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ABSTRACT

Conventional speed planning for connected automated vehicles (CAVs) adopts an energy-
centric perspective and improves fuel economy by means of reducing the power loss due to
braking and operating the engine at its high efficiency region. This paper considers a simu-
lated connected automated truck with a diesel powertrain and a selective catalytic reduction
(SCR) system for the treatment of NOx emissions, and first shows that a 20% fuel economy
improvement is followed by up to 50% increase in NOx emissions with conventional speed
planning due to its sole focus on energy that neglects emissions. Then, a novel model pre-
dictive controller (MPC) is designed for concurrent treatment of energy and emissions within
speed planning of the CAV. Details of this energy and emissions conscious (E2C) MPC design
is described including the vehicle, powertrain and emissions model development, selection
of the appropriate objective function and its parameters for acceptable optimality, and com-
putational performance. Simulation results of the E2C-MPC over multiple drive cycles are
presented to demonstrate the robust performance of the controller. The results show 5-15%
improvement in the fuel economy with a corresponding 0-25% reduction in NOx emissions
for different drive cycles without requiring re-calibration for each test cycle.

KEYWORDS
Connected automated vehicles; model predictive control; diesel powertrain; fuel efficiency;
NOx emissions control; robustness to drive cycle

1. Introduction

Automated driving assistance systems such as adaptive cruise control provide opportunities
to reduce fuel consumption and emissions by adjusting the speed of a connected automated
vehicle in a given traffic condition predicted using vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2I) communication [1-7]. With an energy-centric perspective, conventional
speed planning methods for CAVs focus on improving fuel economy. Extensive research ex-
ists on CAV speed planning for better fuel economy, with a summary and quantification of
different methods presented in [1]. For example, platooning is a strategy for CAVs to reduce
fuel consumption through reduced air drag due to the low-distance car following policy in a
platoon [1,8]. Another extensively explored method is look-ahead speed planning to achieve
eco-driving with reduced acceleration and deceleration when the CAV is following a lead
vehicle [3-6,9-12]. In this case, a flexible following distance policy is adopted to turn the
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CAV speed into a design variable that is then optimized to maximize fuel economy by re-
ducing accelerating/braking events while taking into account the leader’s maneuvers in given
traffic and road conditions [3,6]. Including the nonlinear engine fuel efficiency map in the
CAV speed planning leads to additional fuel savings when used with an available drive cycle
preview [4,5,12,13].

Along with fuel consumption, emission reduction is another crucial performance metric
for a vehicle, which is highly demanded by federal organizations [14]. Tailpipe emission of
a vehicle strongly depends on the aftertreatment system (ATS) conditions and its capability
to eliminate the harmful species from the exhaust gas. Moreover, the catalytic ATS activity
depends on its surface temperature, such that reducing the engine load can result in low SCR
temperature and ultimately cut off the urea solution injection with a consequent increase in
tailpipe NOx emissions [15] even though it is a fuel-efficient strategy [5,13]. In [3,16], the au-
thors suggest integrating the reduction of engine-out NOx emission with the fuel consumption
minimization problem to find a variable distance car following policy, or an optimal velocity
trajectory with the information of future road grade. Authors of [17] considered the emissions
reduction problem for a chain of automated vehicles in a congested platoon, and showed that
reduced emissions and travel delay could be achieved through longitudinal control. However,
in these previous works the aftertreatment temperature control is ignored, which is necessary
to control the tailpipe emissions of diesel trucks [S]. As the literature on control of hybrid
electric vehicles demonstrates, fuel consumption and emissions can be successfully balanced
if the effect of aftertreatment on reducing tailpipe emissions is taken into account explicitly
[18-20]. However, a similar comprehensive framework does not yet exist for speed planning
in CAVs. Note that the framework described in this paper is not aiming at the federal tests,
as current federal regulations only allow very limited speed deviations when doing fuel econ-
omy and emission assessment, whereas the described speed planning framework will lead to
larger speed deviations.

Recognizing the gap identified above, this paper builds on the prior work presented in
[5,13] that demonstrates the importance of tailpipe NOx emission control and extends it to
introduce a novel energy and emissions conscious predictive speed planning framework to
optimally balance the goals of reducing fuel consumption and emissions in connected auto-
mated diesel trucks with improved possibility for real-time implementation. Within the scope
of this paper, it is assumed that the predictive information within each prediction horizon is
known accurately, and that no other traffic limitation exists except for the the constraints con-
sidered in the control framework. Thus, the original contribution of this paper is an energy and
emissions conscious model predictive control formulation that is referred to as E>?C-MPC.

To this end, a formulation that can work with models of reduced order and complexity is
presented. A detailed analysis of the powertrain and the aftertreatment is given to explain the
intuition behind the new E>?C-MPC controller. In addition, the controller with a fixed cali-
bration is tested over different drive cycles, showing promising performance for fuel savings
without increasing vehicle emissions for all test cycles considered.

