
ColumnBurst: A Near-Storage Accelerator for
Memory-Efficient Database JoinQueries

Gongjin Sun
gongjins@uci.edu

Department of Computer Science
University of California, Irvine

Sang-Woo Jun
swjun@ics.uci.edu

Department of Computer Science
University of California, Irvine

ABSTRACT
We present ColumnBurst, a memory-efficient, near-storage
hardware accelerator for database join queries. While the
paradigm of near-storage computation has demonstrated
performance and efficiency benefits on many workloads by
reducing data movement overhead, memory-bound opera-
tions such as relational joins on unsorted data have been
relatively inefficient with fast modern storage devices, due to
the limited capacity and performance of memory available
on the near-storage processing engine. ColumnBurst delivers
very high performance even on such complex queries, while
staying within the memory performance and capacity budget
of what is typically already available on off-the-shelf storage
devices. ColumnBurst achieves this via a compact, hardware
implementation of sorting-based group-by aggregation and
join algorithms, instead of the conventional hash-based al-
gorithms. We evaluate ColumnBurst using an FPGA-based
prototype with 1 GB of slow on-device DDR3 DRAM, and
show that on benchmarks including TPC-H queries with join
queries on unsorted columns, it outperforms MonetDB on a
6-core i7 with 32 GB of DRAM by over 7×, and ColumnBurst
using a near-storage hash join algorithm by 2×.

CCS CONCEPTS
• Information systems → Storage architectures; Join
algorithms; • Hardware → Hardware accelerators.

ACM Reference Format:
Gongjin Sun and Sang-Woo Jun. 2020. ColumnBurst: ANear-Storage
Accelerator for Memory-Efficient Database Join Queries. In ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys ’20), August 24–25,
2020, Tsukuba, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3409963.3410494

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
APSys ’20, August 24–25, 2020, Tsukuba, Japan
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8069-0/20/08.
https://doi.org/10.1145/3409963.3410494

1 INTRODUCTION
As the scale of data analytics requirements as well as the
performance of secondary storage continue to increase, near-
storage processing is becoming an attractive paradigm of
making effective use of the high performance of modern
storage devices. Fast storage devices built using NAND-flash
or Non-Volatile Memory technologies are shifting the bot-
tleneck from storage to other parts of the system, such as
the processor or the interconnect between the processor
and storage. For example, off-the-shelf SSDs have shown an
internal bandwidth of almost 2× compared to their inter-
connect [15]. Near-storage processing augments the storage
device with a computation offload engine, which both adds
computation capacity as well as reduces the data transported
over the interconnect. Many previous research have shown
great performance benefits, often orders of magnitude im-
provements over analytics software running purely on the
host CPU [9, 12, 14, 18, 22, 24].
While a vast selection of analytics operations has been

explored on near-storage accelerator platforms with success,
memory-intensive operations, especially with complex ac-
cess patterns on large working sets, have been relatively
inefficient with fast modern storage devices due to the lim-
ited memory resources on the near-storage processing en-
gine [15]. For example, a hash-based algorithm for group-by
aggregation and relational joins on unsorted data require
random access on a hash table exceeding the size of on-chip
memory. Meanwhile, a typical storage device is equipped
with a small amount of performance-restricted memory de-
vices such as Low-Power DDR4 (LPDDR4), resulting in lower
random access performance as benchmarked in Section 4.
Furthermore, for modern SSDs with NAND-flash and Intel
X-Point, most of that memory is already used by the SSD
controller for important flash management functions. As a
result, near-storage offloading of such complex operations
is either avoided [7, 9, 12, 13, 15, 21], only achieves perfor-
mance similar to host CPU [25], targets slow SATA SSDs [26],
or requires costly addition of memory resources which affect
the cost-effectiveness of near-storage accelerators [10].

https://doi.org/10.1145/3409963.3410494
https://doi.org/10.1145/3409963.3410494
https://doi.org/10.1145/3409963.3410494

APSys ’20, August 24–25, 2020, Tsukuba, Japan Gongjin Sun and Sang-Woo Jun

ColumnBurst is a memory-efficient accelerator for ef-
ficiently offloading database join queries near storage, tar-
geting solid-state storage such as NAND-flash. In order to
address the memory resource issue, and to achieve high per-
formance on complex queries, ColumnBurst uses a hardware
implementation of a sorting-based group-by aggregation
algorithm on a small amount of memory, instead of the con-
ventional hash-based aggregation and join algorithm. This
also forms the basis of its join algorithm. ColumnBurst’s
aggregation algorithm interleaves sorting and aggregation
operations whenever possible. While merging is only possi-
ble for inner joins with a unique key, it can often dynamically
reduce data volume when applicable. Section 4 shows that
many queries of interest have this feature.
The benefit of sorting-based aggregation is twofold: (1)

Unlike hash-based algorithms which require fine-grained
random access, merge-sort in hardware has a completely
sequential access pattern into memory, making the best use
of its bandwidth. (2) The aggregation results are sorted by
the key, meaning downstream join operations can turn into
simple merge joins.

