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ABSTRACT

We present BurstZ, a bandwidth-efficient accelerator platform for
scientific computing. While accelerators such as GPUs and FP-
GAs provide enormous computing capabilities, their effectiveness
quickly deteriorates once the working set becomes larger than the
on-board memory capacity, causing the performance to become
bottlenecked either by the communication bandwidth between the
host and the accelerator. Compression has not been very useful in
solving this issue due to the difficulty of efficiently compressing
floating point numbers, which scientific data often consists of. Most
compression algorithms are either ineffective with floating point
numbers, or has a high performance overhead.

BurstZ is an FPGA-based accelerator platform which addresses
the bandwidth issue via a novel hardware-optimized floating point
compression algorithm, which we call sZFP. We demonstrate that
BurstZ can completely remove the communication bottleneck for
accelerators, using a 3D stencil-code accelerator implemented on a
prototype BurstZ implementation. Evaluated against hand-optimized
implementations of stencil code accelerators of the same architec-
ture, our BurstZ prototype outperformed an accelerator without
compression by almost 4%, and even an accelerator with enough
memory for the entire dataset by over 2x. BurstZ improved com-
munication efficiency so much, our prototype was even able to
outperform the upper limit projected performance of an optimized
stencil core with ideal memory access characteristics, by over 2x.
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1 INTRODUCTION

While modern heterogeneous computing systems equipped with
application-specific hardware accelerators can achieve high per-
formance and power efficiency, their performance is often limited
by available communication bandwidth. For ease of deployment,
accelerators such as General-Purpose Graphics Processing Units
(GPGPU), Field-Programmable Gate Arrays (FPGA), Tensor Pro-
cessing Units (TPU), and others, are often packaged as a PCle-
attached expansion card. Such accelerators deliver extremely high
performance if the working set fits on their on-board memory re-
sources, but once the working set exceeds their memory resources
so that data needs to be dynamically transferred over PCle, the
limited bandwidth of the PCle link often becomes the critical per-
formance bottleneck [1, 3, 9, 19, 43, 44]. Due to this reason, many
existing research on scientific computing accelerators have fo-
cused on problem sizes which can fit on the on-board memory
resources [6, 8, 17, 42, 46, 51].

Compression is a traditional solution to the interconnect band-
width issue, but its use has been limited for scientific computing
acceleration because of the high performance overhead of floating-
point compression algorithms. General-purpose lossless compres-
sion schemes such as DEFLATE [14] and LZW [48] are typically
very inefficient with floating poing data, which often make up
a large part of scientific datasets [15, 30]. Floating-point specific
lossy compression algorithms such as ZFP [16, 30] and SZ [15] are
widely used to compress scientific data, due to their very efficient
compression as well as their capability to limit the error bound of
each data element. However, such complex algorithms also have
high performance overhead compared to LZ4 or LZO, making their
demonstrated performance insufficient to keep up with the internal
computation capabilities of scientific computing accelerators.

1.1 BurstZ Platform

This paper presents BurstZ, which addresses the communication
bandwidth issue of scientific computing accelerators, by provid-
ing the computation engine with a platform which communicates
with the host over an efficient hardware implementation of a novel
hardware-optimized floating point compression algorithm. BurstZ
supports large-scale data processing by storing data in either the
memory or storage of the host server in a compressed, randomly
accessible format, and decompressing it piecemeal within the ac-
celerator side when required.

Our novel compression algorithm, a variant of the ZFP algorithm
we call sZFP, is capable of providing wire-speed compression and
decompression of floating point data while using only a small frac-
tion of on-chip resources. sZFP modifies ZFP and introduces a new
embedded coding scheme which allows very efficient hardware
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implementation. The new coding scheme trades a small amount
of compression ratio for an order of magnitude performance im-
provement. In fact, our sZFP implementation is efficient enough to
remove not only the PCle performance bottleneck, but also alleviate
the on-board DRAM performance bottleneck by storing compressed
data even in on-board DRAM and decompressing them on the fly.

1.2 Example application: 3D Stencil

As a motivating example, we use 3D stencil computation as an
example computation engine to illustrate BurstZ’s feasibility and
efficiency. Stencil computation is a popular method of scientific com-
puting commonly used in many areas including climate and seismic
simulation, as well as approximate solutions of partial differential
equations. Stencil computation operates on a multidimensional ar-
ray by updating each cell according to some fixed pattern, called a
stencil, which takes as input the value of cells in a small number of
immediately surrounding cells. This makes the computation pattern
very regular, and theoretically easily parallelizable.

Stencil computing acceleration has been already researched ex-
tensively on various technologies including FPGA, GPU and CPU,
and have produced efficient implementation techniques includ-
ing architectural optimizations, performance modeling, and cache-
optimization techniques [8, 10, 11, 33, 34, 36, 46, 47]. However,
many previous work on stencil accelerators tend to focus on highly
optimizing the stencil computation unit implementation, and do
not directly address the bandwidth issue between the accelerator
and the host.

Algorithms such as temporal blocking help circumvent the com-
munications bandwidth issues by improving the data movement
to computation ratio. However, these solutions still suffer linear
performance degradation as problem size becomes larger [18,
43]. Furthermore, they are orthogonal solutions to directly remov-
ing the communications bottleneck such as what BurstZ aims to
do. All ideas related to caching and temporal blocking can also be
applied to the BurstZ platform to achieve synergistic results.

1.3 Prototype Implementation and Evaluation

We have implemented BurstZ on a Xilinx VC707 FPGA develop-
ment board, with a PCle Gen2 x8 link to host with a maximum
bandwidth of 4 GB/s duplex. The accelerator card includes a Xil-
inx Virtex 7 FPGA chip, as well as an on-board DDR3 DRAM card
capable of measured performance of over 11 GB/s. On the BurstZ
prototype, we have implemented a 7-point 3D heat-transfer stencil
as a motivating example.

