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ON SOME NONADMISSIBLE SMOOTH IRREDUCIBLE
REPRESENTATIONS FOR GL»

DANIEL LE

ABSTRACT. Let p > 2 be a prime. We give examples of smooth absolutely
irreducible representations of GLo (st) over F 3 which are not admissible.

1. INTRODUCTION

Smooth representations of p-adic reductive groups arise naturally in the theory
of automorphic forms. Smooth here means that every vector is invariant under
an open subgroup. Classical finite-dimensionality results for automorphic forms
imply admissibility: the invariants of the representation under any open subgroup
is finite-dimensional. Both of these notions make sense for a base field of any
characteristic. Representation theory over base fields of positive characteristic has
attracted considerable attention in recent years because of its connection to con-
gruences of automorphic forms and the modularity of Galois representations.

In the recent groundbreaking work [AHHV17], smooth, irreducible, admissible
mod p representations of connected reductive p-adic groups are classified in terms of
supercuspidal representations, closely mirroring the earlier theory in characteristic
not equal to p. For a base field of characteristic different from p, it is known from
[Vig96, I1.2.8] moreover that every smooth irreducible representation of a connected
reductive p-adic group is admissible. [AHHV, Question 1] asks whether a similar
statement is true for mod p representations. As mentioned in loc. cit., this question
has an affirmative answer in some simple cases and when the group is GL2(Q))
combining results of [BL94, Bre03, Ber12]. We provide a negative answer, at least
when p > 2, already for GLg2 but over a larger field.

Theorem 1.1. Let p > 2. There exists a smooth absolutely irreducible GL2(Q)s)-
representation over Fps which is not admissible.

It will be clear from the construction that there are infinitely many such represen-
tations. Moreover, similar constructions exist for unramified extensions of larger
degree (see Remark 2.3), but we content ourselves with describing the simplest ex-
ample. The above result is yet another example of a distinguishing feature of the
mod p theory, namely that the theory is very sensitive to the field of definition of
the group.

Admissibility is a desirable property, in part because it implies that the irre-
ducible representation has a central character, admits Hecke eigenvalues for weights,
and has an endomorphism ring of finite dimension over the base field. [AHHV,
Question 2, Question 8] ask whether irreducible mod p representations must have
central characters and Hecke eigenvalues. The representations that we construct
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have central characters and Hecke eigenvalues (matching certain supersingular rep-
resentations), and so we do not answer these questions. However, by restricting
scalars for a representation we construct, we also prove the following.

Theorem 1.2. There exists a smooth irreducible GLy(Q,3)-representation over F s
whose endomorphisms contain Fp.

Of course, such a representation cannot be absolutely irreducible as the endomor-
phism ring over F,, would contain F,, ®F 5 F,.

We now make brief remarks on the construction. Irreducible mod p represen-
tations are typically rather difficult to construct, much less nonadmissible ones.
Global constructions coming from the theory of automorphic forms always give ad-
missible representations and parabolic induction preserves admissibility. However,
the Bruhat—Tits tree and the diagrams of [Pas04] give a powerful method of con-
structing mod p representations of p-adic GLy with fixed K-socle where K is the
maximal compact subgroup. [BP12] uses this close control of the K-socle to prove
both irreducibility and admissibility for many representations that they construct.
The main idea of this paper is that the control of the K-socle can also be used
to prove irreducibility and nonadmissibility. We construct an infinite-dimensional
diagram that gives rise to a nonadmissible GLa(Q,s)-representation, and prove
irreducibility using the methods of ibid.
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1.2. Notation. Let p > 2 and let ¢ be p/ for a positive integer f. Fix an algebraic
closure F,, of F,. If V is an F,-vector space, let Vg, denote V ®p, F,

Let G be GL2(Qq), Z the center of G, K be GL2(Z,), and I (resp. I;) the
preimage in K of the upper triangular matrices (resp. unipotent upper triangular

matrices) in GLa(F,) under the natural reduction map. Let II € G be the matrix
(g 5) Then II normalizes I and the normalizer N (I) of I is IZ U IZTI. Moreover,
we have an isomorphism

(1.1) N(I)/<(gg)>i>l>42/2
(1.2) IT — (id, 1).

