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ABSTRACT. Let F' be a totally real field in which p is unramified. Let7: Gp —
GL2(Fp) be a modular Galois representation which satisfies the Taylor-Wiles
hypotheses and is generic at a place v above p. Let m be the corresponding
Hecke eigensystem. We show that the m-torsion in the mod p cohomology of
Shimura curves with full congruence level at v coincides with the GLa(ky)-
representation Do (F|g Fv) constructed by Breuil and Pasktinas. In particular,
it depends only on the local representation 7| Py and its Jordan—Holder fac-
tors appear with multiplicity one. This builds on and extends work of the
author with Morra and Schraen and, independently, Hu—Wang, which proved
these results when F\GFU was additionally assumed to be tamely ramified. The
main new tool is a method for computing Taylor-Wiles patched modules of
integral projective envelopes using multitype tamely potentially Barsotti—Tate
deformation rings and their intersection theory.

1. INTRODUCTION

Let F//Q be a totally real field which is unramified at a rational prime p. Let F be
a finite extension of F),. Suppose that 7 : Gp — GL2(F) is a Galois representation
occuring in the F-cohomology of a Shimura curve X, with corresponding Hecke
eigensystem m (see §5). Suppose that the corresponding quaternion algebra splits
at p. Let v be a place of F' dividing p, let K" be a compact open subgroup of
(DopAR")* and K,(n) the n-th principal congruence subgroup at v. One expects
that the analogues of the mod p local Langlands correspondence for GL2(Q,) and
mod p local-global compatibility for GL2(Q) describe the GLa(F,)-representation

7’ = Homg,, (T, @Hl(X(K”KU (n)), F)[mz])

in the completed cohomology of X, at least up to multiplicities, in terms of p &f

Tlar, - In fact, we study a related representation m = (M™™)* (see §5), which is
minimal with respect to multiplicities. Such analogues are unknown at present,
although [Brel4, EGS15] show that if 7 satisfies the usual Taylor—Wiles hypotheses
and p is generic, then 7 contains one of infinitely many GLa(F;,)-representations
constructed by [BP12]. The idea, as explained in [Brel4], behind the constructions
of [BP12] is that if one can show that the restriction of 7 to the maximal com-
pact subgroup GLo(Op,) satisfies certain multiplicity one properties, then 7 must
contain a Diamond diagram of the form D(p,:). These multiplicity one properties,
which one might view as minimalist conjectures for multiplicities, were established
in [EGS15].

That the family of representations containing a diagram D(p,¢) is infinite is un-
fortunate and warrants further investigation of 7. One part of a Diamond diagram
D(p,1) is a GLy(k,)-representation denoted Dg(p), which is a subrepresentation
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of 7lar,(0r,) (see [Breld, Proposition 9.3]), and thus a subrepresentation of the
invariants of 7 under the first principal congruence subgroup K,(1) of GL2(Op, ).
Our main result is the following.

Theorem 1.1 (Corollary 5.2). If T satisfies the Taylor—Wiles hypotheses and p is
generic (see Definition 4.1), then the GLg(k,)-representation 7+ is isomorphic
to Do(p). In particular, it only depends on p and is multiplicity free.

One can view this result as showing that 7 satisfies a minimality property: w1

is as small as possible. A similar result has been announced by Hu—Wang.

The main tool in the proof of Theorem 1.1 is the Taylor—Wiles patching method.
Diamond and Fujiwara [Dia97, Fuj06] discovered that the Cohen—Macaulay prop-
erty of patched modules could be combined with local algebra results of Auslander,
Buchsbaum, and Serre to rederive and generalize mod p multiplicity one results of
Mazur for modular forms with level away from p. [EGS15] proved similar results
for modular forms with level at p by introducing two gluing methods to calculate
patched modules from smaller ones to which the Diamond—Fujiwara trick applied.
The first method is a version of Nakayama’s lemma and uses the submodule struc-
ture of mod p reductions of Deligne-Lusztig representations. The second method
combines the submodule structure above with the intersection theory of special
fibers of tamely potentially Barsotti—-Tate deformation rings.

When p is tamely ramified, [HW18, LMS16] show that the patched modules
of projective envelopes of irreducible F[GLy(k,)]-modules are cyclic modules by
describing the submodule structure of these projective envelopes and using the
Nakayama method of [EGS15] (cf. Proposition 4.6). However, the gluing methods
of [EGS15] are insufficient when 7 is wildly ramified. Indeed, these methods only
glue together characteristic p patched modules, but when p is wildly ramified there is
more than one isomorphism class of F[GLa(k,)]-modules satisfying the multiplicity
one properties for 7%+(1) established in [EGS15].

We introduce a variant of the intersection theory method of [EGS15], which
uses the intersection theory of integral tamely potentially Barsotti-Tate deforma-
tion rings. Let W(F) denote the Witt vectors of F. The first step (Proposition
4.6) is to show that the methods of [EGS15] still apply to certain quotients of
generic W(F)[GLz(k,)]-projective envelopes (which are projective envelopes in the
abelian category of W (F)[GLa(k,)]-modules generated by lattices in some fixed
set of Deligne-Lusztig representations). If such a quotient is reducible rationally,
then it can be written as a submodule of the direct sum of two smaller quotients
with p-torsion cokernel (see Proposition 2.4). This reflects a kind of transversal-
ity: while these subcategories do not give a direct product decomposition of the
category of W (F)[GLzy(k,)]-modules, if two subquotients of lattices in two distinct
Deligne—Lusztig representations are isomorphic, they must be p-torsion. By exact-
ness of patching and this exact sequence, it turns out that the patched modules of
W (F)[GL2(k,)]-projective envelopes are then determined by the patched modules
of these quotients (this depends crucially on the fact that all such patched modules
turn out to be cyclic).

It remains to actually compute these patched modules using intersection theory
in a multitype Barsotti—Tate framed deformation space, which we define to be the
Zariski closure in the unrestricted framed deformation space of p of potentially
Barsotti-Tate Galois representations with tame inertial type in some fixed set.
That the resulting patched module is cyclic comes from the fact that the multitype
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Barsotti-Tate deformation rings exhibit a similar kind of transversality: two lattices
in potentially Barsotti-Tate Galois representations of two distinct generic tame
inertial types can be congruent modulo p, but never modulo p?.

We now give a brief overview of the following sections. In §2, we generalize
some of the results of [LMS16] and prove the key result (Proposition 2.4) gluing
integral projective envelopes from their quotients. In §3, we define and calculate
multitype Barsotti-Tate deformation rings—this is the other key technical input.
To compare Kisin modules for varying tame types, it is much more convenient to
choose eigenbases for Kisin modules which are not always gauge bases in the sense
of [EGS15, §7.3]. This requires generalizing [LLHLM18, Theorem 4.1]. The main
result, Theorem 3.6, of this section computes some multitype Barsotti-Tate framed
deformation spaces. In §4, we calculate the abstract patched modules of projective
envelopes using the Nakayama method and our integral intersection theory method.
In §5, we apply the results of §4 to the cohomology of Shimura curves using the
Taylor—Wiles method.
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1.2. Notation. If F is any field, we write F for a separable closure of F and
Gr := Gal(F/F) for the absolute Galois group of F.