In this environment, our BurstZ platform was able to deliver
almost 32 GB/s of effective, steady-state bandwidth to our stencil
core while streaming large-scale data from the host over PCle.
Such a bandwidth is sufficient to supporting the peak computation
capability of our stencil core. This is almost 4x the performance
compared to the same hardware platform without BurstZ, where
the performance is restricted by PCle communication and memory
access overhead. Even compared to a platform with enough on-
board DRAM to hold all required data, our prototype still achieves
over 2x the performance. This is especially impressive because a
system with enough on-board DRAM requires no communication
over slow PCle. BurstZ is able to achieve higher performance by
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improving even the effective bandwidth of the on-board DRAM
module via wire-speed compression.

The stencil core implementations internally can use various opti-
mizations such as temporal blocking to achieve higher performance
within the memory bandwidth budget. However, as long as the
performance is being limited by communication bandwidth such
optimizations are equally beneficial to all above configurations. As
a result, the performance relations between them will show similar
patterns regardless of applied optimizations.

1.4 Contributions

We claim the following contributions of this work.

o A bandwidth-efficient scientific computing accelerator archi-
tecture that removes the PCle bandwidth bottleneck using
hardware-accelerated compression.

¢ A modified ZFP algorithm for high-performance error-bound
lossy compression in hardware.

o Performance analysis of our architecture demonstrating that
the solution is scalable in relation to PCle and on-board
DRAM bandwidth, as well as FPGA capacity.

The rest of this paper is organized as follows: Section 2 presents
some existing work relevant to this one. Section 3 presents a de-
tailed description of stencil computation and factors which affect
its performance. Section 4 describes the ZFP algorithm and its per-
formance bottleneck, and then presents the design of our sZFP
algorithm. Section 5 explains the architecture of BurstZ. Perfor-
mance and efficiency evaluations are presented in Section 6, and
we conclude with discussion in Section 7.

2 BACKGROUND AND RELATED WORK
2.1 Stencil Computing and its Acceleration

Stencil computing is an iterative computing method, which operates
on a multidimensional grid representation of data. Computation
is expressed in terms of stencils, which update a cell in the grid
based on the values of a small number of cells in the immediately
surrounding area. Figure 1 shows a graphical representation of a
2-dimensional 5-point stencil and a 3-dimensional 7-point stencil.
A wide variety of stencils have been designed depending on the
application, such as 9-point 2D stencils, and 25-point 3D stencils.
At each time step, the stencil code sweeps across the entire grid,
updating each grid value. There is no dependency between each
stencil operation within a single sweep, a characteristic which
allows straightforward parallelization.

Stencil codes are important tools in many scientific comput-
ing problems. One important example of stencil computation, the
Lattice Boltzmann Method (LBM), is a popular method to solve
industrial-scale fluid dynamics and heat transfer problems with-
out having to solve computationally-intensive partial differential
equations [13, 23, 28, 35, 40].

Due to their importance in many scientific applications, there
have been a great amount of previous work on its optimization
and acceleration on various computation platforms such as multi-
core CPUs, GPUs and FPGAs. Both FPGA and GPU-based accelera-
tors have demonstrated very high performance, but here we focus
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(a) 2D 5-point stencil (b) 3D 7-point stencil

Figure 1: Example 2D and 3D stencils

on FPGA-based acceleration as they often demonstrate very high
power efficicy [26, 38, 52].

Thanks to the simple nature of individual stencil code and ease
of parallelization, the performance of stencil code accelerators are
typically not bound by their computational capacity, but by the
speed in which grid data can be accessed [11, 23, 35]. As a result, a
large amount of work has focused on memory access and re-use
methodologies, aiming to improve the ratio between the amount of
memory access and computation.

Improving Memory Re-Use: Two major methods of improving
memory re-use is (1) tiling, which improves spatial re-use, and (2)
temporal blocking, which improves temporal re-use. Tiling loads and
processes data in units of multi-dimensional tiles which can fit in on-
chip memory, allowing most cells in a tile to be loaded once, except
for a relatively small number of cells located at the edge of each tile,
which requires data from neighboring tiles to compute. These cells
are called the halo. Tiling in the stencil context is analogous to tiling
for cache efficiency in matrix multiplication [2, 5, 41]. Temporal
blocking performs multiple sweeps of computation on a tile while
they are loaded on on-chip memory, before the results are written
back to large main memory. One caveat of temporal blocking is that
the size of the halo becomes larger with more sweeps, as illustrated
in Figure 2. This is because with each sweep, more cells near the
edge of each tile depend on the updated data of the original halo in
the first sweep. This limits the use of temporal blocking, especially
with high dimensions or high-order stencils which depend on a
relatively large number of neighbor cells.

- | Stencil Core 2 l -) | Stencil Core 3

S ==
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Figure 2: Deep temporal blocking increases the size of the
Halo , reducing the amount of valid data

Most modern stencil accelerator designs take advantage of both
tiling and temporal blocking, and more [6, 17, 19, 42, 46, 51]. A large
body of work has focused on determining an optimal tiling and
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temporal blocking methods given the accelerator platform [8, 11,
42], as well as devising performance models and characterization
methods about various memory optimizations [12, 17]. There has
been research into efficient generation of stencil accelerator on
FPGAs using high-level languages such as OpenCL [46, 51, 52].

Communication Bottleneck: Most of existing research on sten-
cil accelerators have focused on problem sizes which can fit in the
fast on-board memory capacity available on the accelerator device.
Once the problem size becomes too large, data access starts spilling
over into host-side memory or storage over a relatively slow inter-
connect such as PCle, which immediately becomes the bottleneck
of performance.

While the same tiling and temporal blocking optimizations be
applied at the scale of the on-board memory to make the problem
less bandwidth-bound, the same problem still exists as the problem
sizes become larger. This is because issues including the aforemen-
tioned halo growth limits the effectiveness of temporal blocking.
As aresult, it has been shown that even temporally blocked kernels
suffer linear performance degradation as the problem size be-
comes much larger than on-board memory capacity [18, 43]. This
is the situation we are interested in.

In this work, we mainly focus on the issue of removing the
communication bottleneck, as it impacts both temporally blocked
and non-blocked implementations. To the best of our knowledge,
BurstZ is the first system which completely removes the host-side
interconnect bottleneck using fast compression.

