2020 6th International Conference on Big Data Computing and Communications (BigCom)

An Experimental Study on the Impact of Execution
Location in Edge-Cloud Computing

Dimitrios Melissourgos, Sishun Wang, Shigang Chen, Youlin Zhang, Olufemi Odegbile and Yuanda Wang

Department of Computer & Information Science & Engineering
University of Florida, Gainesville, Florida 32603
Email: dmelissourgos@ufl.edu

Abstract—On the one hand, edge computing has the advantage
of distributing the load to the edges of a computer network. Local
computation at the edge is bandwidth-efficient and anonymous.
On the other hand, cloud computing is the choice when it
comes to computationally demanding tasks and big data. In this
paper, we argue for edge-cloud computing (which blends the two
together) with an experimental study on the impact of execution
location on application performance. We answer the question of
how to determine whether it should compute a task at the edge
or on the cloud and what the criteria are. We analyze the factors
of response time, memory space, data availability and privacy
policy. We experimentally evaluate the impact of these factors
on execution location based on a network visualizer software.

Index Terms - location of execution, edge computing, cloud
computing

I. INTRODUCTION

In half a century, computing has evolved from centralized
mainframes, which operate under the time-sharing model,
to networked computers under the client-server model, then
back to centralizing hardware, software, infrastructure and
IT support in huge data centers. Recently, it reverses again
towards the edge of the Internet under a new model of edge
computing [4]. By moving computation to where the users
are and where the data is produced, the edge computing
model is very appealing in reducing application response
time, improving user experience, saving bandwidth cost, and
enhancing data privacy [1]. It is defined as “a paradigm
in which resources for communication, computation, control
and storage are placed at the edge of the Internet, in close
proximity to mobile devices, sensors, actuators, connected
things and end users.” [2]

While edge computing sits on one end of the spectrum,
the other end is cloud computing, which offers a flexible,
reliable and cost effective infrastructure to end-users. In-
between, there are other models that take advantage of both
edge and cloud computing [13], [15], [18]. Platforms such as
cloud offloading extenuate the heavy load of computationally
demanding applications from the edge machines and shift it
towards the more capable data centers [3]. There are two chal-
lenges in these edge-cloud models: One is how to determine
which components of an application program should run at the
edge devices and which components should run on the cloud.

This research is supported in part by National Science Foundation under
grant CNS-1909077 and in part by a grant from Florida Center for Cyberse-
curity.

The other problem is how to execute a program with some
of its components stored at different locations. The second
problem has been extensively studied in the literature, in the
form of cloud offloading, mobile cloud computing and mobile
edge computing. In this paper, we focus on the first problem
through an experimental study to confirm the importance of
allowing the flexibility in location choices for application
tasks.

We first establish the factors that contribute the most to
determining whether a component should be executed at the
edge or in the cloud. We then carry out an experiment-based
investigation to evaluate the impact of execution location on
application performance. We use a software system developed
in our lab as the experimental platform. Our experiments
confirm the hypothesis that if the data is available to both the
edge and the cloud, it is beneficial to partition the tasks and
execute them either at the edge or in the cloud to optimize
the application response time. In particular, low-complexity
tasks are faster processed using only the edge device, but
for high-complexity tasks, the cloud often outperforms the
edge by far, even after including the communication time for
exchanging the tasks and their results between the edge and
the cloud. Moreover, we show that depending on data size and
location, space restrictions and time constraints, computation
tasks within the same application can benefit from both edge
computing and cloud computing.

The rest of the paper is structured as follows: In Section
IT we present the background to our work and in Section
IIT we examine the different factors that are significant for
the decision of the location of execution of an application.
In Section IV we conduct a set of experiments, in order
to determine which parts of the same application are better
executed on the cloud and which perform better when they
are executed on an edge machine. In Section V we explain
the similarities and differences between our work and virtual
machines, cloud offloading and edge computing. Finally, we
draw the conclusion and discuss our future work in Section
VL

II. BACKGROUND

For today’s software development, the distinction between
an application running in the cloud and an application run-
ning at an edge device is clear — the software is designed
according to the resource constraints, the data privacy policies

978-1-7281-8275-9/20/$31.00 ©2020 IEEE
DOI 10.1109/BigCom51056.2020.00028

145

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore. Restrictions apply.

and the response time requirements specific to the machines
that the app is intended for.