Let f € N and ¢ = p/. Let Ok be the Witt vectors W(F,) of F,. Let K =
Ok[p~'] be the unramified extension of Q, of degree f. Let E be an extension
of K with ring of integers O, uniformizer w, and residue field F. This induces
embeddings Oxg — O and o : F; — F. Fori € Z/f, let 1; = 190 ¢' be the i-th
Frobenius twist of tg. We fix an embedding F < F,. We will denote by (-)* the
F-linear dual, and by (-)V the contragredient of a representation.

Let G (resp. G9°7) be the algebraic group Resp, /r, GL2 (resp. Resp, /r,SL2), and
let T C G (resp. 79" C G9°r) be the diagonal torus. Let X*(T) (resp. X*(T9))
denote the group of characters of T' (resp. T9¢%). Let X.(T) and X, (7) similarly
denote groups of cocharacters. By the embeddings ;, X*(7T) is identified with
X*(T xp, F) 2 X*([1;ez/; G3,); which is identified with (Z?)%// in the usual way.
A similar identification for X, (7") is made. For a character p € X*(T), we write p;
as the i-th factor of u so that u = Ziez/f L

Let Y € X*(T) (resp. oY € X,(T)) be the dominant fundamental character
(resp. the positive coroot) represented by (1,0) (resp. (1,—1)) in the i-th factor and
0 elsewhere. Let n = Ziez/f 7. Let w® be the restriction of 7" to T9er.
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Let W be the Weyl group of G and G9°", which is similarly identified with SQZ /f,
Here, S5 denotes the permutation group on two elements. We denote the trivial
element of Sy by id. Then W acts naturally on X*(7") and X*(79°"). Let 7 be the
automorphism of X*(T') and W which acts by a shift so that m(x); = ;1. Then
the action on X*(T') induced by the relative Frobenius morphism on T is given by
pr— !, while the action of the relative Frobenius on W is given by .

For a dominant character p € X*(T') we write V' (u) for the Weyl module for G
defined in [Jan03, I1.2.13(1)]. It has a unique simple G-quotient L(g). If pp=>", p;
is p-restricted (i.e. 0 < (u, ™) < p for all 7), then L(u) = ®;L(;) by the Steinberg
tensor product theorem as in [Her09, Theorem 3.9]. Let F'(u) be the restriction of
L(p) to GLa(F,), which remains irreducible by [Her09, A.1.3]. Every irreducible
GLy(Fy)-representation is of this form, and we call such a representation a Serre
weight. Note that F(p) = F()) if and only if = A mod (p — m)X°(T), where
XO(T) is the kernel of the restriction map X*(T) — X*(T9°r).

Recall that to a pair (s, \) € W x X*(T), [Her09, Lemma 4.2] attaches a (virtual)
representation of GLa(F,), which we denote Rg()). In each use below, Rs(\) will
in fact denote a true representation.

An inertial type for a local field L is a continuous F-representation 7 of the
inertial subgroup I, whose action factors through a finite quotient and can be
extended to G. For our purposes, all inertial types will be two-dimensional. In
this case, Henniart’s [BM02, Annexe A] attaches to 7 a smooth irreducible finite-
dimensional GLo(Op )-representation o(7) over E (see also [EGS15, §1.9]). We
call the association of 7 and o(7) the inertial local Langlands correspondence. An
inertial type 7 is called tame if 7 factors through the tame quotient of I;,. The tame
inertial types are exactly those 7 such that o(7) factors through GLo(kr) where kr,
is the residue field of L.

For any characteristic 0 field F, let € : Gp — Z, C O denote the p-adic
cyclotomic character and € denote its reduction modulo w. We now let F' be
K. Let Cp(i) denote ¢' ®p C,, where the tensor product is over any embedding
E — C,. Let p : Gk — GL(V) be a continuous representation over E. For
each embedding  : E — C,, let HT (V) be the multiset of integers such that
—i appears with multiplicity dimc, (V ® C,(2))“*. Then in particular HT,(g) =
{1} for all embeddings k. We say that a two-dimensional representation V is
(potentially) Barsotti-Tate if V is (potentially) crystalline with HT (V) = {0,1}
for all embeddings k. If 7 is an inertial type, we say that V is potentially Barsotti—
Tate of type 7 if the action of Iy on the potentially crystalline Dieudonné module
of V is isomorphic to 7.

2. QUOTIENTS OF GENERIC GLy(F,)-PROJECTIVE ENVELOPES

Suppose that u € X*(T) and that 1 < (u —n,a) < p—2 for all i € Z/f.
Let o be F(u —n). Let }N%# (resp. R,) be the projective O [GLa2(F,)]-envelope
(resp. the projective F,[GLo(FF,)]-envelope) of o. Let S be the set {+w®}; and let
I be a subset of S. Recall from [LMS16, Definition 3.5] that (with respect to p)
we attach to a subset J C S a Serre weight oy. Let R, ; be the universal object
among quotients of R, that do not contain o,y as a Jordan-Holder factor for all

w in I. Recall from [LMS16, §3] that there is a filtration Fil* on R, which induces
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a filtration Fil* on R, 1. Similarly, we can construct a filtration Filg = Z‘k‘: & Fil*
on R, and R, ;. Let Wi ; be gr* R, .

Proposition 2.1. We have an isomorphism Wy 1 = @ jcs,x(1)=k,Jn1=00J -
Proof. This follows from [LMS16, Proposition 3.6 and Theorem 3.14]. O

If T is a subset of S such that I N {#w®} has size at most one for all i, let
T, be the set of Deligne-Lusztig representations over K of the form R, (u — wn)
where w; = id (resp. w; # id) if W € I (resp. —w € I). Fix an embedding
R, — EBU(T)erywo(T). Let R, ; be the quotient of R, isotyBic for the set Tf’[
(which does not depend on the above embedding). Note that R, ¢ is equal to R,,.

Proposition 2.2. The reduction of }N%#J modulo p is R, 1.

Proof. For each w € I, oy, ¢ JH(a(r)) for all o(1) € T, ;. Thus, there is a

canonical quotient map R, ; — R, , where R, is the reduction of }NEMJ. By
Proposition 2.1, R, ; has length 22/=#1_ Since R, s is the reduction of a lattice in
the direct sum of 2/ ~#7 types, each of whose reduction has length 2¢ (see [Dia07]),
it also has length 22/=#!_ Since both objects have the same length, this surjection
must be an isomorphism. 0

Again, let I C S. Let Wiciq1,1 be Fil* R, 1 /(Filst? R, r NFil® R,, 7). Note that
Wi k41,7 is multiplicity free since Wy k11 ¢ (which is Wy x41 in [LMS16, §3]) is by
[LMS16, Proposition 3.6 and Lemma 3.7].

Proposition 2.3. Suppose that J C J', #J'\J =1, and J'NI =0. Let k and
k' be k(J) and k(J'), respectively. Then there is a subquotient of Wy x+1,1 which
is the unique up to isomorphism nontrivial extension of o; by o .

Proof. This follows immediately from Proposition 2.1 and [LMS16, Proposition
3.8]. O

Proposition 2.4. Suppose that the size of I N {£w®} is at most one for all i and
that T N {+wW} =0 for some j. Then there is an exact sequence

(21) 0— R%[ — éu,lu{w(j)} &b RM,IU{—UJU)} — Ru,lu{iw(j)} — 0,

where the second (resp. third) map is the sum (resp. difference) of the natural pro-
jections.