For a character x of IZ, let x® be the character of IZ given by precomposing x by
II-conjugation. If V' is an I Z-representation and x a character of 17, we let VX be
the x-isotypic part of V.
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2. DIAGRAMS

2.1. Diamond diagrams. A diagram is a triple (Dg, D1, ) where Dy is a smooth
K Z-representation, Dy is a smooth N (I)-representation, and r is an I Z-equivariant
map Dy — Dgy. A diagram is a basic 0-diagram if r induces an isomorphism
D, 5 Dl

Let p: Gg, — GL2 (Fp) be a generic continuous irreducible representation in the
sense of [BP12, Definition 11.7] (such representations exist with the assumption
that p > 2). Let D(p) be the set of Serre weights defined in [BP12, §11]. To p,
[BP12, Theorem 13.8] attaches a family of basic 0-diagrams. We fix for the rest of
the paper a basic 0-diagram (Dy(p), D1(p), r) in this family which is defined over F,.
That is Dy(p) and D1 (p) are finite dimensional KZ and N (I)-representations over
F,, respectively, and (Dg (p)?p , Dy (p)]?p, r) is a member of the family constructed in
loc. cit. Then r identifies D1(p) with Do(p)’* as I Z-representations, which we will
identify implicitly.

In fact, the isomorphism classes of Do(p) and D;(p) do not depend on the above
choice (though r does). The K-representation Dy(p)|x satisfies the following prop-
erties:

e the K-action on Dy(p) factors through GLo(Fy);
e there is a direct sum decomposition

Do(p) = ©oep(p) Do (p)

where the GLo(F)-socle of Do »(p) is o for all o € D(p);

e the Jordan—Holder factors of Dg(p) are multiplicity free ([BP12, Theo-
rem 13.8]), and D1(p) is a multiplicity free semisimple IZ-representation
([BP12, Lemma 14.1]).

Recall from [BP12, Lemma 11.4] and the paragraph thereafter that there is a
bijection
2°/7 = D(p)
J— oy

Define an automorphism ¢ : 22/f — 2%/f by j € §(J) if and only if j +1 € J
(resp. j+1 ¢ J) for j # 0 (resp. for j = 0). This “shift then flip at j = 07 is
denoted §; in [BP12, §15].

We introduce one final piece of notation. For 0 < s < g —1, let

Soi= Do X (W) e Fy[K].

A€EF,

Proposition 2.1. Let v be a nonzero element in Di(p)X. Then there is a unique
0 < s(x) < q— 1 such that S, (v) is a nonzero element of (sockx Do(p))™.

Proof. Since D1(p)X is one-dimensional, the K-representation generated by v has
irreducible socle using the last two bulleted points above (cf. the proof of [Brell,
Proposition 5.1(i)]). The result now follows from [BP12, Lemma 2.7]. O

Define a linear map
S: Dy(p) — (socx Do(p))™

which maps a nonzero (IZ, x)-eigenvector v to Sy(y)v.
We recall the following result.
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Proposition 2.2. Let x; be the I-character of O'?. Then S o1l gives an isomor-
phism D1(p)X’ to D1(p)Xse) for all J € 22/7.

Proof. This follows from [BP12, Lemma 15.2] (see also the proof of [Brell, Propo-
sition 5.1]). 0

2.2. An infinite diagram. In this section, we let f be 3.

Remark 2.3. When f = 2, 2%/f is a single §-orbit. When f = 3, 2%/f consists of
two J-orbits, namely

0+ {0} —{0,2} — {0,1,2} — {1,2} = {1} — 0
(2} = {0,1} = {21,

For f > 3, 2%/7 always contains more than one d-orbit since the size of an orbit

must divide the order of the automorphism ¢, which is 2f. It is the existence of
more than one §-orbit which allows us to make the construction in this section.

