson TX2, PyTorch performs faster than TensorFlow. As
we discuss in Section VI-B3, in TensorFlow, the overhead
of using a static computation graph on GPU exceeds its
performance gains. Interestingly, the performance of Caffe is

9 Not Available
& Memory Error
n ©

&
< 3 8 SR

50 3 = =

I DarkNet & Caffe B TensorFlow O PyTorch

Time (s)
w
o
.
T

ol o/

lg n’_‘ m|_| L2

xo®

A%
X FceP N\o‘g'\\

Res™®

NS

2 N1
e*e'v\l 9{\0“ N

el
\nce P‘\e*ﬂ

Y\es“evso

Fig. 3. Time per inference on RPi across different frameworks.

wn ~
©
9 a

AlexNet VGG16 SSD MobileNet-vl TinyYolo

Time per inference on all the edge devices with best performing framework. See V for implementation details.

always better than that of TensorFlow, except for MobileNet-
v2 (Figure 4). Including the fact that Caffe was released in late
2013 and not updated actively after 2017, the performance
of TensorFlow is significantly low on small GPUs. In fact,
we performed another experiment on an HPC GPU, GTX
Titan X, and observed similar behavior for TensorFlow versus
another framework, PyTorch, shown in Figure 6. Since all
the frameworks use similar CUDA libraries in the backend
(which differ in library versions due to compatibility issues),
we believe the low performance of TensorFlow is not mostly
caused by its implementation but by its hard usability. First,
TensorFlow, due to its huge codebase, has a mix of several
APIs without good documentation on their differences. The
introduction of new APIs with new parameters with every
update also confuse users on the best API to use. Second,
several optimization flags, such as fusing operations, are
hidden or not easily accessible. On the other hand TensorFlow
is highly customizable and supports several type of models.
2) Edge-Specific Frameworks: Edge-specific frameworks
(Section III-B) heavily optimize DNN inference on edge
devices. To understand the benefit of using these frameworks,
Figures 7 and 8 compare the execution time of single-batch
inferences with several models on Jetson Nano (with PyTorch
and TensroRT) and RPi (with PyTorch, TensorFlow, and
TFLite), respectively. Seeking a fair comparison, we use the
same hardware platform, whose special capabilities can be
utilized by all the target frameworks. To this end, we select
RPi over EdgeTPU becasue the accelerator on EdgeTPU is
only accessible by TFLite and not TensorFlow. Figure 7 shows
an average of 4.1x speedup using TensorRT on Jetson Nano
compared to PyTorch. TensorRT has several optimizations,
such as mixed- and low-precision (INT8) inferencing, that Py-
Torch does not support. Additionally, fusion and auto tunings
enable TensorRT to efficiently use the underlying hardware.
Generally, models with large memory footprints (AlexNet and
VGG16) and large inputs (C3D and TinyYolo) achieve smaller

M@ DarkNet & Caffe @ TensorFlow O PyTorch

© Not Available
B Memory Error

Time (ms)
BN
o U o
o O O

w
o

50 A0 ao™ N b
ese® ?\esr\e‘x *‘ep‘\w\o‘d\\e“e‘ \\'\ce‘;)“o“

Fig. 4. Time per inference on Jetson TX2 across different frameworks.

(a)
PyTorch
RPi

(b)
TensorFlow
RPi

base_layer,
38.2%

nCallable,
34.3%

randn
W activation

m Library Loading

Library Loadin,
m model.__init__ Y 8

m _initialize_variable

TF_SessionRunCallable
TF_SessionMakeCallable

(c) (d)
PyTorch TensorFlow
Jetson TX2 Jetson TX2

_C._TensorBa
seto(),
39.4%

TF_Session
RunCallable

8 base_layer,
50.7%

<built-in import> _C._TensorBase.to() Library Loading base_layer

W linear 2 batch_norm TF_SessionRunCallable _initialize_variable
conv2d ®randn m TF_SessionMakeCallable ~ m session.__init__

m model.__init__ m forward layers & weights

Fig. 5. Profiling of two popular frameworks software stacks on Raspberry Pi and Jetson TX2.

batch_norm conv2d base_layer m layers & weights
m forward
EJPyTorch ITensorFlow =e-Speedup

40 2.0
- o
£ =]
;20 1.0 g
; [] g

= I I 1
0 + t t t + 0.0
Resnet-50 MobileNet-v2 VGG16 VGG19

Fig. 6. Time per inference on GTX Titan X (TensorFlow and PyTorch).

speedups compared to other models. For TFLite, Figure 8
depicts an average speedup of 1.58x on RPi with TensorFlow
and a 4.53x speedup with PyTorch. Although TFLite supports
low-precision inferencing, the RPi hardware does not support
it. In fact, TFLite implements several optimizations, but the
optimizations are not fine-tuned to RPi. For clarification, the
achieved gain for TFLite is smaller than that for TenorRT since
TensorFlow already does several optimizations on its static
graph (compare PyTorch performance with TensorFlow). In
summary, although edge-specific frameworks/models require
extra preparations, their achieved performance is better com-
pared with non-optimized implementations.