Proof. The second map of (2.1) is clearly injective since it is after inverting p
and R, is Og-flat. We claim that the cokernel of this map is p-torsion. Let
0wy = F(p' —n) and consider a map R, — Ry, 1 such that the composition with
the projection

Ry~ Rur— R, r/Fil} R, 1
is nonzero. The composition of }NEM/ — }NEMJ with the natural surjection EH)I —

R, 1U{w)} 18 zero since o,y & JH(R, rugwo})-

Lemma 2.5. The image of the composition }Nf#/ — E#J with the natural surjection
Ry — R, ru{—wty contains pR, 1o1—wy-
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With Lemma 2.5 and its analogue for Eu)lu{wm}, we would see that the image of

Ry — Ry, rugwoy @ Ry rof—wiy

contains péy,[u{w(ﬂ')} @pﬁﬂ_’w{fw(j)}, establishing our claim.

Proof of Lemma 2.5. Fix a map }NEM — }NEM such that the composition with the
projection to R,/ Filg R, is nonzero. It suffices to show that the image, denoted
Q, of the composition of }NEM — Eul with the above Eul — ]TZH)I —» }NE#JU{,W@)}
is péu)lu{_w(j)}. On the one hand, we see that @ is in p}N%MJU{_w(j)} by reducing
modulo p and using Propositions 2.2 and 2.3. Let o(7) be a Jordan-Hélder factor of
1:13#_, 1[p~!] and let 0°(7) C o(7) be the unique lattice up to homothety with cosocle
isomorphic to o (see [EGS15, Lemma 4.1.1]). Fix a surjection from INEMJ to o°(7).
By reducing mod p, we see that the image of the composition of }N%#/ — }N%#J with
this surjection is a saturated lattice 0°°(7) with cosocle oy,,;)y. Similarly, the image
of @ under this surjection is a saturated lattice in ¢°°(7) with cosocle isomorphic
to o. This lattice is po®(r) by [EGS15, Theorem 5.1.1]. Thus, the composition
Q C pINEMJU{_wu-)} — po®(7) is an isomorphism upon taking cosocles. We see that

Q must be equal to pR,, 11—} -

Let R be the cokernel of the second map in (2.1), which is p-torsion by our first
claim. Then the exact sequence

(2.2) 0— E#_’] — Eu)lu{w(]‘)} © ]A:L;H)IU{_M(]‘)} — R—0

induces an exact sequence

(2.3) R, — RMJU{W(J')} © Ru,]U{—w(j)} — R—0

by Proposition 2.2. By taking cosocles, (2.3) induces an exact sequence
(2.4) cos0CR, 1 — coS0CR, 1wy B COSOCR, 1 {_ui} —> cosocR — 0

Note that cosocR,, 1, cosocR,, 1w}, and cosocR, 11—,y are all isomorphic to
o and that the composition of first map of (2.4) with either projection is nonzero.
Thus cosocR is isomorphic to ¢ and the restriction of the second map of (2.4) to
either summand is nonzero. We conclude that the restriction of the second map in
(2.3) to either summand is surjective. By definition, the maximal representation
which is a quotient of both R#JU{wm} and R#JU{,W@)} is R,u,[u{:tw(j)}' Thus,
there is a surjection R, 1 14,y — K. On the other hand, it is easy to see that the
composition Ry, 1 — R, ryru0y © By ruf—wiy = By rug+wy 18 zero, where the
second map is the difference of the natural projections. Thus, there is a surjection
R — R, 1u{z+w®y- Since R and R, j (1,06} are finite length objects, they must
be isomorphic. 0

3. MULTITYPE BARSOTTI-TATE DEFORMATION RINGS

3.1. Etale p-modules. Let K., be the infinite extension obtained by adjoining
compatible p-power roots of —p to K. Let Og ik denote the p-adic completion of
Ok (v)), and let Ogun g denote the p-adic completion of a maximal connected étale
extension of Og k. For R a complete local Noetherian O-algebra, let ®-Mod®*(R)
be the category of étale p-modules over Og ik ®z, R, and let Repg, (R) be the
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category of (continuous) representations of Gx_ over R. Fontaine defined an exact
anti-equivalence of tensor categories

V* : ®-Mod“'(R) — Repg,._ (R)
by V(M) = (M ® Ogun 1) #~1)".

For a natural number d, let wy € F be a root of w1 + p. Let K4 be the
degree d unramified extension of K. We define the fundamental character

wqf - GKd — 0%

which does not depend on the choice of wy. For a € F*, denote by nr, the
unramified character of G taking a geometric Frobenius element to .

Let p : Gk — GLy(F) be a continuous Galois representation. If p is reducible,
then it is an extension of

fot i Fo1, i
nra/wai:O H2,iP by nraw.fzizo H1,iP
for some dominant p-restricted character p; = (f1,4, p2,i)i € X*(T) and some «
and o/ € F*. If p is irreducible, then p is
IndgK nr,aw%‘{ o pip P! TIsg !

where p7 again is a dominant p-restricted element of X*(7T') and o € F*. We note
that the main result of this paper in the case when 7 is irreducible already appears
n [LMS16] and [HW18], and so this case can be ignored if the reader desires.
[BDJ10] attaches to p a set W(p) of Serre weights (see also [Brel4, §4, Proposition
A.3] with the notation D(p)).

In both the reducible and irreducible cases, we now assume that pu; € X*(T)
with p; = (pa,4, p2,i) = (¢, 1) with 3 < ¢; <p—2foralli e Z/f. Fori e Z/f, let
a; be an element of F. Let M =[], F((v))ei @ F((v)f* be the p-module defined by

1#£0: {

o
(
1 = 0, p reducible : { E;J{ 11)) z Zj):;oeo + aaf_w“’fo
(e/79)
(=)

i— — pCf—igl 4 aiflvcf*ifl

= vfi

4

le

@

-1

i = 0, p irreducible : {‘p ;f :
@

(here the i-th factor corresponds to the embedding ¢_;).

Proposition 3.1. There are unique values a; € F for i € Z/ f such that V*(M) is
isomorphic to the restriction plg

Proof. Note that pis Fontaine—Laffaille by the genericity condition. We use Fontaine—
Laffaille theory as in [Brel4, Appendix A]. We address the case when 7 is re-
ducible and leave the irreducible case to the reader. Let M = ®;cz/ M () with
M9 = kpe @ kg f( be the Fontaine Laffaille module with

Fil'! M@ = M@ Fil>? M® = Fil— M® = kp @, Filor—1 M@ = g,
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p(el?) = e,
e, (fD) = fOHD ;10D for i # 1 and
)

oe®

for a; € kg such that p = Hompje , (M, Acris ®z, Fp) (see e.g. [Brel4, (16)]).

Let 91 be the F,[v] ®z, F-submodule of M generated by (¢;)icz, s and (fi)icz, -
Note that ¢ maps 9 to itself. Then a calculation (cf. [EGS15, §7.4] with J = ()
shows that ©,_1 (M) = F,_1(M), where the functors ©,_; and F,_ are introduced
in [EGS15, Appendix A]. The result now follows from [EGS15, Propositions A.3.2
and A.3.3]. O

For the rest of this section, we fix, for each i € Z/f, a; € F, the unique element
as in Proposition 3.1. In doing so, we thus fix M. If p is irreducible, let S5 be the
set {—w® w® W=D} Otherwise, let S5 be the set {w®|a;_1_; = 0}.

Proposition 3.2. The set W(p) equals {os|J C Sz} where oy is defined with
respect to fiz.