We have constructed an Field-Programmable Gate Array
(FPGA)-based prototype implementation of ColumnBurst,
which includes 1 GB of on-board DDR3 DRAM SODIMM
card. We compare its performance to MonetDB [11] and
MySQL [20] on a 6-core i7 workstation with 32 GB of mem-
ory, as well as a version of ColumnBurst which implements a
naive hash-based join algorithm. Besides microbenchmarks
for component evaluation, we evaluated these systems on a
subset of queries from the TPC-H benchmark: query 6, which
demonstrates conventional filtering and aggregation offload-
ing, and queries 13 and 14, which demonstrate the major fo-
cus of ColumnBurst, join performance on unsorted data, with
various selectivity ratios. On datasets scaling from scale fac-
tor 100 (100 GB) to 500 (500 GB), we show that ColumnBurst
outperforms MonetDB by almost 7×, and our hash-based
accelerator by almost 3× for high selectivity queries. Relative
performance of MySQL was multiple orders of magnitude
lower than all other configurations.

While we have focused on these queries as they help iso-
late and compare operations of interest, complex queries
with more join stages will also benefit from ColumnBurst,
either by sharing the on-board memory between multiple
join operations, chaining join operations, or by offloading
only the earlier part of the query plan. An intelligent query
planner should be able to take advantage of ColumnBurst,
but this is a topic for future work.
The rest of this paper is organized as follows: Section 2

describes ColumnBurst’s join algorithm based on sorting-
based group-by aggregation, and Section 3 describes the
architecture of ColumnBurst in detail. Section 4 presents our

evaluation results, and we conclude with discussions and
future work in Section 5.

2 SORTING-BASED NEAR-STORAGE
ACCELERATOR FOR JOIN OPERATIONS

When joining two unsorted database tables, either a sorting-
based, or a hash-based algorithm typically is used. Con-
trary to previous research showing hash-based join algo-
rithms having better performance compared to sort-based
join algorithms [2, 8, 16, 23], our experience with hardware
accelerators showed that sort-based join algorithms often
outperform hash-based algorithms, due to the performance
limitations of on-board memory resources. The low-power
memory devices on storage devices have relatively low ran-
dom access performance, due not only to device compo-
nent characteristics, but also due to its long minimum burst
lengths [17]. As a result, the random-access intensive hash-
ing step often becomes a bigger performance bottleneck
compared to sorting, especially when the computation as-
pect of sorting can be efficiently offloaded to the accelerator
while also enjoying a sequential access pattern to memory.
This observation agrees with the trends presented by previ-
ous research [2, 16] that predicted the performance relation
between hash and sort based algorithms may change as the
processing power relative to memory performance continues
to increase.

Sorting-Based Aggregation: ColumnBurst uses an ac-
celerator implementation of a sorting based group-by aggre-
gation algorithm, which also forms the basis of its join opera-
tion. The completely sequential access pattern of merge-sort
avoids the random-access performance penalty of hashing.
ColumnBurst implements a high fan-out merge-sorter and
aggregator to minimize the number of data accesses, while
interleaving sorting and merging operations to dynamically
reduce data [1, 3].
The benefits of interleaving merging is especially benefi-

cial for a high fan-out hardware merge-sorter. The through-
put of a tree of merge-sorters is limited by the fixed-rate
datapath of the root node. If merging is done at intermediate
nodes of the tree, the data that the root node must process
can be reduced drastically.

Aggregator Accelerator for Joins: ColumnBurst uses
this aggregator implementation to perform relational join
operations when the join column of one or more tables is not
ordered. In a sort-merge join algorithm, the unordered tables
are first sorted according to the join column, after which it
turns into a simple ordered merge join operation.
ColumnBurst first uses its aggregator accelerator to sort

and aggregate the unordered table according to the join
column. Joins are most efficient when the cardinality, or
the ratio of unique values in the column, of the join column

ColumnBurst: A Near-Storage Accelerator for Memory-Efficient Database JoinQueries APSys ’20, August 24–25, 2020, Tsukuba, Japan

ColumnBurst

Flash
Storage

DRAM

Expression
Evaluator

Sorting
Aggregator

VM

Host

Columns Read Evaluated Column

Figure 1: Overall architecture and data flow of
ColumnBurst

is low. In such a situation, the resulting aggregated table
will be much smaller than if the original table had simply
been sorted, reducing the subsequent merge-join overhead,
as well as allowing more data to fit on the on-board memory.