3) Software-Stack Analysis: To better understand the in-
ternal behavior of frameworks, we profile the duration of
low-level functions by using the built-in profiler of Python
(cProfile [81]) for combinations of two frameworks and two
platforms. To understand major functions/tasks, from the pro-
filing results, we grouped functions with similar tasks. We
first profile PyTorch and TensorFlow frameworks on RPi, with
relatively low computing capability (Table III) by running 30
inferences. Figures 5a and b show that RPi spends most of
its time on low-level arithmetic primitives. More specifically,
PyTorch spends 96.15% on compute-related functions (i.e.,
conv2d, batch norm, and activation), while Tensorflow
spends 44.84% of its total time within a computing session
(i.e., TF.RunCallableSession). Among the compute-related
functions in PyTorch, the conv2d low-level primitive accounts
for 80.95% of the entire program runtime. The dynamic
graph implementation of PyTorch (see Section IIIA) helps
accomplish faster graph setup, which results in negligible
graph setup time (Figure 5a). On the other hand, the graph
construction time in TensorFlow (i.e., base layer function)
accounts for 38.22% of the total time. This is a one-time cost
for all inferences on TensorFlow (we could not run as many
inferences with profiler to amortize this cost further as with
our other experiments). Since the static graph implementation
is easier to optimize before the actual computation, the overall
runtime of TensorFlow on RPi (Figure 3) is less than that of

[OPyTorch [JTensorRT -#=Speedup

150 £
— 8

&

- 100 5
£ 3
@ 50 |lm o < n 7 =
£ o v o0 N o 1~
= SitsiE BN E R e 5
0t : : i : 2

]

e

AP N B & A Y 0 0

g S T g
VI\O \(\(' O

<

Fig. 7. Time per inference on Jetson Nano with PyTorch and TensorRT.

EZATensorFlow 3 TFLite

—e- Speedup (TensorFlow)

EEE PyTorch
——Speedup (PyTorch)

H

16 20 E

2

= 12 15 o g
(] ==
E st
= 4535 &=
58] g

A =0 A0 T & 282 2

wet wet TN 50 e 5

Re” Res \7\85“ N\o‘o\\e \0c® a B

Fig. 8. Time per inference on RPi with TensorFlow, PyTorch, and TFLite.

PyTorch on the same device.

We repeat the same profiling of PyTorch and Tensorflow on
Jetson TX2 by profiling 1000 inferences. Compared to RPi,
Jetson TX2 is equipped with a relatively high-performance
CPU and an easily-accessible GPU. All of our frameworks
on TX2 are able to utilize the GPU to speed up the DNN
computations. Our results show that the computation graph
setup and the actual computation profiles on TX?2 differ from
those on RPi, mainly because adding a GPU to the system
significantly drops the time spent on the actual computation
on both frameworks. As a result, as Figures 5¢ and d show,
PyTorch and TensorFlow spend a notable portion of the total
time on computation graph setup in the GPU version (i.e.,
_C. Tensorbase.to(), model. init _ in PyTorch;
and base layer in TensorFlow). Although TensorFlow sub-
stantially outperforms PyTorch on RPi, PyTorch is faster on
platforms with a GPU. The reason could be that the overhead
of using a static computation graph exceeds the performance
gained from its optimizations for TensroFlow on the GPU.

C. Edge Versus HPC Platforms

HPC platforms are known to be the best options for performing
DNN inferencing. This is because HPC platforms, such as
HPC GPUs, are designed to exploit massive data parallelism
available at data centers, where large companies batch sev-

Aletson TX2 @EXeonCPU OGTX Titan X RTX 2080

257

Fig. 9. Time per inference comparison between edge and HPC platforms with PyTorch framework.

7 Jetson TX2 W Xeon CPU OGTX Titan X E Titan Xp EBRTX 2080 W GEOMEAN

A
A

A

A

A

A

A

A 7

A %

Speedup
(Over Jetson TX2)
N
™

Q 3% v
‘F\e‘f) V\Qy&@ \e\\\e‘N
© ?&5 o

@0

)
e
W

ae

(8
N
?,9’60“ ne N
A

66'@

2.99

DDDIIIIIY |

| DRPINRIIIIIN|

SSSSSS8555S
[e2022088ed
| SERECRRRRCReee

N

Zi

N

o 3 a2 o \o GEOMEAN
QGGX ,ﬁ,b‘*"} c)»,;),*q) *0\9 (\(ﬂ\\o Across All
QGG’S Re<d Models

Fig. 10. Speedup (over Jetson TX2) of time per inference between edge and HPC platforms with PyTorch. For hardware specifications, see Table III.

eral requests together and perform multi-batch computations.
Multi-batch inferencing helps to amortize the cost of data
movement and eliminates redundant load and stores. On the
other hand, for edge devices, the number of requests is limited
and real-time performance is crucial. Thus, special edge de-
vices are designed for efficient single-batch inferencing. Here,
we want to see if these edge-specific designs are efficient with
respect to HPC platforms in single-batch inferencing.