The rest of the paper is organized as follows. In Section 2, the vehicle and its aftertreatment
models are developed and validated with experiments. The MPC framework is presented in
Section 3. Section 4 demonstrates the tradeoff between tailpipe NOx and fuel consumption
reduction with a conventional speed planning approach in which the emissions control is ig-
nored. This conventional approach is referred to as energy conscious MPC (EC-MPC) due to
its sole focus on fuel economy. In Section 5, the development of the new predictive controller
is presented, with analysis on controller performance, computational effort and robustness to
different drive cycles, as mentioned above. This section is the novel contribution of this paper
compared to [5,13]. In Section 6, the outstanding challenges are discussed. Finally, the paper
is concluded in Section 7.
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(a) Engine and aftertreatment system configuration schematically (b) Structure of the developed vehicle model.

shown on the vehicle.

Figure 1. Vehicle schematic and its model structure for the diesel powered vehicle considered in this paper.

2. Vehicle model

A vehicle model including longitudinal dynamics, powertrain steady-state maps and the ther-
mal dynamics of the aftertreatment system is developed and presented in this section. This
model is used for the development of model-based controllers in Sections 4 and 5, as well as
simulating fuel consumption and tailpipe emissions of the vehicle.

The vehicle studied in this work, the medium-duty Ford F-250 truck, and its model struc-
ture is shown in Figure 1. The aftertreatment system includes a Diesel Oxidation Catalyst
(DOC), a Selective Catalytic Reduction (SCR) block, and a Diesel Particulate Filter (DPF)
as shown in Figure 1(a). The vehicle model in Figure 1(b) includes a single varying input,
namely, the vehicle acceleration ayep, and the key outputs are the vehicle position pyen, speed
Vyeh, fuel consumption rate ritg,e) and tailpipe NOx emissions rate rinox Tp- The details of each
submodel in Figure 1(b) are described next.

2.1. Longitudinal dynamics

. . . . T .
Assuming the vehicle as a point mass system, the vehicle state vector [pveh,vveh} , which
comprises vehicle position and speed, is calculated using:

pveh _ 0 1 Pveh 0
mal=lo o [l e [ 0
given the vehicle acceleration ay.p as the input.

With the vehicle speed vy, and acceleration ayep, the demanded vehicle traction force firact
is calculated using the longitudinal dynamics model:

Sract = Myayen + frr + fair- ()

In (2), M, represents the vehicle mass, and f;; and f,;; represent the rolling resistance and the
air drag resistance, respectively. They are calculated as:

So=Cr M, gsgn(vveh)a 3)
Jair = 0.5 pairAf Cd Vyeh |Vveh ‘ s “4)

with Cr being the rolling resistance coefficient, p,i; and Cq4 the air density and air drag co-
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(a) Gear level map. (b) Look-up tables used to calculate engine outputs.

Figure 2. Gear shift and engine maps used in the vehicle model.

efficient, and A¢ the vehicle frontal area. In this work, the effect of road grade is ignored for
simplicity.

2.2. Gear shift model

A unique gear level (GL) is assigned based on the vehicle speed vy, and acceleration ayep, as
shown in Figure 2(a). Then, the engine speed N, and the calculated torque T are calculated
as:

1
Ne = FRGR(GL)FVveh, ()
w
M . .
T, - 81q( ftra,.:t o ), if not atidle ©)
Tiqle, if atidle
where Fr, Gr(GL) and Ry, represent the final drive ratio, gear ratio at present gear level (GL)
and wheel radius, respectively, and 1, represents the lumped transmission efficiency. grq is
a mapping from the physical engine torque to the non-negative calculated torque 7 that the
manufacturer uses as input to the look-up tables. When the vehicle is stopped, the engine idle
speed is set to be 600 rpm and the engine idle torque demand is a constant number Tjqe.

2.3. Engine and efficiency models

Fuel rate ritgye1, exhaust flow rate riexp,, engine out NOX emission rate iNox Eng and steady state
turbine out temperature 77p ¢ are calculated using look-up tables mapped with engine speed
N. and torque 7y, as shown in Figure 2(b). These maps are created validated and provided by
the manufacturer. This calculation is based on the following three simplifying assumptions:
(1) The engine air path dynamics are ignored, (2) the engine raw NOx contains only NO,
and NO oxidization in diesel catalytic converter is ignored since DOC temperature is nearly
always lower than 250 °C in the stabilized phase [21], (3) the SCR efficiency nscr is deter-
mined by an efficiency table for the NO conversion, based on SCR brick temperature 7y, scr
[21]. Based on these assumptions, tailpipe NOx emissions rate ritNox.1p 1S calculated as

1iNox.TP = (1 — Nscr (Th.SCR) )MINOX Engs (N



where the calculation of SCR temperature Ty scr is presented in the next section.

