
An Experimental Study on the Impact of Execution
Location in Edge-Cloud Computing

Dimitrios Melissourgos, Sishun Wang, Shigang Chen, Youlin Zhang, Olufemi Odegbile and Yuanda Wang

Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida 32603

Email: dmelissourgos@ufl.edu

Abstract—On the one hand, edge computing has the advantage
of distributing the load to the edges of a computer network. Local
computation at the edge is bandwidth-efficient and anonymous.
On the other hand, cloud computing is the choice when it
comes to computationally demanding tasks and big data. In this
paper, we argue for edge-cloud computing (which blends the two
together) with an experimental study on the impact of execution
location on application performance. We answer the question of
how to determine whether it should compute a task at the edge
or on the cloud and what the criteria are. We analyze the factors
of response time, memory space, data availability and privacy
policy. We experimentally evaluate the impact of these factors
on execution location based on a network visualizer software.

Index Terms - location of execution, edge computing, cloud
computing

I. INTRODUCTION

In half a century, computing has evolved from centralized

mainframes, which operate under the time-sharing model,

to networked computers under the client-server model, then

back to centralizing hardware, software, infrastructure and

IT support in huge data centers. Recently, it reverses again

towards the edge of the Internet under a new model of edge

computing [4]. By moving computation to where the users

are and where the data is produced, the edge computing

model is very appealing in reducing application response

time, improving user experience, saving bandwidth cost, and

enhancing data privacy [1]. It is defined as “a paradigm

in which resources for communication, computation, control

and storage are placed at the edge of the Internet, in close

proximity to mobile devices, sensors, actuators, connected

things and end users.” [2]

While edge computing sits on one end of the spectrum,

the other end is cloud computing, which offers a flexible,

reliable and cost effective infrastructure to end-users. In-

between, there are other models that take advantage of both

edge and cloud computing [13], [15], [18]. Platforms such as

cloud offloading extenuate the heavy load of computationally

demanding applications from the edge machines and shift it

towards the more capable data centers [3]. There are two chal-

lenges in these edge-cloud models: One is how to determine

which components of an application program should run at the

edge devices and which components should run on the cloud.

This research is supported in part by National Science Foundation under
grant CNS-1909077 and in part by a grant from Florida Center for Cyberse-
curity.

The other problem is how to execute a program with some

of its components stored at different locations. The second

problem has been extensively studied in the literature, in the

form of cloud offloading, mobile cloud computing and mobile

edge computing. In this paper, we focus on the first problem

through an experimental study to confirm the importance of

allowing the flexibility in location choices for application

tasks.

We first establish the factors that contribute the most to

determining whether a component should be executed at the

edge or in the cloud. We then carry out an experiment-based

investigation to evaluate the impact of execution location on

application performance. We use a software system developed

in our lab as the experimental platform. Our experiments

confirm the hypothesis that if the data is available to both the

edge and the cloud, it is beneficial to partition the tasks and

execute them either at the edge or in the cloud to optimize

the application response time. In particular, low-complexity

tasks are faster processed using only the edge device, but

for high-complexity tasks, the cloud often outperforms the

edge by far, even after including the communication time for

exchanging the tasks and their results between the edge and

the cloud. Moreover, we show that depending on data size and

location, space restrictions and time constraints, computation

tasks within the same application can benefit from both edge

computing and cloud computing.

The rest of the paper is structured as follows: In Section

II we present the background to our work and in Section

III we examine the different factors that are significant for

the decision of the location of execution of an application.

In Section IV we conduct a set of experiments, in order

to determine which parts of the same application are better

executed on the cloud and which perform better when they

are executed on an edge machine. In Section V we explain

the similarities and differences between our work and virtual

machines, cloud offloading and edge computing. Finally, we

draw the conclusion and discuss our future work in Section

VI.

II. BACKGROUND

For today’s software development, the distinction between

an application running in the cloud and an application run-

ning at an edge device is clear — the software is designed

according to the resource constraints, the data privacy policies

145

2020 6th International Conference on Big Data Computing and Communications (BigCom)

978-1-7281-8275-9/20/$31.00 ©2020 IEEE
DOI 10.1109/BigCom51056.2020.00028

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore.  Restrictions apply. 



and the response time requirements specific to the machines

that the app is intended for.

