
Computer Physics Communications 255 (2020) 107248

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Fast and scalable evaluation of pairwise potentials✩

S. Hughey a,∗, A. Alsnayyan a, H.M. Aktulga b, T. Gao c, B. Shanker a

a Department of Elec. and Comp. Eng., Michigan State University, East Lansing, MI, USA
b Department of Comp. Sci., Michigan State University, East Lansing, MI, USA
c Department of Mech. Eng., Michigan State University, East Lansing, MI, USA

a r t i c l e i n f o

Article history:

Received 21 May 2019

Received in revised form 24 January 2020

Accepted 25 February 2020

Available online 2 March 2020

Keywords:

Fast multipole methods

Parallel algorithms

N-body problem

a b s t r a c t

Pair potentials or kernels, ψ(|r|), play a critical role in a number of areas; these include biophysics,

electrical engineering, fluid dynamics, diffusion physics, solid state physics, and many more. The need

to evaluate these potentials rapidly for N particles gives rise to the classical N-body problem. In this

paper, we present scalable parallel algorithms for evaluation of these potentials for highly non-uniform

distributions. The underlying methodology for evaluating these potentials relies on the accelerated

Cartesian expansion (ACE) framework that is quasi-kernel-independent with the requirement that

the kernel be differentiable with known derivatives. The results presented demonstrate the accuracy

control, low cost, and parallel scalability offered by this method for several example kernels and

distributions of up to 5 billion particles on 16384 CPU cores. Potential applications of the algorithm

include various disciplines of computational physics, engineering, machine learning, among others.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction and problem statement

The evaluation of pairwise interactions between N particles in

R
d, d ∈ Z

+, commonly referred to as the N-body problem, is

a classic problem in computational science with a wide variety

of applications. Generally, the problem may be defined as the

evaluation of the sum

Φ(ri) =
N

∑

j=1

ψ(ri, rj)σj, i = 1, . . . ,N (1)

where ψ(r, r′) : R
d × R

d → C is called the kernel function,

Φ(r) is the potential at the point r, and σj is the coefficient of

the jth source particle located at rj ∈ R
d. Applications of this

equation range from mathematical physics wherein the kernel

is a Green’s function used to compute fields from sources or

modern machine learning/interpolation methods. Example kernel

functions that are often used are given in Table 1. Several machine

learning techniques, increasingly popular in recent years, and in-

terpolation methods [1–5] also rely on the N-body calculation. As

is well known, the principal difficulty with the N-body calculation

is that it is an inherently dense computation, resulting in O(N2)

computational complexity for evaluation of (1). This operation

may also be interpreted as a matrix–vector product Ax = b, with

the kernel matrix given by Aij = ψ(ri, rj) and vectors xj = σj,

✩ The review of this paper was arranged by Prof. David W.Walker.
∗ Correspondence to: 428 S. Shaw Ln, E. Lansing, MI 48825, United States.

E-mail address: hugheyst@msu.edu (S. Hughey).

bi = Φ(ri). As N becomes very large the cost of the matrix–

vector product becomes prohibitive, and fast, error-controllable

evaluation methods become necessary.

Given the vast applicability of the N-body calculation, a num-

ber of researchers have contributed to a robust and varied lit-

erature on fast algorithms for this problem. Perhaps the most

impactful of these are the fast multipole methods (FMMs), first in-

troduced by Greengard and Rokhlin for the Laplace potential [6,7].

In these methods, elements of the kernel matrix are not explicitly

formed; instead, the FMM is a method for rapidly computing

the application of the kernel matrix to a vector. One should also

mention the Barnes–Hut (or treecode) algorithms [8], upon which

the fundamental ideas of the FMM were based. For a discussion

of modern FMMs, it is useful to define a coarse taxonomy of

methods. Kernel functions of interest typically fall into one of two

categories: oscillatory (kernels which encode phase information,

e.g., Helmholtz potential) and non-oscillatory (kernels which do

not encode phase, e.g., Laplace potential). Designing an FMM

for oscillatory kernels requires particular care which will not

be discussed here; the interested reader is instead referred to

Refs. [9–13]. FMMs may additionally be categorized as either

kernel-dependent FMMs, which are based on a kernel-dependent

factorization of a particular kernel, or kernel-independent FMMs,

which are not. When applicable, kernel-dependent FMMs may be

considerably more efficient than their kernel-independent coun-

terparts thanks to the optimal exploitation of particular properties

of the factorization; see, for instance, the Ref. [9]. However, imple-

mentation of kernel-dependent FMMs is often considerably more

involved than that of kernel-independent FMMs.

https://doi.org/10.1016/j.cpc.2020.107248

0010-4655/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2020.107248
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107248&domain=pdf
mailto:hugheyst@msu.edu
https://doi.org/10.1016/j.cpc.2020.107248

2 S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248

Table 1

Some examples of common kernel functions.

Potential function Φ(r)

Laplace 1/r

Yukawa e−γ r/r

Lattice Gas log(r)

Helmholtz e−ik0r/r

Retarded potential δ(t − r/c)/r

Free-particle Schrödinger AeiBr
2/2t/t3/2

Gaussian e−ar
2/2σ2

Polyharmonic spline rk log r

Multiquadric
√
1+ αr2

Fig. 1. Illustration of the operations in the ACE algorithm and notation used in

this section.

Within the class of kernel-independent FMMs, there are sev-

eral options, each with their own strengths and weaknesses. As

each of these methods can in some sense be viewed as a local

polynomial approximation, we shall denote the order of approx-

imation as P . The KIFMM algorithm [14] offers acceleration with

low O(NP2) computational complexity thanks to a framework of

surface integrals radiating equivalent source densities, requiring

only a surface discretization of each cell. However, the use of

the integral radiation operator restricts the applicability of this

algorithm to kernels satisfying a radiation condition, e.g. O(r−ν),
ν ≥ 1. The black-box FMM (bbFMM) [15] employs tensor-product

Chebyshev interpolation, requiring a volumetric discretization of

each cell which implies an O(NP3) cost due to dense matrix

operations between cells with (P + 1)3 interpolation nodes each.