Proof. This follows from a direct calculation using [Brel4, §4]. O

3.2. Kisin modules and deformation rings. To describe tamely potentially
Barsotti—Tate deformation rings, we will use the theory of Kisin modules with

descent datum. Let 7 be the tame principal series type n1 & 12 : Ix — GL2(F,)
RO
where 7 = w; * for k=1 and 2 and

/-1
a) =3 ap ',
1=0

where ay,; € Z. We will suppose throughout that 2 < |ay,; — az,;| < p — 3 for all
i € Z/f and call such a tame principal series type generic. We will say a tame
inertial type 7/ is generic if its restriction to the quadratic unramified extension of
K is a generic principal series type.

The orientation of (aj,as) is the element s € W such that aijj)(l) > ag)@). By
an abuse of notation, we say that the orientation of (a;,ag) is an orientation for 7
if 7 can be expressed in terms of (a;,as) as above.

Let R be an O-algebra. For a principal series type 7, we will consider Kisin
modules over R with descent datum of type 7 (see [LLHLMI18, Definition 2.4]).
We will say that such a Kisin module Mp is in Y (@7 (R) if the cokernels of
Py - @ (Mr) — Mr and Gaetomy, : ¢ (det Mp) — det My are annihilated by
E(u) =u?! +p. Let v be ud~1.

Let s be an orientation for a generic tame principal series type 7 and 9 be an el-
ement of Y (1-7(R). Then 90 can be described by the matrices Mat (¢’S();1)R®RF,SH1(2))

after choosing an eigenbasis 5 (see [LLHLM18, Definition 2.11]). The following is a
generalization of [LLHLM18, Theorem 4.1] in the case of GLy, where f is allowed
to have a slightly more general form than a gauge basis.

Theorem 3.3. Let T be a tame generic principal series type and let s = (s;); € W
be an orientation for T. Let R be a complete local Noetherian O-algebra with residue
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field F. Let Mp € Y(O’l)’T(R) with Mat5(¢9ﬁR®RF sl+1(2))

— v — 1\ — 1 — 1
() () () ()

for i # 0 and A; <a a'> for i = 0, where B is an eigenbasis for Mp Sr

given by

F. Then there is a unique eigenbasis 3 of Mg up to scaling lifting B such that
Matﬂ(¢é;2R7si+l(2)) is given by

A= ((Xiv++[§i])v 1) A= <_3/ §> ’

As = (_p(Xi L [ai])  orAs= (1 e p>

respectively, for i # 0 and A;D(a, ') with A; as above for i = 0. Here [] denotes
o . v n (o] + Xo
the Teichmiiller lift, X;Y; = p for As, and D(a, o) = ( o] + Xo/>'

Proof. The proof is similar to the proof of [LLHLM18, Theorems 4.1 and 4.16] which
prove existence and uniqueness of (3, respectively. We describe some of the key
points. We modify [LLHLM18, Definition 4.2], defining dr(P) = ming 2vg(ry) + k
if P =3, rxv* € R[v]. Then the analogue of [LLHLM18, Proposition 4.3] holds
(see [LLHLM18, Remark 4.4]). The entry in the middle column of [LLHLM1S,
Table 5] becomes

1* <0 07 <0 07 o 0* <0
’U(SO) 0* ) 1* SO, 1* SO I r 1* I

respectively, and we modify [LLHLM18 Definition 4.5] for E() appropriately. For
1 <m,k <2, we define (5(A ) tobe dr(E, @ ) if A @ # As. A" = A3, we define
5(A§:Lk) to be dR(Efn)k) (resp. dR(Effl) )+ 1) if k =1 (resp. if k = 2). Finally, we let

5(AW) = min_ {5(4,, AYOY.

The analogue of [LLHLM18, Proposition 4.6] holds replacing 3 + dg(z)) with
2 4+ dp(2\9)). We define the notion of pivots for at 75 Ajz as in the [LLHLMIS,
Definition 4.8], and define the pivots in the case of A = = A3 to be the same as the
pivots in the case of A;. The analogue of [LLHLM18, Lemma 4.10] holds except
that the second equation of loc. cit. is changed to Aég = vPas + [a;] + Q22 when
A" — A;. Then the analogues of [LLHLM18, Proposition 4.11, Proposition 4.13,
and Lemma 4.14] give the eigenbasis 3.

We give more details for the algorithm in the case Z(i) = As. We let § > 1 be
an integer. Suppose that §(A®), which is necessarily greater than one, is . Then
there is an # € R[v] with dg(z) > & — 1 such that A"(® % Dy, (2)AD satisfies
5(A"@)Y) > § and 6(A/2’1(i)) > ¢. Note the crucial role played by the definition of
5(A'2’2(i)) as dr(E, /(Z ) 4+ 1 in this case. Moreover, these inequalities still hold after

right multlphcatlon by a conjugate of Das(z)? by a permutation matrix. This is
the analogue of [LLHLM18, Proposition 4.6], where the notation I is defined.
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Suppose next that §(A®) is § and that 6(A§ll)) > 0. Then there exists an

z € R[v] with dp(z) > 6—1 such that A & Uy, (2)AD satisfies §(A"(?) > § and

S(AYD), 5(ALD) > 6 (note that 5(A5Y) = 6(AY))). Again, we use that §(A7S)) =
/

dR(El’él)) + 1. Moreover, these inequalities still hold after right multiplication by
a conjugate of Ujz(z)? by a permutation matrix by the genericity assumption.

Suppose next that §(A®) is § and that 6(A§i1)), 5(Aéil)) > . Then there is an
z € R[v] with dg(z) > & — 1 such that A"(® %' Dy;(2)A® satisfies §(A"®) > §
and 5(A/1"£Z)), 5(A/2"£Z)). 5(A/1"2(Z)) > § using that Agzl) € mp - R[v]. Moreover, these
inequalities still hold after right multiplication by a conjugate of Dii(x)¥ by a
permutation matrix.

Suppose finally that 6(A®) is § and that 6(A§11)), 5(Agl)), 6(A512)) > §. Then
there is an = € R[v] with dg(z) > 6 — 1 such that A" < Loy (2)A® satisfies
§(A%@)) > § + 1 using again that Agll) € mpg - R[v]. Moreover, these inequalities
still hold after right multiplication by a conjugate of Loj(x)? by a permutation
matrix by the genericity assumption. Repeating these four steps repeatedly gives
the analogue of [LLHLM18, Proposition 4.13] in this case.

We deduce the forms of A; from the condition that v + p must divide the deter-
minant. Finally, the analogue of [LLHLM18, Theorem 4.16] proves the uniqueness
of 8 up to scaling. In the notation of loc. cit., we obtain the equation

(3.1) AP 4P AP MO = AP 4 16+ A0

(cf. [LLHLM18, (4.2)]). Suppose that dr(I)) > § > 1 for all j. Then one can show
that dg(I¥)) > ¢ + 1 for all j. This implies that 1) = 0 for all j. We again give
more details in the case Z(i) = A, or Az. The other cases are treated similarly. Let
kbe 1 or 2. We first compare the (k, 1)-entries of (3.1) to see that dR(I,EiQH)) > 0+1.
Using this and the (k, 2)-entries of (3.1), we see that dR(I,EilJrl)) >0+ 1. O

For the rest of the section, let p be as in §3.1, and let M be as in Proposition
3.1 so that p|g,_ is isomorphic to V*(M). Moreover, for simplicity, assume that
p is reducible. Recall the definition of Sz from §3.1.