On the one hand, when a client machine sends a request

to be computed in the cloud, time has to be spent for the

request to be packed and propagated to the cloud and also for

the results to be sent back to the client machine. Therefore,

for low-complexity tasks, it may be preferred to execute the

tasks at the client (edge). In addition, there may be strict

delay constraints on the tasks or privacy requirements on data

transfer, which prevent certain computations from being done

in the cloud.

On the other hand, there are tasks that are not suitable

for local execution. For example, when applications perform

complex computation or process big data, the client (edge)

machine may not possess sufficient storage, RAM and pro-

cessing power to finish the tasks on time. In such cases,

cloud computing is preferable as it offers virtually unlimited

resources.

Now consider an application with tasks which can be

executed either locally or in the cloud. Suppose there are a mix

of trivial and complex tasks that are user-interactive. Further

suppose that its input consists of both small and large amounts

of data, with some data stored locally and other data in the

cloud. For locally stored data, there are two main reasons:

1) It is collected locally and it is bandwidth-efficient to store

locally, and 2) there may be a privacy policy that prevents the

data from being uploaded onto the cloud.

For such an application (like the one used in our experimen-

tal study), an integrated edge-cloud computing model appears

to be desired, with some tasks running locally at the edge and

other tasks running remotely on the cloud. The question that

we want to answer in this paper is which factors will impact

the decision on execution location. To answer the question,

we will first give our hypothesis on a list of factors and

perform an experimental study to investigate the validity of

the hypothetical factors.

III. FACTORS ON EXECUTION LOCATION

The purpose of this paper is to establish some basic facts

underlying the principles in determining which location each

part of the application should be executed at. Our method

is to use an experimental study to examine the impact of

various factors on the choice of execution location and the

resulting application performance. Before carrying out the

experimental investigation, in this section, we analyze several

potential factors including response time, memory space, data

availability and privacy policy. We conjure through reasoning

their possible impacts, which will be verified through experi-

ments in the next section.

A. Factor 1: Response Time

Response time is a key factor on user experience with ap-

plication performance. To choose between whether executing

an application component at the edge or in the cloud, one

deciding criterion is which choice results in shorter response

time. On the one hand, if it takes more time for the edge to

complete processing than the combined time of processing at

the cloud and transferring the result back to the edge, we shall

let the cloud do the computation for smaller response time to

user requests. With the backup of cloud computing, the edge

device can appear to users that it has unbounded computing

scalability. On the other hand, if it takes less time to compute

at the edge, we shall do so. More specifically, consider a

computation A = {a1, a2, ..., an}, where ai, 1 ≤ i ≤ n, are

tasks of A. Suppose that task ai takes x time to compute on

the edge device and y time to compute on the cloud, where

x > y due to the cloud’s superior resources. Suppose that it

takes z time for the edge device to pack the request and send

it to the cloud, and z′ time for the result to be sent back. By

properly determining the execution location, we can control

the execution time of ai to min{x, y + z + z′}. In order to

learn whether certain computation is faster at the edge or on

the cloud, we need to perform the computation on both until

adequate execution data (such as x, y, z and z′) are collected.

Based on them, future decisions on the placement of execution

will be made.

B. Factor 2: Memory Space

Memory space is another factor in considering execution

placement especially for resource-limited edge devices. If

a computation requires more system memory than what is

available on an edge device, or if it produces too much data

for the device to store in its permanent storage, we will need

the cloud to process the data instead. In our experimental

platform, this scenario is prominent. However, the amount of

system memory or disk space needed by a computation task is

often not known before hand. Therefore, whether to execute

the task at the edge or the cloud due to the space factor may

not be pre-known. In this case, we need, again, to collect

execution data on space usage by running tasks on both edge

and cloud initially or periodically for updates.

C. Factor 3: Data Availability

Data availability is an important factor for execution lo-

cation, considering the overhead of data transfer. When data

is produced at an edge device (such as a camera), it makes

sense to process the data at the edge. However, if that device

does not have adequate resources (such as system memory)

for processing the data, or it takes an excessive amount of

time to complete the task, an alternative will be transferring

the data to the cloud and processing it there. There also exist

situations where data is stored on the cloud, not at the edge.

For example, when a user runs an application which displays a

network traffic map, the traffic data generated from the routers

will be likely stored at the server. In this case, it is natural to

execute data-processing tasks by the server and transfer the

results to the user’s computer for display. More complicated

is the situation where partial data is at the edge and partial

data is at the cloud. We will have to either move the data to

one location or partition the computation between the edge

and the cloud.