3 COLUMNBURST ARCHITECTURE
Figure 1 shows the architecture of ColumnBurst. The Column-
Burst architecture consists of hardware implementations of
three components: Expression evaluator, Sorting Aggregator,
and Virtual Memory. Columns of interest are read from stor-
age into the expression evaluator, which can perform some
early filtering as well as expression evaluation including
arithmetic between columns. The resulting data is streamed
to the sorting aggregator, which either performs an aggre-
gation operation on the stream, or a join operation between
the input stream and an aggregated table cached in memory
by a previous aggregation operation. The results of the ag-
gregator can be sent to host, or stored in memory for further
joining. The virtual memory system provides convenient and
high-performance on-board DRAM access for the sorting
aggregator.

3.1 Expression Evaluator
In order to do a realistic evaluation of ColumnBurst, its ar-
chitecture includes a Expression Evaluator. The expression
evaluator is simply a hardware environment to make sure we
read a realistic amount of data from the storage for a query,
in order to accurately characterize the effects of storage per-
formance. It will be removed when porting ColumnBurst to
a full-fledged query accelerator.

The expression evaluator assumes table data is stored in a
column-oriented way, where each column is stored in a sepa-
rate file, and ingests multiple streams of columns at once via
multiple ports. The expression evaluator can be configured
in a limited way to perform filtering and arithmetic opera-
tions according to a user query, and emits a single stream of
key-value pairs for the aggregator. Due to the simple design
of the expression evaluator, it cannot take advantage of ad-
vanced features like indices, but can support enough queries
to demonstrate ColumnBurst’s performance.

…

Merge Aggregate

Merge Aggregate

Merge AggregateBurst
Arbiter

… …

16 Input Buffers

Sorting network

From Expression
Evaluator

To
DRAM

To host/overflow

Figure 2: ColumnBurst uses a 16-way sort-aggregator
to perform group-by aggregation

3.2 Sorting Aggregator
The sorting aggregator module performs the sorting-based
aggregation operation in on-board memory, using a wide
fan-out merge sorter tree interleaved with programmable
aggregate function modules. In the current ColumnBurst pro-
totype, the sorting aggregator implements a 16-way merge
sorter tree. The internal structure of the sorting aggregator
module is shown in Figure 2. Each intermediate merge and
aggregate modules can emit up to one key-value pair per
cycle, but the effective data ingestion rate is typically much
higher thanks to data being merged at intermediate layers.
We decided against a multi-rate sorter in order to keep on-
chip resource usage low enough for a low-cost FPGA.

The initial input from the expression evaluator is first fed
through a sorting network before being scattered across the
input buffers. For example, the current prototype implements
a 8-tuple sorting network, resulting in sorted blocks of length
8 fed through the merge sorter tree.

On-Board DRAM Layout: In order to simplify memory
management, the location of each sorted block in the on-
board memory is pre-determined regardless how much data
aggregation managed to reduce. For example, the output
of the initial merge sort phase on the input data from the
expression evaluator is a sorted block with up to 8×16 = 128
elements. While the number of elements may be smaller if
aggregation was effective, the blocks are stored at offsets of
multiples of 128 element units. This way, the locations of
blocks to read and write are deterministic. If aggregation was
effective at any merge-sort phase resulting in the number of
stored elements smaller than the space allocated, the end of
the valid data is marked with a null element, prompting the
rest of the block to be ignored.

Memory Layout For Multi-Step Sort-Aggregate: Be-
cause the input stream for aggregation will be larger than the
on-board memory capacity for most interesting analytical
queries, the stream will need to be processed in multiple
parts. To simplify memory management, the total usable

APSys ’20, August 24–25, 2020, Tsukuba, Japan Gongjin Sun and Sang-Woo Jun

1 GB Physical memory

1 GB

Free block queue

2 GB Virtual memory

2x Merge-aggregate
Scratchpad

2x
Aggregate table

r rw

1 GB

Figure 3: Mapping from 2 GB virtual memory to 1 GB
physical memory, during merge-aggregate in scratch-
pad.

physical memory is divided into two halves: the first half is
used as scratchpad memory for the aggregator, and the sec-
ond half is used to store the total aggregated data so far. The
scratchpad half is further divided into two halves, which are
used as double buffers for the sort-aggregator, where each
half is used as source and destination buffers alternately. For
example, for a 1 GB DRAM device, the maximum amount of
aggregated data that can be held is 512 MB. The remaining
512 MB is divided into two halves of 256 MBs, and sorting is
done by copying data back and forth between them.
While this memory layout is simple, it has an issue: At

the last merge sort phase, when sorted blocks in the 512 MB
region and the aggregated block in the 512 MB region are
merged together, there is no contiguous 512 MB block to
write the result to. In order to address these issues, Column-
Burst implements a very simple virtual memory mapping
described in Figure 3.