On the one hand, when a client machine sends a request
to be computed in the cloud, time has to be spent for the
request to be packed and propagated to the cloud and also for
the results to be sent back to the client machine. Therefore,
for low-complexity tasks, it may be preferred to execute the
tasks at the client (edge). In addition, there may be strict
delay constraints on the tasks or privacy requirements on data
transfer, which prevent certain computations from being done
in the cloud.

On the other hand, there are tasks that are not suitable
for local execution. For example, when applications perform
complex computation or process big data, the client (edge)
machine may not possess sufficient storage, RAM and pro-
cessing power to finish the tasks on time. In such cases,
cloud computing is preferable as it offers virtually unlimited
resources.

Now consider an application with tasks which can be
executed either locally or in the cloud. Suppose there are a mix
of trivial and complex tasks that are user-interactive. Further
suppose that its input consists of both small and large amounts
of data, with some data stored locally and other data in the
cloud. For locally stored data, there are two main reasons:
1) It is collected locally and it is bandwidth-efficient to store
locally, and 2) there may be a privacy policy that prevents the
data from being uploaded onto the cloud.

For such an application (like the one used in our experimen-
tal study), an integrated edge-cloud computing model appears
to be desired, with some tasks running locally at the edge and
other tasks running remotely on the cloud. The question that
we want to answer in this paper is which factors will impact
the decision on execution location. To answer the question,
we will first give our hypothesis on a list of factors and
perform an experimental study to investigate the validity of
the hypothetical factors.

III. FACTORS ON EXECUTION LOCATION

The purpose of this paper is to establish some basic facts
underlying the principles in determining which location each
part of the application should be executed at. Our method
is to use an experimental study to examine the impact of
various factors on the choice of execution location and the
resulting application performance. Before carrying out the
experimental investigation, in this section, we analyze several
potential factors including response time, memory space, data
availability and privacy policy. We conjure through reasoning
their possible impacts, which will be verified through experi-
ments in the next section.

A. Factor 1: Response Time

Response time is a key factor on user experience with ap-
plication performance. To choose between whether executing
an application component at the edge or in the cloud, one
deciding criterion is which choice results in shorter response
time. On the one hand, if it takes more time for the edge to
complete processing than the combined time of processing at
the cloud and transferring the result back to the edge, we shall

146

let the cloud do the computation for smaller response time to
user requests. With the backup of cloud computing, the edge
device can appear to users that it has unbounded computing
scalability. On the other hand, if it takes less time to compute
at the edge, we shall do so. More specifically, consider a
computation A = {ay,as,...,a,}, where a;, 1 < i < n, are
tasks of A. Suppose that task a; takes x time to compute on
the edge device and y time to compute on the cloud, where
x > y due to the cloud’s superior resources. Suppose that it
takes z time for the edge device to pack the request and send
it to the cloud, and 2’ time for the result to be sent back. By
properly determining the execution location, we can control
the execution time of a; to min{z,y + z + 2’}. In order to
learn whether certain computation is faster at the edge or on
the cloud, we need to perform the computation on both until
adequate execution data (such as x, y, z and z’) are collected.
Based on them, future decisions on the placement of execution
will be made.

B. Factor 2: Memory Space

Memory space is another factor in considering execution
placement especially for resource-limited edge devices. If
a computation requires more system memory than what is
available on an edge device, or if it produces too much data
for the device to store in its permanent storage, we will need
the cloud to process the data instead. In our experimental
platform, this scenario is prominent. However, the amount of
system memory or disk space needed by a computation task is
often not known before hand. Therefore, whether to execute
the task at the edge or the cloud due to the space factor may
not be pre-known. In this case, we need, again, to collect
execution data on space usage by running tasks on both edge
and cloud initially or periodically for updates.

C. Factor 3: Data Availability

Data availability is an important factor for execution lo-
cation, considering the overhead of data transfer. When data
is produced at an edge device (such as a camera), it makes
sense to process the data at the edge. However, if that device
does not have adequate resources (such as system memory)
for processing the data, or it takes an excessive amount of
time to complete the task, an alternative will be transferring
the data to the cloud and processing it there. There also exist
situations where data is stored on the cloud, not at the edge.
For example, when a user runs an application which displays a
network traffic map, the traffic data generated from the routers
will be likely stored at the server. In this case, it is natural to
execute data-processing tasks by the server and transfer the
results to the user’s computer for display. More complicated
is the situation where partial data is at the edge and partial
data is at the cloud. We will have to either move the data to
one location or partition the computation between the edge
and the cloud.