D. Factor 4: Data Privacy Policy

Finally we consider data privacy. Applications often process

private data, such as the name, location, Social Security

Number or medical records of an individual. For these types

146

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore.  Restrictions apply. 



of applications privacy concerns arise as to whether the data

should be transferred to a data center or stay at the edge. A

data privacy policy may restrict the transfer of data entirely or

partially, which should be factored into the consideration of

which processing tasks are performed locally and which are

performed remotely with appropriate data transfer.

In practice, the location of execution is likely to be affected

not by just one factor, but by multiple ones. In other words, in

order to determine where to perform a computation, we need

to consider where the data is, whether the edge has sufficient

system memory, whether it will take the edge too much time

to finish, and whether there is a policy that will dictate the

location of computation.

IV. EXPERIMENTAL STUDY

We perform an experimental study on the importance of

execution location and how the factors in Section III will

impact on the decision of execution placement.

A. Experiment Platform

The experimental platform is a software developed in our

lab, called network visualizer, which captures network traffic

data, processes them, and answers user queries on communica-

tion patterns and statistics in graphical presentation. Our data

sets are raw traffic records from campus routers. To support

the experimental study in this paper, the software is made to

run in two modes: the edge mode where processing/querying

tasks are performed at an edge computer, and the edge-cloud
mode where processing/querying tasks are offloaded from

the edge to the cloud. The experiments are performed by

comparing the performance of the two modes to demonstrate

the importance of execution location. With the two modes

together, we will be able to divide tasks between the edge

and the cloud.

The software supports three types of tasks. (1) Queries:

given a source (e.g., continents, countries, ISPs, subnets,

individual IP addresses, etc.) and a destination, answer fine-

grained traffic statistics. (2) Attack Analysis: identify attacks

(e.g., scanning, worms, and DDoS attacks). (3) Traffic Pro-

cessing: parse raw traffic records to set up the data structures

for queries. The tasks we perform with this application vary

significantly in demand for computation, system memory and

data, offering a suitable test case for collaborative edge-cloud

computing.

We use a desktop to emulate an edge device from which

a user accesses network statistics and a high-power server

to emulate the cloud, which provides large backup resources

for the edge. The desktop edge device runs on an AMD FX-

8350 CPU with 8GB of RAM, Windows 10 64-bit and a hard

drive of 1 TB. It uses a commercial 100 Mbps download /

10 Mbps upload internet connection to communicate with the

server, which is located 5 miles away from the edge device.

The server is equipped with an Intel ES-2643v4 CPU, 256

GB of RAM, Linux Ubuntu 18.04 LTS 64-bit, and several

hard drives of total 24 TB. The network traffic records we

use in the experiments are 21.7 GB, collected over a span of

2 hours, with 68 million TCP flows of 4.5 billion packets.

Raw traffic data are compressed NetFlow records. We parse

them into a complex internal data structure (discussed further

in this section), where we store all the IP addresses/prefixes

that correlate to continents, countries, ISPs and organizations.

We map the IP addresses/prefixes in the NetFlow records

to their owners for display purpose. We categorize the in-

formation from traffic records in a hierarchical structure of

hashmaps. The total setup time it took the desktop to parse

all of our traffic records into the hashmaps was 2.4 hours,

while the server needed 112 seconds for the same setup.

For the experiments of this paper, the network visualizer

software we developed is specifically designed to implement

several functions, with the goal of proclaiming the behavior

of various systems in different situations that could be en-

countered in a day-to-day use. Although only one simulation

software was used, the internal data structure is designed to

demonstrate the benefits and drawbacks of the edge and edge-

cloud modes in situations where all four factors (response

time, memory space, data location and privacy policy) are

considered.

Also, in order to provide clarity about the experimental

process, it is important to provide further explanation about

the internal data structure and functionality of our software.

Initially, we correlate all the IPs to their respective ISPs. For

example, when the user poses queries such as “Visualize the

connections between a specific campus IP and the Google

ISP” (Table I, Query 12), our software will provide an

interactive graph of connections between the campus IP and

all the IPs that are owned by Google. The information of

which IPs belong to which ISP has been loaded into the

system memory during the setup period mentioned above.

More specifically, the software will show the duration of the

connections, the number of packets transferred and the total

size of information exchanged. Subsequently, the user can

choose to click on one of the provided IPs and the network

visualizer will show the details of that specific connection.