Virtual memory is organized into large pages of 8 MB, and
the virtual memory manager maps a virtual memory address
much larger than available physical memory. A large page
configuration allows simple management of block mappings
on-chip. The aggregate table can be merged and by copying
data between two large virtual memory regions, dynamically
mapping physical memory for output, and reclaiming input
blocks that have been consumed so that there is always
physical memory available for mapping. In the worst case,
data ingestion can happen in such a way that 16 input blocks
will be returned at the same time, in which case 16 blocks’
worth of output data will be emitted before the 16 input
blocks can be returned to the free queue. When merging the
256 MB of aggregated data into the 512 MB block, one of the
two scratchpads are now unused. Because 16× 8 MB blocks
add up to 128 MB, there is always enough physical memory
available with space for the block map to spare.

When total aggregated data exceeds the memory capacity
allocated (e.g., 512 MB), the later parts of the sorted stream
are sent to the software fallback via the overflow path seen
in Figure 2.

4 EVALUATION
In this section we provide an evaluation of ColumnBurst,
using an FPGA-based prototype implementation. We first
provide the environment and configuration in which we eval-
uated the ColumnBurst prototype, as well as other systems
for comparison. We also provide evaluations on the benefits
of interleaving sorting with aggregation, in our aggregation
algorithm, in terms of data reduction and the resulting per-
formance improvement. Finally, we provide performance
comparisons against existing systems using queries from the
TPC-H [5] benchmark.

4.1 Evaluation Environment
We evaluate ColumnBurst by comparing the performance of
its prototype implementation against two software DBMSs,
MySQL [20] and MonetDB [4], as well as a modified ver-
sion of ColumnBurst which uses a hash-based aggregation
method. MySQL is one of the most widely used DBMSs [6],
whileMonetDB is one of the fastest available column stores [19].
Both software were tuned using on-line resources to the best
of our abilities for maximum performance.

ColumnBurst Prototype: We have implemented a pro-
totype version of ColumnBurst on a BlueDBM near-storage
accelerator development platform deployment [14] plugged
into the PCIe Gen2 ×8 of a host server. The prototype stor-
age device consists of 1 TB of NAND-flash storage, with a
raw connection to a Xilinx VC707 FPGA development board
over the FPGA Mezzanine Card (FMC) connection. The peak
measured bandwidth between the flash array and the FPGA
board is 2.4 GB/s, and the latency is 75 µs . The raw connec-
tion between the array of flash chips and the FPGA allows
us to experiment with drastic changes in the FTL, including
the block-level management we are using in ColumnBurst.
All ColumnBurst accelerator modules are implemented in
VC707’s FPGA.

Resource and Power: The accelerator portion, despite
the low effort put into optimization, only consumed an ag-
gregate of less than 200K LUTs and 164 KB of on-chip BRAM
while running at 250 MHz. This amount of resources can
fit in a low-cost Artix 7 FPGA, with less than 10 Watts of
typical power consumption [27].

On-BoardDRAM: TheVC707 FPGAboard is also equipped
with a 1 GB DDR3 SODIMM card, which is a good proxy for
embedded DRAM modules on modern storage devices. Not
only does the last-generation DDR3 SODIMM card have sim-
ilar read latency and bandwidth to the current-generation
Low-Power DDR4 (LPDDR4) DRAMmodules, the DDR3 con-
troller in ColumnBurst groups the 8 banks in the memory
module into a single interface, resulting in a 64-byte access
granularity which matches the minimum burst length of
modern LPDDR4 DRAM modules [17]. Bank grouping also

ColumnBurst: A Near-Storage Accelerator for Memory-Efficient Database JoinQueries APSys ’20, August 24–25, 2020, Tsukuba, Japan

 0

 2

 4

 6

 8

 10

 12

64 B 1 KB 2 KB 8 KB

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

Burst Size

Figure 4: Random access performance of the on-board
DDR3 DRAM by burst size

ColumnBurst SATA NVMe
Description Custom 4x SATA-III 2x NVMe

Storage RAID-0 RAID-0
Capacity 1 TB 4 TB 2 TB

Bandwidth
Rand. 4 KB 1.2 GB/s 0.7 GB/s 3.2 GB/s
Rand. 8 KB 2.4 GB/s 1 GB/s 3.2 GB/s
Seq. 4 KB 2.4 GB/s 1.5 GB/s 3.5 GB/s

Table 1: The storage profiles of the evaluation environ-
ments

collects the row buffers from all banks into a single wider row
buffer, which mimics the characteristics of mobile DRAM.
Figure 4 shows the measured random read performance of
the on-board DRAM module according to the read request
sizes. At the minimum burst size, 64 Bytes, the bandwidth
of the DRAM module is an order of magnitude lower than
when read at the row buffer size of 8 KB.