To make such a comparison between edge and HPC devices
for single-batch inferencing, we use a common framework
(i.e., PyTorch) for deployment. Then, we measure time per
inference on several HPC platforms and Jetson TX2, shown
in Figure 9. To make a fair comparison of single-batch infer-
encing across the platforms, we do not use any edge-specific
techniques to increase the performance. We choose Jetson
TX2 as our edge device because its hardware is not heavily
optimized (see Figure 2). As we see in Figures 9 and 10, the
average speedup over Jetson TX2 on all benchmarks is only
3x. Most of these platforms are designed to be throughput-
oriented for multi-batch DNN computations (both training and
inferencing). However, single-batch inferencing is a latency-
sensitive task, which requires a new design philosophy, both
in hardware and frameworks. Although CPUs are known to
be designed for latency-sensitive tasks, our experiments show
that CPUs are not beneficial for single-batch inferencing.

More specifically, on several benchmarks, the Xeon CPU
performance is lower than that of all platforms. This is because
most benchmarks are compute-bounded and benefit from more
available cores. In fact, only for memory-bounded benchmarks
(e.g., VGG16 and VGG19), does Xeon CPU perform similarly
to TX2 because of its large memory hierarchy. On HPC GPUs,
the benchmarks with large memory footprint such as VGG
models and C3D generally achieve higher speedups. This is
because HPC GPUs have larger memories and caches. On the
other hand, benchmarks with higher compute per memory such
as ResNet models benefit less from HPC GPUs. In summary,

single-batch inferencing requires a different hardware design
perspective, which specially designed edge devices and frame-
works aim to reach.

D. Virtualization Overhead Study

With a diverse set of hardware platforms and frameworks,
virtualization could provide several benefits by decoupling
hardware/software setup and reducing the programmer’s effort.
Nevertheless, the virtualization environment should support
auto-tuning to each specific hardware platform to maximize
performance (e.g., using INT8 on architectures that supports
it). Endeavors to design such virtualization tools are underway,
but virtualization itself has overhead. This overhead is caused
by several translations for system calls and environment isola-
tions. In this section, we evaluate the overhead of virtualized
environments by executing DNN models inside and outside
such an environment. We use Docker [82], a widely used
virtualization tool in both academia and industry. Figure 13
shows the results of executing DNNs on RPi with/without
Docker. As seen, the overhead is almost negligible, within 5%,
in all cases. Contrary to popular belief about virtualization
overhead, we do not observe a significant slowdown with
virtualization.

E. Energy Measurements

Inferencing in the edge dictates processing one input most ef-
ficiently. Specifically, for edge inferencing, an efficient device
is fast and power efficient. Thus, we measure the energy per

ORpi
100000
10000
1000
100
10
1

A Jetson Nano EJetson TX2 O EdgeTPU & Movidius B GTX Titan X

Energy Per Inference (mJ)
Logarithmic Scale

ResNet-18

ResNet-50 MobileNet-v2 Inception-v4

Fig. 11. Energy per inference across platforms.

10000

F o (<] A Movidius

£ s =]

- § 1000 Ao © @ EdgeTPU

£ o @ Rpi

i ¢ 100 X

5 E A£ :Oox % _{-!- © Jetson Nano
e £ 10 * % Jetson TX2
L @©

s @ 4 + GTX Titan X
e 3 1+ T T

- 1 10 100 1000

Power (W) - Logarithmic Scale

Fig. 12. Inference time and active power usage graph across platforms.

inference across all our platforms and include one HPC GPU
as a comparison point with high-end devices. Figure 11 shows
energy per inference for our platforms with four models. As
expected, RPi has the highest energy per inference value be-
cause (i) it is designed as a cheap and general-purpose single-
board computer without accounting for energy efficiency, and
(i) it has the longest inferencing time among our devices.
After RPi, GTX Titan X has the highest energy per inference,
between 1J to 5J per inference for ResNet-18 and Inception-
v4, respectively. Although Jetson TX2 is a GPU-based design,
its energy consumption is lower, between 0.3J to 1J per
inference for ResNet-18 and Inception-v4, respectively. This
is an average of a 5x energy savings with respect to GTX
Titan X. Nevertheless, edge-specific devices lower the energy
consumption to as low as 11 mJ per inference (MobileNet-v2
on EdgeTPU). Jetson Nano consumes 84 mJ to 0.5J energy
per inference for ResNet-18 and Inception-v4, respectively.
Movidius Stick also has a similar profile, which is between
66mJ to 1J for MobileNet-v2 and Inception-v4, respectively.