Let s and s’ be in W such that one of the following holds for each i € Z/ f:

(1) s; and s, are both id;
(2) s; and s, are both not id; and
(3) s; is id, but s is not, and i € S5.

We say that i € Z/ f is case (1), (2), or (3) if the above relevant condition holds.

Proposition 3.4. Let s and s’ be in W as above. Let T be the tame generic inertial
type with o(1) = Rs(pup — s'n). Let R be the ring (’)[[(Xi,Yi)if:—Ol,Xa,Xa/]]/(hi)
where for each i € Z/f, h; is Y;, X;Yi —p, Yi —p, or X; if f —1—1i is case
(1), (2) with w=9 € S5, (2) with W=D ¢ S5, or (3), respectively. Let Mp =
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[L; R(v))e* @ R((v))f* be the p-module defined by

=1y = peri=L(p Vet (X b [ Vo i fi
f—iis case (1) : {zg;—l)) :Uf: (v +p)e" + (Xioy + [aia]Jo™—'F
ot @ s (I T e
[ case (32 {igi)) :ffiie:ew(w p)f?,

with the usual modification for i = 0. Then V*(MRp) is the restriction to Gk of
a versal potentially Barsotti—Tate deformation of p of type T.

Proof. Define w* € W and s, € S5 to be the unique elements such that w;;l =id
and (w*)"tsw(w*) = (s,,id,...,id). Then the Deligne-Lusztig representations
Ry(pp — s'n) and Rs_sa,.. ia)((w*) ™ (up — s'n)) are isomorphic by [Her09, Lemma
4.2]. Moreover, (the quadratic base change of) R, a,...ia)((w*) ™' (uz — s'n)) is a
generic principal series. Define w = (w;); by w; = (w}j_,_;)~"! for i € Z/f. Then
one easily checks that w is an orientation for (w*)~*(uz—s'n). Let Mg be the Kisin
module (with quadratic unramified descent) of tame inertial type (the quadratic
unramified base change of) 7(s,, —(w*) ™! (uz—s'n)) with AG~1 = Maty (Qbi();t;l,zﬂi(z))
given by Ay, As, Az, or Ay if f—iis case (1), f—iis case (2) and f—i € S5, f—iis
case (2) and f—i ¢ S5, or f—iis case (3), respectively. We claim that T)j,(MMr Qo)
is isomorphic to the restriction to Gx_, of p. Assuming this, by Theorem 3.3 and
the analogue of [LLHLM18, §5.2 and §6], T;;(Mg) is the restriction to Gx_, of a
versal potentially Barsotti-Tate deformation of 7 of type 7.

Let L be K((—p)¢) with e = ¢ — 1 if s, = id and Ky((—p)*) with e = ¢% — 1
otherwise. Let A be the Galois group Gal(L/K). We claim that

(MR ®oe « O¢ )™ = Mp.
This would finish the proof including the claim in the previous paragraph since
the restriction to G _ of p is isomorphic to M by Proposition 3.1, and clearly
Mpr ®0 F is isomorphic to M.

Let g5 be (pi)i. Let v* denote the torus element obtained by applying the
coweight \ to v L e, By [LLHLM16, Proposition 3.1.2], we see that a Kisin module
(with quadratic unramified descent) of tame inertial type (the quadratic unramified
base change of) 7 with Matﬂ(¢$l))wi+l(2)) given by A (resp. ADsy'D(a,a’)s0)
for i < f—1 (resp. for i = f — 1) gives a ¢-module M = HiF((v))e’i & F(v)f"
with (/"' §71) = M!_ (¢, §") where

M! = wi+1A(i)vw;+11(w;—1—i)71(l"f71—i*5/f—1—i77) (wig1)™!
— (w;_2_i)flA(i)Uw},z,i(w},l,i)*l(ufflfrs},l,m)w;_%i

. —1 ’
— (w;izii)_1A(1),Usfflfi(#ffl—i*5f71—i77)w’;c72ii
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for i < f—1 and M},l_ = AU=Ds5 D (e, o' )sgsy to(ws) ™ (Ho=som) - Changing to
the bases (¢’, ") = (¢/*,§")(w}_,_;) ™", we see that M is given by (M;); where

M; = A(i)vs;il,i(uffl,ifs’fflfm)w;izii(w;ilii)_l
= A(i)vs;il,i(Hf—lfi—s/fflim)sfilii
= A(i)Sgil_iv“fflfiﬂ}flfm

fori < f—1 and

M; | = AUV g1 D(a, O/)S()S;lv(wa)il(i“‘ofsé)n)(wg)*l
= A(ffl)salD(a,a’)sos;l(wg)*lv#rs{m
= AUV 57 tpho=0" D (o, o).
The proposition is now deduced by substituting for A® s, and L5 0

If 7 is an inertial type, let R™ parameterize potentially Barsotti-Tate (framed)
liftings of p of type 7. If T is a set of inertial types for K, then we let Spec RT
be the Zariski closure of U,c7Spec R™[p~!] in the universal (framed) lifting space
Spec R%' of p.

For applications to Shimura curves and algebraic modular forms on definite
quaternion algebras, it is convenient to consider fixed determinant deformation
rings. If ¥ : Gx — O is a continuous character, let Rﬁ’D be the quotient of
R%’ parameterizing (framed) liftings of 7 with determinant 1e. Let R¥'7 be the

simultaneous quotient of R%’ 0 and R parameterizing potentially Barsotti—Tate
(framed) liftings of 7 of type 7 and determinant e. We can similarly define the
quotient RY"T of RT. If R¥'" is nonzero, then R™ must be nonzero, ¢ must lift
zldetp, and 1|7, must be det 7. For all sets of types T considered below, the
determinants of all elements of T" coincide.

Now fix a Serre weight o in W (p). Suppose that o = o for J C S; where o is
defined with respect to y;. Let I be a subset of S such that I N {#w} has size at
most one for all i € Z/f. Let Tj 1 be the set of inertial types 7 such that o(7) is of
the form R,(uz — s'n) where s and s’ have the restrictions given by the following
table.

Siy S i¢J 1eJ
(£ NT =0 si = s, s #£id
w® el si=s;=id si=s; #1id
—w® el s =s;#id | s; =id, 5] # id

Lemma 3.5. Define wy € W by wy;—1 = id if and only if i ¢ J for all i € Z/f.
Then the set of tame inertial types Ty 1 corresponds by inertial local Langlands to
the set Ty (1) of Deligne—Luszlig representations defined in §2.

Proof. This is a computation using the definitions and [Her09, Theorem 5.2]. Note
that in the notation of loc. cit., *y(’j)T in this case is equal to the Kronecker symbol
for ¢ and 7. Another method of proof is to use [LMS16, Proposition 2.10] and
verify that if V(1) 2 Ry(u), then W’ (1) = JH(Ruw, (1t — swon)). O

Theorem 3.6. There is an isomorphism from R™7! to a formal power series ring
over O[[(Xi,Yi){;ol]]/(gi(J, I));, where g;(J,I) is given by the following table.



MULTIPLICITY ONE FOR WILDLY RAMIFIED REPRESENTATIONS 13

gi(J. 1) WD g S5 1w e S5\ T [ W10 e J
Gl T AT=0] YiVi—p) | VYi-p) | X(XYi-p)
w(f*lfl) c I }/’L }/’L X,L}/,L _
—oFT=) e T Y,—p X;Yi—p X,

IfI C I, then g;(J,I')|gi(J,I) for alli € Z) f and RT7.1" is the quotient of RT7"1 by
the ideal (g;(J,I'));. Analogous results hold for RY-T71 provided that v is chosen
so that R¥"T7.1 is nonzero for any, or equivalently all, choices of I as above.