CBHash: CBHash is a modified version of ColumnBurst,
which uses a hash-based aggregation and join algorithm in-
stead of a sorting-based one. However, since we did not have
an efficient implementation of a DRAM hash with BRAM
caching ready, we estimated the upper bound performance
of hash-based join and aggregation algorithms by generating
a trace of DRAM read/write requests using a software simu-
lation of a direct-mapped write-back cache, and measuring
the time required to simply perform all I/O operations on
the on-board DRAM. Since this method does not suffer from
non-I/O performance bottlenecks such as read-after-write
hazards or sudden I/O bursts that force back-pressure on
the previous processing stages, its results represent the ideal
upper bound on the performance of CBHash.

System for Software Execution: All software was ex-
ecuted on a workstation with 6-core (12 threads) i7-8700K
running at 3.70 GHz, as well as four 8 GB DDR4-2133 DIMMs
adding up to 32 GB. Two sets of backing storage were pro-
vided, a RAID-0 array of four SATA-III SSDs adding up to
4 TB, and a RAID-0 array of two PCIe NVMe SSDs adding up
to 2 TB. The performance characteristics can be seen in Ta-
ble 1. The BlueDBM storage has 8 KB physical pages, so 4 KB

random reads halves the available bandwidth. The perfor-
mance relationship between SATA, BlueDBM, and NVMe are
consistent throughout all tests. MySQL was run on the SATA
raid, while MonetDB was run on both SATA and NVMe raid
configurations. This means compared to MonetDB on NVMe
RAID, ColumnBurst is already starting out with a storage
performance disadvantage.

4.2 Evaluation Workloads
We evaluated the systems introduced above, on three bench-
marks from TPC-H [5]: Query 6, Query 13, and Query 14.
TPC-H is a benchmark suite that focuses on analytics per-
formance of database systems. Query 6 is a single-table ag-
gregation query chosen to evaluate the usual aggregation,
filtering, and expression evaluation performance of the near-
data accelerator. Query 13 includes a join query between two
tables, which has a filtering predicate with a high selectivity,
meaning not many rows are filtered out. Query 14 includes
a join query between two tables, which has a filtering predi-
cate with a very low selectivity, where most rows are filtered
out. Queries 13 and 14 involved only two tables, where one
join column is ordered while the other is not, which well-
isolates the effects of near-storage join acceleration. As of
now, all query plans were hand-created so that filtering and
arithmetic expressions were mapped to their corresponding
accelerator modules.

The queries were run on three different sizes synthesized
using the TPC-H dbgen tool : Scale 100 (100 GB), Scale 250
(250 GB) and Scale 500 (500 GB).

4.3 Effects of Interleaving Sort and
Aggregation

We first present the benefits of our aggregation algorithm’s
choice of interleaving sorting with aggregations. Figure 5
shows the ratio of data read and written at every phase of
16-way merge sort, from the aggregation operation during
TPC-H query 13, for three different data scales. It shows the
amount of data sharply decreasing at the last two merge-sort
phases before the table is fully sort-aggregated, significantly
reducing the data I/O required from DRAM.
While the data I/O overhead of the first few sort phases

could be removed using an array of sorter using on-chip
memory, we decided to not use it in favor of conserving
on-chip memory and logic resources.

4.4 TPC-H Query 6
Figure 6 presents the performance evaluation of various
systems on the TPC-H Query 6, for datasets of Scale 100
and 250. Query 6 is a single-table query with arithmetic
expressions and aggregations, and ColumnBurst is able to
process all data at line-rate. CB represents ColumnBurst

APSys ’20, August 24–25, 2020, Tsukuba, Japan Gongjin Sun and Sang-Woo Jun

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

R
a
t
i
o

o
f

d
a
t
a

c
o
p
i
e
d

Merge phases

Scale 100
Scale 250
Scale 500

Figure 5: Dynamic reduction of data during a 16-way
merge sort by interleaving with aggregation, for TPC-
H query 13

performance, while MonetDBS and MonetDBP represents
MonetDB running on SATA and NVMe RAIDs, respectively.
Performance results for MySQL on Scale 250 are omit-

ted because execution took too long (Hours), and Scale 500
results are omitted because on our system, MonetDB was
unable to load the lineitem table of the Scale 500 dataset.
While ColumnBurst managed to complete execution on the
Scale 500 dataset, there was no system to compare against,
and is omitted. Because there is no group-by aggregation or
join operations, ColumnBurst results are not divided into
hash or sort-based implementations. Performance was mea-
sured after queries were run multiple times, putting the data-
base into a “warm” state where in-memory caches are popu-
lated.
MonetDB performs very well on Scale 100 for both stor-

age configurations, where all data required for the query
is cached in memory, but at Scale 250, MonetDB on NVMe
RAID demonstrates roughly double the performance com-
pared to SATA. When cold-started without the benefits of
cached tables, both instances ofMonetDB on Scale 100 showed
slower performance, whichmatches the trend seen in Scale 250.
ColumnBurst shows best performance at Scale 250 despite
the storage performance disadvantage, as the accelerators al-
low line-rate processing. MySQL performance was relatively
low, even compared to MonetDBS.