Let Dy be the K Z-representation @;cz Dy ; where there is a fixed isomorphism
Dy, = Do(p)Fp. Let ¢; be the inclusion Dy(p) C Dy; C Dy. For v € Dy(p), we
denote ¢;(v) by v;.

Let Dy be Dél. Let A = (\;)iez be in HieZ F:. For such a A\, we now define an
action of N(I) on D; such that I1? acts trivially. By (1.1), it suffices to define an
involution on D; taking DY to Di‘s for every character x of IZ. We will denote

this involution by II.
Let x4+ be the I Z-character of the space aﬁ} and x_ be the IZ-character of the

space Uﬁ)_l} (as usual 12 acts trivially).

Proposition 2.4. There is an [Z-character x1 (resp. x2) such that both of the
spaces Do o, (p)X* and Do 5, (p)Xi (resp. Do o1, (P)¥2 and Do o, (p)X2) are nonzero.

Proof. This follows from an explicit check using [BP12, Corollary 14.10 and Lemma
15.2]. In the notation of [BP12, §11], we have that o, corresponds to

Mo(r0), A1 (1), Aa(r2)) = (ro,p —2 — 11,12+ 1)
and oyg,1} corresponds to
(Mo(r0), A (1), A2(r2)) = (p—1—=rg,r1 + 1,p—2 — 19).
Then x; corresponds to

(1o(Ao(r0)), p1(A1(r1)), p2(A2(r2))) = (p =2 —ro,p =1 — 71,72 + 1)

and y2 corresponds to

(110(Ao(r0)), 1 (A1(r1)), p2(X2(r2))) = (p — 10,71 + 1,72).
O

In fact, the characters x; and yo are uniquely described by the properties in
Proposition 2.4, but we will not use this. As we will see, the only property that we
will need is that x; (resp. x2) is a character in Doyg{z}(p)l1 (resp. Doﬂg{oﬁl}(p)b),
which is not in (oy23)" (resp. (040,13)"). The exact choices and formulas of Prop-
position 2.4 will not be important, and we include them only for the sake of con-
creteness.
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If v € Dyi(p)X with
X & X x—x2 xaxih
we define N
H(’Ul) = (H’U)l

If v € Di(p)X+, then we define

ﬁ(’l)l) = (H'U)i—i-l'
If v € Dy(p)X~, then we define

ﬁ(’l)l) = (H’U)i_l.
If v € Dy(p)x*, then we define

II(v;) = As(IIw);.

This now uniquely defines an F,-linear involution II of Dy, and it takes Df to Di‘s
for every character x of IZ as desired.

Let D(\) be the basic 0-diagram (Dg, D1, can) with the above actions, where can
denotes the canonical inclusion D1 C Dgy. We define an Fp—linear map S : Dy —
(SOCKDo)Il by the formula §Li =;5, where S is as defined in §2.1.

3. THE CONSTRUCTION

For the purposes of notation, we review the proof of the following result, which
is a special case of [BP12, Theorem 9.8], although we work over F, rather than F,,.

Theorem 3.1. There exists a smooth G-representation T over Fy such that
e there is an injection of diagrams (Do(p), D1(p),7) C (T|xz,T|N(1),1d);
e 7 is generated as a G-representation by the image of Do(p); and
e the induced injection sock Do(p) < sockT is an isomorphism.