2.4. Aftertreatment system thermal dynamics model

To calculate the SCR brick temperature Ty scr in (7), a complete thermal model, including
that of turbine, DOC and SCR, is needed. A first-order lag is assumed for the dynamics of the
turbine outlet gas temperature T1g:

TTB.ss, (8)
S

where 7 is assumed to be inversely proportional to exhaust mass flow rate [22], i.e., T o< ﬁ

The DOC and SCR catalysts are modeled as thermal masses, and their thermal models
are derived under the following assumptions: (1) Heat conduction from the exhaust gas into
the catalytic brick is negligible compared with heat convection between them. (2) Axial heat
diffusion in the fluid phase and axial conduction in the solid phase are ignored. (3) Heat
capacity of the gas trapped in the catalytic brick is too small compared with that of the brick.
Hence, there is no dynamics for the gas temperature inside the catalyst. (4) Heat radiations
between the gas and the brick, and between the brick and the ambient are ignored based on the
experimental validation results in the literature [23]. With these assumptions, the following

first-order system is utilized to model the thermal dynamics of the DOC [23,24].

m‘e/;hocgg Tingepay-DOC T (h101 )DOCTH.DOC
Tepoc = (ot )poc + s ’ ®
141 )DOC Vboc
dTy.poc

(1—&poc)pPpCo = (hmai)poc(Tzpoc — Topoc) — (h202)poc(Topoc — Ta),  (10)

dt
where Ty poc and Ty poc are the DOC outlet gas and brick temperatures, p, and Gy, are the
density and specific heat capacity of the monolith, epgc is a parameter showing the fraction
of the DOC open cross sectional area [25], Cp, is the specific heat capacity of the exhaust
gas, Vpoc is the volume of the catalytic brick, #; and h; are the heat convection coefficients
from the gas flow to the monolith, and from the block surface to the ambient, a; and o
are the corresponding geometric surface area-to-volume ratios [25], and 7; is the ambient
temperature, which is set to be 25°C in this paper. Both /| and &, are assumed to be changing
linearly depending on the exhaust mass flow rate.

Tin delay-DOC in (9) is calculated as:

Tingeray-D0C(t) = TrB (t — ATapOC), (1)

and the variable ATqpoc, which causes a dead-time in DOC temperature when engine opera-
tion condition changes, is defined by the following equation and calculated using an iterative
method:

t C
pg ~
HexhdS = €4.pOC, (12)
/t—Ard‘DOC Apoc(1—éepoc)psCp < P

with Apoc (1 — &poc) being the cross sectional wall area of DOC brick [24]. This equation
corresponds to a transport phenomenon, with the integrand being the speed of flow, and the
constant parameter cqpoc is the distance that heat propagates in the DOC brick. The delay
time ATy poc accounts for a residence time needed for heat to propagate into the monolith.



It corresponds to a transport phenomenon according to a Plug-Flow assumption; see [24] for
details. As shown in (9) and (10), the presented thermal model ignores exothermic reactions
of CO and unburned hydrocarbons with oxygen in the DOC, which happens mainly when
there is in-cylinder post injection.

The same model structure is considered to calculate the SCR output gas temperature Ty scr
and brick temperature Ty, scr because of the similar physical structures of SCR and DOC.

itexnC
mVShCRpg ’Til’ldelay-SCR + (hl al )SCR Tb'SCR
Tg.SCR = Ttexh Cpg ’ (13)
(hiou)scr + =
dThsc
(1 —&scr)PoCo— 2 = (mou)scr(Tescr — Toscr) — (a0)scr (Tascr — o), (14)
Tingeray-SCR (1) = TgpoC(f — ATy.scR)- >

Aty scr is calculated using a similar equation as (12) with different parameters identified for
SCR. Furthermore, based on simulation results, the change of ritex, and Tiy,, scr caused by
urea solution injection are found to be small and are therefore ignored in the SCR model.

2.5. Model validation

The parameters in the above models are identified using measured vehicle speed, engine speed
and torque, and aftertreatment gas temperatures for a MY2013 Ford F-250 Super-duty truck
with a 6.7 L diesel engine when it is running a federal test procedure (FTP). Validation re-
sults for engine speed and torque prediction are shown in Figure 3. Due to the fact that this
model does not include a torque converter, the simulated engine speed and torque during tran-
sient conditions are more oscillatory than the measured variables as shown in the second and
third subplots in Figure 3. During slow transients and steady operation conditions, the model
follows engine speed and torque trajectory sufficiently closely for the purposes of this study.