4.5 TPC-H Query 13
Figure 7 presents the performance of various systems on the
TPC-H Query 13, for datasets of Scale 100 to Scale 500. Query
13 joins two of the larger tables, customer and orders, where
orders is unordered according to the join column. There
is a string-matching selection predicate on orders, but the
selectivity is high, where roughly about 77% of rows is kept.
We see that CBSort demonstrates the best performance

across all data scales consistently demonstrating almost 8×
speed-up compared to MonetDB on NVMe, and almost 3×

speed-up compared to CBHash. The performance of CBHash
was bottlenecked by the low random access performance
of the on-board DRAM, and the majority of the execution
time was spent on memory I/O. There was no significant per-
formance difference between MonetDB on SATA or NVMe
RAIDs, as this query ismostly computation-bound. One inter-
esting observation was that on Scale 500, MonetDB on SATA
slightly outperformed the NVMe system consistently across
multiple executions. We predict this is due to some complex
interplay between storage access and computation. MySQL
continued to demonstrate relatively low performance.

4.6 TPC-H Query 14
Figure 8 presents the performance of various systems on the
TPC-H Query 14, for datasets of Scale 100 and 250. Query 14
joins two of the largest tables, lineitem and part, where
the largest table lineitem was unordered according to the
join column. There is a date-comparison selection predicate
on lineitem, and the selectivity is very low, where only 1.3%

 0

 10

 20

 30

 40

 50

Scale 100

Cache
effect

165s
E
l
a
p
s
e
d

T
i
m
e

(
s
)

MySQL
MonetDBS
MonetDBP

CB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Scale 250

x

E
l
a
p
s
e
d

T
i
m
e

(
s
)

Figure 6: Elapsed time on the TPC-H query 6 on vari-
ous platforms. Lower is better

 0

 50

 100

 150

 200

 250

 300

Scale 100 Scale 250 Scale 500

x x

1636s

E
l
a
p
s
e
d

T
i
m
e

(
s
)

MySQL
MonetDBS
MonetDBP
CBHash
CBSort

Figure 7: Elapsed time on the TPC-H query 13 on var-
ious platforms. Lower is better

ColumnBurst: A Near-Storage Accelerator for Memory-Efficient Database JoinQueries APSys ’20, August 24–25, 2020, Tsukuba, Japan

of data is kept. Scale 500 was omitted for the same reason
as query 6, where MySQL was too slow and MonetDB was
unable to load lineitem.

At Scale 100, MonetDB outperformed all other systems af-
ter the cache was warmed up, while all systems showed simi-
lar performance at Scale 250. Cold-started MonetDB without
cache effects demonstrated slower performance, somewhat
matching the patterns seen with Scale 250. Interestingly,
CBHash outperformed CBSort slightly. This is because the
amount of hash access was so low due to the low selectivity
that the hash access could be hidden within file read latency.
However, because this also meant sorting overhead was also
low, the performance difference was marginal.

 0

 5

 10

 15

 20

Scale 100 Scale 250

x

269s

Cache
effect

E
l
a
p
s
e
d

T
i
m
e

(
s
)

MySQL
MonetDBS
MonetDBP
CBHash
CBSort

Figure 8: Elapsed time for the TPC-H query 14 on var-
ious platforms. Lower is better

The performance relations change significantly with a dif-
ferent selectivity. Figure 9 shows the performance of various
systems on query 14 on data Scale 250, with varying selec-
tivity. The left graph shows performance with selectivity
between 0.013 (original) and 0.1. It shows that even when
selectivity is only 0.1, the sort-based system demonstrates
better performance compared to the hash-based one. The
right of Figure 9 shows the results from when the selection
predicate is completely removed, with a breakdown of where
the latency comes from. It can be seen that with such a large
table to hash or sort (lineitem is the largest table in the
dataset by far), the time spent by the accelerator becomes
dominant. The accelerator performance is bottlenecked by
memory for CBHash and accelerator throughput for CBSort.