D. Factor 4: Data Privacy Policy

Finally we consider data privacy. Applications often process
private data, such as the name, location, Social Security
Number or medical records of an individual. For these types

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore. Restrictions apply.

of applications privacy concerns arise as to whether the data
should be transferred to a data center or stay at the edge. A
data privacy policy may restrict the transfer of data entirely or
partially, which should be factored into the consideration of
which processing tasks are performed locally and which are
performed remotely with appropriate data transfer.

In practice, the location of execution is likely to be affected
not by just one factor, but by multiple ones. In other words, in
order to determine where to perform a computation, we need
to consider where the data is, whether the edge has sufficient
system memory, whether it will take the edge too much time
to finish, and whether there is a policy that will dictate the
location of computation.

IV. EXPERIMENTAL STUDY

We perform an experimental study on the importance of
execution location and how the factors in Section III will
impact on the decision of execution placement.

A. Experiment Platform

The experimental platform is a software developed in our
lab, called network visualizer, which captures network traffic
data, processes them, and answers user queries on communica-
tion patterns and statistics in graphical presentation. Our data
sets are raw traffic records from campus routers. To support
the experimental study in this paper, the software is made to
run in two modes: the edge mode where processing/querying
tasks are performed at an edge computer, and the edge-cloud
mode where processing/querying tasks are offloaded from
the edge to the cloud. The experiments are performed by
comparing the performance of the two modes to demonstrate
the importance of execution location. With the two modes
together, we will be able to divide tasks between the edge
and the cloud.

The software supports three types of tasks. (1) Queries:
given a source (e.g., continents, countries, ISPs, subnets,
individual IP addresses, etc.) and a destination, answer fine-
grained traffic statistics. (2) Attack Analysis: identify attacks
(e.g., scanning, worms, and DDoS attacks). (3) Traffic Pro-
cessing: parse raw traffic records to set up the data structures
for queries. The tasks we perform with this application vary
significantly in demand for computation, system memory and
data, offering a suitable test case for collaborative edge-cloud
computing.

We use a desktop to emulate an edge device from which
a user accesses network statistics and a high-power server
to emulate the cloud, which provides large backup resources
for the edge. The desktop edge device runs on an AMD FX-
8350 CPU with 8GB of RAM, Windows 10 64-bit and a hard
drive of 1 TB. It uses a commercial 100 Mbps download /
10 Mbps upload internet connection to communicate with the
server, which is located 5 miles away from the edge device.
The server is equipped with an Intel ES-2643v4 CPU, 256
GB of RAM, Linux Ubuntu 18.04 LTS 64-bit, and several
hard drives of total 24 TB. The network traffic records we
use in the experiments are 21.7 GB, collected over a span of
2 hours, with 68 million TCP flows of 4.5 billion packets.

147

Raw traffic data are compressed NetFlow records. We parse
them into a complex internal data structure (discussed further
in this section), where we store all the IP addresses/prefixes
that correlate to continents, countries, ISPs and organizations.
We map the IP addresses/prefixes in the NetFlow records
to their owners for display purpose. We categorize the in-
formation from traffic records in a hierarchical structure of
hashmaps. The total setup time it took the desktop to parse
all of our traffic records into the hashmaps was 2.4 hours,
while the server needed 112 seconds for the same setup.

For the experiments of this paper, the network visualizer
software we developed is specifically designed to implement
several functions, with the goal of proclaiming the behavior
of various systems in different situations that could be en-
countered in a day-to-day use. Although only one simulation
software was used, the internal data structure is designed to
demonstrate the benefits and drawbacks of the edge and edge-
cloud modes in situations where all four factors (response
time, memory space, data location and privacy policy) are
considered.

Also, in order to provide clarity about the experimental
process, it is important to provide further explanation about
the internal data structure and functionality of our software.
Initially, we correlate all the IPs to their respective ISPs. For
example, when the user poses queries such as “Visualize the
connections between a specific campus IP and the Google
ISP” (Table I, Query 12), our software will provide an
interactive graph of connections between the campus IP and
all the IPs that are owned by Google. The information of
which IPs belong to which ISP has been loaded into the
system memory during the setup period mentioned above.
More specifically, the software will show the duration of the
connections, the number of packets transferred and the total
size of information exchanged. Subsequently, the user can
choose to click on one of the provided IPs and the network
visualizer will show the details of that specific connection.