Figure 4 shows the validation results of the aftertreatment system gas temperatures com-
pared with real vehicle measurements. Due to the delayed structure of the thermal dynamics
presented in (9)-(15), temperature histories from the cold start phase are required as initial
conditions in the DOC and SCR models in the stabilized phase. Thus, in all temperature
calculations in this paper, simulations start from the starting point of the cold start phase to
provide reasonable initial conditions for the stabilized phase of FTP. However, only the stabi-
lized phase is used for comparison and verification, or for control purposes in Section 5. As
observed, the gas temperature dynamics is effectively slowed down from T7g to Ty scg. The
thermal model sometimes misses the dynamics in Bag 1 as it does not include post-injection
or water condensation effect. The root-mean-square errors for the turbine, the DOC and the
SCR temperatures in Bag 2 are 9.0°C, 10.6°C, and 10.4°C, respectively. SCR efficiency traces
calculated using the model and the measured SCR temperature are shown in Figure 5. Here
we model the SCR efficiency using an efficiency table based on SCR temperature [26]. The
root-mean-square error for efficiency is 1.12%. Thus, the model is considered to be accurate
enough for the purpose of this paper.

3. General architecture for optimal vehicle speed planning

The speed trajectory of the CAV is optimized by a model predictive controller (MPC) when
the vehicle is following a leader vehicle in urban or highway traffic. In this section, the overall
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structure of the designed MPC is described, and later in Sections 4 and 5, the optimizer is
tailored respectively for the specific cases of the conventional energy-conscious speed planner
EC-MPC as a baseline and the energy and emissions conscious planner E2C-MPC as the new
approach.
The predictive controller solves the following optimal control problem (OCP) to acquire
the optimal input at each time step ¢:
Np—1

m1n J(t Z J(k|t) (16)

where Np is the number of samples in the prediction horizon, J is the optimization objective
function, with several possible selections presented in later sections, and the optimization
variable U = [ayen(0]7) aven(1]t) -+ aven((Np —1)|1)] " is the evenly sampled vehicle
acceleration over the prediction horizon, with a constant sampling time d¢. Thus the prediction
horizon is equal to Np - dz. The notation z(k|t) (here z is used to represent a generic variable)
refers to the predicted value of the variable z at the k" step in the prediction horizon, which
is the predicted value at time (¢ + k - dt) given the information at time ¢.
The OCP is solved under the following constraints Vk = 0,1,...N, — 1:

pvi(k-dt+t+1)) <pyen(k+1Jt) <
Vi <vyen(k+1]t) <75

ayeh <ayen(k|t) < Tyen
x(k+1|r) = x(k|t) +dt - f(x(k|t),u(k|t)),

pn(k-dt+1+1))

a7)

where vi(k-dt +1t+ 1) is the future speeds of the leader at time (k- df + + 1), which is used
to generate constraints in the OCP. The above four constraints are:

e upper and lower limits of the follower vehicle position (p, p) for keeping a positive
inter-vehicular distance and avoiding cut-ins from other lanes, constructed using the
leader vehicle’s position p; and speed v;:

P=pi—0.3y (18)
—(4n+3), ifv>9
p(s)=4p—(101+3), f07<y<9 . (19)

pi—10, ifv; <0.7

and this formulation is the same as in [9], except that the distance gap is enlarged by
changing the values for the multipliers in (19) and (18), as well as adding the constant
offset in (19). These numbers are design parameters and can be adjusted by the user
based on the traffic condition and controller performance. Enlarging the distance gap
will provide more flexibility in varying the speed and thus will deliver better perfor-
mance, but traffic capacity will drop [27]. Note that the Heaviside step function can be
utilized to formulate the expression for (19). The parameters in (19) and (18) are design
parameters and can be changed by the user.

e upper and lower limits of the follower CAV speed, with the upper limit vs set to be the
road speed limit, and the lower limit vf set to be O to enforce a non-negative speed.

e upper and lower limits of the follower CAV acceleration, with ayen = —6m/s> and

Qyen = 6m/s>. The limits are chosen to be twice that of the maximum vehicle accel-
eration/deceleration driving the FTP drive cycle.



Table 1. Cost functions defined for both EC-MPC optimization scenarios

i Case name Objective to minimize Cost function
1 EC-MPC¢ Fuel Ji (k’t) = I’i’lFuel(k‘t)dt
2 EC-MPC, Acceleration Jo(k|t) = ayen(k|t)?

e system dynamics, which is explained in detail in Sections 4 and 5.

Through selection of different cost functions, the vehicle speed trajectory can be calculated
to optimize a required criterion. For instance, one can select to minimize ayep as done in [7,9]
if an energy conscious optimization is of interest. The selection of the cost function impacts
the outcome of velocity trajectory and its critical performance parameters, namely, tailpipe
NOx and fuel economy. In the following sections, these performance parameters are simulated
with the vehicle model presented in Section 2.