2.2 Error-Bounded Lossy Compression of
Scientific Data

A traditionally effective method for reducing the overhead of data
movement is compression. Lossless compression methods including
DEFLATE [14] and LZW [48] have been very effective in compress-
ing enterprise data. High-throughput compression algorithms such
as LZO [37],LZ4 [7] and Stream VByte [29] sacrifice a small amount
of compression efficiency for speed, and has been been useful in
many high-performance processing environments, in applications
including compressing network traffic [20, 49] and operating system
swap space compression [27] for distributed processing. Stream
VByte, for example demonstrated over 16 GB/s decompression
throughput on a 3.4 GHz Haswell processor.

However, such data-oblivious lossless algorithms cannot effi-
ciently compress scientific data, which often consists largely of
floating point numbers [15, 30]. Floating point encoding can incur
a large entropy (i.e., irregularity), which general-purpose pattern-
matching compression methods struggle with. Tested on real-world
data, effective lossless compression schemes such as gzip struggle
to achieve even 2-to-1 compression [30].

An effective class of compression algorithms for floating point
values is lossy compression algorithms such as ZFP [16, 30] and
SZ [15]. If the domain expert knows that the data and application
can tolerate a certain amount of precision loss, such lossy algo-
rithms can achieve extremely high compression efficiency while
ensuring the user-defined error bound on each value. This error
bound guarantee makes lossy compression much more desirable
compared to simple quantization of values to 32-bit or 16-bit float-
ing point values, may have accuracy losses oblivious to the actual
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scale of the individual data elements, leading to large, unexpected
errors. Under realistic levels of error tolerance for HPC scientific
data, these lossy algorithms regularly achieve compression ratios
of over 10x [32]. As a result, such algorithms have been used in
a wide array of applications including medical image reconstruc-
tion [21], extreme weather simulation [39], extreme-scale scientific
frameworks [22], and many more [31].

Performance Overhead: While lossy compression algorithms
can achieve very efficient compression, they are not immediately
applicable to the task of removing the link bandwidth bottleneck,
due to their performance overhead. Evaluation of single-thread ZFP
and SZ implementations on the Argonne FUSION cluster server
with 2.6 GHz Xeon Nahelem processor measured less than 300 MB/s
for compression and decompression for both algorithms. Running
enough threads to saturate the PCle link with such algorithms
would be too computationally expensive.

There exist GPU-accelerated implementations of both ZFP and
SZ, which create massively many instances of the algorithms to
parallelize computation [25]. These implementations use the thou-
sands of computation units available on modern GPUs to achieve
dozens of GB/s of compression and decompression, and are capable
of saturating the PCle bandwidth between the GPU and host.

FPGA Implementations: However, this same approach is not
very efficient on FPGAs, which have much lower clock frequencies
compared to GPUs. Furthermore, the FPGA chip space limitations
prevent fitting too many instances of compression/decompression
cores on chip. For example, a single pipeline of GhostSZ [50], an
FPGA implementation of SZ, significantly outperformed software
with over 800 MB/s of compression throughput on an Intel Arria
10 FPGA. While 8 pipelines of GhostSZ is projected to deliver over
6 GB/s of bandwidth, this would already consume over 40 % of the
chip. This is still not enough to saturate the PClIe link in compressed
form. In a previous work, we have explored optimized implementa-
tions of the ZFP algorithm on an Arria 10 FPGA [45], and arrived at
similar results: Achieving 1-2 GB/s of bandwidth while consuming
30% of chip space. In the same work, we introduced some hardware-
optimized algorithmic optimizations to the ZFP algorithm which
almost doubled the performance while maintaining similar com-
pression efficiency and on-chip resource utilization.

In Section 4, we analyze the source of the high performance
and chip space overhead of the ZFP algorithm, and describe our
modifications which improve on our previous work to achieve an
order of magnitude performance improvement with less than 10 %
of a Xilinx Virtex 7 chip.

3 PERFORMANCE ANALYSIS OF STENCIL
ACCELERATION

Let’s assume a system configuration with a host server and a stencil
accelerator device plugged into its PCle port. The accelerator will
have a certain amount of on-board memory, as well as a much
smaller amount of fast, on-chip memory. If the dataset for stencil
computation is very large, it will not fit on the on-board memory
of the accelerator, and will be held at the host, either in-memory or
in-storage.

Assuming an ideal scenario where tiling doesn’t have halo over-
head, all of the stencil data needs to be streamed from host to the
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accelerator and back, exactly once. Unless this data rate is too fast
for the stencil implementation on the accelerator to handle, the
ideally achieveable maximum performance will be limited by the
this data movement rate.

Under this model, we perform a simple roofline analysis to il-
lustrate the theoretical upper bound of performance achievable
under various system configurations. We compare five following
scenarios, which are described in Table 1. The baseline performance
numbers are modeled after our prototype FPGA environment, the
Xilinx VC707 FPGA development board. Largemem and Largemem2
assume the data size is small enough to fit in the on-board memory
capacity, and therefore is not effected by PCle performance limita-
tions. compress4 assumes the existence of a wire-speed compression
accelerator, which can alleviate the performance bottleneck of both
PCle and memory.