However, implementation is straightforward and the algorithm

can be used with any smooth kernel. Additionally, the cost can

be reduced via low-rank factorization or FFT acceleration [11,16].

Another method developed in 2007, is the accelerated Carte-

sian expansion (ACE) method [17] that uses the Taylor series

expansion in Cartesian tensor form to systematically express

addition theorems for any arbitrary smooth kernel. More im-

portantly, ACE does not require kernel functions to satisfy the

radiation condition. The structure of the method offers numer-

ous computational advantages elucidated and demonstrated in

Refs. [17–20]. Further, while its polynomial representation im-

plies a cost of O(NP3), further analysis reveals the constant is

small and the number of degrees of freedom per cell is asymp-

totically about 1/6 of that of the bbFMM, rendering the algorithm

highly efficient for low P . In some sense, ACE straddles the bound-

ary between kernel-dependent and kernel-independent: While

the KIFMM and bbFMM require only a function handle to evaluate

the kernel, ACE requires knowledge of the kernel’s derivatives.

Fortunately, for many of the smooth kernels for which FMM-like

methods are desired, these are often available analytically.

Parallelization of the aforementioned algorithms has also been

the subject of intense focus over recent years. The advent of

powerful supercomputers with massive numbers of CPU cores has
driven interest in extremely large N-body calculations involving
millions to billions of particles. Special-purpose algorithms for
the Laplace kernel have been perhaps the most well-studied in
this regard [21,22], but several parallel algorithms for kernel-
independent FMMs have also been put forth and have exhibited
similar scaling properties [14,23,24]. The sheer size of the prob-
lems of interest and variations in the density of the underlying
particle distribution present challenges in parallelization.

This paper presents a scalable parallel algorithm for evaluating
N-body sums involving arbitrary non-oscillatory potentials, in-
cluding those that do not decay as r →∞, via the ACE algorithm.
Building upon [18], our contributions are:

• Algorithms for efficiently constructing and load-balancing
highly non-uniform trees;

• Controllably-accurate ACE operators for non-uniform trees;

• Optimizations to the matrix–vector product;

• Performance, accuracy, and scalability for non-decaying ker-
nels over large and highly non-uniform distributions;

• Direct performance comparison of our method with a highly
-optimized KIFMM implementation.

The paper is organized as follows. Section 2 gives a brief
overview of the ACE algorithm and establishes notation. Section 3
describes the new parallel algorithm, and Section 4 gives nu-
merical and performance results demonstrating the accuracy and
efficiency of the presented approach, and a comparison of its per-
formance against the KIFMM. Appendix A provides insight how
efficiencies can be realized in applying ACE to evaluate Stokes
potentials. Finally, Appendix B provides the theorems necessary
to completely define ACE (for completeness purposes).

2. Mathematical preliminaries

In this section, we give a succinct summary of the relevant
aspects of the ACE algorithm and highlight some useful features.
For more details, the reader is referred to Ref. [17]. Consider
the N-body problem described in (1). Let Ω ∈ R

3 denote an
axis-aligned cubical domain containing all of the particles. Like
all FMM-style algorithms, ACE relies on a hierarchical octree
decomposition of the space Ω , and the number of levels in the
tree will be denoted by L, where level 1 represents the root of the
tree and level L is the leaf level, or the finest level of refinement.

Consider two boxes Ωs and Ωo that contain source and ob-
servers, respectively, in the oct-tree decomposition of Ω , and let
the parents ofΩs andΩo be denoted usingΩ

p
s andΩ

p
o . Centers of

these boxes are denoted using rcs , r
c
o, r

c
s,p, and rco,p. To set the stage,

we start with some remarks and notations; (i) an nth rank totally
symmetric tensor A(n) contains (n + 1)(n + 2)/2 independent
components as opposed to 3n components; (ii) in this compressed
form this tensor can be represented using A(n)(n1, n2, n3) where
n = n1+n2+n3; (iii) an example of such a tensor is the polyadic
associated with r which is given by rr · · · rr

n times

= rn and can be

represented in compressed form as r (n) = xn1yn2zn3 ; (iv) anm-fold
contraction between two tensors A(n) and B(m) is denoted using
A(n) · m · B(m) = C(n−m); and (v) a direct product between two
tensors can be written as C(n+m) = A(n)B(m).

The heart of ACE is the Taylor series expansion, which provides
a natural framework for developing addition theorems. Consider a
source located at a point r′ observed at a point r. For convenience
we adopt the notation r − r′ = X + d, where X = rco − rcs and
d = (r − rco) + (rcs − r′); see Fig. 1 for reference. A Taylor series
expansion of the kernel function ψ(X+ d),

ψ(X+ d) =
∞

∑

n=0

1

n!
dn · n · ∇nψ(X) (2)

S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248 3

for |X| > |d|, can express an addition theorem for any sufficiently

smooth, non-oscillatory kernel function. In practice, this sum is

truncated at some finite P , with increasing accuracy for larger

values of P . From this representation, the N-body sum (1) may

be recast as

Φ(ri) = ΦN (ri)+ΦF (ri), (3)

where ΦN (ri) represents contributions to Φ(ri) from particles

in octree boxes adjacent to that containing the ith observation

point ri. The remaining (far) contributions, given by ΦF (ri), are

calculated using the addition theorem.

The ACE algorithm follows the standard fast multipole proce-

dure; for particulars, the reader is referred to [17]. First, multipole

expansions of sources are computed for each leaf-level box and

aggregated up the octree. Next, local expansions are formed for

each octree box by accumulating translated multipole expansions

in its interaction list. As implied by (2), a local expansion may be

interpreted as the coefficients of the Taylor polynomial represent-

ing the influence of all particles exterior to the near-field of its

octree box. Finally, local expansions are disaggregated in a top-

down fashion to the leaf level, where they are used to compute

the potential at each observer particle. For non-uniform particle

distributions it is advantageous to use an adaptive octree which

can conform to the local distribution density (see Section 3). Two

additional steps involving interactions between octree boxes of

different sizes are required [13,25]. Because the condition |d| <
|X| is not satisfied in three dimensions for these interactions, the

operators involved take the form of either (i) directly evaluating

multipole expansions at observer particles or (ii) summing the

influence of individual source particles onto local expansions;

they are trivially derived by subsuming either the observer or

source parts, respectively, of d into the vector X, yielding a valid

addition theorem.