For a better perspective, we also compare platforms within
inference time versus active power graph. Figure 12 shows
such a graph, in which the left corner illustrates the most
energy efficient and fastest device. Each dot represents a
model, and dots are grouped based on their platform. As seen,
GTX Titan X resides far in the left side of the graph, with an
average of 100 W active power usage. Several platforms have
similar inference time but much lower active power: Jetson
TX2, Jetson Nano, Edge TPU, and Movidius Stick. In fact,
Movidius Stick is the platform with the lowest active power
usage. On the other hand, EdgeTPU is the platform with the
lowest inference time. However, both devices make a tradeoff
to be at such extremes. Jetson Nano resides in the middle by
balancing inference time and power usage.

FE Temperature Measurements

This section evaluates the correlation between temperature and
power usage when running the inference of a heavy DNN (i.e.,
Inception-v4) on various edge devices using the most efficient

[1Bare Metal [Docker -e-Slowdown

12 5% S
1 =
Eg 7 4% = 5
g 3% £ E

f=
o] &8 8 > 2 |2l s & L 1% =

— i o H
0 f f 7 Al = 0%2
} t t } } } 2

0 N2 IO \0
ReSNe‘ W oxo'\\eNe‘ \“cep’t\on ‘('\\’N\(o

Fig. 13. Time per inference on Bare Metal RPi and Docker-based RPi.

70 o Device ¢ ldle
=) Shutdown < Inferencing
< 60
[
5 50 I s
® 40 D4 Fan
g 30 Working g
® 20 4 : } } } i
Rpi Jetson Nano Jetson TX2 EdgeTPU Movidius

Framework: TFLite TensorRT PyTorch TF-Lite NCSDK

Fig. 14. Temperature behavior of edge devices while executing DNNs.

TABLE VI
DEVICE SPECIFICATIONS FOR TEMPERATURE EXPERIMENTS.
. . Cooling Tdle Fan
Device Heatsink Fan Temperature | Activated?
Raspberry Pi 14x14 mm X 433°C X
. v o
Jetson TX2 80X55%20 mm v 324°C v
<on N 4 o
Jetson Nano 59%39x 17 mm X 35.2°C X
Edge TPU 44x 40'19 mm v 339°C X
e V& B
Movidius 60x27x 14 mm X 25.8°C X

T USB stick is designed as a heatsink.

framework for each device. Table VI lists the availability and
characteristics of the cooling instruments (i.e., the heatsink
and fan) for the edge devices and their idle temperatures. As
Figure 14 illustrates, the temperature variation of Movidus is
the lowest even though it is not equipped with a fan. Although
the temperature and the power usage of Movidus are the
lowest among the peers, the trend is not always valid. For
instance, the power usage of Jetson TX2 is higher than that of
Jetson Nano, while their temperatures are opposite. In fact, the
figure and table suggest that the temperature of Jetson TX2
is perhaps controlled by the activated fan, and so should be
the temperature of Jetson Nano. Further, from Figure 12 and
Figure 14 we infer that the temperatures of RPi and Edge
TPU are similar; however, the power usage of the latter is
approximately 5x lower as that of the former.

VII. DiscussioNs

In this paper, we tried to analyze popular frameworks and
implementation optimizations for DNN deployment on the
edge devices. Since these frameworks are actively being im-
proved, we tried not to include a tighter conclusion about each
framework. Additionally, there are several other frameworks
that we did get a chance to cover, so concluding about a
framework would not be entirely fair. Moreover, as seen, there
is no single best framework for all cases. Depending on the
model, the computation type, and, in several cases, the final
weight sparsity, each framework delivers different results. In
fact, these tradeoffs, as any other generalized frameworks, oc-
cur because each framework tries to offer a simple interface to
a wide range of users while optimizing execution performance.
Therefore, our goal is to give the reader the knowledge to reach
to their own conclusion about what is the best framework for
their use case based on the provided data.