Furthermore, we correlate the ISPs to the countries they
belong to. Based on that categorization, if the user requests
the visualization between a campus router and Canada (Table
I, Query 8), the software will provide them with a graph that
shows every Canadian ISP which has been used to provide
communication with the requested campus router. Finally, we
follow the same categorization pattern to correlate countries
with continents for queries such as Table I, Query 5.

B. Response Time

Table I shows the response time for a list of queries under
both the edge mode and the edge/cloud mode. The first column
is the query number, and the second column gives the source
and the destination of each query. The third column, Edge
Mode, shows the response time when queries are processed
at the edge where all data are stored at the edge as well. The
fifth column, Edge-Cloud Mode, shows the response time of
processing the queries in the cloud, including the time it takes
the edge to send the query to the cloud and the time it takes
the cloud to send the result back. Under this mode, all the
raw data is stored on the cloud.

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore. Restrictions apply.

Query Source-Destination Fdge &Z?;nsfiggl?ecgiz) Mode
1 All Campus Subnets - All Continents 15 94
2 Subnets behind Campus Router 1 - All Continents 16 125
3 All Continents - Subnets behind Campus Router 1 2797 187
4 Campus [P 10.248.91.67 - All Continents 16 125
5 All Campus Subnets - Countries in North America 4323 140
6 Subnets behind Campus Router 1 - Countries in North America 2187 141
7 Campus [P 10.248.24.67 - Countries in North America 0 125
8 Subnets behind Campus Router 1 - ISPs in Canada 31 218
9 Campus IP 10.248.22.165 - ISPs in the United States 15 78
10 All Google LLC IPs - All Campus Subnets 60 109
11 Subnets behind Campus Router 1 - All Google LLC IPs 48 94
12 Campus IP 10.248.29.53 - All Google LLC IPs 13 125
13 1P 8.8.8.8 - All Campus Subnets 11 78
14 IP 8.8.8.8 - Subnets behind Campus Router 1 9 125

TABLE I
RESPONSE TIMES OF TRAFFIC QUERIES

In our first query of Table I, we request the traffic statistics
between all the campus subnets and the rest of the world. This
query takes 15 ms to complete under the edge mode and 94
ms under the edge-cloud mode. It is clear that such a query
should be performed at the edge without going through the
cloud. Even though we measured that the time it takes for the
server to compute the task is only 2 ms, the communication
time makes the edge-cloud choice slower.

However, in other cases such as query 5, we request the
statistics between all the campus subnets and the continent of
North America. Our software has to produce the statistics be-
tween all campus subnets and all countries in North America,
create a graph with the information, and display it to the user.
It takes 4323 ms to complete the query under the edge mode,
whereas it takes only 140ms to complete under the edge-cloud
mode, which includes the communication time. For this task,
we prefer the query to be processed remotely in the cloud.

Although some of the queries in Table I seem to have
similar Source-Destination pairs with different response times,
it is important to explain which calculations take place after a
query is posed. For example, the queries 2 and 6 from Table
I might seem similar but they have very different response
times. In the case of query 2, it takes the Edge Mode 16
ms and the Edge-Cloud Mode 125 ms to provide the answer.
On the other hand, in the case of query 6 it takes the Edge
Mode 2187 ms and the Edge-Cloud Mode 141 ms to answer
the query. As mentioned in Section IV-A, in query 2 the
system only has to process data from the seven continents after
fetching the data from the main memory. The calculations of
which connections have taken place between which specific
countries, ISPs and IPs have already taken place during the
setup time. The system merely has to process the aggregate
data from only seven sources. In comparison, the calculation
that takes place in query 6 is vastly larger. The system has
to calculate the duration of the connections, the number of
packets transferred and the total size of packets for all 23

148

countries of North America. Additionally, it is not surprising
that the system processes a large volume of data when the
query has North America as its destination, since most packets
are transferred within the United States.

The same observation is true for the queries 2 and 3, where
there is a large gap between their respective response times.
They are seemingly the same query with reversed source and
destination. However, the distinction between the source and
destination makes a big difference. In the case of query 2,
the system performs a lookup between campus router 1 and
the seven continents. In the case of query 3 the system has to
perform a lookup for far more than seven components, since
there are several subnets behind campus router 1.