Furthermore, we correlate the ISPs to the countries they

belong to. Based on that categorization, if the user requests

the visualization between a campus router and Canada (Table

I, Query 8), the software will provide them with a graph that

shows every Canadian ISP which has been used to provide

communication with the requested campus router. Finally, we

follow the same categorization pattern to correlate countries

with continents for queries such as Table I, Query 5.

B. Response Time

Table I shows the response time for a list of queries under

both the edge mode and the edge/cloud mode. The first column

is the query number, and the second column gives the source

and the destination of each query. The third column, Edge

Mode, shows the response time when queries are processed

at the edge where all data are stored at the edge as well. The

fifth column, Edge-Cloud Mode, shows the response time of

processing the queries in the cloud, including the time it takes

the edge to send the query to the cloud and the time it takes

the cloud to send the result back. Under this mode, all the

raw data is stored on the cloud.

147

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore.  Restrictions apply. 



Query Source-Destination
Response Time (ms)

Edge Mode Edge-Cloud Mode

1 All Campus Subnets - All Continents 15 94

2 Subnets behind Campus Router 1 - All Continents 16 125

3 All Continents - Subnets behind Campus Router 1 2797 187

4 Campus IP 10.248.91.67 - All Continents 16 125

5 All Campus Subnets - Countries in North America 4323 140

6 Subnets behind Campus Router 1 - Countries in North America 2187 141

7 Campus IP 10.248.24.67 - Countries in North America 0 125

8 Subnets behind Campus Router 1 - ISPs in Canada 31 218

9 Campus IP 10.248.22.165 - ISPs in the United States 15 78

10 All Google LLC IPs - All Campus Subnets 60 109

11 Subnets behind Campus Router 1 - All Google LLC IPs 48 94

12 Campus IP 10.248.29.53 - All Google LLC IPs 13 125

13 IP 8.8.8.8 - All Campus Subnets 11 78

14 IP 8.8.8.8 - Subnets behind Campus Router 1 9 125

TABLE I
RESPONSE TIMES OF TRAFFIC QUERIES

In our first query of Table I, we request the traffic statistics

between all the campus subnets and the rest of the world. This

query takes 15 ms to complete under the edge mode and 94

ms under the edge-cloud mode. It is clear that such a query

should be performed at the edge without going through the

cloud. Even though we measured that the time it takes for the

server to compute the task is only 2 ms, the communication

time makes the edge-cloud choice slower.

However, in other cases such as query 5, we request the

statistics between all the campus subnets and the continent of

North America. Our software has to produce the statistics be-

tween all campus subnets and all countries in North America,

create a graph with the information, and display it to the user.

It takes 4323 ms to complete the query under the edge mode,

whereas it takes only 140ms to complete under the edge-cloud

mode, which includes the communication time. For this task,

we prefer the query to be processed remotely in the cloud.

Although some of the queries in Table I seem to have

similar Source-Destination pairs with different response times,

it is important to explain which calculations take place after a

query is posed. For example, the queries 2 and 6 from Table

I might seem similar but they have very different response

times. In the case of query 2, it takes the Edge Mode 16

ms and the Edge-Cloud Mode 125 ms to provide the answer.

On the other hand, in the case of query 6 it takes the Edge

Mode 2187 ms and the Edge-Cloud Mode 141 ms to answer

the query. As mentioned in Section IV-A, in query 2 the

system only has to process data from the seven continents after

fetching the data from the main memory. The calculations of

which connections have taken place between which specific

countries, ISPs and IPs have already taken place during the

setup time. The system merely has to process the aggregate

data from only seven sources. In comparison, the calculation

that takes place in query 6 is vastly larger. The system has

to calculate the duration of the connections, the number of

packets transferred and the total size of packets for all 23

countries of North America. Additionally, it is not surprising

that the system processes a large volume of data when the

query has North America as its destination, since most packets

are transferred within the United States.

The same observation is true for the queries 2 and 3, where

there is a large gap between their respective response times.

They are seemingly the same query with reversed source and

destination. However, the distinction between the source and

destination makes a big difference. In the case of query 2,

the system performs a lookup between campus router 1 and

the seven continents. In the case of query 3 the system has to

perform a lookup for far more than seven components, since

there are several subnets behind campus router 1.

Overall, Table I demonstrates the significant impact of

execution location on query response time. There are queries

that save more than an order of magnitude in response time

by executing on the cloud instead of at the edge. There are

other queries with multifold reduction in response time when

executing at the edge instead of on the cloud. Therefore, it is

highly beneficial for an application to have the flexibility of

choosing the location of execution for its tasks.