PCle4 4 GB/s PCle, 10 GB/s DRAM

PCle8 8 GB/s PCle, 20 GB/s DRAM
Largemem | Large capacity DRAM at 10 GB/s
Largemem?2 | Large capacity DRAM at 20 GB/s
compress4 | 4 GB/s PCle, wire-speed 4x compression

Table 1: Different configurations for roofline analysis

Figure 3 shows the roofline analysis of these configurations.
Even as the peak internal performance of the accelerator grows,
the performance of each configuration is either limited by PCle
bandwidth, or by on-board memory bandwidth. While one could of
course use newer accelerator cards with faster PCIe or memory, the
performance characteristics will remain similar, as demonstrated
in many previous work on out-of-core stencil acceleration [18, 43].

e e
oON B O

oON B O ®

Achieved performance (GFLOPS)

Peak internal performance (GFLOPS)

—e—P(Cle4 -~ -PCle8 —=—Largemem -®-Largemem2 —s—compress4

Figure 3: The stencil accelerator’s performance is limited by
both PCIe and DRAM’s bandwidth

The analysis presented in Figure 3 shows that a system with
fast, efficient compression can be an attractive solution to the band-
width issue, as it can circumvent the communication bottleneck
and achieve much higher performance even compared to systems
on more capable platforms. The question now becomes, can we
implement a floating-point compression accelerator with high com-
pression ratio (ideally 4x or more), capable of achieving wire-speed.
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4 HARDWARE-EFFICIENT COMPRESSION OF
SCIENTIFIC DATA

BurstZ implements a hardware-optimized version of the ZFP algo-
rithm, which we call sZFP, to achieve both efficient compression
as well as high throughput. The ZFP algorithm is based on block
transforms, similar to the JPEG image compression algorithm, as
opposed to SZ which is prediction-based. ZFP was chosen over
SZ because most components of ZFP were readily parallelizable
numerical operations. The ZFP compression algorithm works in
block units, each consisting of 4d values, where d is the dimension
of the block. The dimension of the block doesn’t have to match
the original dimensions of the data, and our implementation uses
1-dimensional blocks, where each block has 4 double-precision
floating point values.

ZFP compresses data in four stages: (1) Fixed-point conversion,
where all values are normalized to the largest exponent and cast
to fixed-point, (2) Block transform, which allows spatially corre-
lated values to be mostly decorrelated, for efficient compression.
(3) Sequency ordering, which maps high-dimensional blocks into
a 1-dimensional array such that the numbers are roughly sorted.
This step is not required for 1-dimensional blocks. (4) Embedded
coding, where the array is encoded one bit-plane at a time, until
either the error bound is hit, or the provided bit budget is depleted.

The first three stages of the algorithm can be very efficiently
implemented on an FPGA to support deterministic wire-speed op-
eration, except for embedded coding, which is what our sZFP algo-
rithm modifies. The original embedded coding stage extracts and
encodes each bit-plane, where the Nth bit plane is constructed by
gathering the Nth-bits of each element in a block. There are 64
bit planes in a block consisting of double precision floating point
numbers, each consisting of d bits. A pseudocode representation
of ZFP’s original embedded coding algorithm can be seen in Algo-
rithm 1. Group testing works well for compression for ZFP, having
roughly sorted numbers thanks to sequency ordering can result in
an early exit after emitting all 1 bits in the lower bits.

Data: d-bit bitplane
while bitplane = 0 do
emit1;
while True do
Isb « bitplane[0];
emitlsb;
bitplane « bitplane >> 1,
if Isb == 1 then break;
end

> Emit not-done bit

> Emit data bit

end

emit 0; > Emit done bit
Algorithm 1: ZFP’s original embedded coding algorithm emits
bits one-by-one from each bitplane

While this algorithm often results in efficient encoding, it has a
high performance overhead in a hardware implementation. Because
each loop iteration depends on the results of its previous iteration,
and because each iteration emits only one bit of data, in the worst
case a hardware implementation may require d cycles to emit a
single bit-plane. The problem becomes worse for decompressors,
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because the offset of the next encoded bit plane depends on the
encoding results of the current plane, we cannot start decoding the
next bit plane until the current one is completely decoded. Even
with a hypothetical encoder which can process one bit plane per
cycle, for a 2-D block it can handle only 16 bits per cycle, and only
4 bits per cycle for a 1-D block. For reference, 16 bits per cycle
running at 250 MHz results in 500 MB/s, which would be an order
of magnitude slower than a typical PCle link to an accelerator.

Our sZFP algorithm solves this issue in two ways: (1) A coarse-
grained, header-based encoding scheme, and (2) enabling paral-
lelism by organizing compressed data into aligned chunks, each of
which can be processed independently.

4.1 sZFP modification 1: Header-Based
Encoding

SZFP is a variant of the 1-dimensional ZFP algorithm, meaning it
compresses floating point numbers in 4-element units. Compared
to a 2-dimension or 3-dimension algorithms, an accelerator for
1-dimensional compression requires much less on-chip resources.
Also, sZFP replaces the group testing-based encoding scheme to
a coarse-grained header-based scheme. The design of our coarse-
grained header scheme is based on two observations: (1) Putting
a header per bit plane is too expensive with the 1-dimensional
algorithm, because each bit plane has only four bits, and (2) After
block transform and sequency ordering, the first 64-bit element of
the four has a very high MSB (Most Significant Bit) index.

In order to address the first issue of header overhead, sZFP uses a
coarse unit of encoding, and attaches a 2-bit header per 6 bit-planes
instead of attaching a header per each bit-plane. The six bit-planes
are simply concatenated, to keep the nonzero bits in the lower bits
as much as possible.

However, the second issue of a high MSB in the first element
harms the compression effectiveness of this scheme, because almost
all sub-groups would have nonzero bits in upper bits because of the
first element. To solve this second issue, sZFP treats the first element
specially, and encodes its bits separately. Only the remaining three
elements, which often have many leading zeros, are encoded using
the coarse-grained header.

Region 1

[011111101010111100001110111111100101101001011110]

00000p00001§101100pP10010000110P10111J111011Pp01111
00000p0000000011P00101J10001 (1100004101001 01010}

00000pP00000P00000P01000P11111P01011J101110410011

(
Y ! Y :

Region 2 Region 3

Figure 4: Three different encoding schemes are used for
three different regions (Blue, green, red)

Figure 4 shows the different regions of the four-element unit
which has different encoding methods, using an example block
after sequency ordering. The first element, marked with a blue
box, is first encoded separately. The number of bits from the first
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element that is encoded depends on the requested error margin.
The remaining three elements are divided into two groups (green
and red), which are in turn divided into four sub-groups. Each sub-
group is assigned a two-bit header. If the desired error margin is
achieved within the first (green) group, encoding can stop after
encoding the first element (blue) and valid sub-groups of the green
group. If the error margin requires more bit planes to be encoded,
the red group is encoded as well.