We now state several interesting and/or useful properties of

the algorithm. First, it has been shown that the operators involved

in aggregation and disaggregation are exact, i.e. they incur no

numerical error beyond the specification of P and these are inde-

pendent of the height of the tree. Second, the source-side multipole

expansions do not involve the kernel function; hence, multiple

potentials can be computed at once from the same source data,

provided one can store a set of local expansions for each kernel

considered. Third, operators for going up and down the tree

(between any two consecutive levels) differ only by a constant,

and are easily precomputed. The same is true for certain kernel

functions. Fourth, the k-fold gradient of the potential is trivially

evaluated using the formula [17]

∇kΦ(X+ d) =
P

∑

n=0

1

(n− k)!
d(n−k) · (n− k) · ∇nψ(X). (4)

As we will demonstrate, this property is especially useful for eval-

uating multiple distinct potentials which derive from a common

kernel function, or in some cases reduces the overall cost when

a potential can be expressed in terms of differential operators

acting upon a simple kernel function (like the Stokes poten-

tial). Pertinent details for application to the Stokes potential are

presented in Appendix A.

3. Parallel ACE algorithm

In this section, we outline our parallel algorithms for con-

structing, adapting, and load balancing the tree, as well as

parallel potential evaluation. While parallelization of FMMs is

well-documented in the literature [3,23,26], as we will demon-

strate in Section 4, redundant M2L computations on processes

sharing the same local expansions in the commonly used locally

essential tree (LET) based algorithms would significantly ham-

per the performance of our proposed framework, particularly

for high-accuracy calculations. The M2L stage incurs the largest

computational cost in ACE in terms of P , whereas in methods such

as KIFMM this is not the case [23]. For this reason, our parallel

evaluation strategy differs from the usual LET based implemen-

tations, and therefore we present our parallel implementation in

detail.

3.1. Construction of the distributed octree

Construction of the distributed octree starts by partitioning

the input particles equally among all processes. On each process,

the equi-distributed particles are first hashed into Morton keys,

which is a binary encoding of the leaf boxes according to their

space-filling Morton-Z curve ordering. A parallel bucket sort is

then used to assign each process a distinct set of leaves con-

tiguous in the Morton-Z ordering such that each process gets

a roughly equal number of particles. This initial partitioning is

performed at the finest refinement level, i.e., at level L, in prepa-

ration for the ensuing adaptive tree coarsening and load balancing

stages, and is concluded with a local post-order traversal tree

construction on each process from leaves all the way up to the

root.

The above partitioning scheme necessarily incurs duplicate

copies of internal tree nodes, corresponding to common ancestors

of leaf nodes residing on different processes. Such nodes are

referred to as plural nodes. Treatment of computations associated

with plural nodes is one aspect of our parallelization scheme that

differentiates it from the LET based implementations. Hence, we

provide some terminology to aid the discussion. For any plural

node, the process with the highest rank which owns a copy is des-

ignated as the resident process, and as such is deemed responsible

for all its tree-based interactions. Other processes with a copy of

the plural node are called users of the node, and are directed only

to send and receive data to and from the resident process. A plural

node is referred to as a shared node on its resident process, and

the users’ copies are called duplicate nodes. As a consequence of

the post-order traversal tree construction, it can be shown that all

duplicate nodes in a process’ local sub-tree appear consecutively

at the end of the post-order traversal sequence. Shared nodes

may appear anywhere within the post-order sequence, though

they tend to appear toward the beginning. As we will discuss,

these properties allow effective overlapping of communication

and computation in the potential evaluation stage.

3.2. Adaptive tree

Random (or homogeneous) distributions of source or observer

particles are well-represented by a uniform tree structure. Within

such distributions, the number of particles per box is approxi-

mately constant across the entire simulation domain, facilitating

the linear scaling of the ACE algorithm or any other FMM imple-

mentation for that matter. For non-uniform distributions though,

i.e., those with sub-regions of relatively high particle density,

the minimum box size must be decreased to prevent near-field

costs from dominating the computation. Hence, in a uniform tree

framework, the densest region of discretization dictates the leaf

box size throughout the entire tree. The result is large swaths of

space with a poor work-to-particle ratio in sparsely populated

regions, degrading the cost scaling of parallel ACE computations.

To prevent such inefficiencies, we adapt the tree structure

to the particle distribution so as to restore the approximate

uniformity in leaf box population throughout the tree. Adapta-

tion of trees for N-body simulation has been well-studied and

has become a standard feature of modern tree-based simulation

4 S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248

methods for non-oscillatory kernels [24,27–29]. We employ a

bottom-up scheme for both constructing and merging the tree to

minimize communication costs. Our parallel algorithm for merg-

ing the distributed octree is given in Algorithm 1. Simply put,

this algorithm starts with a uniform tree constructed according to

the description in Section 3.1 and merges each set of sibling leaf

boxes into their parents, if the total number of particles in these

leaf boxes do not exceed a pre-determined particle threshold M .

This scheme ensures that leaf boxes in more sparsely-populated

regions contain roughly as many points as those in the dense

regions, thereby avoiding excessive tree interactions (in sparse

regions) or expensive near field computations (in dense regions).