C. Memory Space

Memory space is another important factor in the decision of

execution location. In contrast to the response time discussed

in the previous Section, where a computation might take a

long time to complete, if a task requires more system memory

than what is available on the edge machine, the computation

will not be completed at all. In this Section we explore the

effect of limited system memory on an edge machine, by

making requests on the network visualizer software that are

more demanding than those of Table I.

During our testing there were some cases (presented at

Table II), where the edge machine run our of system memory

when operating as a standalone, since 8 GB of RAM was not

enough for the computation. For example, the first query of

148

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore.  Restrictions apply. 



Query Source-Destination
Query Response Time (ms)

Edge Mode Edge-Cloud Mode

1 All Campus Subnets - ISPs in the United States Out of Memory 1234

2 ISPs in the United States - All Campus Subnets Out of Memory 125

3 ISPs in the United States - Subnets behind Campus Router 1 Out of Memory 94

4 All Campus Subnets - All Google LLC IPs Out of Memory 422

TABLE II
QUERIES THAT CAUSED AN OUT OF MEMORY ERROR

Attack Threshold
Query Response Time (ms)

Edge Mode Edge-Cloud M.

Scanner

1,000,000 Out of Memory 4156

10,000 Out of Memory 6250

100 Out of Memory 6422

Worm

1,000,000 Out of Memory 8150

10,000 Out of Memory 7157

100 Out of Memory 6558

DDoS

1,000,000 Out of Memory 2953

10,000 Out of Memory 2375

100 Out of Memory 2390

TABLE III
RESPONSE TIME FOR DETECTING MALICIOUS USE OF THE NETWORK

Table II requests the different flow sizes between the campus

routers and all the ISPs of the United States. Our software

retrieves the flow size of each ISP in the country and creates

the graph. The data from all the United States ISPs is too

large to be held at the edge computer’s RAM and the software

shows an “Out of Memory” error. However, the server is able

to handle such requests and completes the computation.

In addition to our previous testing, we simulated three

different network attacks: a Scanner, a Worm and a DDoS

(Table III). Each one of them produced enough data to cause

an “Out of Memory” error to the client standalone, while the

server was able to handle the load. The “Threshold” value

mentioned in Table III is the number of connections to the

network before it is considered malicious and detected as such.

Lastly, it is worth noting that the data used in this experi-

ment occupied only 21.7 GB of storage space. Therefore, the

edge’s 1 TB hard drive was able to store it locally. However,

a similar application that processes bigger data can easily run

out of storage. To summarize, the limited system memory and

storage of an edge system will not be sufficient for demanding

computations and these types of tasks will always have to be

transmitted to the cloud.

D. Data Availability and Privacy Policy

During the first set of experiments, discussed in the previous

two subsections, we keep the raw data on the edge machine,

whenever it was computing as a standalone device. In the

scenario where the requests were sent to the server, we

kept all the data on the server. In this Section we consider

the importance of the location of the data, as well as the

anonymity restrictions that could be placed on it. In order to

simulate a scenario of a privacy policy enforcement which

dictates that the data has to be stored locally, we run a second

set of experiments and keep the data exclusively on the edge

machine. Therefore, in this subsection we explore the data

location and the privacy policy factors and discuss how they

affect the computation.

For this experiment, we feed the raw traffic data to the

edge computer and measure the time it takes it to create

the internal data structure. Afterwards, we follow the same

process for the edge/cloud system, but instead of completing

the computation locally, we make the edge send the data to

the cloud. Therefore, the transmission includes the request of

creating the data structure and the data that populates it. The

first column of Table IV represents the data size in about 750

MB intervals. Each raw data file contains 5 minutes of network

traffic between the campus routers and internal or external IPs.

The second column named “Edge Mode” represents the time

in seconds it takes for the edge machine to process the data

and create the data structure. Finally, the column “Edge/Cloud

Mode” shows the total time it takes to complete all three of

the following tasks: 1) The edge sends the data and its request

to the cloud, 2) The cloud processes the data and creates the

data structure and 3) The cloud sends the data structure back

to the edge.