Remark 3.7. Since twisting by the universal unramified deformation of the trivial
character gives an isomorphism RT = R¥T[X] (assuming R¥'T is nonzero), the

fixed determinant case follows from the first part of Theorem 3.6, and we ignore it
below (cf. [EGS15, Remark 7.2.2]).

Proof. Since R™7. is naturally a quotient of R%GKOO by [EGS15, Lemma 7.4.3],
it suffices to compute the Zariski closure of Urcr, ,Spec R™[p~'] in Spec R_‘G
Let R be the ring O[(X;, YZ—_){;Ol, Xo, Xo]/(gi(J,0)); and consider the deformatmn
Mp =1[; R(v))e* & R((v))f* of M defined by

=0T o+ p = Yig)e' + o (Xim + [ ])f
==Y 1(Xi1 + [ai1]) e + off

(1)
e )
) =vriT v p - XYl + X v
f_'LGSﬁ\J 90(11) 7I( g 1 1) 1 f
(1) = —Yioie' +of
f—ied: p(el) =ovYiet + X v ift
' p(FY) = Y + (v +p— X1 Yin1)f

with the usual modification at i = 0. Define the deformation functor D™ by
DY (A) = {(¢ : R — A,ba)}/ = for A a complete local Noetherian O-algebra,
where b4 is a basis for the free rank two A-module V*(¢*(Mp)) whose reduction
modulo m4 gives 7. Then the natural map DY — SpfR is a (/}ig—torsor and is thus
formally smooth of dimension 4. Let DY be SpfRY. One can rescale ¢ and {° by
units, and rescale the other basis vectors appropriately so that the coefficients in the
definition of ¢ which are 1 remain 1. This gives a éfn-action on R, and orbits give
isomorphic g-modules. We claim that the natural map SpfRY / é%n — SprLE

is a closed embedding. It suffices to show injectivity on reduced tangent spaces.
Suppose that t is a reduced tangent vector of Spf R /G2, which maps to zero in
Spr%"G . By formal smoothness, we can extend this to a map t : RY — Fle]/(£2).
Koo

Let M; be Mr®g Fle]/(?) so that M; and M®gF[e]/(e?) are isomorphic. Let M;
(resp. My ;) be the matrices such that p(¢e! @ g F, ' @gF) = M; (e @ F, f T @gF)
(resp. (' @rF[e]/ (), ' @RF[e]/(€%)) = Myi(e @RF[e]/(e2), F+ @rF[e]/ (£7))).
Then there are matrices D; € GL2(IF((v))) such that

(ldg + EDZ)MZ(p(ldg — EDifl) = Mtﬂ'

for all i € Z/ f, where ids is the 3 x 3 identity matrix (we can assume without loss
of generality that the terms without ¢ are ids by multiplying by their inverses).
We first claim that D; € GLy(F[v]) for all ¢ € Z/f. For each ¢, let k; € Z be the
minimal integer such that v*i D; € Matz(F[v]). Then vef-1-itkip(id3 —eD; 1) =
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vcfflfiJrkiMi_l(idg —¢eD;)M,; ; € Mats(F[v]), and thus ¢f—1—; + k; > pk;—1. Since
cfo1—i <p—1,ki >2+plki-1 —1). If k;_1 >n >1, then k; > n+ 1, from which
we derive the contradiction that k; > n for every n € N. Hence k; < 0 for all 4.

We next claim that if f —1—14 ¢ S, for some i € Z/ f, then ¢(Y;) = 0. Suppose
for the sake of contradiction that f—1—1¢ ¢ S; and t(Y;) # 0. Let N; € Mats(F[v])
be such that eN; = M, ; — M;. Then by the formulas for M; and M, ;, the first
(resp. second) entry in the top row of N; is exactly divisible by v¢/-1=i=1 (resp. v°).
On the other hand, since D; M; — M;p(D;_1) = Nj, the first (resp. second) entry in
the top row of N; is divisible by v®/=1-¢ (resp. v), which is a contradiction. Thus ¢
is a reduced tangent vector of

(SPERV/(Yi: f—1—i¢ S;))/G2.

Let 7 be the tame intertial type such that o(7) = Ry, (¢t — won). Then the
natural map from the quotient of

(32) SpER"/(@,{Yi: f—1—i¢ Sp}, {X.Yi: f—1—i€S,})

by (AS‘rfn to SpfR" /w is formally smooth by Proposition 3.4. In fact, it is an isomor-
phism since the domain and codomain are both of dimension f 4 4 over F. Indeed,
for the codomain this follows from [Kis08, Theorem 3.3.4] and p-flatness, while for
the domain we see directly that (3.2) has dimension f + 6. Since the map

SpfRE/(w, {Yi: f—1—i¢ S}, {XiVi: f—1—i€ S5}
— SpfR7/(w, {Y;: f—1—i¢ S,})

is an isomorphism on reduced tangent spaces, ¢ is a reduced tangent vector of
SpfR”™. Since SpfR™ — Spr%;G is injective on reduced tangent spaces again by
Koo

[EGS15, Lemma 7.4.3], t is zero.

Finally, since R is p-flat, it suffices to show that if #({+w;} NT) = 1 for all
i€ Z/f, then V*(M/(g:;(J,I));) is the restriction to Gx_ of a versal potentially
Barsotti-Tate deformation of p of the unique type 7 in Ty ;. This follows from
Proposition 3.4. O

4. PATCHING FUNCTORS AND MULTIPLICITY ONE

Let p: Gk — GLo(F) be a continuous Galois representation. Again, p is either
an extension of
f=1 i f—1 i

nra/wfzi:o H2,iP by nrawfzi:o H1,iP

or is
Gr | SIZ) mapt ot I peap

nraIndGK2 Y
for some dominant p-restricted character p; = (f1,5, p2,i)i € X*(T) and some «
and o/ € F*.

Definition 4.1. We say that a dominant p-restricted p € X*(T) is generic if
2 < (u,B) < p—3. We say that p is generic if y5 is generic or if p is semisimple
and 1-generic in the sense of [LMS16, Definition 4.1].

Note that if 7 is generic, then p is generic in the sense of [BP12, Definition 11.7]
and [EGS15, Definition 2.1.1]. We now assume that 7 is not semisimple and is
generic. Then a twist of p is of the form in §3.1.
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We now fix a Serre weight o € W(p) (W (p) is recalled in §3.1). Let p € X*(T)
be such that o = F(u —n). If 0 is 0;(5) with respect to yp, define wy,) € W by
Wj(e),i—1 = id if and only if i ¢ J(o) for all i € Z/f as in Lemma 3.5. Then we set
52 to be w(Sz) with w = w;(lo)w(wJ(g)).

Lemma 4.2. The set W(p) is {o;|J C S5} where o is defined in terms of p.
Proof. This follows from Proposition 3.2 and [LMS16, Proposition 2.4]. O

. itpz—1
Let ¢ : Gx — O* be an unramified twist of w%lez“(#l’ il lifting ! det 7.