Algorithm 1 Parallel algorithm for merging the tree with the

option to impose 2:1 balance constraint

1: Define:

2: Tloc : local subtree (including plural nodes)

3: T
ℓ
loc : local subtree at level ℓ

4: M: maximum number of points per leaf box

5: S(b): set of siblings of a box b

6: n(b): number of points contained within the complete subtree

rooted at box b

7: N (b): set of box b’s near-neighbors at the same level

8: Votes: ‘‘1’’: vote to merge; ‘‘0’’: indeterminate; ‘‘−1’’: veto
9: Votes← 0

10: for ℓ = L, L− 1, . . . , 4 do

11: C← ∅
12: for each b ∈ T

ℓ
loc do

13: if Votes(b)==0 then

14: if n(P(b)) ≤ M then

15: Votes(S(b))← 1

16: else

17: Votes(S(b))←−1
18: end if

19: end if

20: if Votes(b)≤ 0 and 2:1 balance desired then

21: C← C ∪ N (P(b))

22: end if

23: end for

24: Votes(S(C))←−1 {Global step; involves communication of

vetoes to resident processes of boxes in C}

25: Synchronize votes of level ℓ plural nodes and their siblings;

vetoes dominate

26: end for

27: Prune each b ∈ Tloc and re-assign particles accordingly

3.2.1. Evaluation of ACE interactions in adaptive trees

In adaptive octree algorithms, it is necessary to evaluate in-

teractions between boxes of different sizes. Fig. 2(a) gives an il-

lustrative example. As usual, these interactions are classified into

U, V ,W , X-lists based on the adjacency and relative size of source

and observer box pairs [7,25]. For the sake of completeness, these

lists are defined as follows:

• U-list: source and observer boxes are adjacent and are both

leaves, i.e., they are within the near field of each other;

• V-list: source and observer boxes are not adjacent but their

parents are, i.e., they are inside the far field of each other;

• X-list: source and observer boxes are not adjacent, but the

observer box is (i) adjacent to the parent of the source box,

(ii) a leaf, and (iii) larger than the source box, corresponding

to a cross-level interaction with an observer node higher up

in the octree;

• W-list: reciprocal interactions of those in the X-list, corre-

sponding to a cross-level interaction with an observer node

lower down in the octree.

3.2.2. 2:1 balance constraint

For highly non-uniform distributions, unconstrained merging

of the tree results in a tree with a matching degree of non-

uniformity. While this is normally desirable from the perspective

of reducing computational costs (less tree nodes means less num-

ber of interactions overall), it has a downside in terms of memory

utilization. In a uniform tree where no X-list or W-list interactions

exist, there can be at most 63 (total number of boxes in the

neighborhood of a box) - 33 (number of near field boxes) = 189

boxes in the far field of a box. Leveraging symmetries and scale

invariance of certain kernels can significantly reduce the number

of translation operators needed for V -list interactions. However,

in regions containing sharp discontinuities in leaf box size, the

number of X- and W -list interactions can become quite large, and

the number of unique translation operators needed to perform

the corresponding X- and W -list interactions can also be very

large. The 2:1 balance constraint [24,29] remedies this storage

problem by disallowing adjacent leaf boxes to differ in size by

more than a factor of two, significantly reducing the number of

different X and W interactions and the memory overhead for

storing their particle-specific translation operators. Algorithm 1

for merging the tree includes the option to impose this constraint.

3.3. Load balancing

After the tree merging procedure under the 2:1 balance con-

straints is complete, each process is left with a subset of the

original uniform tree. As such, the computational profile is suf-

ficiently different from the original tree that re-balancing the

load on processes is necessary. To accomplish this, we follow an

empirical load balancing strategy where we estimate the work

attendant to each node in the distributed tree and aim to assign

them in a load-balanced manner.

The cost per leaf is determined as follows. As part of the

initialization operations, we first time a set of dummy oper-

ations to obtain cost estimates for each of the U, V ,W , and

X-list interactions. The cost for each node in the tree is then

determined by multiplying the number of each interaction by its

corresponding cost estimate, and summing these costs across all

interaction types. As with the initial partitioning, we partition

the distributed tree by determining a set of separators between

contiguous chunks of leaf boxes. Therefore we account for the

costs of the interior nodes by percolating their estimated costs

down to the leaf boxes and adding them to the extant cost

estimate at each leaf. A variant of Algorithm 1 from [29] is then

used to determine P − 1 locations at which to split the leaf

level Morton curve for a re-balancing of the computational load.

While the overall strategy is similar to the costzones approach

of [27,28], our strategy accounts for the work of the entire tree

instead of just the leaves. This is important for surface geometries

with non-uniform distributions, as the amount of work above the

leaves is not negligible.

3.4. Evaluation of the potential in parallel

The parallel potential evaluation is performed in three stages:

The upward pass (M2M), translation (M2L), and the downward

pass (L2L). Algorithm 2 describes the M2M (upward pass) stage

of our implementation, which essentially entails shifting the mul-

tipole data of each tree node to the center of its parent box

and aggregating the shifted multipole data from all siblings. Each

process starts processing the nodes in its local subtree from right-

to-left in the post-order traversal sequence. By choosing to go

from right-to-left, we ensure that duplicate nodes are encoun-

tered toward the beginning of the M2M stage, and shared nodes

S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248 5

Fig. 2. (a) Graphical illustration of the interaction lists in the adaptive tree for a leaf box b; (b) example of non-uniform distribution with non-uniform tree in two

dimensions.

are encountered toward the end of this stage. Using MPI’s non-
blocking Ireduce collective calls, this pattern facilitates over-
lapping the communication operations for plural nodes whose
children, by definition, reside on different processes with M2M
computations of other nodes.

The translation stage commences on each process once the
local upward pass is complete. This stage includes three substages
for computations of X , V and W lists. First, X-list interactions
are handled by sending the required multipole expansions to
processes with X-list observers, where the observed potentials
are computed. Next, V -list interactions are carried out. Typi-
cally, this is the most expensive stage of any fast multipole-like
method. To hide communication overheads, the source multipole
expansions to be exchanged are divided up into packets and
communicated to processes that need this information. As each
source expansion is received in full, all its V -list interactions
are computed, making good use of temporal locality. Once all
source expansions in the current packet are exhausted of work,
the next packet is constructed and communicated using non-
blocking primitives to facilitate overlapping of communication
and computation. This process continues until all remote V -list
interactions are completed. Local V -list interactions, i.e., those
in which both the source and observer boxes belong to the
same process, are computed next. Finally, W -list interactions are
computed by exchanging the source weights, i.e. ui in (B.1), and
applying the appropriate translation operators to form the local
expansions of these sources.