Raw Data Size (GB)
Setup Time (sec)

Edge Mode Edge/Cloud Mode

0.78 44 332

1.52 58 705

2.26 72 984

3.02 91 1316

3.78 204 1648

4.54 780 1971

5.32 1648 2314

6.08 3727 2642

6.84 4095 2965

7.58 4305 3288

8.32 4805 3607

9.08 5305 3939

TABLE IV
SETUP TIME WHEN RAW DATA IS SENT ALONG WITH THE QUERY

In this scenario, whenever the computation needs to take

place on the cloud, the edge has to transmit the data related

to the query, in addition to the query itself. In a real world

149

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore.  Restrictions apply. 



application, this data would have to be anonymized or en-

crypted before it is sent to the cloud. Interestingly, we found

that the more data that is sent to the cloud, the more efficient

the request becomes. In Table IV we observe a turning point

after 5.32 GB of data. Until that request, it is preferable for

the edge computer to perform the computation by itself. From

6.08 GB of input onward, it consistently becomes more time

efficient to transfer the data to the cloud for computation.

The reason is that even though the transmission takes longer

whenever more data is transmitted, the computation on the

edge machine also takes longer, due to the larger input and

more complex computation.

E. Summary

During our evaluation we explore all four performance

factors discussed in Section III. We evaluate the “Memory

Space” factors of Edge-Cloud Computing, by observing which

requests cause our client to run out of system memory.

Additionally, for this proof of concept design we used 2 hours

worth of gathered data from our campus, which resulted in

21.7 GB of data, for our first set of experiments and 9.08

GB of data for the second set. In a perpetually running data

center, the traffic data would be significantly larger and the

storage capacity of an edge machine will be insufficient,

which is another element of the “Memory Space” factor.

We also explored the “Response Time” factor by accurately

measuring the execution time for each task on each system,

and comparing their performance. Finally, we simulated a

privacy policy enforcement scenario, which prevents the data

from being stored remotely. Based on that policy, we measured

the time it takes to create the data structure remotely, by

sending all the data needed for this task. We found that even

though for small requests it is preferable to execute the task

on the client, there is a turning point at which the computation

becomes more time efficient when executed by the cloud.

This experiment demonstrates that any application similar

to ours, would perform better if the location of execution

was not predetermined. If the code is available to both the

edge and the cloud, and there existed a mechanism to decide

where each query should be computed at, we would observe

a big performance improvement, by assigning the individual

sub-tasks to the proper machine. This decision can be made

based on the four performance factors discussed in Section

III. Finally, we verified that all of our proposed performance

factors significantly affect the optimal location of execution.

V. RELATED WORK

Virtual machines [5]–[12] can have a seemingly similar

result to our design, but there are some key differentiating

factors. In the case of virtual machines, the edge computer at

the user side serves only as a terminal and the computation

is entirely performed by virtual machine instances at the data

center. Current virtual computing resources often refer to a

computer augmented with virtual disks or other resources

from a remote server. This is hardware augmentation to a

computer, not an integration of local and remote resources at

the level of program execution of individual applications, let

alone managing execution locations of program components

on the fly for optimized responsiveness and scalability. Our

approach differentiates from that model, since it integrates

local and remote resources at the level of program execution

and manages the execution locations of program components.

Our work shows similarities to cloud computing [19]–[24]

and mobile edge computing [25]–[33]. However, the location

of execution is known and determined before the execution

starts, in both the cloud computing and edge computing

models. The location of execution is irrespective of the

application and it certainly cannot be dynamically changed

during the execution. In cloud computing, the computation

only takes place at the cloud or the server, while in mobile

edge computing the computation takes place at the edges of

the network.

The model that is closest to our approach is cloud offloading

[13]–[17]. Examples of the cloud offloading architecture are

the MAUI [18], the CloneCloud [15] and the ThinkAir [13]

projects. This prior work mainly examines the technical aspect

of dividing an application in smaller parts, in order to save

energy on mobile devices. More specifically, MAUI constructs

a linear programming formulation based on the offloading

benefit measurements. These measurements are mostly de-

termined by the energy consumption savings and CPU cy-

cles savings. Similarly, “...CloneCloud partitions applications

using a framework that combines static program analysis

with dynamic program profiling and optimizes execution time

or energy consumption using an optimization solver.” [15].

Finally, ThinkAir implements cloud offloading by creating

multiple Virtual Machines on the cloud. Again, the only pa-

rameters used to optimize their model are execution time and

energy. The user can choose to optimize for energy savings,

fast execution time or a balance between them. However,

there is no mention of the data location and privacy policy

enforcement. Both of these parameters can vary, which would

greatly affect the location of execution and subsequently the

performance.