VIII. RELATED WORK

Edge computing with advantages such as high performance,
security, and scalability has introduced a new paradigm for
processing DNNs. To enable the inference of DNNs at
the edge, a group of studies has proposed techniques that
trade accuracy (sometimes) with performance to create small
models. Pruning [18], [23]-[25], [72], [73] is one example
of common practices that remove the close-to-zero weights.
Other examples of the first group of efforts are quantization
and low-precision inference [26]-[29], [83], which modify the
representations of numbers to achieve simpler calculations.
The second group of studies develops mobile-specific mod-
els [40], [84]-[87]. They aim to handcraft efficient operations
or models to reduce the number of parameters [84] to create
efficient operation to minimize computation density [40], or
use resource-efficient connections [87]. The third group of
studies distributes the computations of models among available
resource-constrained edge devices. For instance, Neurosur-
geon [88] dynamically partitions a DNN model between a
single edge device and the cloud. MoDNN [89] creates a
local distributed mobile computing system and accelerates
DNN computations with model parallelism. Hadidi et al. [11],
[90]-[92] investigate the distribution of DNN models for
single-batch inferences with model-parallelism methods, while
deploying distributed systems in robots [14], [93], IoT de-
vices [94], and FPGAs [79].

The importance of in-the-edge inference of DNNs that has
been shown in the preceding work has encouraged researchers
and industry to propose several lightweight frameworks and
specialized edge devices. Selecting an appropriate combination
of framework and hardware platform for a specific application
requires characterization. The following are the few studies
that have evaluated some of the edge frameworks and devices.
In the first characterization study of edge devices [95], the
inference time and energy consumption of five well-known
CNN models are measured on NCS, Intel Joule 570X, and
Raspberry Pi 3B, in which TensorFlow, Caffe, NCSDK, and
OpenBlas are used as frameworks. The paper suggests that
Raspberry Pi with Caffe requires the least amount of power.

Another study [96] evaluates the latency, memory footprint,
and energy of using TensorFlow, Caffe2, MXNet, PyTorch, and
TensorFlow Lite for the inference of two CNNs on MacBook
Pro, Intel’s Fog Reference Design, Jetson TX2, Raspberry
Pi 3B+, and Huawei Nexus 6P (Nexus 6P). This research
concludes that TensorFlow runs larger models faster than
Caffe2 does, and vice versa for smaller models. Moreover,
they suggest that PyTorch is more memory efficient than other
frameworks. The latency and throughput of CNN inference
are studied in another work [97], in which TensorFlow and
TensorRT are frameworks to target Jetson TX2 as a mobile de-
vice in comparison with CPU and GPU platforms. Besides the
preceding real-world characterization studies, SYNERGY [98]
extends the performance evaluation of DNNs by proposing a
fine-grained energy prediction framework on edge platforms.
SyNERGY integrates ARM Streamline Performance Analyzer

with the Caffe and CuDNNv5 frameworks to quantify the
energy consumption of DNNs on the Nvidia Jetson TXI.
MLModelScope [99], an ongoing endeavor, tries to explore the
accuracy and performance of the models across frameworks,
models, and systems.

In addition to the frameworks studied in this work and
prior characterization papers, Apache MXNet [100] and
TVM [66] used in Amazon Web Services, and Microsoft
Cognitive Toolkit (CNTK) [101], utilized in Microsoft Azure,
are other three open-sourced DNN frameworks backed by
industry. MXNet is scalable to support distribution on the
dynamic cloud infrastructure and is flexible to support imper-
ative and symbolic programming. TVM implemented exten-
sive compiler-level optimizations. CNTK, which implements
DNNs as a series of computational steps via a directed graph,
provides advantages such as combining well-known neural
network types (e.g., feed-forward DNNs, CNNs, RNNs, and
LSTMs). Our experiments can be extended to these frame-
works by running our provided source code in our GitHub.

Finally, several recent academic efforts have proposed cus-
tom accelerators [73], [102], [102]-[111], which improve
inference by utilizing sparsity, reducing memory accesses,
or employing efficient dataflows. In addition, many of the
custom designs have targeted FPGA/ASIC implementations
for inference acceleration [79], [112]-[117].

IX. ConcLusioN

This paper investigated the in-the-edge inference of DNNs
from the perspectives of execution time, energy consumption,
and temperature. We hope that the following insights from our
research lead users to knowingly choose their required package
(i.e., a combination of framework and platform) for a specific
edge application. Additionally, we observed that even though
DNN computations are heavily dominated by matrix-matrix
multiplications, custom hardware designs for edge devices
matters in final performance. We sought to give a perspective
into the performance of edge devices with our experiments
that covered several technologies (hardware with different
microarchitecture/circuit designs), software frameworks, and
optimization techniques. We noted hardware and software co-
designs and their support on edge devices to be one of the
main reasons behind achieving low inference time. Our energy
measurements showed a tradeoff between energy consumption
and inference time on edge devices (e.g., Movidius vs. Jetson
Nano). We believe that such a tradeoff could be utilized to
design efficient and application-specific devices. Finally, we
analyzed the crucial impact of DNN frameworks by studying
their software stack, optimizations, and virtualization.