To complete the evaluation, Algorithm 3 describes the L2L
(downward pass) stage which involves re-centering and adding
parents’ local expansions to their childrens’. Contrary to the M2M
stage, here we employ a pre-order traversal of the local subtree
so that the shared nodes are now encountered at the beginning
and the duplicates are encountered toward the end of the L2L
stage. This way, by using MPI’s non-blocking IBcast primitive,
we ensure that broadcast for a shared node can be completed in
the background, while L2L computations of other nodes are being
performed. Also, the result of the V -list interaction evaluations
for duplicate nodes is communicated to users during the down-
ward pass, again using non-blocking primitives for overlapping
communications with computations.

As described above, updating multipole and local expansions
for nodes that are shared between processes are performed ef-
ficiently in our implementation using asynchronous communica-
tions. We note that at any level, the local subtree of any process
can have at most two plural nodes — one shared, one duplicate.
It follows, then, that we may create a total of 2L MPI communica-
tors, each with groupings of shared nodes and their users, so that

we can take advantage of non-blocking variants of MPI’s reduce

and broadcast operations.

Algorithm 2 Local multipole-to-multipole (M2M) computation

with interleaved update of plural nodes

1: Define pid as the process rank

2: Define M(b) as the multipole expansion for node b

3: Define T (b) as a temporary storage space of the same size as

M(b) unique to node b; only required for plural nodes

4: Define Reqs(·) as the array of request handles for asyn-

chronous comms.

5: r ← 0 {r is the request counter}

6: R← ∅ {Set of update nodes}

7: for each b ∈ Tloc in right-to-left post-order do

8: if b is a leaf then

9: Calculate M(b) from particles of b

10: else

11: for each child c of b do

12: M(b)← M(b)+ M2M(c, b)

13: end for

14: if b is a plural node then

15: r ← r + 1

16: MPI_Ireduce(M(b),T (b),Reqs(r),Root(b),MPI_SUM)

17: if pid == Root(b) then

18: R← R ∪ b

19: end if

20: end if

21: end if

22: end for

23: MPI_Waitall(r ,Reqs(1 : r))
24: for each b ∈ R do

25: M(b)← T (b)

26: end for

We note that our evaluation algorithm differs from that of the

common LET-based implementations in that we avoid duplicat-

ing V -list interactions, which are typically the most computa-

tionally expensive part of any fast multipole-like algorithm (see

Section 4). Each V -list interaction is computed exactly once, and

the resident process is responsible for such computations.

4. Results

In this section, we present an array of results demonstrating

error convergence and performance of the presented algorithm

and its parallel implementation.

6 S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248

Fig. 3. Far-field only error convergence vs. ACE expansion order for different kernel functions.

Algorithm 3 Local-to-local (L2L) computation with asynchronous

update of plural nodes

1: Define L(b) as the local expansion for node b

2: r ← 0

3: for each b ∈ T in pre-order do

4: if b is a leaf then

5: Calculate potentials due to L(b) for each particle in b

6: else

7: if b is a plural node then

8: r ← r + 1

9: MPI_Ibcast(L(b),Reqs(r),Root(b))

10: if b is a duplicate node then

11: MPI_Wait(Reqs(r))

12: end if

13: end if

14: for each child c of b do

15: if c is not a duplicate node then

16: L(c)← L(c)+ L2L(c, b)

17: end if

18: end for

19: end if

20: end for

4.1. Error convergence

We first examine the error convergence of the ACE algorithm

applied to the r−ν , Yukawa, and Stokes potentials (the Stokeslet,

rotlet, and stresslet; see the Appendix for further details). The

first two are computed using scalar sources, while the Stokes

potentials are calculated using vector-valued sources. The error

for Stokes potentials is compared to the analytical by taking

an inner product of the tensor-valued potential with each ob-

server’s polarization vector. We first evaluate the r−ν and Yukawa

potentials for 3.125 million points within a 0.64 m cube. The

distribution is mapped onto a tree with a leaf box diameter of

d0 = 0.01 m, yielding a 7-level tree with 12 points per box

on average. A single buffer box is used for the far-field. Fig. 3

shows convergence in the L2 error for the far-field with increasing

expansion order P = 1, 3, . . . , 19 for both kernels. Different

parameters are used to control the growth or decay of the kernels

as r increases.

We next consider the evaluation of error in Stokes potentials

for a collection of points within a cube with both uniform and

non-uniform spatial distributions. Both distributions are charac-

terized by 3.125 million points within a 0.64 m cube. In the case

of the uniform distribution, we employ a uniform tree with in-

creasing box size as P is increased to minimize runtime. The non-

uniform distribution is generated by generating random points

Fig. 4. Convergence of the Stokes potentials for uniform and non-uniform

volume distributions.

within the unit cube and raising the generated x, y, z positions
to the powers of 1.2, 0.7, and 1.7, respectively, before rescaling
the results to fit into the 0.64 m cube. In this case, we use a
non-uniform tree with 2:1 balance and increase the minimum
box size with P to approximately minimize runtime according
to the uniform-tree cost estimate. The error convergence with
increasing P for both distributions is shown in Fig. 4. The error
metric used here relies on randomly sampling the analytical
fields at one observer on each process, ensuring a good spatial
distribution of observers, and comparing it with the computed
potential using ACE. For each selected particle, the error in the
potential relative to the analytic solution is computed, and the
average of these errors is reported.

4.2. Parallel performance

Finally, we examine the performance of the algorithm in eval-
uating all three Stokes potentials simultaneously from the ker-
nel ψ(r) = r using the formulas given in Appendix A. We
empirically selected the box sizes for best performance. These
results were obtained on the Haswell partition of the Cori super-
computer at the National Energy Research Scientific Computing
Center (NERSC). This cluster comprises 2388 compute nodes with
two sockets each, populated by 16-core Intel Xeon E5-2698 v3
‘‘Haswell’’ CPUs running at 2.3 GHz and 64 GB DDR4 RAM at
2133 MHz per socket. The algorithm was implemented in For-
tran 90 using double-precision arithmetic and parallelized strictly
in distributed-memory fashion using MPI. The code was com-
piled using the Intel compiler version 18 with optimization and
architecture-specific instructions using the -O3 -xHost flags. For
these runs we use vector-valued sources in R

3 and evaluate the
far-field only, selecting P = 7 to give O(10−5) accuracy for the
Stokeslet and O(10−3) accuracy for the rotlet and stresslet.