Overall, Table I demonstrates the significant impact of
execution location on query response time. There are queries
that save more than an order of magnitude in response time
by executing on the cloud instead of at the edge. There are
other queries with multifold reduction in response time when
executing at the edge instead of on the cloud. Therefore, it is
highly beneficial for an application to have the flexibility of
choosing the location of execution for its tasks.

C. Memory Space

Memory space is another important factor in the decision of
execution location. In contrast to the response time discussed
in the previous Section, where a computation might take a
long time to complete, if a task requires more system memory
than what is available on the edge machine, the computation
will not be completed at all. In this Section we explore the
effect of limited system memory on an edge machine, by
making requests on the network visualizer software that are
more demanding than those of Table I.

During our testing there were some cases (presented at
Table II), where the edge machine run our of system memory
when operating as a standalone, since 8 GB of RAM was not
enough for the computation. For example, the first query of

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore. Restrictions apply.

Query Source-Destination B d(;;;[};(l;espon]:z;-ngo(urgsl)\do Ie

1 All Campus Subnets - ISPs in the United States Out of Memory 1234

2 ISPs in the United States - All Campus Subnets Out of Memory 125

3 ISPs in the United States - Subnets behind Campus Router 1 | Out of Memory 94

4 All Campus Subnets - All Google LLC IPs Out of Memory 422

TABLE II
QUERIES THAT CAUSED AN OUT OF MEMORY ERROR
Attack | Threshold Query Response Time (ms) simulate a scenario of a privacy policy enforcement which
Edge Mode Edge-Cloud M. dictates that the data has to be stored locally, we run a second
1,000,000 | Out of Memory 4156 set of experiments and keep the data exclusively on the edge
Scanner 10,000 | Out of Memory 6250 machine. Therefore, in this subsection we explore the data
100 | Out of Memory 6422 location and the privacy policy factors and discuss how they
1,000,000 | Out of Memory 8150 affect the computation.

Worm 10,000 | Out of Memory 7157 For this experiment, we feed the raw traffic data to the
100 | Out of Memory 6558 edge computer and measure the time it takes it to create
1,000,000 | Out of Memory 2953 the internal data structure. Afterwards, we follow the same
DDoS 10,000 | Out of Memory 2375 process for the edge/cloud system, but instead of completing
100 | Out of Memory 2390 the computation locally, we make the edge send the data to

TABLE III
RESPONSE TIME FOR DETECTING MALICIOUS USE OF THE NETWORK

Table II requests the different flow sizes between the campus
routers and all the ISPs of the United States. Our software
retrieves the flow size of each ISP in the country and creates
the graph. The data from all the United States ISPs is too
large to be held at the edge computer’s RAM and the software
shows an “Out of Memory” error. However, the server is able
to handle such requests and completes the computation.

In addition to our previous testing, we simulated three
different network attacks: a Scanner, a Worm and a DDoS
(Table III). Each one of them produced enough data to cause
an “Out of Memory” error to the client standalone, while the
server was able to handle the load. The “Threshold” value
mentioned in Table III is the number of connections to the
network before it is considered malicious and detected as such.

Lastly, it is worth noting that the data used in this experi-
ment occupied only 21.7 GB of storage space. Therefore, the
edge’s 1 TB hard drive was able to store it locally. However,
a similar application that processes bigger data can easily run
out of storage. To summarize, the limited system memory and
storage of an edge system will not be sufficient for demanding
computations and these types of tasks will always have to be
transmitted to the cloud.

D. Data Availability and Privacy Policy

During the first set of experiments, discussed in the previous
two subsections, we keep the raw data on the edge machine,
whenever it was computing as a standalone device. In the
scenario where the requests were sent to the server, we
kept all the data on the server. In this Section we consider
the importance of the location of the data, as well as the
anonymity restrictions that could be placed on it. In order to

the cloud. Therefore, the transmission includes the request of
creating the data structure and the data that populates it. The
first column of Table IV represents the data size in about 750
MB intervals. Each raw data file contains 5 minutes of network
traffic between the campus routers and internal or external IPs.
The second column named “Edge Mode” represents the time
in seconds it takes for the edge machine to process the data
and create the data structure. Finally, the column “Edge/Cloud
Mode” shows the total time it takes to complete all three of
the following tasks: 1) The edge sends the data and its request
to the cloud, 2) The cloud processes the data and creates the
data structure and 3) The cloud sends the data structure back
to the edge.