In most cases, we only encode up to the first 48 bit-planes in order
to ensure efficient compression, as seen in Figure 4. In extremely
rare cases when more than 48 bit-planes need to be encoded, we
simply encode the whole block uncompressed, in order to simplify
the compression accelerator.

The design of sZFP encoding ensures that one block of four
elements can be encoded in at most three cycles, where one cycle is
spent for each of the blue, green, and red regions. This fact, coupled
with pipelining, allows sZFP to achieve very high throughput with
very small on-chip resources.

4.2 sZFP modification 2: Independent Aligned
Chunks

Despite the increased performance thanks to the header-based
encoding scheme, a single-pipeline performance of sZFP would not
be enough to keep up with PCle or memory performance. This is
especially true for decompression, because the starting offset of the
next encoded block is dependent on the decompression results of
the previous one, making pipelined implementation difficult. For the
same reason, parallelizing decompression of a single compressed
stream is also difficult.

sZFP solves this issue by organizing compressed data into in-
dependent, aligned chunks. For example, in our implementation
of BurstZ, sZFP uses chunk sizes of 6 KBs. Each chunk is inde-
pendent because compressed data is aligned and padded such that
compressed data is aligned to the beginning of the chunk, and no
block is encoded across the boundary of two chunks. Padding re-
sults in a negligible amount of wasted space (less than 32 bytes per
6 KBs), but allows simple parallelism of compression and decom-
pression of a single stream of data. This design allows our sZFP
core to achieve high enough performance to saturate even on-board
DRAM performance.

5 BURSTZ ARCHITECTURE
5.1 Overall Architecture

Figure 5 shows the overall architecture of the BurstZ platform.
The key point of BurstZ is that the data exists in compressed
form both on the host-side, as well as on the on-board device
DRAM. Compressed data is only decompressed on the fly when the
computation engine requires it, and generated data is compressed
immediately before it is stored in memory.

A BurstZ implementation consists of a host server, as well as
an FPGA accelerator connected to the host server over PCle. The
BurstZ platform implementation inside the FPGA includes func-
tionalities including PClIe and on-board memory access, as well
as access arbitration for both PCle and memory. The platform
also includes multiple pipelines of compressor and decompressors,

Sun et al.

through which the computation engine can read and write data to
on-board memory as well as host.

Thanks to the low on-chip resource overhead of our compres-
sion/decompression accelerators, we can afford to deploy many
compressor/decompressor accelerators depending on both the band-
width requirements as well as the access characteristics. For exam-
ple, if a particular computation engine naturally has an access pat-
tern of multiple input streams and multiple output streams, BurstZ
can deploy multiple compressors and decompressors correspond-
ing to each input and output streams, instead of the computation
engine having to include logic to multiplex a single input/output
stream. Similarly, if the computation engine internally has multiple
pipelines for parallel performance, each pipeline can have a pair
(or more) compressor and decompressor accelerators assigned to it.

5.2 Memory Arbiter

One important module in the BurstZ platform is the memory ar-
biter, which provides convenient shared access to the on-board
DRAM while assuring high performance. As multiple entities ac-
cess memory, including multiple compressor and decompressor
pipelines as well as the host software via PCle, some arbitration of
memory resources is absolutely required in the platform for ease
of development.

The issue is aggravated by the fact that the on-board DRAM
performance is effected heavily by the access pattern. Due to ar-
chitectural characteristics such as row buffers and burst lengths,
memory access is typically much faster for sequential accesses
compared to random access. This is the case not only for acceler-
ator memory but for general server memory as well, and many
high-performance software systems try their best to optimize their
memory accesses to the underlying architecture. On our prototype
hardware platform, we measured an order of magnitude perfor-
mance difference between 64-byte accesses (minimum burst length)
and 8 KB accesses (row buffer size). When there are multiple entities
accessing memory at the same time, even if each entity’s access
pattern is sequential, their interleaved access patterns may be very
random, harming memory performance.

To achieve high performance, our memory arbiter exposes a burst
interface, where each endpoint must first send a burst request before
reading or writing data. The scheduler inside the memory arbiter
performs memory access in burst units, so that high performance
can be achieved as long as burst sizes are relatively large. The
internal architecture of the memory arbiter can be seen in Figure 6.

The arbiter is parameterized so that the number of endpoints
can be configured at compile time. Each endpoint interface also
includes enough buffer space to ensure deadlocks cannot happen
by an endpoint’s mistake. The scheduler will only start a burst only
when there is enough read buffer space to either accommodate a
read request, or enough data in the write buffer to finish a write
burst.

5.3 Stencil Core Architecture

To evaluate BurstZ, we implement a typical 3D 7-point stencil com-
putation core on our prototype BurstZ platform. Figure 7 shows the
view of the dataset from the accelerator point of view. A 3D stencil
operates on a 3-dimensional grid of values, as seen in Figure 7(a).
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Figure 5: The overall architecture of BurstZ. Data is stored com-

pressed until it is used by the computation engine

We use nX, nY and nZ to denote the number of values in the di-
mensions x, y and z, respectively. A 2-D space of size nX X nY is
called a "plane”. There are nZ planes in total. As seen in Figure 7(b),
a 7-point 3D stencil reads three planes (e.g., z = 0, 1, 2) from the
on-board DRAM, in order to update plane 1 point by point. While
this processing is ongoing, we can load a new plane (e.g., z = 3) to
the space used by plane 1. Once plane 1 is done, we can begin to
update plane 2, and so on.

We implement a very simple stencil core without in-memory
tiling, which must read all data elements three times, once for
each input plane. But thanks to the high memory bandwidth made
possible by wire-speed compression, we demonstrate our imple-
mentation outperforms even the projected performance of
an ideally tiled accelerator by over 2x. We emphasize that we
do not argue that our stencil core design is superior to existing
tiling-based methods. It is merely an example to demonstrate the
capabilities of BurstZ with multiple I/O pipelines, and to emphasize
that the compression/decompression cores provide such high data
bandwidth, they allow us to outperform highly optimized cores
even with such a simple design.