Edge-Cloud Computing embodies the benefit of caching

and offloading, but its division of work between the edge and

the cloud can be dynamic and does not have to be determined

before hand. It may automatically evolve as components of

a program may change their locations of execution over time

when opportunity of performance improvement arises. In this

paper we also attempt to establish the performance metrics

that define the decision for the location of execution. We go

beyond the time and energy factors, since an edge device does

not necessarily have to be a mobile device. This work is absent

from the prior art.

VI. CONCLUSION AND FUTURE WORK

While both data centers and personal computers are used to

complete computing tasks, the location of execution of each

program is currently predetermined. The software developers

are usually aware of the resources, delay tolerance and privacy

policy of the computer which their application is going to

run on. Therefore, they are able to create their program in

order to execute the code on a specific type of computing

environment, which is either a personal computer or a data

center. In any case, the location of execution of that code

150

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore.  Restrictions apply. 



is pre-known. There also exist system architectures which

propose a dynamic execution model, utilizing both the edge

machine and the cloud. However, their models only consider

the “time” and “energy savings” factors. In this paper we

examine the possibility of software execution under the prism

of a non-predetermined environment. Then we proceed to

define the factors that mostly influence the decision for the

execution location. Finally, we evaluate our factors in Section

IV and verify that all of them contribute to the decision for

the location of execution of a task.

Our work has a novel way of looking at this problem

by examining the processing times for various scenarios and

proposing a new model where applications, or parts of them,

would run either on the edge or the cloud, without that location

being predetermined. It can be decided based of the factors

that affect the preferable final result.

In the future we will construct experiments which test

our proposed work in the aforementioned key factors more

extensively, by diversifying our applications even more. We

are also determined to examine these factors and create models

that utilize both locations of execution, as well as propose how

the code for such models should be technically partitioned.

Finally, we are going to design a method which makes

the choice of location of execution automatically, without

user input and minimal overhead, based on our performance

factors.

Machine learning algorithms can also be deployed in order

for a machine to be trained on which application metrics

distinguish the location of execution between the edge and

the server. This will result in the machine extrapolating its

previous knowledge towards applications it has never seen

before.

REFERENCES

[1] W. Shi and J. Cao and Q. Zhang and Y. Li and L. Xu, ”Edge Computing:
Vision and Challenges”, IEEE Internet of Things Journal, 3.5 (2016):
637-646

[2] NSF Workshop Report on Grand Challenges in Edge Computing,
http://iot.eng.wayne.edu/edge/NSF%20Edge%20Workshop%20Report.pdf,
2016.

[3] Ma, X., Zhao, Y., Zhang, L., Wang, H. and Peng, L., 2013. When mobile
terminals meet the cloud: computation offloading as the bridge. IEEE
Network, 27(5), pp.28-33.

[4] Shi, Weisong, and Schahram Dustdar. ”The promise of edge computing.”
Computer 49.5 (2016): 78-81.

[5] ”Amazon Elastic Compute Cloud (Amazon EC2)”,
http://aws.amazon.com/ec2/

[6] VMware Inc. ”VMware Capacity Planner”,
http://www.vmware.com/products/capacity-planner/

[7] X. Li and J. Wu and S. Tang and S. Lu. ”Let’s Stay Together: Towards
Traffic Aware Virtual Machine Placement in Data Centers” in Proc. of
IEEE INFOCOM, April 2014.

[8] L. Chen and H. Shen. ”Consolidating Complementary VMs with Spatial
Temporal-awareness in Cloud Datacenters” in Proc. of IEEE International
Conference on Computer Communication(INFOCOM), April 2014.

[9] P. Hoenisch and C. Hochreiner and D. Schuller and S. Schulte and J.
Mendling and S. Dustdar. ”Cost-Efficient Scheduling of Elastic Processes
in Hybrid Clouds” Proc. of IEEE International Conference on Cloud
Computing, June 2015.

[10] S. Shi and C. Wu and Z. Li. ”Cost-Minimizing Online VM Purchasing
for Application Service Providers with Arbitrary Demands” Proc. of
IEEE International Conference on Cloud Computing, June 2015.

[11] W. Song and Z. Xiao and Q. Chen and H. Luo. ”Adaptive Resource
Provisioning for the Cloud Using Online Bin Packing” IEEE Transactions
on Computers, 63.11 (2015): 2647 - 2660, IEEE Computer Society.