S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248 7

Fig. 5. Strong scaling and per-process timings for Stokes kernel evaluation on a uniformly-distributed volume geometry with 5 billion particles.

Fig. 6. Strong scaling and per-process timings for Stokes kernel evaluation on a uniform spherical distribution of 1.024 billion points.

We next consider a uniform random distribution of 5 billion

randomly-oriented vector sources with unit norm inside a cube

of diameter 8 m. The minimum box size was set to 0.015 m,

yielding an 11-level uniform tree with 33 particles per leaf box

on average. Fig. 5(a) shows the parallel efficiency (strong scaling)

of this distribution up to 16,384 processes with respect to 1024

processes. The increase in efficiency from 2048 to 4096 processes

is due to the fact that the distribution is randomly re-generated

for each run, given the extremely large number of particles. The

efficiency is over 90% for all cases. Fig. 5(b) shows the timings for

each process for the 16,384 process case. The C2M stage requires

on average 0.54 s while the L2O stage, modified for the Stokes

potentials, requires 6.05 s, about an 11.2X increase. Most of this

increase is due to the calculation of the stresslet potential. The

overall computational time is dominated by the V -list calculation,

taking over 45 s of the 54 s, underscoring the importance of

avoiding redundant V-list calculations related to duplicate nodes

at upper levels of the tree.

We now consider uniformly and non-uniformly distributed

sources on the surface of a sphere. Both distributions comprise

1.024 billion particles. For the uniform distribution, the sphere

diameter is 2 m. A uniform tree is used with a leaf box size

of 5 × 10−4 m, yielding a 13-level tree with leaves containing

15 particles per box on average. The strong scaling and per-

process timings on 16,384 processes for the uniform distribution

are shown in Fig. 6. A mock distribution is also shown inset in

the strong scaling plot. In this case, the efficiency is over 77%.

The choppiness of the L2L stage timings is due to the fact that

the number of particles assigned to each process is uneven;

instead, the load balancing algorithm aims to balance the overall

computational load. As the bulk of the work lies in the V -list

evaluation, Fig. 6 suggests the algorithm does a reasonably good

job.

In the case of the non-uniform distribution, the sphere has a

diameter of 8 m, and the particles are clustered around the north

and south (±z) poles (as depicted inset in Fig. 7(a)). The minimum

box size is chosen as 6.25 × 10−7 m in diameter, resulting in a

25-level tree. We set smax = 50 particles per box, resulting in

about 18 particles per box on average and distributing leaves

over the bottom 16 levels of the tree. Despite the extremely

non-uniform distribution of particles, the strong scaling shown

in Fig. 7(a) is still as high as 78% efficient on 16,384 processes.

In addition, the per-process timings presented in Fig. 7(b) for

the far-field evaluation suggest that the load balancing algorithm

does its job reasonably well. Again, the choppiness here is due to

the fact that particles are not evenly distributed across processes,

and processes with high particle counts spend considerable time

in the L2O stage. Those with the most particles stick out in these

plots.

4.3. Performance comparison with KIFMM

In this section, we compare the performance of our paral-

lel algorithm with that of the point-based kernel-independent

FMM [14,23] implemented in the open-source PVFMM pack-

age [24]. We selected this code as a benchmark because it is

perhaps the most well-known code of its kind. Its authors have

extensively optimized the algorithm and implementation, and

they have compared it with other contemporary codes [24,30,31].

The runs in this section were performed on a single compute

node with an Intel (R) Xeon (R) Gold 6148 CPU at 2.40 GHz with

83 GB RAM. Because our implementation does not make use of

multithreading, we considered strictly MPI parallelism. We did

not do any detailed manual optimization of our implementation

of the parallel ACE algorithm, instead simply relied on the -O3

-xHost -ipo compiler optimization flags for the Intel Fortran

compiler version 19.0.3.199 and Intel MPI 2019 Update 3 for

Linux. The geometry used in this experiment is a volumetric

uniform distribution of N = 500,000 scalar points within a cube

with side length 1 m. The kernel function is the Yukawa kernel

8 S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248

Fig. 7. Strong scaling and per-process timings for Stokes kernel evaluation on a non-uniform spherical distribution of 1.024 billion points.

Fig. 8. Timings and strong scaling behavior of a matrix–vector product for ACE and KIFMM in lower-accuracy (LA) and higher-accuracy (HA) modes.

ψ(|r|) = e−γ r
r

with γ = 1. We ran both codes at two target

accuracy settings (in the sense of the L2 relative error), first at

the lower accuracy of ε = 10−4 and then at the higher accuracy

of ε = 5× 10−7. In each case, the number of points per leaf box

was tuned to the best of our ability to optimize the execution time

for both codes. Table 2 summarizes the simulation parameters for

all cases. The KIFMM parameters m and s represent the multipole

expansion order and the maximum number of particles per leaf

box, respectively. The results of our performance comparison

show that the algorithm of the present paper is competitive with

the KIFMM algorithm for the geometry and target accuracies

considered. Fig. 8(a) shows the time taken for a matrix–vector

product in each code for both accuracies. For the lower-accuracy

case, our algorithm is faster for all process counts, though the

KIFMM code is faster for the higher accuracy case. This is ex-

pected, as the complexity estimates for ACE and KIFMM when the

number of points per box is optimized for runtime areO(NP3) and

O(Nm), respectively [14,17]. As shown in Fig. 8(b), our algorithm

scales reasonably well up to 20 MPI ranks, but not quite as well

as the KIFMM code. We note that the KIFMM code ran out of

memory for 20 MPI ranks in high-accuracy mode.