ACKNOWLEDGEMENTS

We thank anonymous reviewers for their constructive feed-
backs for improving the paper. We are grateful to Younmin Bae
for sharing his experience regarding FPGA-based implemen-
tations. This study was supported in part by National Science
Foundation under grant number CSR-1815047.

(1]
[2]

(3]

[4]

(3]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in 26th Annual Conference
on Neural Information Processing Systems (NIPS). ACM, 2012, pp.
1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations. ACM, 2015.

M. S. Ryoo, K. Kim, and H. J. Yang, “Extreme low resolution activ-
ity recognition with multi-siamese embedding learning,” in AAAI’IS.
IEEE, Feb. 2018.

K. Simonyan and A. Zisserman, ‘“Two-stream convolutional networks
for action recognition in videos,” in NIPS’14. ACM, 2014, pp. 568—
576.

S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based rec-
ommender system: A survey and new perspectives,” ACM Computing
Surveys (CSUR), vol. 52, no. 1, p. 5, 2019.

E. Ohn-Bar and M. M. Trivedi, “Looking at humans in the age of
self-driving and highly automated vehicles,” IEEE Transactions on
Intelligent Vehicles, vol. 1, no. 1, pp. 90-104, 2016.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Distributed perception
by collaborative robots,” IEEE Robotics and Automation Letters (RA-
L), Invited to IEEE/RSJ International Conference on Intelligent Robots
and Systems 2018 (IROS), vol. 3, no. 4, pp. 3709-3716, Oct 2018.
A. Giusti, J. Guzzi,and n. . . p...p.. L t.. A.v...y... Ciresan, Dan
C and He, Fang-Lin and Rodriguez, Juan P and Fontana, Flavio and
Faessler, Matthias and Forster, Christian and Schmidhuber, Jiirgen and
Di Caro, Gianni and others, journal = IEEE Robotics and Automation
Letters.

M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in 2017 ieee international
conference on robotics and automation (icra). 1EEE, 2017, pp. 1527—
1533.

M. L. Merck, B. Wang, L. Liu, C. Jia, A. Siqueira, Q. Huang,
A. Saraha, D. Lim, J. Cao, R. Hadidi et al., “Characterizing the
execution of deep neural networks on collaborative robots and edge
devices,” in Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning). ACM, 2019,
p. 65.

A. Singh, B. Ganapathysubramanian, A. K. Singh, and S. Sarkar,
“Machine learning for high-throughput stress phenotyping in plants,”
Trends in plant science, vol. 21, no. 2, pp. 110-124, 2016.

H. Lu, Y. Li, S. Mu, D. Wang, H. Kim, and S. Serikawa, “Motor
anomaly detection for unmanned aerial vehicles using reinforcement
learning,” IEEE internet of things journal, vol. 5, no. 4, pp. 2315—
2322, 2018.

O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-aware com-
puting, learning, and big data in internet of things: a survey,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 1-27, 2018.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in 4th International Conference on Learning Representations.
ACM, 2016.

S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,’
Information Systems Frontiers, vol. 17, no. 2, pp. 243-259, 2015.

F. Biscotti, J. Skorupa, R. Contu et al., “The impact of the internet of
things on data centers,” Gartner Research, vol. 18, 2014.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

I. Lee and K. Lee, “The internet of things (iot): Applications, invest-
ments, and challenges for enterprises,” Business Horizons, vol. 58,
no. 4, pp. 431-440, 2015.

R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet:
The internet of things architecture, possible applications and key
challenges,” in FIT’12. 1EEE, 2012, pp. 257-260.

J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism,” in 44th International Symposium on Computer Architecture
(ISCA). 1IEEE, 2017, pp. 548-560.

J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in
Advances in Neural Information Processing Systems (NIPS), 2017, pp.
2181-2191.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074-2082.

M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neu-
ral networks with low precision multiplication,” arXiv preprint
arXiv:1412.7024, 2014.

Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed
of neural networks on cpus,” in Proceeding Deep Learning and
Unsupervised Feature Learning NIPS Workshop, vol. 1. ACM, 2011,
p. 4.

U. Koster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof et al., “Flexpoint: An adaptive
numerical format for efficient training of deep neural networks,” in
Advances in Neural Information Processing Systems (NIPS), 2017, pp.
1742-1752.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, 2015, pp. 1737-1746.

Google, “Introduction to tensorflow lite,” tensorflow.org/mobile/tflite,
2017, [Online; accessed 09/27/19].

N. Corp., “Nvidia tensorrt,” developer.nvidia.com/tensorrt, [Online;
accessed 09/27/19].

M. Corp., “Embedded learning library (ell),” microsoft.github.io/ELL,
2017, [Online; accessed 09/27/19].
R. P. Foundation,
raspberrypi.org/products/raspberry-pi-3-model-b,
accessed 09/27/19].