Suppose that My () is a minimal fixed determinant patching functor over O for
p¥ with fixed determinant ¢V (see [EGS15, Definition 6.1.3]). (Note that D(p") in
the conventions of [EGS15, §2] is W (p) in ours.) Using contragredients, we identify
REV with RED. This identifies R with the (framed) lifting ring of p¥ parameterizing
lifts p¥ of type 7 with HT,,(p") = {—1,0} for all k : E < C,,. Note that such lifts
of p¥ are called potentially Barsotti-Tate in [EGS15, §7]. Similar identifications
are made for multitype (fixed determinant) potentially Barsotti-Tate deformation
rings. For an Ok [GL3(Ok)]-module N, we will denote Mo (N ®o, O) by M!_ (N),
where tensor product is over the map Ok < O in §1.2.

Lemma 4.3. The Roo-module M! (R, /Fil3 R,,) is cyclic.

Proof. Let T be the tame type such that o(7) = Ry, (u—wn). Then W (p) is exactly
JH(7(7)). Let 0°(7) C o(7) be the unique lattice up to homothety with cosocle
isomorphic to o (see [EGS15, Lemma 4.1.1]). Let °(7) be the reduction of ¢° (7).
Then the natural map R,, — @°(7) induces a map

(4.1) R,/ Fil3, R, — &°(7)/rad’5° (7).

By [LMS16, Proposition 3.2], the Jordan-Holder factors of R,/ Filé R,, appear
without multiplicity. Moreover, those Jordan-Holder factors which are also in W (p)
are in JH(3°(7) /rad?*3°(7)) by [EGS15, Theorem 5.1.1] (these are exactly the Serre
weights o with respect to p with J C S7 and #J = 1.). Thus the kernel of
the map (4.1) contains no Jordan-Holder factors in W (p). We then see that the
induced map
M/ (R,/Fil%, R,) — M. (5°(7)/rad’5" (7))
is an isomorphism. As M/ (3°(7)) is a cyclic Roo-module by [EGS15, Theorem
10.1.1], so is M/_(7°(7)/rad*3°(7)). O
Lemma 4.4. Suppose that I C S such that
#I N {£w®}) + #(57 N {xw@}) =1

or all 1. Let e a submodule of Fi 1/ Fi I, an et N e its image in
li. Let N b bmodule of Fil§ R, 1/ Fil™ R, 1, and let N b
gr’f8 R, 1. If gr’f8 R,.1/N contains no Serre weights in W (p), then

(Fﬂg@ RHJ/ Fﬂg& RH,I)/N
contains no Jordan—Hélder factors in W (p).
Proof. 1t suffices to show that grgrl R, 1/ grgrl N contains no Jordan-Hélder fac-
tors in W (p), since by assumption gr¥ R, 1/ grk N contains no Jordan-Hélder fac-
tors in W (p). In fact, it suffices to show that gr’g;r1 Wi k+1.1/(N N gr’g;r1 Wi kt1,1)
contains no Jordan—Holder factors in W (p) since Z|k|:k gr’gr1 Wi k1,1 = grgrl R, .
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By Proposition 2.1, a Jordan-Hélder factor of grgrl W k+1,1 has the form oy
with respect to p where J' NI = () and there is a j € Z/f such that if k(J') = k’
then k] = k; for all i # j and k) = k; + 1. Suppose that o, € W(p). If &} = 2,
then let J = J'\ {~w;w¥} (with w defined in the beginning of the section).
Otherwise, J' N {£+w} = {w;w} since we assumed that oy € W(p). In this
case, let J = J'\ {w;w?}. Then o; € W(p) and is thus a Jordan-Hélder factor of
N N Wy k+1,1- By Proposition 2.3, o is a Jordan—-Holder factor of V. O

The following lemma generalizes [EGS15, Lemma 10.1.13], one of the methods
used to compute patched modules.

Lemma 4.5. Let R be a local ring, and M" C M’ C M be R-modules such that
M'/M" and M’ are minimally generated by the same finite number of elements.
Then M" C mM. If, moreover, M is finitely generated over R, then M/M" and
M are minimally generated by the same number of elements.

Proof. By Nakayama’s lemma, that M'/M" and M’ are minimally generated by
the same finite number of elements implies that M C mM’ and thus M"” C mM.
If M is finitely generated, then another application of Nakayama’s lemma implies
that M/M" and M are minimally generated by the same number of elements. I

The following proposition generalizes the results and methods of [HW18, LMS16]
by combining Lemmas 4.3, 4.4, and 4.5.

Proposition 4.6. Suppose that I C S such that #(Iﬂ{:l:w(i)})—l—#(Sgﬁ{:I:w(i)}) =
1. Then Méo(ép‘]) is a cyclic Roo-module.

Proof. By Nakayama’s lemma, it suffices to show that M. (R, ) is a cyclic Roo-
module. We will show that Méo(ll%%[/l?ilg+1 R, 1) is a cyclic Ro-module by in-
duction on k. If k = 1, then the result follows from Lemma 4.3.
Now suppose that M/ (R, 1/ Filg+1 R, 1) is a cyclic Roo-module. Let J be
{JCS:k(J)=k,JNI=0,0;, € W(p)}.
Recall that for each J € J,
V., CFily R,/FilS7? R,
is defined before [LMS16, Proposition 3.9] to be the minimal submodule whose im-
agein gr’é R,, contains o;. Then we let V ; ; be the image of V ; in R, 1/ Filg+2 R, 1.
Note that M. (V ;) is a cyclic Re-module by Lemma 4.3. Let V be ZJEJ VircC
Fil¥, R, ;/Fil"® R, ;. By Lemma 4.4, the quotient (Fil% R, ;/Filk™ R, )/V
does not contain any Jordan-Holder factors in W (p). Thus the natural inclusion
M. (V) C M (Fil§ R,/ Fils™® R, ;) is an equality. In particular,

M. (Fil% R, 1/ FilE™ R, 1)

is generated by no more than #J elements. On the other hand, Méo(grg R, 1) =
DregM! (o) is generated by (at least) #J elements. By Lemma 4.5 with M =
M. (R, 1/ FilE? R, 1), M" = M/ _(Fil}, R,, 1/ Fil5"? R,, 1), and M" = M/ (gt R, 1),
M (R,1/Fills™ R, 1) is a cyclic Re-module. O

Proposition 4.7. The scheme-theoretic support of M/ (R.1) is Spec (Roo@Rw,D R¥Tou1),
2
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Proof. Since M/ (Ro.1)[p~"] is isomorphic to So(ryer, Ml (0(T)), the scheme-
theoretic support of M/_(Ry.7)[p~'] is Us(r)eT, ., SPec (ROO® oRY7)[p~] by the
proof of [EGS15, Theorem 9.1.1]. Since M/_(Ry 1) is O-flat by deﬁmtlon of a patch-

ing functor, the scheme-theoretic support of M/ (R, 1) is the Zariski closure of that
of M. (Ry.1)[p~']. The result now follows from the definition of Spec R¥"T=1. [

In order to weaken the hypotheses on I in Proposition 4.6, we compute an integral
scheme intersection, of which the following lemma is the key example.

Lemma 4.8. There is an exact sequence
0= 0Y]/(Y(Y —p)) = O[Y]/(Y) @ O[Y]/(Y —p) = O[Y]/(Y,p) =0,

where the second and third maps are the sum and difference, respectively, of the
natural projections.