5. Conclusion

In this paper, we have presented a fast, adaptive, and scalable

algorithm for evaluating pair potentials involving non-oscillatory

kernels of arbitrary form. We introduced controllably-accurate

operators for calculating interactions arising from the non-

uniform tree structure and algorithms for building, load bal-

ancing, and efficiently traversing the resulting non-uniform tree

structure. We demonstrated the merits of this algorithm in terms

of both error control and parallel performance through a series of

numerical example involving several different kernels, including

Table 2

Parameters for ACE vs. KIFMM performance runs.

Low-accuracy High-accuracy

ACE P 4 13

ACE d0 0.0625 0.08

ACE error 5.5× 10−5 4.5× 10−7

KIFMM m 4 6

KIFMM s 30 100

KIFMM error 8.7× 10−5 4.4× 10−7

non-decaying kernels, and both uniform and extremely non-

uniform distributions of up to 5 billion particles on as many

as 16,384 CPU cores. The presented methods have many poten-

tial applications in large-scale computational physics, machine

learning, and beyond.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Acknowledgments

This work has used computational resources available at the

High Performance Computing Center at Michigan State Univer-

sity, and at the National Energy Research Scientific Computing

Center (NERSC), a U.S. Department of Energy Office of Science

User Facility operated under Contract No. DE-AC02-05CH11231.

We also acknowledge support from the National Science Foun-

dation, USA under grants ECCS-1408115, DMS-1619960, OAC-

1807622, OAC-1822932.

S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248 9

Appendix A. Stokes potentials

The three Green’s functions for the linearized Navier–Stokes

equations in Stokes flow may also be referred to as the Stokes po-

tentials. They are tensor-valued functions of position, given by

Sij (r) =
δij

r
−

rirj

r3
, (A.1a)

Ωij (r) = ϵijk
rk

r3
, (A.1b)

σijk (r) = −6
rirjrk

r5
, (A.1c)

where {Sij} are the components of the Stokeslet, {Ωij} are the

components of the rotlet, and {σijk} are the components of the

stresslet. Alternatively, the above potentials can be rearranged

and expressed in terms of derivatives on r [32–34]:

Sij (r)
.=

(

δij∇2 − ∂i∂j
)

ψ(r), (A.2a)

Ωij (r)
.=

(

−ϵijk∂k∇2
)

ψ(r), (A.2b)

σijk (r)
.=

[(

δij∂k + δjk∂i + δki∂j
)

∇2 − 2∂i∂j∂k
]

ψ(r) (A.2c)

where ψ(r) = r , δij is the Kronecker delta, ∇2 denotes the

Laplacian, ∂i represents the derivative along the ith direction

(from the set {x, y, z}), and ϵijk denotes the Levi-Civita symbol. By

applying the ACE algorithm to the kernel r and leveraging Eq. (4),

one may obtain any of the Stokes potentials with these formulas.

This is the approach taken in Section 4.

Appendix B. Accelerated cartesian expansion: Theorems

Theorem 1 (Charge-to-Multipole (C2M)). Assuming that k sources

exist in the domain Ωs, the potential function Φ(r) at any point r

significantly away from Ωs is given by

Φ(r) =
∞

∑

n=0

M(n)(rcs) · n · ∇nψ(r)

M(n)(rcs) =
k

∑

i=1

(−1)n

n!
(ri − rcs)

nui,

(B.1)

where M(n)(rcs) is the rank-n multipole tensor about rcs .

Next, these multipoles can be re-expressed about rcs,p using

Theorem 2 (Multipole-to-Multipole (M2M)). The multipole expan-

sion M(rcs) may be re-centered about the center rcs,p of a domain

Ω
p
s ⊃ Ωs via

M(n)
p (rcs,p) =

n
∑

m=0

∑

P(n,m)

m!
n!

(rcs,p − rcs)
n−mM(m)(rcs), (B.2)

where P(n,m) is the permutation of all partitions of n into sets of size

n−m and m, and Mp(r
c
s,p) is the re-centered multipole expansion.

Next, we translate these multipoles about Ω
p
s to Ω

p
o .

Theorem 3 (Multipole-to-Local (M2L)). Assume that a domain Ω
p
o

centered at rco,p exists at some distance from Ω
p
s , and Ω

p
o ∩Ωp

s = ∅.
Then, given a multipole expansion M

(n)
p (rcs,p) centered at rcs,p, the

potential Φ(r) may be alternatively expressed in the form

Φ(r) =
∞

∑

n=0

(r− rco,p)
n · n · L(n)p (rco,p),

L(n)p (rco,p) =
1

n!

∞
∑

m=n
M(m−n)

p (rcs,p) · (m− n) · ∇mψ(|rco,p − rcs,p|),

(B.3)

where Lp(r
c
o,p) is referred to as the local expansion for Ω

p
o .

Next, we map the local expansions in Ω
p
o to Ωo.

Theorem 4 (Local-to-Local (L2L)). Given a local expansion L(n)(rco,p)

within the domain Ω
p
o about the center rco,p, the local expansion

within Ωo ⊂ Ωp
o centered at rco is given by

L(n)(rco) =
∞

∑

m=n

(

m

m− n

)

L(m)(rco,p) · (m− n) · (rco − rco,p)
m−n. (B.4)

Finally, the local expansions are mapped to observers.

Theorem 5 (Local-to-Observer (L2O)). The potential at a point

r ∈ Ωo can be obtained from the local expansion withinΩo centered

at rco via

Φ(r) =
∞

∑

n=0

(r− rco)
n · n · L(n)(rco). (B.5)

These theorems collectively provide a framework for express-

ing addition theorems for any smooth and non-oscillatory kernel

function.

References

[1] A. Dutt, M. Gu, V. Rokhlin, SIAM J. Numer. Anal. 33 (5) (1996) 1689–1711.

[2] T. Hofmann, B. Schölkopf, A.J. Smola, Ann. Statist. (2008) 1171–1220.

[3] R. Yokota, L.A. Barba, M.G. Knepley, Comput. Methods Appl. Mech. Engrg.

199 (25–28) (2010) 1793–1804.

[4] R. Krasny, L. Wang, SIAM J. Sci. Comput. 33 (5) (2011) 2341–2355.