In order to improve memory re-use, and improve the memory
access bottleneck, we maintain three most recently accessed rows
of each plane in fast on-chip memory queues, so that each sten-
cil operation can be done from on-chip memory. The conceptual
location of example buffered rows can be seen in Figure 7(c).

Figure 8 shows how we load the plane’s contents to on-chip
memory row by row. Since we need three consecutive rows to
begin the computation, we create two row buffers for each input
plane. The two buffers are used as a circular buffer that always hold
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Figure 7: The basic principle of 3D stencil computation
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two most recently input rows in its plane. The two buffers, coupled
with the input, are fed into the stencil core, inserting 9 elements
into the stencil core every cycle. These 9 elements are the points in
each 2-dimensional yz-plane of the 3-dimensional cube bounding
the 7-point stencil. The stencil core is designed such that it takes
each 2-dimensional yz-plane per cycle in a pipelined manner.

Because our stencil core does not implement in-memory tiling,
the three input planes must be read from on-board memory in
parallel. BurstZ supports this using three separate decompressor
pipelines. The stencil core requires only one compressor pipeline
because only one plane is output at once.

In order to facilitate high parallelism and bandwidth, each ele-
ment in the row buffer actually consists of multiple floating point
values. For example, in our prototype implementation the datapath
is 32-bytes wide, meaning four double-precision floating point val-
ues are entered into the stencil core every cycle, per input element.
The internals of the stencil core is designed such that it can achieve
wire-speed processing via an array of floating point operators.

5.4 Compression Accelerator Architecture

In order for compression to be useful, it must achieve wire-speed,
in order to keep up with the bandwidth of the memory and com-
putation engine. As described in Section 4, a single pipeline of
decompressor or compressor is often not enough to keep up with
the tens of GB of throughput a stencil core requires. sZFP is de-
signed to support parallelized compression and decompression of
a single data stream using aligned chunks. In our prototype im-
plementation, each chunk is 6 KB in size. This section describes

Circular row buffer
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—— ircul ff
Plane N+1 Circular row buffer stenci
—
. Core Plane N+1
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Figure 8: Three sets of two on-chip BRAM row buffers are
used by the stencil core
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the efficient architecture for parallelized sZFP compression and
decompression accelerators.

5.4.1 Decompressor Architecture. The major performance bottle-
neck of the decompressor is the decoding stage, as described in
Section 4. This is because the algorithm can’t know the bit offset
of the next encoded 4-element block, until the current block is
decoded. All other stages of the decompression algorithm, includ-
ing the block transform and floating-point conversion, can easily
support wire-speed processing with a single pipeline.

Instead of simply parallelizing the entire decompressor pipeline,
wasting chip space, our implementation only replicates the decoder
modules. The internal architecture of a decompressor accelerator
can be seen in Figure 9. The input stream is broken into chunks, and
distributed in a round-robin fashion to an array of decoders. The
decoded results are collected at the block transform stages in-order,
after which everything else can be processed at wire-speed.

Decoder
_]_l_l_' Decoder Block Float |

Transform | Convert
Decoder

Figure 9: A multi-pipeline sZFP decompressor accelerator

last?

Because we cannot predict how much uncompressed data will
be generated from a chunk-sized input, the decoder module is pro-
grammed to tag each output element with a last? flag, telling the
block transform stage if this element is the last to be decoded from
a chunk. When the block transform stage encounters a last element,
it can move on to the next decoder. In order to support high perfor-
mance not bottlenecked by any particular decoder, each decoder
has both a chunk-size input buffer, and an output buffer of size
chunk X 4, so that each decoder can work at its own pace without
causing head-of-line blocking.

5.4.2  Compressor Architecture. The design of a wire-speed com-
pressor pipeline is much simpler compared to a wire-speed decom-
pressor pipeline. Since encoding each 4-element block still takes up
to 3 cycles, the encoder is still the bottleneck, similar to the decom-
pressor. However, because each uncompressed input element can
simply be round-robin distributed to each encoder without having
to wait until it is encoded, the encoder array does not need to work
in terms of aligned chunks, but with individual elements.

Figure 10 shows the internal architecture of the compression
module. After block transform, the transformed blocks are dis-
tributed round-robin to an array of encoders. After encoding, the
encoded blocks are received in a round-robin way by the shuffler,
which bit-packs the compressed blocks, and also handles chunk-
alignment.

5.5 Implementation Details

We have implemented a BurstZ prototype on a Xilinx VC707 FPGA
development board. The VC707 board is not a high-end FPGA by
modern server standards, and is equipped with a Xilinx Virtex-7
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Figure 10: A multi-pipeline sZFP compressor accelerator

FPGA, as well as 1 GB of on-board DRAM capable of up to 11 GB/s
of DDR3 bandwidth. The board plugs into the host via a PCle Gen2
x8 link, which is capable of 4 GB/s duplex bandwidth.

Table 2 shows the breakdown of on-chip LUT resource utiliza-
tion of various components in the BurstZ platform, including the
PCle, memory, arbiter, three decompressor pipelines, as well as
one compressor pipeline. The platform consumes about 40% of the
on-chip resources of our prototype platform, and less than 5% of the
on-chip resources of a modern, high-end FPGA such as the Virtex
Ultrascale+. Besides LUTs, the BurstZ platform consumes less than
500 KB of on-chip Block RAM resources, leaving the majority of
on-chip memory resources to the computation engine.

Accelerators with higher-performance FPGAs will support more,
faster compute engines, which in turn will require more compres-
sion pipelines. Thanks to the very low resource requirements of
BurstZ, we project this platform will be able to scale to the compu-
tation capabilities of modern and future accelerator platforms.