Proof. Let Q be the K-injective envelope of Dg(p)|x. We give Q a K Z-action by
demanding that IT? acts trivially. There is an idempotent e € End;(€) such that
e(?)|1 is an I-injective envelope of Dy(p). There is a decomposition of e(2)|; as a
direct sum
DLy,

where x runs over the I-characters in D (p) and €, is an I-injective envelope of
the x-isotypic part of Dq(p). By [BP12, Lemma 9.5], there is an F,-linear map
e(Q2) — e(92) which intertwines the action and II-conjugate action of 17, extends
the action of IT on D1 (p), and whose restriction to §2, for each x above gives a map

Qy — Qs

This gives an action of N(I) on e(2). There is also an action of N(I) on (1 —e)(Q)
by [BP12, Lemma 9.6]. This gives an action of N(I) on 2 whose restriction to I is
compatible with the action coming from K Z on €. By [Pas04, Corollary 5.18], this
gives an action of G on €2. We then take 7 to be the G-representation generated
by Do(p). O

Theorem 3.2. There exists a smooth G-representation m over F, such that
e there is an injection of diagrams D(\) C (7|k z, 7| n(r),1d);
o 7 is generated as a G-representation by the image of Dy;
e the induced injection sockx Dy < sockm is an isomorphism; and
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o if \€[[;c,F, then w is defined over Fy.

Proof. Let © be the K-injective envelope of Do(p)|x as in the proof of Theorem
3.1. We give Q a KZ-action by demanding that II? acts trivially. Recall the
definitions of e € End;(2) and Q, from the proof of Theorem 3.1. Now let Q.
be the K Z-representation @;cz2; where there is a fixed isomorphism ; & Qﬁp.
Let ¢; be the K Z-injection Q C €; C Q. To define an action of N(I) on Q.
it suffices to define an involution, which we call ﬁ, on 2o, which intertwines the
action and II-conjugate action of IZ. For each i € Z, we define Mo Li|(1,e)(9) to be
tiof(1—eyy- For x & {x+, X% x— X2, X1, X1}, we define ITos;[q to be ¢; oIl|q, .
We define IT o Li|Qx+ to be 111 OH|Qx+, Mo tila, tobet;_1ollg ,and Mo Li|QX1
to be ¢; o )\Z‘H|QX1. This completely determines the Fp—linear involution II. Tt is
easy to see that the defined action of N(I) on Q. extends the action of N(I) on
Dy. By [Pas04, Corollary 5.18], this gives an action of G'on Q. If A € [[;, FX,
then this action is defined over ;. Then if we let m be the G-subrepresentation
of Qs generated by Dy, 7 satisfies the required hypotheses. Indeed, we have that
sock oo = sockgm™ = socg Dy, and 7 is defined over [y if Q0 is. O

Let Do,1(p) and Do, 11(p) be Do,g,, (p) © Do,og,; (p) and @,Do,0,(p), respec-
tively, where the sum is over

J € {0,{0},10,2},{0,1,2},{1,2}, {1}}.

(This partition 2%/ = J U J¢ corresponds to d-orbits, see Remark 2.3.) We now
recall the following special case of [BP12, Theorem 19.10(i)], since the arguments
play a crucial role in the proof of Theorem 3.4.

Theorem 3.3. Any G-representation T satisfying the hypotheses in Theorem 3.1
is absolutely irreducible.

Proof. Let 7' C TF, be a nonzero G-subrepresentation. Since soc KTF, = socix Dy (p)?p,
there is a J such that Homg (o, 7’) is nonzero. Then by [BP12, Lemma 19.7],
we have the inclusion Do,gy (p)ﬁp C 7'. Repeating this, one obtains an inclu-
sion of one of Do s(p)s, and Dor1(p)g, in 7. Then either (7/)Ix1 or (7)1 s
nonzero. Applying II, we see that they both must be nonzero so that Dy s, (p)?p
and Doﬂg{z}(p)ﬁp are both in 7. Repeating the earlier argument, we have that
Do(p)s, C 7'. Since 75 is generated by Do(p)g, , we have that 7/ = 75 . O

The following is the main result of this section.

Theorem 3.4. If \g € Fy, and A\; # Ao for all i # 0, then any G-representation
w satisfying the hypotheses in Theorem 3.2 is irreducible over Fp. If moreover the
F,-span of (\;); is F,, then m is irreducible as a G-representation over F,.