4. Conventional Energy Conscious Model Predictive Controller (EC-MPC)

4.1. EC-MPC control strategy

With fuel consumption as the optimization objective, the OCP in (16) can be solved with dif-
ferent energy conscious cost functions to calculate the optimal speed trajectory of the CAV.
For instance, the vehicle acceleration is used in [7,9] as a variable correlated with fuel con-
sumption, and in [3,12,28] the fuel consumption model is used for optimal speed planning. In
this paper, two cases are studied as benchmarks, where in each of them a cost function from
Table 1 is used for optimal fuel speed planning calculated using the predictive controller in
(16). Therefore, the cost at every step ¢
Np—1

Ji(t) = Z Ji(k’t>) = {172}7 (20)
k=0

is used in (16) over a horizon of Np steps. The problem in (16)-(20) is solved numerically
using the optimization command fmincon in Matlab with the sequential quadratic program-
ming algorithm. The sampling time df is set to 0.1s and then the length of prediction horizon
is (0.1Np) s.

4.2. EC-MPC performance evaluated over FTP drive cycle

Vehicle fuel consumption and NOx emissions simulated using the vehicle model in (2)-(15)
with the optimal acceleration from the two EC-MPC controllers are shown in Figure 6 for dif-
ferent prediction horizons. For the lead vehicle, the federal test procedure for light duty vehi-
cles is selected as the desired speed trajectory. Also, the plotted accumulative mass of fuel and
tailpipe NOx are normalized with the corresponding values when the vehicle is driven with
the nominal FTP speed trajectory. In other words, we are comparing the scenario when the
follower vehicle is driving the optimized trajectory with the nominal case when the follower
vehicle is driving the leader’s drive cycle exactly without any speed planning. The plots in
Figure 6(a) indicate that both EC-MPC; and EC-MPC, can effectively reduce fuel consump-
tion, but at the same time, both of the controllers increase tailpipe NOx emissions compared
with the nominal trajectory despite that engine emitted NOX is reduced in most cases due to
the drop in SCR efficiency (Figure 6(b)). It is also shown that although EC-MPC; performs
better in reducing fuel consumption, it generates more engine and tailpipe NOX emissions
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Figure 6. Results for the follower vehicle with EC-MPC controllers.

compared with EC-MPC,.

With longer prediction horizon in EC-MPC controllers, acceleration level is reduced and,
at the same time, cycle-averaged turbine temperature and SCR efficiency are also reduced
as shown in Figure 6(b). Due to the lower SCR efficiency, the resulting tailpipe NOx (in
Figure 6(a)) does not drop even though the trip acceleration level is reduced.

5. Energy and Emissions Conscious Model Predictive Controller (E>C-MPC)

The conventional CAV speed controllers described in the previous section indicate degraded
tailpipe emissions performance despite better fuel economy when the formulation is only en-
ergy conscious and emissions are ignored. To avoid this problem, an intuitive solution would
be to add an additional constraint to the OCP to limit the follower vehicle’s total tailpipe NOx
emissions:

Niotal Neotal
Y {rinoxte(k) hvpc - dt <Y {rinox.tp (k) YNom - 1, 21)
k=0 k=0

where the subscript "MPC” refers to the driving scenario in which the follower CAV drives
the optimized trajectory, and "Nom” refers to the nominal driving scenario in which the CAV
drives the leader vehicle’s drive cycle exactly. This way, the emissions performance could be
included in the control loop. Dynamic programming method could be used to solve the OCP
with the additional constraint (21) by considering the accumulative NOx as an additional state.
However, this solution strategy would be non-causal, since it requires knowledge of the whole
drive cycle before starting to solve for the optimal solution. Furthermore, it would be very
computationally costly. Thus, optimization problems with this terminal constraint are hard
to solve using causal control strategies due to the fact that the summation is calculated over
the whole trip. Hence, an alternative strategy is developed in this section that is practically
implementable.
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5.1. E>*C-MPC design

The emissions constraint in (21) is relaxed to be a soft constraint and embedded into the cost
function by adding an additional term to the previous EC-MPC cost function defined in (20),
which is the instantaneous emissions scaled by an equivalence factor. This forms the energy
and emissions conscious cost:

Np—1

Jezenox(®) = Y, (riuel (k|t) +w - rinox e (k1)) dt. (22)
k=0

With the cost function defined in (22), the OCP aims to reduce the predicted tailpipe NOx
emissions in the prediction horizon in addition to reducing the predicted fuel consumption.

Note that the equivalence factor w should be pre-tuned offline. A method is proposed in
[29] to calculate the equivalence factor online by calculating an approximation of the optimal
cost-to-go function. This method, however, needs finding the Dynamic Programming solution
with high computational burden and with a knowledge of the whole drive cycle. Therefore, an
alternative approach is adopted in this paper; namely, we focus on designing the energy and
emissions conscious MPC, and identify a range for w that works for most of the well known
drive cycles.