4.7 Discussion on Aggregated Table Width
For both queries 13 and 14, the aggregated table in mem-
ory consisted of only two columns: the join column and a
aggregated data column generated by early expression eval-
uation. While early expression evaluation was possible for
the queries we tested with, it may not always be possible
with complex queries, in which case the aggregated table
may need to have multiple columns. While ColumnBurst
can be trivially extended to support wider aggregated tables,

 0

 5

 10

 15

 20

 25

 0 0.05 0.1

E
l
a
p
s
e
d

T
i
m
e

(
s
)

Selectivity

MonetDBS
MonetDBP
CBHash
CBSort

 0

 50

 100

 150

 200

MS MP MH MS

E
l
a
p
s
e
d

T
i
m
e

(
s
)

Selectivity 1

Software
Storage

Accel

Figure 9: Elapsed time for the TPC-H query 14 with
varying selectivity. Lower is better

it presents a potential performance implication on hashing
vs. sorting. A large part of the performance overhead of
hashing comes from the access granularity mismatch, as
memory needs to be accessed in bursts, which is either 32 or
64-Byte units for LPDDR4. The performance difference be-
tween hashing and sorting may not be as pronounced if the
hash elements are larger. However, if the table becomes too
wide, the problem will quickly become memory bandwidth-
bound, and it would be better off falling back to software
with faster memory. Furthermore, the performance differ-
ence will become even more pronounced for some popular
join queries where one table simply acts as the filter for the
other, and only the join column needs to be kept in memory.

5 CONCLUSION AND DISCUSSION
In this paper, we have presented ColumnBurst, a memory-
efficient near-storage database join accelerator, which uses a
hardware implementation of a sorting-based aggregation and
join algorithm to efficiently use the performance-restricted
memory available on storage devices. By using algorithms
with sequential access patterns on performance-restricted
memory resources, ColumnBurst was able to outperform
much costlier systems with fast CPUs and large amounts of
memory. We are actively working on expanding Column-
Burst with more capabilities, such as an automatic query
planner and column compression. We hope the discoveries
demonstrated by ColumnBurst will help design future cost-
effective database systems with near-storage acceleration.

ACKNOWLEDGEMENTS
This work was partially funded by NSF (CNS-1908507)

APSys ’20, August 24–25, 2020, Tsukuba, Japan Gongjin Sun and Sang-Woo Jun

REFERENCES
[1] MortonM. Astrahan, MikeW. Blasgen, Donald D. Chamberlin, Kapali P.

Eswaran, Jim N Gray, Patricia P. Griffiths, W Frank King, Raymond A.
Lorie, Paul R. McJones, James W. Mehl, et al. 1976. System R: relational
approach to database management. ACM Transactions on Database
Systems (TODS) 1, 2 (1976), 97–137.

[2] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu.
2013. Multi-core, main-memory joins: Sort vs. hash revisited. Proceed-
ings of the VLDB Endowment 7, 1 (2013), 85–96.

[3] Dina Bitton and David J DeWitt. 1983. Duplicate record elimination
in large data files. ACM Transactions on database systems (TODS) 8, 2
(1983), 255–265.

[4] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:
Hyper-Pipelining Query Execution.. In Cidr, Vol. 5. 225–237.

[5] Transaction Processing Performance Council. (Accessed Sep 25, 2019).
TPC-H. http://www.tpc.org/tpch/.

[6] DB-Engines. Sep 2019 (Accessed Sep 25, 2019). DB-Engines Ranking.
https://db-engines.com/en/ranking.

[7] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. 2013. Query Processing
on Smart SSDs: Opportunities and Challenges. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’13). ACM, New York, NY, USA, 1221–1230. https:
//doi.org/10.1145/2463676.2465295

[8] Goetz Graefe, Ann Linville, and Leonard D. Shapiro. 1994. Sort vs.
hash revisited. IEEE Transactions on Knowledge and Data Engineering
6, 6 (1994), 934–944.

[9] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, et al. 2016. Biscuit: A framework for near-data process-
ing of big data workloads. In ACM SIGARCH Computer Architecture
News, Vol. 44. IEEE Press, 153–165.

[10] Robert J Halstead, Ildar Absalyamov, Walid A Najjar, and Vassilis J
Tsotras. 2015. FPGA-based Multithreading for In-Memory Hash Joins..
In CIDR.

[11] S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and M Kersten.
2012. Monetdb: Two decades of research in column-oriented database.
IEEE Data Engineering Bulletin (2012).

[12] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: intelli-
gent distributed storage. Proceedings of the VLDB Endowment 10, 11
(2017), 1202–1213.

[13] Insoon Jo, Duck-Ho Bae, Andre S Yoon, Jeong-Uk Kang, Sangyeun Cho,
Daniel DG Lee, and Jaeheon Jeong. 2016. YourSQL: a high-performance
database system leveraging in-storage computing. Proceedings of the
VLDB Endowment 9, 12 (2016), 924–935.