6 PERFORMANCE EVALUATION

We demonstrate the effectiveness of our BurstZ platform in two
parts: (1) The effectiveness of the sZFP algorithm and its accelerator
implementation, and (2) The application performance benefits of
BurstZ on a 3D stencil core. The application performance benefit
is demonstrated by comparing the measured performance of our
prototype implementation against various other, conventional ar-
chitectures implemented on the same hardware. The comparison
includes the projected performance with ideal tiling and caching,
which achieves the upper bound performance achievable on the
same hardware platform.

6.1 Benchmark Datasets

In order to evaluate our system under realistic scenarios, we use
real-world datasets from the Scientific Data Reduction Benchmarks
(SDRBench) [4], which includes various real-world datasets from
fields including climate simulation, molecular dynamics, and cos-
mology simulations. We selected three datasets from SDRBench

Module [ LUTs | VC707% | VCU118%
Platform (PCle+DRAM+Arbiter) | 22K 7% <1%
1x Decompressor 26K 9% 1%
1x Compressor 25K 8% <1%
Total 125K 41% <5%

Table 2: FPGA LUTs usage breakdown of the BurstZ plat-
form for stencil computation
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Name Description

Configurations with sZFP compression

B’z3 BurstZ with error bound of 1E-3
B’z4 BurstZ with error bound of 1E-4
B’z5 BurstZ with error bound of 1E-5
B’z6 BurstZ with error bound of 1E-6

Configurations with no compression

Nocomp | BurstZ’s stencil core with no compression
Fastmem | BurstZ'’s stencil with unlimited DRAM bandwidth
Largemem | BurstZ stencil with enough memory to hold dataset

Ideal Core with ideal tiling and caching
IdealLarge | Ideal with enough memory to hold dataset

Table 3: Evaluated accelerator configurations

which use double-precision floating point data (S3D, NWChem, and
Brown), and selected one which uses single-precision floating point
data (CESM-ATM), and cast it to double precision values. When a
dataset was too small for realistic evaluation, we simply replicated
the whole dataset multiple times to obtain a larger dataset.

6.2 Evaluation Configurations

For evaluation of our BurstZ prototype, we measured the perfor-
mance of the system with four different configurations where the
error bound of the compression algorithm was set to either 1E-3,
1E-4, 1E-5, or 1E-6. These are typical compression parameters used
in real-world scientific computing scenarios [32].

We compared the performance of BurstZ against various other
accelerator architectures that could be implemented on a hardware
platform with the same component performances. Compared results
include the ideal, unrealistic systems such as those with ideal tiling
and caching, as well as accelerators with large enough memory to
always accommodate the whole dataset.

Table 3 lists the system configurations for BurstZ and others.
Ideal and IdealLarge represents performance upper limits a stencil
accelerator can achieve on the same hardware platform, when either
the dataset is realistically large (Ideal), or if the dataset is smaller
than on-board memory capacity (IdealLarge). Both systems assume
ideal situations with ideal tiling and caching, as well as no halo
overhead, meaning the entire dataset is sweeped by the stencil core
exactly once, and this memory movement is the only performance
bottleneck. For Ideal, the on-board memory bandwidth is shared
across PCle data loading to memory, as well as the stencil core
reading the loaded data exactly once.

6.3 Prototype Platform Evaluation

The VC707 FPGA development board on which we implemented our
BurstZ prototype, is equipped with a PCle Gen2 x8 link to the host
server, as well as 1 GB of on-board DDR3 DRAM. After protocol and
flow control overhead, our PCIe implementation was able to achieve
3.1 GB/s of duplex communication bandwidth between the host
and FPGA. As for the on-board memory, our memory controller
and arbiter were able to achieve almost full advertised performance
of the memory module, which is approximately 11 GB/s, shared
between read and write requests. Our compression accelerators and
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Figure 11: Compression efficiency of sZFP, across four
datasets, with varying error bounds

stencil core example were implemented on top of this hardware
platform.

6.4 sZFP Evaluation

6.4.1 Compression Efficiency. Figure 11 shows the efficiency of
the sZFP compression algorithm across benchmark datasets and
error bounds. We also provide comparison against gzip, which is a
commonly used integer based compression algorithm. As shown
in Figure 11, gzip typically does not work well with floating point
numbers. The compression efficiency of sZFP slowly declines, as
the error bound becomes stricter, following the pattern shown
also by the original ZFP algorithm. Configured with reasonable
error margins, sZFP consistently provides 3x — 4x compression.
In Section 6.5, we will show that this compression efficiency is
sufficient to remove the communication bottleneck.

6.4.2  Accelerator Performance. Figure 12, and Figure 13 show the
compression and decompression performance of the sZFP acceler-
ator, respectively, showing an order of magnitude higher perfor-
mance compared to software, as well as the reported performance
numbers of FPGA-based hardware accelerator of unmodified lossy
floating point compression algorithms. Performance was measured
across the same four benchmark datasets, with the four error bound
values. The Software region in the figures represents the range
of achieved performance by single-thread software implementa-
tions provided by the algorithm authors. The Vanilla FPGA region
presents the best, single-core performance of unmodified algorithm,
either published by GhostSZ [50], an FPGA implementation of SZ,
or measured average of the FPGA implementation of ZFP from
our previous work [45]. The figures show that with lenient error
bounds, both the compressor and decompressor achieve almost
wire-speed performance with the default setting, which is multi-
ple times faster than the best-effort FPGA implementations of the
unmodified algorithms.

While these figures seem to show the compression accelera-
tors failing to achieve wire-speed performance with stricter error
bounds, this is not an inherent limitation of the algorithm. As de-
scribed in Section 5, our compression accelerators are designed to
have a configurable number of internal pipelines to achieve paral-
lelism. On the BurstZ platform, the default compressor is configured
to have two internal pipelines, and the decompressor is configured
to have five internal pipelines, which was just enough to achieve
wire-speed in many realistic scenarios. Figure 14 shows the scaling
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Figure 12: Compression performance of BurstZ’s sZFP ac-

celerator

of the worst-case performance as the number of internal pipelines
increase. Meaning, if the compressor was configured to have three
internal pipelines instead of two, and the decompressor was config-
ured to have eight internal pipelines instead of five, the compression
and decompression accelerators would have invariantly achieved
wire-speed performance without fail. This change would have in-
curred a proportional increase in on-chip resource utilization, but
considering the low resource utilization numbers given in Table 2,
even that resource utilization will be quite low.