The OCP satisfies the same constraint as in (17) with the system dynamics f(x,u) for
the state vector x = [pveh, Vyeh, Tb,rSCR} T, and Ty scr is the state for SCR brick temperature
simulated with a reduced-order model, where the aftertreatment system including SCR is
assumed to be lumped into one thermal mass with the following dynamics:

HtetsC,
T2 Tr.ss + (M1t )iscr Thascr
T _ rSCR (23)
grSCR — HexhCpe
(hon)iscr + s
dThscr

(1 —&scr)PpCo = (h104)escR (Tarscr — Torscr) — (h202)rscr (Torscr — 1) (24)

dt
where T, ;scr and Ty scr in the reduced SCR model are used to approximate outlet gas and
brick temperatures 7, scr and T scr in the full thermal model. The vehicle longitudinal dy-
namics and the powertrain model from (1)-(7) remain the same. Note that this reduced SCR
model is only used in the MPC and the plant is still simulated with the full thermal model;
i.e., the full thermal model is used for evaluating the optimal trajectory and update the initial
conditions at each MPC run.

Two considerations are worth highlighting here: (1) The results in Figure 6(b) show that
as acceleration increases, fuel consumption increases, but, at the same time, turbine tem-
perature increases as well, which leads to higher SCR temperature and SCR efficiency, and
consequently, lower tailpipe NOx. (2) Since the prediction horizon will be limited, we would
expect an MPC with a faster dynamics to perform more consistently than that with slower
dynamics. From the above observations, increase in turbine temperature could potentially be
used as an indication of reduced tailpipe NOx emissions with MPC,.

Based on these considerations, a second E>?C-MPC formulation is developed as follows in
an effort to seek a simpler OCP. In particular, a new cost function Jp2 15(#) is introduced,
which is obtained by replacing the rige) term in (22) with acceleration, and replacing the
mnox.1p(k +t|t) term with turbine temperature as follows.
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Figure 7. Comparison of fuel consumption versus TPNOx curves and optimized speed and acceleration trajectories between
using E2C-MPCyoy and E>C-MPCrg.

Np—1

Teecrp() = X (alkin)? +w(Tn (klr) = T Fru (k) ), with
k=0

1, if TTB(]C‘I) < Tipr
0, if Tr(k|t) > Tinr

(25)
Itg(k) =

where Ty, is a pre-tuned parameter, which represents the lower desired threshold for the tur-
bine temperature. The OCP satisfies the same constraint as in (17) with the system dynamics
f(x,u) for the state vector x = [pveh,vveh,TTB}T including (1)-(8). Thus, this formulation,
called E>C-MPCrg, aims to reduce acceleration while maintaining turbine temperature. As
shown in the next section, this formulation is able to balance fuel consumption and NOx
emissions, and it can do so with simpler dynamics that makes solving the OCP numerically
easier.

5.2. E>C-MPC performance evaluated over FTP drive cycle

5.2.1. Selection of E*C-MPC optimization criterion

The two E2C-MPC controllers are evaluated over the FTP drive cycle with different length of
prediction horizons with results shown in Figure 7. The sampling time dt is increased to 1 s
compared with 0.1 s as used in Section 5 to shorten the computation time. For each selected
horizon, the equivalence factor w is swept from O to 1 to show the trade-off between emissions
and fuel consumption. In other words, the multi-objective optimization problem is scalarized
to build the Pareto-optimal curve. In each plot, the accumulative fuel and tailpipe NOx values
are normalized by their respective nominal values.

End of drive cycle results shown in Figure 7(a) indicate E2C-MPCrp outperforms E2C-
MPCnox since (1) the emission-fuel consumption curve is smoother and more monotonic
in both fuel and emissions performance, and (2) better fuel economy is obtained at the same
level of NOx emissions. One reason for E>C-MPCrg being more effective than EZC—MPCNOX
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Table 2. Reasons for terminating optimization process when solving for optimal trajectories using E>C-MPCyoyx and using
E2C-MPCrg (trajectories are associated with Figure 7(b)), when the optimal control problem is solved with optimization
command fmincon in Matlab.

Exitreason  Not feasible ~ Reaches number of iterations  First-order optimal ~ Design step size tolerance reached

w/NOx 7% 2% 4% 87%
w/TtB 0% 0% 99% 1%

is that the objective function Jp2 15 () is numerically easier to optimize. The turbine thermal
dynamics and the quadratic acceleration terms are less complicated, and have a larger gradient
due to faster dynamics than that of the reduced SCR thermal dynamics and the fuel consump-
tion terms. The smooth and predictable NOx and fuel consumption trade-off observed for
E2C-MPCrg offers convenience for calibrating the equivalence factor w for achieving the
best fuel economy for a given tailpipe emissions.