G. LLC., “Edge tpu,” cloud.google.com/edge-tpu, 2019, [Online; ac-
cessed 09/27/19].

N. Corp., “Jetson nano,” developer.nvidia.com/embedded/buy/jetson-
nano-devkit, 2019, [Online; accessed 09/27/19].

1. Corp., “Intel movidius neural compute stick,” software.intel.com/en-
us/movidius-ncs, 2019, [Online; accessed 09/27/19].

3b
[Online;

“Raspberry pi
2017,

Nvidia, “Jetson nano brings ai computing to everyone,’
devblogs.nvidia.com/jetson-nano-ai-computing, [Online; accessed
09/27/19].

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,

and A. C. Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21-37.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Computer
Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 4489-4497.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” pp. 1251-1258, 2017.

[46]

[47]

[48]
[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]
[68]
[69]

[70]

[71]

[72]

[73]

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510-4520.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, pp. 64270-64277, 2018.

F. Inc., “Open neural network exchange format,” https://onnx.ai/, 2019,
[Online; accessed 09/27/19].

I. Corp.,, “Intel movidius neural compute sdk,” movid-
ius.github.io/ncsdk/tools/tools _overview.html, 2019, [Online; accessed
09/27/19].

M. Abadi et al., “Tensorflow,” software available from tensorflow.org.
Google LLC., “Tensorflow 2.0 rc,” tensorflow.org/alpha/guide/eager,
2019, [Online; accessed 09/27/19].

Google LLC., “Tensorflow eager execution essentials,”
flow.org/beta, 2019, [Online; accessed 09/27/19].

L. B. Rall, “Automatic differentiation: Techniques and applications,”
1981.

F. Chollet et al., “Keras,” github.com/fchollet/keras, 2015.

Facebook Inc., “Caffe2,” caffe2.ai/docs/getting-started, [Online; ac-
cessed 09/27/19].

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675-678.

Intel Corp., software.intel.com/en-us/articles/prize-winning-ai-
development-for-the-intel-movidius-neural-compute-stick, — note =
[Online; accessed 09/27/19], title = Prize-Winning Al Development
for the Intel Movidius Neural Compute Stick, year = 2019,.

I. Corp., “Intel neural compute stick 2,” software.intel.com/en-
us/neural-compute-stick, 2019, [Online; accessed 09/27/19].

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differenti-
ation in pytorch,” 2017.

J. Redmon, pjreddie.com/darknet, title = Darknet: Open Source Neural
Networks in C, year = 2013-2016,.

Xilinx Inc., “Pynq: Python productivity for zynq,” pyng.io, 2019,
[Online; accessed 09/27/19].

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2017, pp. 65-74.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al,, “{TVM}: An automated end-to-end
optimizing compiler for deep learning,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 578-594.

TVM developers, “Vta: Deep learning
docs.tvm.ai/vta, [Online; accessed 09/27/19].
Xilinx Inc., “Pynq overlays,” pynq.readthedocs.io/en/v2.4/pynq overlays,
[Online; accessed 09/27/19].

tensor-

accelerator stack,”

Nvidia Corp., “Nvidia jetson tx2,” nvidia.com/object/embedded-
systems-dev-kits-modules.html, 2017, [Online; accessed 09/27/19].
Raspberry PI Foundation, “Raspberry pi 4b,”
raspberrypi.org/products/raspberry-pi-4-model-b, 2019, [Online;
accessed 09/27/19].

Nvidia Corp., “Tuning cuda applications for turing,’
docs.nvidia.com/cuda/turing-tuning-guide, 2019, [Online; accessed
09/27/19].

S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep con-
volutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.

B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “Eridanus: Effi-
ciently running inference of dnns using systolic arrays,” IEEE Micro,
2019.

[74]

[75]
[76]
[77]
[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

H. Wu, G. Diamos, J. Wang, S. Cadambi, S. Yalamanchili, and
S. Chakradhar, “Optimizing data warehousing applications for gpus
using kernel fusion/fission,” in 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops & PhD Forum.
IEEE, 2012, pp. 2433-2442.

M. Banzi and M. Shiloh, Getting started with Arduino: the open source
electronics prototyping platform. Maker Media, Inc., 2014.
Makerhawk, “Um25c usb power meter,” makerhawk.com, 2019, [On-
line; accessed 09/27/19].

FLIR, “Flir one thermal camera,” flir.com/flirone/ios-android, note =
[Online; accessed 09/27/19], 2019.