[12] T. Carli and S. Henriot and J. Cohen and J. Tomasik. ”A packing prob-
lem approach to energy-aware load distribution in Clouds” Sustainable
Computing: Informatics and Systems, 2015, in press.

[13] Kosta, Sokol, et al. ”Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading.” 2012 Proceedings
IEEE Infocom. IEEE, 2012.

[14] Kumar, Karthik, and Yung-Hsiang Lu. ”Cloud computing for mobile
users: Can offloading computation save energy?.” Computer 4 (2010):
51-56.

[15] Chun, Byung-Gon, et al. ”Clonecloud: elastic execution between mobile
device and cloud.” Proceedings of the sixth conference on Computer
systems. ACM, 2011.

[16] Rudenko, Alexey, et al. ”Saving portable computer battery power
through remote process execution.” ACM SIGMOBILE Mobile Com-
puting and Communications Review 2.1 (1998): 19-26.

[17] Hunt, Galen C., and Michael L. Scott. ”A guided tour of the Coign auto-
matic distributed partitioning system.” Proceedings Second International
Enterprise Distributed Object Computing (Cat. No. 98EX244). IEEE,
1998.

[18] Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu,
S., Chandra, R. and Bahl, P., 2010, June. MAUI: making smartphones
last longer with code offload. In Proceedings of the 8th international
conference on Mobile systems, applications, and services (pp. 49-62).
ACM.

[19] Tong, Liang, Yong Li, and Wei Gao. ”A hierarchical edge cloud
architecture for mobile computing.” IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications.
IEEE, 2016.

[20] Guo, Songtao, et al. ”Energy-efficient dynamic offloading and resource
scheduling in mobile cloud computing.” IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications.
IEEE, 2016.

[21] Chang, Zheng, et al. ”Energy efficient resource allocation for wireless
power transfer enabled collaborative mobile clouds.” IEEE Journal on
Selected Areas in Communications 34.12 (2016): 3438-3450.

[22] Hou, I., et al. ”Asymptotically optimal algorithm for online recon-
figuration of edge-clouds.” Proceedings of the 17th ACM International
Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2016.

[23] Chen, Meng-Hsi, Ben Liang, and Min Dong. ”Joint offloading and
resource allocation for computation and communication in mobile cloud
with computing access point.” IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. IEEE, 2017.

[24] Kao, Yi-Hsuan, et al. ”Hermes: Latency optimal task assignment for
resource-constrained mobile computing.” IEEE Transactions on Mobile
Computing 16.11 (2017): 3056-3069.

[25] A. Ahmed and E. Ahmed. ”A Survey on Mobile Edge Computing.”
in Proc. of 10th IEEE International Conference on Intelligent System
Control, 2016.

[26] Jararweh, Yaser, et al. ”Software-defined system support for enabling
ubiquitous mobile edge computing.” The Computer Journal 60.10 (2017):
1443-1457.

[27] Hou, Tingting, et al. ”Proactive content caching by exploiting transfer
learning for mobile edge computing.” International Journal of Commu-
nication Systems 31.11 (2018): e3706.

[28] Xu, Jie, Lixing Chen, and Shaolei Ren. ”Online learning for offloading
and autoscaling in energy harvesting mobile edge computing.” IEEE
Transactions on Cognitive Communications and Networking 3.3 (2017):
361-373.

[29] Taleb, Tarik, et al. ”Mobile edge computing potential in making cities
smarter.” IEEE Communications Magazine 55.3 (2017).

[30] Jeong, Seongah, Osvaldo Simeone, and Joonhyuk Kang. ”Mobile edge
computing via a UAV-mounted cloudlet: Optimization of bit allocation
and path planning.” IEEE Transactions on Vehicular Technology 67.3
(2017): 2049-2063.

[31] Wang, Feng, et al. ”Joint offloading and computing optimization in
wireless powered mobile-edge computing systems.” IEEE Transactions
on Wireless Communications 17.3 (2017): 1784-1797.

[32] Chen, Xu, et al. ”Exploiting massive D2D collaboration for energy-
efficient mobile edge computing.” IEEE Wireless Communications 24.4
(2017): 64-71.

[33] Zhang, Ke, et al. ”Cooperative content caching in 5G networks with
mobile edge computing.” IEEE Wireless Communications 25.3 (2018):
80-87.

151

Authorized licensed use limited to: University of Florida. Downloaded on September 30,2020 at 03:24:16 UTC from IEEE Xplore.  Restrictions apply. 