[14] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn,
Myron King, Shuotao Xu, and Arvind. 2015. BlueDBM: An Appliance
for Big Data Analytics. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture (ISCA ’15). ACM, New York, NY,
USA, 1–13. https://doi.org/10.1145/2749469.2750412

[15] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. 2013.
Enabling cost-effective data processing with smart ssd. InMass Storage
Systems and Technologies (MSST), 2013 IEEE 29th Symposium on. IEEE,
1–12.

[16] Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D
Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep
Dubey. 2009. Sort vs. Hash revisited: fast join implementation on
modern multi-core CPUs. Proceedings of the VLDB Endowment 2, 2
(2009), 1378–1389.

[17] Minho Kim. 2014 (Accessed Sep 25, 2019). Evolutionary Migration from
LPDDR3 to LPDDR4. https://www.jedec.org/sites/default/files/Minho_

SK%20hynix_CES_14_new.pdf.
[18] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H Peter Hofstee, Gi-

Joon Nam, Mark R Nutter, and Damir Jamsek. 2017. ExtraV: Boosting
graph processing near storage with a coherent accelerator. Proceedings
of the VLDB Endowment 10, 12 (2017), 1706–1717.

[19] MonetDB. April 2014 (Accessed Sep 25, 2019). Citus Data
cstor_fdw (PostgreSQL Column Store) vs. MonetDB TPC-H Shootout.
https://www.monetdb.org/content/citusdb-postgresql-column-store-
vs-monetdb-tpc-h-shootout.

[20] MySQL. 2019 (Accessed Sep 23, 2019). MySQL. https://www.mysql.
com/.

[21] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017.
Centaur: A framework for hybrid CPU-FPGA databases. In 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 211–218.

[22] Behzad Salami, Gorker Alp Malazgirt, Oriol Arcas-Abella, Arda Yur-
dakul, and Nehir Sonmez. 2017. AxleDB: A novel programmable query
processing platform on FPGA. Microprocessors and Microsystems 51
(2017), 142–164.

[23] Donovan A Schneider and David J DeWitt. 1989. A performance evalu-
ation of four parallel join algorithms in a shared-nothing multiprocessor
environment. Vol. 18. ACM.

[24] Mahdi Torabzadehkashi, Siavash Rezaei, Vladimir Alves, and Nader
Bagherzadeh. 2018. CompStor: An In-storage Computation Platform
for Scalable Distributed Processing. In 2018 IEEE International Paral-
lel and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
1260–1267.

[25] Satoru Watanabe, Kazuhisa Fujimoto, Yuji Saeki, Yoshifumi Fujikawa,
and Hiroshi Yoshino. 2019. Column-oriented Database Acceleration
using FPGAs. In 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE). IEEE, 686–697.

[26] Louis Woods, Zsolt István, and Gustavo Alonso. 2014. Ibex: an in-
telligent storage engine with support for advanced SQL offloading.
Proceedings of the VLDB Endowment 7, 11 (2014), 963–974.

[27] Xilinx. May 2015 (Accessed Sep 25, 2019). Xilinx 7 Se-
ries FPGA Power Benchmark Design Summary. https:
//www.xilinx.com/publications/technology/power-advantage/7-
series-power-benchmark-summary.pdf.

http://www.tpc.org/tpch/
https://db-engines.com/en/ranking
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/2749469.2750412
https://www.jedec.org/sites/default/files/Minho_SK%20hynix_CES_14_new.pdf
https://www.jedec.org/sites/default/files/Minho_SK%20hynix_CES_14_new.pdf
https://www.monetdb.org/content/citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout
https://www.monetdb.org/content/citusdb-postgresql-column-store-vs-monetdb-tpc-h-shootout
https://www.mysql.com/
https://www.mysql.com/
https://www.xilinx.com/publications/technology/power-advantage/7-series-power-benchmark-summary.pdf
https://www.xilinx.com/publications/technology/power-advantage/7-series-power-benchmark-summary.pdf
https://www.xilinx.com/publications/technology/power-advantage/7-series-power-benchmark-summary.pdf

	Abstract
	1 Introduction
	2 Sorting-Based Near-Storage Accelerator For Join Operations
	3 ColumnBurst Architecture
	3.1 Expression Evaluator
	3.2 Sorting Aggregator

	4 Evaluation
	4.1 Evaluation Environment
	4.2 Evaluation Workloads
	4.3 Effects of Interleaving Sort and Aggregation
	4.4 TPC-H Query 6
	4.5 TPC-H Query 13
	4.6 TPC-H Query 14
	4.7 Discussion on Aggregated Table Width

	5 Conclusion and Discussion
	References