Figure 7(b) shows the optimal speed traces and the distance between the two vehicles for
the two optimization formulations, E2C-MPCrg and E2C-MPCnoy, both with a 40 s predic-
tion horizon. The selected points are marked with diamond markers in Figure 7(a), and their
equivalence factors are selected such that both MPC controllers generate the same tailpipe
NOX emissions as the nominal FTP trace. However, E2C-MPCrg with 40 s horizon results in
14% better fuel economy, while E2C-MPCyoy improves the fuel economy by 9% compared
to the nominal. This behavior is related to the fact that, as the distance trajectories in Fig-
ure 7(b) show, with the E>C-MPCrg utilized for the optimal speed planning, the advantage
of having a flexible following distance is exploited more compared to the E>?C-MPCyoy, in
which the vehicle distance is almost constant. One reason for this performance difference is
that with the more complicated reduced SCR thermal and emissions models involved in the
E>C-MPCyoy, it is easier for the optimizer to get stuck at infeasible regions (7%, as shown
in Table 2) or not being able to satisfy the first-order optimality conditions before design step
size tolerance is reached (87%) compared to E2C-MPCrg (0% and 1%, respectively). With
E>C-MPCrg, the chance of finding the point satisfying the first-order optimality conditions is
much higher (99%). Note that if the design step size tolerance is reached before the first-order
optimality conditions are met, that means the current point satisfies the constraints and is pos-
sibly close to a local optimum, but the violation of the first-order optimality conditions is
larger than that required by the optimality tolerance and reducing this violation would require
a smaller design step size than the allowed minimum threshold. Also note that the formula-
tion with NOX is using minimum step size as 0.001 m/s?, while with TB the minimum step
size is 0.01 m/s2, 10 times of that for the NOx formulation. This means that the formulation
with NOx has a more sensitive cost function, which explains the more consistent and better
performance of E>C-MPCrp in Figure 7.

The computation time required for calculating the optimal speed over the prediction hori-
zon at each step with E>C-MPCrp is expected to be reduced significantly due to simplified
dynamics when it is compared with E2C-MPCyoy. Table 3 shows the statistical features of
computation time for the two OCPs calculated with time step of 1 s. The simulations results
are obtained on a desktop computer with an Intel Core i7-7700 CPU at 3.6GHz. The code is
written and executed in the Matlab environment with the purpose of comparing the compu-
tation time of these two OCPs. It is expected that less computation time can be achieved by
re-writing and optimizing the code in a compiled language if run on the same hardware. As
shown, with the same prediction horizon, the E2C-MPCrg with Tt dynamics runs almost 10
times faster than the E2C-MPCyox where SCR and NOx models with reduced order thermal
dynamics for the aftertreatment system are used.
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Table 3. Comparison of statistics calculated from computation time of all opti-
mization steps for E2C-MPCnoy and for E2C-MPCrg.

MPC Type w/ NOx | w/ Trp
Horizon [s] 20 30 40 50 ‘ 20 30 40 50

Mean [s] 062 165 327 539 | 002 003 0.05 0.08

Std [s] 035 075 123 1.82 | 0.01 0.02 0.03 0.07
Max [s] 1.82 498 818 11.82 | 0.14 0.28 0.28 0.63
167
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Figure 8. Normalized fuel consumption vs. TPNOXx for optimal trajectories with E2C-MPCrp evaluated over FTP with differ-
ent selections of w and prediction horizon Np.

5.2.2. Selection of prediction horizon

The length of the prediction horizon is a design parameter for MPC. Thus, its impact on the
E>C-MPC1g controller is studied and shown in Figure 8 for prediction horizons from 10 s to
70 s. As shown, when the prediction horizon increases from 10 s to 40 s, the normalized Fuel
- NOx curve moves towards the left-lower direction, which means less fuel consumption and
tailpipe NOx emissions. However, as also shown, increasing the prediction horizon beyond
40 s does not help in saving more fuel or tailpipe NOXx, but increases the computational load
due to the increased number of optimization variables. Thus, it is concluded that E2C-MPCrg
with a 40 s prediction horizon is an acceptable design to reduce fuel consumption while
maintaining emissions performance of the CAV.

5.2.3. Effect of the equivalence factor w

Optimized CAV speed, acceleration trajectories, and histogram of acceleration for two equiv-
alence factors, both with a 40 s prediction horizon, are shown in Figure 9. With larger w, the
controller penalizes the acceleration relatively less, and thus results in trajectories with larger
accelerations. This is seen more clearly in Figure 9(b), since the acceleration distribution for
smaller w is located mostly in the range of [—1, 1] m/s?, while for larger w, this range grows
into [—1.5,1.5] m/s?. On the one hand, the resulting average turbine temperature grows with w
as shown in Figure 10(b) as well as the time resolved plot Figure 11(a), as there is higher cost
for dropping turbine temperature for larger ws. On the other hand, since the relative penalty
on a large acceleration is decreased, a more oscillatory trajectory ensues with larger w and
that leads to higher fuel consumption as shown in Figure 10(a). As the result of higher turbine
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Figure 9. Optimization results using E2C-MPCrg controllers with two different equivalence factors corresponding to a more
fuel efficient trajectory (w = 0.1) and a more NOx efficient trajectory (w = 0.6). The fuel efficient trajectory has the same
tailpipe NOx emissions as the nominal trajectory, and the NOx efficient trajectory has the same fuel consumption as the nominal
trajectory.
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Figure 10. Effect of w on normalized fuel consumption, turbine temperature, SCR temperature range (maximum and minimum
SCR temperature) and average SCR efficiency when the controller is applied to the FTP drive cycle.