. Setup Time (sec)

Raw Data Size (GB) Edge Mode y Edge/Cloud Mode
0.78 44 332
1.52 58 705
2.26 72 984
3.02 91 1316
3.78 204 1648
4.54 780 1971
532 1648 2314
6.08 3727 2642
6.84 4095 2965
7.58 4305 3288
8.32 4805 3607
9.08 5305 3939

TABLE IV

SETUP TIME WHEN RAW DATA IS SENT ALONG WITH THE QUERY

In this scenario, whenever the computation needs to take
place on the cloud, the edge has to transmit the data related
to the query, in addition to the query itself. In a real world

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore. Restrictions apply.

application, this data would have to be anonymized or en-
crypted before it is sent to the cloud. Interestingly, we found
that the more data that is sent to the cloud, the more efficient
the request becomes. In Table IV we observe a turning point
after 5.32 GB of data. Until that request, it is preferable for
the edge computer to perform the computation by itself. From
6.08 GB of input onward, it consistently becomes more time
efficient to transfer the data to the cloud for computation.
The reason is that even though the transmission takes longer
whenever more data is transmitted, the computation on the
edge machine also takes longer, due to the larger input and
more complex computation.

E. Summary

During our evaluation we explore all four performance
factors discussed in Section III. We evaluate the “Memory
Space” factors of Edge-Cloud Computing, by observing which
requests cause our client to run out of system memory.
Additionally, for this proof of concept design we used 2 hours
worth of gathered data from our campus, which resulted in
21.7 GB of data, for our first set of experiments and 9.08
GB of data for the second set. In a perpetually running data
center, the traffic data would be significantly larger and the
storage capacity of an edge machine will be insufficient,
which is another element of the ‘“Memory Space” factor.
We also explored the “Response Time” factor by accurately
measuring the execution time for each task on each system,
and comparing their performance. Finally, we simulated a
privacy policy enforcement scenario, which prevents the data
from being stored remotely. Based on that policy, we measured
the time it takes to create the data structure remotely, by
sending all the data needed for this task. We found that even
though for small requests it is preferable to execute the task
on the client, there is a turning point at which the computation
becomes more time efficient when executed by the cloud.

This experiment demonstrates that any application similar
to ours, would perform better if the location of execution
was not predetermined. If the code is available to both the
edge and the cloud, and there existed a mechanism to decide
where each query should be computed at, we would observe
a big performance improvement, by assigning the individual
sub-tasks to the proper machine. This decision can be made
based on the four performance factors discussed in Section
III. Finally, we verified that all of our proposed performance
factors significantly affect the optimal location of execution.

V. RELATED WORK

Virtual machines [5]-[12] can have a seemingly similar
result to our design, but there are some key differentiating
factors. In the case of virtual machines, the edge computer at
the user side serves only as a terminal and the computation
is entirely performed by virtual machine instances at the data
center. Current virtual computing resources often refer to a
computer augmented with virtual disks or other resources
from a remote server. This is hardware augmentation to a
computer, not an integration of local and remote resources at
the level of program execution of individual applications, let
alone managing execution locations of program components

150

on the fly for optimized responsiveness and scalability. Our
approach differentiates from that model, since it integrates
local and remote resources at the level of program execution
and manages the execution locations of program components.

Our work shows similarities to cloud computing [19]-[24]
and mobile edge computing [25]-[33]. However, the location
of execution is known and determined before the execution
starts, in both the cloud computing and edge computing
models. The location of execution is irrespective of the
application and it certainly cannot be dynamically changed
during the execution. In cloud computing, the computation
only takes place at the cloud or the server, while in mobile
edge computing the computation takes place at the edges of
the network.

The model that is closest to our approach is cloud offloading
[13]-[17]. Examples of the cloud offloading architecture are
the MAUI [18], the CloneCloud [15] and the ThinkAir [13]
projects. This prior work mainly examines the technical aspect
of dividing an application in smaller parts, in order to save
energy on mobile devices. More specifically, MAUI constructs
a linear programming formulation based on the offloading
benefit measurements. These measurements are mostly de-
termined by the energy consumption savings and CPU cy-
cles savings. Similarly, “...CloneCloud partitions applications
using a framework that combines static program analysis
with dynamic program profiling and optimizes execution time
or energy consumption using an optimization solver.” [15].
Finally, ThinkAir implements cloud offloading by creating
multiple Virtual Machines on the cloud. Again, the only pa-
rameters used to optimize their model are execution time and
energy. The user can choose to optimize for energy savings,
fast execution time or a balance between them. However,
there is no mention of the data location and privacy policy
enforcement. Both of these parameters can vary, which would
greatly affect the location of execution and subsequently the
performance.