Proof. Given a ring R and ideals I and J C R, the sequence
0—-R/(INJ)—=R/I®R/J—R/(I+J)—0,

where the second and third maps are the sum and difference, respectively, of the

natural projections, is exact. The lemma follows from this exact sequence and the
relations (Y) N (Y —p) = (Y(Y —p)) and (Y) + (Y —p) = (V,p) in O[Y]. O

The following is our main result in the setting of patching functors. Recall that
P is generic, but not semisimple.
Theorem 4.9. Suppose that I C S such that #(Iﬂ{:l:w(i)})—I—#(S%ﬂ{:l:w(i)}) <1
Then M, (R u1) is a cyclic Rog-module.

Proof. We proceed by induction on k := f — #57 — #I. The case k = 0 follows

from Proposition 4.6. Suppose that k > 0 and that (I U 57) N {£w} = . Then
there is an exact sequence

0— R%[ — éu)ju{w(j)} ¥ RM,IU{—WU)} — RH)IU{iw(j)} — 0,
which induces an exact sequence
0— Méo(R ) — M, (Ru IU{w(J)})EBM (Ru IU{—w(j)}) — M, (Ru IU{iw(ﬂ)}) —0,
where the third map is the sum of two surJections by exactness of M/ _(-). By the
inductive hypothesis and Proposition 4.7, M (R# ru{wy) and M} (R# Iu{ w})

are cyclic Ro-modules with scheme-theoretic support Spec ROO(X) Rw o, 1u{w(@)}
and Spec Roo® R0 RYTouu-w0y | respectively. The scheme-theoretlc support of
P
M (R, 10{+w}) is thus a closed subscheme of the intersections of Spec Roo@) RV T 10wy
p

and Spec Roo@) oRYTouu-w0)  which is Spec ROO(X) oRYT o 1u{e@} /p by The-

orem 3.6 and Lemma 3.5 (we can assume without loss of generality that p has the
form in §3 by twisting). Since M’ (R, ;i {1w}) is a cyclic Reo-module, there is a
surjection

R DRw T, IU{W(J)}/p — M/ (RMJU{iW(])})

nf‘l

Since {#w®} N S¢ = 0, from Proposition 2.1 we see that M. (R, jwy) and
M (R, 10{+wty) have the same Hilbert—Samuel multiplicity. Thus, both sides of
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the map ROO@M,DRw’TMU{w(J’)}/p = M (R, 1s{+wy) have the same Hilbert—
2

Samuel multiplicity. Since RV Toruie) /p contains no embedded primes, this map
is an isomorphism (see the argument of [Lel8, Lemma 6.1.1]).
In summary, there is an exact sequence

= o~ T ; > T ; > T j
0— M. (R,r)— ROO®R%,DR1Z} wuw“)}@Rm@R%,DRw o du{-w@D} — ROO®R%DR1" o 1u{w@ [ — (),

where the third map is the sum of two surjections. Any lift of a generator under

a surjection between two cyclic modules over a local ring is again a generator by

Nakayama’s lemma. Hence, we can assume that the third map is the difference of

the natural projections. Then by Theorem 3.6 and Lemma 3.5, this exact sequence

is obtained from taking a completed tensor product with the exact sequence in

Lemma 4.8. Hence, we see that Méo(éul) = Roo@)Rf,u R¥To.1 and in particular
I3

that M/ (R, 1) is a cyclic Roo-module. O

5. GLOBAL RESULTS

Let F' be a totally real field in which p is unramified. Let D,p be a quaternion
algebra which is unramified at all places dividing p and at most one infinite place,
and let 7 : Gp — GL2(F) be a Galois representation. If D, is indefinite and
K =1],Kw C(D®rA¥)* is an open compact subgroup, then there is a smooth
projective curve Xg defined over F' and we define S(K,F) to be Hl((XK)/f,IF).
If D;p is definite, then we let S(K,F) be the space of K-invariant continuous
functions

f:D\(D®pAF)* — F.
Let S be the union of the set of places in F' where T is ramified, the set of places
in F where D is ramified, and the set of places in F' dividing p. Let T"™™V be the
commutative polynomial algebra over O generated by the formal variables T,, and
S, for each w ¢ S U {w;} where w; is chosen as in [EGS15, §6.2]. Then TS:univ
acts on S(K,F) with Ty, and S, acting by the usual double coset action of

[GL2(OF,) (w” 1) GL2(Op,)]
and

Ww
(GL(Or,) (T ) GLa(Or)],
respectively. Let TV — FF be the map such that the image of X2—T,, X +(Nw)S,,
in F[X] is the characteristic polynomial of 5" (Frob,,), where Frob,, is a geometric
Frobenius element at w, and let the kernel be ms.
For the rest of the section, suppose that

w

7 is modular, i.e. that there exists K such that S(K,F)n,. is nonzero;
TlGp o I8 absolutely irreducible;

if p =5 then the image of 7(Gp(c,)) in PGL2(F) is not isomorphic to As;
(4) Tlap, is generic (Definition 4.1) for all places w|p; and

5) Tlgy, is non-scalar at all finite places where D ramifies.

Let v[p be a place of F', and let p be 7|q,, . Let k, be the residue field of F,,.
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We define S™® to be S(K?, ®@wes,wtvlw)m. as in [EGS15, §6.5]. We define
M™n to be the F-linear dual of (S™" @ F)[mL], factoring out the Galois action in
the indefinite case (see [EGS15, §6.2]).

Theorem 5.1. Suppose that 7 : Gp — GLa(F) is a Galois representation satisfying
(1)-(5). If o € W(p) and R, is the F[GLa(k,)]-projective envelope of o, then
Homp(gr, (k, )] (Ro, (M™™)*) is one-dimensional.

Proof. The case where p is semisimple follows from [L.MS16, Corollary 5.4]. We
now assume that 7 is not semisimple. Let 0 = F(u —n) € W (p). Identify k, with
a finite field F,. Then R, is R, ®p, F. Let M, be the minimal fixed determinant
patching functor defined in [EGS15, §6.5]. By construction, if mp__ is the maxi-
mal ideal of R, then Homgr,(r,)(Ro, (M™")*) is the dual of My (Rs)/mg., =
M! (R,)/mpg_, which is one dimensional since M/ (R),) is a cyclic Ro-module by
Theorem 4.9. (]

Let M™"(K,(1)) denote the space of coinvariants (M™")y ;). Note that
M™n(K,(1)) is isomorphic to the dual of (S(K"K,(1), ®wes,wrvlw) ®o F)[mL],
factoring out the Galois action in the indefinite case, by a standard spectral se-
quence argument using that m~ is non-Eisenstein.

Corollary 5.2. Suppose thatT : Gp — GLa(F) is a Galois representation satisfying
(1)-(5). Then the GL2(F,)-representation (M™"(K,(1)))* is isomorphic to Do(p).
In particular, (M™"(K,(1)))* depends only on p and is multiplicity free.

Proof. There is an injection Dy (p) — (M™"(K,(1)))* by [Brel4, Proposition 9.3].
Fix an F[GLy(F,)]-injective hull (M™(K,(1)))* < I. Since

Homa, e, (Ros (M™7 (K, (1)))°)

is one-dimensional for all ¢ € W(p) by Theorem 5.1, this injective hull factors
through Dy(p) by [BP12, Theorem 1.1(i)]. Since Do(p) and (M™"(K,(1)))* are
finite length F[GLy(F,)]-modules, they must be isomorphic. Finally, note that

Dy(p) is multiplicity free by [BP12, Theorem 1.1(ii)]. O
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