Proof. Let 7 be a nonzero G-subrepresentation of 7 seen as a representation over
F, by restriction of scalars. Since socxn’ C Dy, there exists ¢ € D(p) such that
Homp (o, 7') is nonzero. Then there exists a (¢;); in ®;ezF, such that

(Z CiLi) (Do,s(p)) N’ #0.

%
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Lemma 3.5. Suppose that o € D(p) and (d;); € ®iczF, are elements such that
(Z dm-) (Do.o(p)) N7’ # 0.

Then for any j € Z,

(Z diLi-i—j) (Do(p)) C .

Proof. We assume that o is gy, as the other cases are similar. Then as in the proof
of Theorem 3.3, we see from repeatedly applying STI that

(Z diLi-i-j) (Do,r1(p)) C 7
for j > 0. Since for each j > 0, we have that

(Z dﬂm‘) (Do,r1(p)2) C 7,

we have that

(Z diLiJrj) (Do,r(p)) c '
for j > 0. Again repeatedly applying §ﬁ, we see that

(Z dibi+j> (Do,1(p)) C

for all j € Z. Then since l

(32 ditiss ) (Do (o)) <
for all j € Z, we have that l

(Z dﬂm) (Do,11(p)?) C '
for all j € Z. We conclude th;t

(Z diLi-i-j) (Do,11(p)) C 7

for all j € Z by again repeatedly applying STI. 0
In the proof of the next lemma, we will use the following notation. For (d;); €
@iezFp, let #(d;); be the cardinality of {i € Z|d; # 0}.

Lemma 3.6. There is a nonzero constant ¢ € F,, such that cto(Do,oo, () C 7'

Proof. Fix nonzero elements v! € D1(p)X* and v? € Di(p)X2. One checks that
(STI)%v! and STIv? are nonzero elements in aﬁ)} C Di(p) using the definition of x;
and 2 and Proposition 2.2. Thus, there exists a scalar p € F* such that

(ST)*v! = pSTIv?.

Then by the definition of the action of IT on D1, we have that
(STI)%v} = A\;uSTIv?

for all 7 € Z.
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By Lemma 3.5, there exists a nonzero (¢;); in @ieZFp such that
( Z CiLi)Do(p) c.
i

Assume that #(c¢;); is minimal among such elements of @iGZFp- It suffices to show
that #(c;);=1 by Lemma 3.5. By Lemma 3.5, we can also assume that ¢y is nonzero.
Since >, ¢;v} and Y, ¢;0? are in 7/, then by the first paragraph, we have that

Z cl((gﬁ)%l1 — /\ougﬁv?) = Z()‘l - )\o)ci,ugﬁvf

is in 7', using that Ao € F,. We see from Lemma 3.5 that

(Z C;Li) Do,ooy (p) N7 #0

for ¢ = (A; — Ao)ei. Since the A\; # Ao for @ # 0 and ¢o # 0, #(c}); = #(¢;) — 1.
Since we assumed that #(c;); is minimal, we must have that #(¢;); = 1. O

We now complete the proof of Theorem 3.4. By Lemma 3.5, it suffices to show
that ¢ in Lemma 3.6 can be taken to be any element of F; . If 7’ is a subrepresen-
tation of m over IF,, this is clear. Now assume that the Fy-span of ()\;); is F,. By
Lemma 3.5, ctj(Do(p)X*) C «’ for all j € Z. By applying II to cti(Do(p)X), we see
that ¢ can be taken to be c); for all j € Z. Since (c);); spans F,, over F,, we are

done. O

Note that since Dy is not admissible, any 7 as in Theorem 3.2 is not admissible.
Taking A € [],4, [, Theorem 3.4 implies Theorem 1.1 by taking the F;-model of
constructed in Theorem 3.2. Since the endomorphisms of any such 7 must contain
F,, taking (\;); to span F, over F, and restricting scalars of 7 to F,, Theorem 3.4
implies Theorem 1.2.
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