Edge-Cloud Computing embodies the benefit of caching
and offloading, but its division of work between the edge and
the cloud can be dynamic and does not have to be determined
before hand. It may automatically evolve as components of
a program may change their locations of execution over time
when opportunity of performance improvement arises. In this
paper we also attempt to establish the performance metrics
that define the decision for the location of execution. We go
beyond the time and energy factors, since an edge device does
not necessarily have to be a mobile device. This work is absent
from the prior art.

VI. CONCLUSION AND FUTURE WORK

While both data centers and personal computers are used to
complete computing tasks, the location of execution of each
program is currently predetermined. The software developers
are usually aware of the resources, delay tolerance and privacy
policy of the computer which their application is going to
run on. Therefore, they are able to create their program in
order to execute the code on a specific type of computing
environment, which is either a personal computer or a data
center. In any case, the location of execution of that code

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore. Restrictions apply.

is pre-known. There also exist system architectures which
propose a dynamic execution model, utilizing both the edge
machine and the cloud. However, their models only consider
the “time” and “energy savings” factors. In this paper we
examine the possibility of software execution under the prism
of a non-predetermined environment. Then we proceed to
define the factors that mostly influence the decision for the
execution location. Finally, we evaluate our factors in Section
IV and verify that all of them contribute to the decision for
the location of execution of a task.

Our work has a novel way of looking at this problem
by examining the processing times for various scenarios and
proposing a new model where applications, or parts of them,
would run either on the edge or the cloud, without that location
being predetermined. It can be decided based of the factors
that affect the preferable final result.

In the future we will construct experiments which test
our proposed work in the aforementioned key factors more
extensively, by diversifying our applications even more. We
are also determined to examine these factors and create models
that utilize both locations of execution, as well as propose how
the code for such models should be technically partitioned.
Finally, we are going to design a method which makes
the choice of location of execution automatically, without
user input and minimal overhead, based on our performance
factors.

Machine learning algorithms can also be deployed in order
for a machine to be trained on which application metrics
distinguish the location of execution between the edge and
the server. This will result in the machine extrapolating its
previous knowledge towards applications it has never seen
before.

REFERENCES
[1] W. Shi and J. Cao and Q. Zhang and Y. Li and L. Xu, "Edge Computing:
Vision and Challenges”, IEEE Internet of Things Journal, 3.5 (2016):
637-646
NSF Workshop Report on Grand Challenges in Edge Computing,
http://iot.eng.wayne.edu/edge/NSF%20Edge%20Workshop%20Report.pdf,
2016.
Ma, X., Zhao, Y., Zhang, L., Wang, H. and Peng, L., 2013. When mobile
terminals meet the cloud: computation offloading as the bridge. IEEE
Network, 27(5), pp.28-33.

[2]

[3]

[4] Shi, Weisong, and Schahram Dustdar. “The promise of edge computing.”
Computer 49.5 (2016): 78-81.

[5] ”Amazon Elastic Compute Cloud (Amazon EC2)”,
http://aws.amazon.com/ec2/

[6] VMware Inc. ”VMware Capacity Planner”,

http://www.vmware.com/products/capacity-planner/

X. Li and J. Wu and S. Tang and S. Lu. "Let’s Stay Together: Towards

Traffic Aware Virtual Machine Placement in Data Centers” in Proc. of

IEEE INFOCOM, April 2014.

L. Chen and H. Shen. "Consolidating Complementary VMs with Spatial

Temporal-awareness in Cloud Datacenters” in Proc. of IEEE International

Conference on Computer Communication(INFOCOM), April 2014.

P. Hoenisch and C. Hochreiner and D. Schuller and S. Schulte and J.

Mendling and S. Dustdar. ”Cost-Efficient Scheduling of Elastic Processes

in Hybrid Clouds” Proc. of IEEE International Conference on Cloud

Computing, June 2015.

[10] S. Shi and C. Wu and Z. Li. ”Cost-Minimizing Online VM Purchasing
for Application Service Providers with Arbitrary Demands” Proc. of
IEEE International Conference on Cloud Computing, June 2015.

[11] W. Song and Z. Xiao and Q. Chen and H. Luo. ”Adaptive Resource
Provisioning for the Cloud Using Online Bin Packing” IEEE Transactions
on Computers, 63.11 (2015): 2647 - 2660, IEEE Computer Society.