L. P. Eric Bogatin, Dick Potter, Roadmaps of Packaging Technology.
Integrated Circuit Engineering Corporation, 1997.

Y. Bae, R. Hadidi, B. Asgari, J. Cao, and H. Kim, “Capella: Customiz-
ing perception for edge devices by efficiently allocating fpgas to dnns,”
in 2019 International Conference on Field-Programmable Logic and
Applications (FPL). 1EEE, 2019.

Intel Inc., “Intel neural compute stick,” software.intel.com/en-us/neural-
compute-stick, [Online; accessed 09/27/19].

Python Software = Foundation, “The python profilers,”
docs.python.org/2/library/profile.html, [Online; accessed 09/27/19].
Docker Inc., “Docker: Enterprise application container platform,”
docker.com, [Online; accessed 09/27/19].

D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine
Learning, 2016, pp. 2849-2858.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848-6856.

G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2752-2761.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510-4520.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in 22nd ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems. ACM, 2017, pp. 615-629.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,”
in 2017 Design, automation and Test in eurpe (Date). 1EEE, 2017,
pp. 1396-1401.

R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Real-time
image recognition using collaborative iot devices,” in Proceedings of
the Ist on Reproducible Quality-Efficient Systems Tournament on Co-
designing Pareto-efficient Deep Learning. ACM, 2018, p. 4.

R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Collaborative execution
of deep neural networks on internet of things devices,” arXiv preprint
arXiv:1901.02537, 2019.

R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Musical
chair: Efficient real-time recognition using collaborative iot devices,”
arXiv preprint arXiv:1802.02138, 2018.

R. Hadidi, J. Cao, M. L. Merck, A. Siqueira, Q. Huang, A. Saraha,
C. Jia, B. Wang, D. Lim, L. Liu, and H. Kim, “Understanding the
power consumption of executing deep neural networks on a distributed
robot system,” Algorithms and Architectures for Learning in-the-Loop
Systems in Autonomous Flight, International Conference on Robotics
and Automation (ICRA) 2019, 2019.

R. Hadidi, J. Cao, T. Kirshna, M. S. Ryoo, and H. Kim, “An edge-
centric scalable intelligent framework to collaboratively execute dnn,”
Demo for SysML Conference, Palo Alto, CA, 2019.

D. Pena, A. Forembski, X. Xu, and D. Moloney, “Benchmarking
of cnns for low-cost, low-power robotics applications,” in RSS 2017
Workshop: New Frontier for Deep Learning in Robotics, 2017.

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

X. Zhang, Y. Wang, and W. Shi, “pcamp: Performance comparison of
machine learning packages on the edges,” in {USENIX} Workshop on
Hot Topics in Edge Computing (HotEdge 18), 2018.

J. Hanhirova, T. Kdmirdinen, S. Seppéld, M. Siekkinen, V. Hirvisalo,
and A. Yl&-Jadski, “Latency and throughput characterization of convo-
lutional neural networks for mobile computer vision,” in Proceedings
of the 9th ACM Multimedia Systems Conference. ~ACM, 2018, pp.
204-215.

C. F. Rodrigues, G. Riley, and M. Lujdn, “Synergy: An energy measure-
ment and prediction framework for convolutional neural networks on
jetson tx1,” in Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA).
The Steering Committee of The World Congress in Computer Science,
2018, pp. 375-382.

IBM-Illinois Center for Cognitive Computing Systems Research
(C3SR), “Mlmodelscope,” docs.mlmodelscope.org, [Online; accessed
09/27/19].

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

Microsoft Research, “The microsoft
docs.microsoft.com/en-us/cognitive-toolkit,
09/27/19].

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127—
138, 2017.

R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Redeye:
Analog convnet image sensor architecture for continuous mobile vi-
sion,” in ISCA’16. ACM, 2016, pp. 255-266.

S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
Istm on fpga,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp.
75-84.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 92-104.

S. Wang, D. Zhou, X. Han, and T. Yoshimura, “Chain-nn: An energy-
efficient 1d chain architecture for accelerating deep convolutional
neural networks,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. 1EEE, 2017, pp. 1032-1037.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,

cognitive toolkit
[Online;

(cnkt),”
accessed

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ACM Sigplan Notices, vol. 49, no. 4. ACM,
2014, pp. 269-284.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEEJACM International Symposium
on Microarchitecture. 1EEE Computer Society, 2014, pp. 609-622.
N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1-12.

J. Dean, “Machine learning for systems and systems for machine
learning,” 2017.

B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “Lodestar: Cre-
ating locally-dense cnns for efficient inference on systolic arrays,” in
Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 2019, p. 233.

H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas,” in The 49th Annual IEEE/ACM International Symposium on
Microarchitecture. 1EEE Press, 2016, p. 17.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161-170.

N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2016, pp. 16-25.

J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26-35.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2016, pp. 243-254.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: En-
abling low-power, highly-accurate deep neural network accelerators,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2016, pp. 267-278.