6.4.3 Comparisons Against ZFP. Compared to the vanilla ZFP,
sZFP often achieves a significantly lower compression ratio. How-
ever, sZFP has various characteristics that make it a better algorithm
for the purpose of BurstZ.

First of all, the encoding scheme allows for extremely efficient
hardware implementation, while achieving very high performance.
As we show in Section 6.4.2, our sZFP accelerator demonstrates
wire-speed performance, which is 8 GB/s in our case, while con-
suming a fraction of on-chip resources. This makes sZFP quite
desirable, considering the on-chip resource utilization presented in
Table 2 is less than a third of the available FPGA implementation of
unmodified ZFP [45], while achieving multiple times faster perfor-
mance. This is assuming the chip capacity of the Intel Arria 10 GX
1150 with 427,200 ALMs is comparable to the Xilinx XC7VX485T
with 485,760 Logic Cells, but the utilization difference is significant
enough to be meaningful.

Secondly, sZFP shows very consistent compression ratios, achiev-
ing compression ratios similar to the original ZFP algorithm for
datasets that are not easily compressed, providing a similar lower
bound in efficiency. For example, the original ZFP algorithm was
able to reduce the size of the NWChem dataset by a factor by
over 21X with an error bound of 0.001, which is much better than
the 4.7x compression of sZFP. However, for the dataset Brown,
the original ZFP demonstrated only about 6X compression, while
SZFP also achieved about 5X. These characteristics allow BurstZ
to use sZFP to achieve consistently high performance across vari-
ous scientific datasets. Consistently achieving 4-5X compression is
sufficient for the purpose of BurstZ, which is to better balance the
computation and communication performances.

6.5 End-to-End Application Performance

Figure 15 compares the end-to-end performance of stencil compu-
tation, on the various system configurations described in Table 3,
with performance numbers normalized to Largemem. For each
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Figure 13: Decompression performance of BurstZ’s sZFP
accelerator

benchmark column, the left five bars represent the BurstZ system
using each of the error bounds for compression. The right four bars
are different stencil accelerator architectures implemented on the
same hardware platform.

In terms of raw performance, Largemem corresponds to 2.4
double-precision GFLOPS, meaning the measured BurstZ systems
measure between 5.25 to 7 double-precision GFLOPS. This cor-
responds to 11 to 14 single-precision GFLOPS as performance is
entirely memory bound. Considering that the Intel stencil reference
implementation on an FPGA of similar scale demonstrates 7 single-
precision GFLOPS with a single pipeline [24], we can be confident
our stencil accelerator has a reasonable design. To achieve higher
GFLOPS, we can use the same temporal blocking methods the Intel
design used, in order to achieve almost 200 GFLOPS. But since
these optimizations will affect all compared system configurations
similarly, and are orthogonal to the data movement issue we are
addressing, we present normalized performance results.

It can be seen that even with the most stringent error bound (B’z6
with error bound of 1E-6), the BurstZ system outperforms all other
configurations, and performs on par with IdealLarge, which is an
unrealistic system with not only ideal tiling, caching, and no halo
overhead, but also on-board DRAM large enough to accommodate
the entire dataset. When compared against Ideal, which is an upper-
bound performance projection of a system streaming data from the
host, even the slowest B’z6 system consistently achieved almost 2x
the performance, with B’z3 achieving almost 3x.

10
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Figure 14: Worst-case performance of the compression accel-
erator as the number of internal pipelines increase
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Figure 15: BurstZ application evaluation outperforms even in-memory systems with ideal caching

This is a significant performance improvement, considering that
the BurstZ systems have an inherent disadvantage of lacking in-
memory tiling, and must read the input data from on-board memory
three times, once for each read plane. When compared against sys-
tems with similar data access patterns, but lacking compression,
all BurstZ configurations achieve over 3x the performance of No-
comp, over 2X the performance of Largemem, and consistently
outperforms even Fastmem.

For all measured BurstZ systems, the biggest performance limit-
ing factor is not the PCle, but the on-board DRAM performance,
meaning the problem has now become a more classical scientific
computing issue of optimizing memory accesses. The memory ar-
biter serves six endpoints: PCle read, PCle write, three decompres-
sors, and one compressor. All endpoints have roughly the same
sustained throughput, which limited each endpoint’s throughput
to 1.8 GB/s on our platform with 11 GB/s total memory bandwidth.
After compression, this translates to over 6 GB/s of throughput
per I/O port on the computation engine side, which is lower than
the wire-speed of 8 GB/s. A traditional solution of a more opti-
mized stencil with better tiling and caching will reduce the memory
pressure, further improving performance.

7 CONCLUSION AND DISCUSSION

We present BurstZ, a bandwidth-efficient scientific computing ac-
celerator platform for large data. BurstZ uses a novel, hardware-
optimized compression algorithm sZFP and removes the PCle bot-
tleneck, which is the primary performance limiting factor of large-
scale scientific computing acceleration. In fact, BurstZ’s sZFP ac-
celerators are so efficient that it drastically increases the effective
on-board memory bandwidth, which allows our example accelera-
tor to outperform even completely in-memory systems.

We believe the impact of a BurstZ-like system on scientific com-
puting will be significant for multiple reasons. First, it will reduce
the cost of computation as accelerator performance becomes less
bound to expensive on-board memory capacity. Second, it will also
allow handling of much larger problems than was possible before,
because removing the PCle bottleneck also means fast secondary
storage devices such as NVMe flash can support the full computa-
tion performance of an accelerator. Furthermore, we project that
improving the effective performance of communication via com-
pression can also remove the network bottleneck of distributed
systems.

We have designed BurstZ as a general infrastructure which will
be beneficial for not only stencil computation, but also many other
data-intensive scientific applications. In the future, we plan to use
BurstZ to explore various scientific computing workloads to im-
prove the speed and reduce the cost of scientific discovery.
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