151

[12] T. Carli and S. Henriot and J. Cohen and J. Tomasik. ”A packing prob-
lem approach to energy-aware load distribution in Clouds” Sustainable
Computing: Informatics and Systems, 2015, in press.

[13] Kosta, Sokol, et al. “Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading.” 2012 Proceedings
IEEE Infocom. IEEE, 2012.

[14] Kumar, Karthik, and Yung-Hsiang Lu. ”Cloud computing for mobile
users: Can offloading computation save energy?.” Computer 4 (2010):
51-56.

[15] Chun, Byung-Gon, et al. ”Clonecloud: elastic execution between mobile
device and cloud.” Proceedings of the sixth conference on Computer
systems. ACM, 2011.

[16] Rudenko, Alexey, et al. “Saving portable computer battery power
through remote process execution.” ACM SIGMOBILE Mobile Com-
puting and Communications Review 2.1 (1998): 19-26.

[17] Hunt, Galen C., and Michael L. Scott. ”A guided tour of the Coign auto-
matic distributed partitioning system.” Proceedings Second International
Enterprise Distributed Object Computing (Cat. No. 98EX244). IEEE,
1998.

[18] Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu,
S., Chandra, R. and Bahl, P., 2010, June. MAUI: making smartphones
last longer with code offload. In Proceedings of the 8th international
conference on Mobile systems, applications, and services (pp. 49-62).
ACM.

[19] Tong, Liang, Yong Li, and Wei Gao. A hierarchical edge cloud
architecture for mobile computing.” IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications.
IEEE, 2016.

[20] Guo, Songtao, et al. "Energy-efficient dynamic offloading and resource
scheduling in mobile cloud computing.” IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications.
IEEE, 2016.

[21] Chang, Zheng, et al. “Energy efficient resource allocation for wireless
power transfer enabled collaborative mobile clouds.” IEEE Journal on
Selected Areas in Communications 34.12 (2016): 3438-3450.

[22] Hou, L., et al. ”Asymptotically optimal algorithm for online recon-
figuration of edge-clouds.” Proceedings of the 17th ACM International
Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2016.

[23] Chen, Meng-Hsi, Ben Liang, and Min Dong. “Joint offloading and
resource allocation for computation and communication in mobile cloud
with computing access point.” IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. IEEE, 2017.

[24] Kao, Yi-Hsuan, et al. "Hermes: Latency optimal task assignment for
resource-constrained mobile computing.” IEEE Transactions on Mobile
Computing 16.11 (2017): 3056-3069.

[25] A. Ahmed and E. Ahmed. ”A Survey on Mobile Edge Computing.”
in Proc. of 10th IEEE International Conference on Intelligent System
Control, 2016.

[26] Jararweh, Yaser, et al. ”Software-defined system support for enabling
ubiquitous mobile edge computing.” The Computer Journal 60.10 (2017):
1443-1457.

[27] Hou, Tingting, et al. "Proactive content caching by exploiting transfer
learning for mobile edge computing.” International Journal of Commu-
nication Systems 31.11 (2018): e3706.

[28] Xu, Jie, Lixing Chen, and Shaolei Ren. ”Online learning for offloading
and autoscaling in energy harvesting mobile edge computing.” IEEE
Transactions on Cognitive Communications and Networking 3.3 (2017):
361-373.

[29] Taleb, Tarik, et al. "Mobile edge computing potential in making cities
smarter.” IEEE Communications Magazine 55.3 (2017).

[30] Jeong, Seongah, Osvaldo Simeone, and Joonhyuk Kang. "Mobile edge
computing via a UAV-mounted cloudlet: Optimization of bit allocation
and path planning.” IEEE Transactions on Vehicular Technology 67.3
(2017): 2049-2063.

[31] Wang, Feng, et al. “Joint offloading and computing optimization in
wireless powered mobile-edge computing systems.” IEEE Transactions
on Wireless Communications 17.3 (2017): 1784-1797.

[32] Chen, Xu, et al. ”Exploiting massive D2D collaboration for energy-
efficient mobile edge computing.” IEEE Wireless Communications 24.4
(2017): 64-71.

[33] Zhang, Ke, et al. "Cooperative content caching in 5G networks with
mobile edge computing.” IEEE Wireless Communications 25.3 (2018):
80-87.

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore. Restrictions apply.