[5] G.C. Linderman, M. Rachh, J.G. Hoskins, S. Steinerberger, Y. Kluger, Nat.

Methods 16 (3) (2019) 243.

[6] L. Greengard, V. Rokhlin, J. Comput. Phys. 73 (2) (1987) 325–348.

[7] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems,

MIT Press, 1988.

[8] J. Barnes, P. Hut, Nature 324 (6096) (1986) 446–449.

[9] J. Song, C.-C. Lu, W.C. Chew, IEEE Trans. Antennas and Propagation 45 (10)

(1997) 1488–1493.

[10] H. Cheng, W.Y. Crutchfield, Z. Gimbutas, L.F. Greengard, J.F. Ethridge, J.

Huang, V. Rokhlin, N. Yarvin, J. Zhao, J. Comput. Phys. 216 (1) (2006)

300–325.

[11] M. Messner, M. Schanz, E. Darve, J. Comput. Phys. 231 (4) (2012)

1175–1196.

[12] B. Engquist, L. Ying, SIAM J. Sci. Comput. 29 (4) (2007) 1710–1737.

[13] S. Hughey, H. Aktulga, M. Vikram, M. Lu, B. Shanker, E. Michielssen, IEEE

Trans. Antennas and Propagation 67 (2) (2019) 1094–1107.

[14] L. Ying, G. Biros, D. Zorin, J. Comput. Phys. 196 (2) (2004) 591–626.

[15] W. Fong, E. Darve, J. Comput. Phys. 228 (23) (2009) 8712–8725.

[16] R. Wang, C. Chen, J. Lee, E. Darve, PBBFMM3D: a parallel black-box fast

multipole method for non-oscillatory kernels, 2019, arXiv preprint arXiv:

1903.02153.

[17] B. Shanker, H. Huang, J. Comput. Phys. 226 (1) (2007) 732–753.

[18] M. Vikram, A. Baczewski, B. Shanker, L. Kempel, J. Comput. Phys. 229 (24)

(2010) 9119–9134.

[19] A.D. Baczewski, D.L. Dault, B. Shanker, IEEE Trans. Antennas and

Propagation 60 (9) (2012) 4281–4290.

[20] M. Vikram, H. Huang, B. Shanker, T. Van, IEEE Trans. Antennas and

Propagation 57 (7) (2009) 2094–2104.

[21] F.A. Cruz, M.G. Knepley, L.A. Barba, Internat. J. Numer. Methods Engrg. 85

(4) (2011) 403–428.

[22] D. Potter, J. Stadel, R. Teyssier, Comput. Astrophys. Cosmol. 4 (1) (2017) 2.

http://refhub.elsevier.com/S0010-4655(20)30075-8/sb1
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb2
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb3
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb3
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb3
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb4
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb5
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb5
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb5
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb6
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb7
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb7
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb7
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb8
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb9
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb9
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb9
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb10
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb10
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb10
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb10
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb10
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb11
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb11
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb11
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb12
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb13
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb13
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb13
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb14
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb15
http://arxiv.org/abs/1903.02153
http://arxiv.org/abs/1903.02153
http://arxiv.org/abs/1903.02153
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb17
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb18
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb18
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb18
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb19
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb19
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb19
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb20
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb20
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb20
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb21
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb21
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb21
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb22

10 S. Hughey, A. Alsnayyan, H.M. Aktulga et al. / Computer Physics Communications 255 (2020) 107248

[23] L. Ying, G. Biros, D. Zorin, H. Langston, Supercomputing, 2003 ACM/IEEE

Conference, IEEE, 2003, p. 14.

[24] D. Malhotra, G. Biros, ACM Trans. Math. Softw. 43 (2) (2016) 17.

[25] J. Carrier, L. Greengard, V. Rokhlin, SIAM J. Sci. Stat. Comput. 9 (4) (1988)

669–686.

[26] M.S. Warren, J.K. Salmon, Proceedings of the 1993 ACM/IEEE Conference

on Supercomputing, ACM, 1993, pp. 12–21.

[27] J.P. Singh, C. Holt, J.L. Hennessy, A. Gupta, Proceedings of the 1993

ACM/IEEE Conference on Supercomputing, ACM, 1993, pp. 54–65.

[28] J.P. Singh, C. Holt, T. Totsuka, A. Gupta, J. Hennessy, J. Parallel Distrib.

Comput. 27 (2) (1995) 118–141.

[29] H. Sundar, R.S. Sampath, G. Biros, SIAM J. Sci. Comput. 30 (5) (2008)

2675–2708.

[30] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,

A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, G. Biros, Commun. ACM 55

(5) (2012) 101–109.

[31] D. Malhotra, G. Biros, Commun. Comput. Phys. 18 (3) (2015) 808–830.

[32] C. Pozrikidis, J. Eng. Math. 30 (1–2) (1996) 79–96.

[33] X.-J. Fan, N. Phan-Thien, R. Zheng, Z. Angew. Math. Phys. 49 (2) (1998)

167–193.

[34] L. af Klinteberg, D.S. Shamshirgar, A.-K. Tornberg, Res. Math. Sci. 4 (1)

(2017) 1.

http://refhub.elsevier.com/S0010-4655(20)30075-8/sb23
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb23
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb23
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb24
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb25
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb25
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb25
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb26
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb26
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb26
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb27
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb27
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb27
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb28
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb28
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb28
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb29
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb29
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb29
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb30
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb30
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb30
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb30
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb30
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb31
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb32
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb33
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb33
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb33
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb34
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb34
http://refhub.elsevier.com/S0010-4655(20)30075-8/sb34

	Fast and scalable evaluation of pairwise potentials
	Introduction and problem statement
	Mathematical preliminaries
	Parallel ACE algorithm
	Construction of the distributed octree
	Adaptive tree
	Evaluation of ACE interactions in adaptive trees
	2:1 balance constraint

	Load balancing
	Evaluation of the potential in parallel

	Results
	Error convergence
	Parallel performance
	Performance comparison with KIFMM

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Stokes potentials
	Appendix B. Accelerated Cartesian Expansion: Theorems
	References