temperature, SCR temperature is also increased as shown in Figure 11(b), which avoids the
large SCR temperature drop to around 160°C as happens with w = 0 and could maintain the
SCR temperature to stay above 200°C with larger w (Figure 10(c)). This results in a higher
average SCR efficiency, as shown in Figure 10(d). Hence, it is inferred that the reason for why
increasing w reduces tailpipe NOx emissions as seen in Figure 10(d) is that average SCR effi-
ciency (which is also the average NOx conversion efficiency) increases with the equivalence
factor.

5.3. Robustness of E>*C-MPCrg: performance evaluation over different drive cycles

The robustness of the proposed E>?C-MPC controller with the surrogate cost (i.e. E>C-
MPCrtp) to variations in the drive cycle is evaluated by testing the controller over five ad-
ditional drive cycles including Heavy Duty FTP (FTPHD), the Supplemental Federal Test
Procedure (SCO03), Worldwide Harmonised Light Vehicle Test Procedure (WLTP), World
Harmonized Vehicle Cycle (WHVC), and New European Driving Cycle (NEDC). Figure 12
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Figure 12. Visitation points of the vehicle speed and acceleration for six different drive cycles commonly used for vehicle
certification.

shows the vehicle speed and acceleration visitation points of these six selected drive cycles
when the E2C-MPC with 40 s prediction horizon is used to optimize the velocity trajectory.
As shown, these six drive cycles span a wide range of vehicle operating conditions.

The temperature of the aftertreatment system at the end of the FTP Bag 1 is selected as
the initial condition for all the other cycles for consistent evaluation and comparison to the
FTP Bag 2 results presented in the previous sections. Similar to the FTP simulations, it is
assumed that a leader vehicle is driving one of the five drive cycles mentioned above, and the
follower CAV is using the E>2C-MPCrg controller design to optimize its speed trajectory. The
equivalence factor w is swept for each test to generate the normalized Fuel - NOx curves for
these trajectories, as shown in Figure 13(a). The fuel consumption and tailpipe NOx values for
different tests are normalized by their respective values corresponding to each test’s nominal
driving scenario.
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sumption versus NOx when testing different drive cycles ~ sumption and tailpipe NOx emissions of different drive
with E2C-MPCrp controller design. cycles.

Figure 13. E2C-MPCrg controller evaluated over different drive cycles.
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For all the tested drive cycles, there exist a range of w such that the optimal trajectories have
lower fuel consumption and lower tailpipe NOx emissions than the nominal (Figure 13(a)).
To visualize this range, the resulting normalized fuel consumption and tailpipe NOx are sepa-
rately shown at each w in Figure 13(b). As observed, the trend is the same for all trajectories;
with increasing equivalence factor, fuel consumption increases and tailpipe NOx emissions
decrease. The green dashed box in Figure 13(b) shows the range of the equivalence factor w
in the proposed E2C-MPCqg controller when a selected w is acceptable for all drive cycles;
i.e., the EXC-MPCrg controller with that w will yield an optimal trajectory that is both more
fuel efficient and NOx efficient than its leader vehicle’s drive cycle. Note that a priori knowl-
edge of the drive cycle would allow for improving the selection of w by performing offline
computations to make the optimal trajectory more fuel/emissions efficient. However, if the
drive cycle is not known beforehand, choosing the smallest acceptable w will yield a causal
controller, which results in 5-15% improvement in the fuel economy with a corresponding
0-25% NOx emissions reduction for these tested cycles. Figure 13(b) also shows that with
w = 0, the E2C-MPCrg controller simplifies into the conventional EC-MPC, and optimized
traces for 5 of the 6 tested drive cycles result in more tailpipe NOx emissions than their corre-
sponding leading cycles. This observation confirms that the E2C-MPCrg controller has better
performance in maintaining emissions than the EC-MPC, controller.

6. Discussion on existing challenges

This paper contributes a model predictive control formulation, namely, E>?C-MPCrg, which
is able to balance fuel consumption and tailpipe NOx emissions for diesel vehicles that are
equipped with SCR-exhaust aftertreatment systems. Ultimately, this controller is aimed at
reducing fuel and emissions for on-road connected and automated vehicles. Acquisition of
the velocity preview of the leader vehicle is not considered in this paper; however, in practice,
speed prediction within the future 40 s is not a trivial task in real driving conditions. The
literature offers multiple speed prediction methods with current and past information [30,31],
or with additional information from leader vehicles and infrastructure [32]. For example,
authors of [32] compare the performances of deterministic MPC, chance constrained MPC
and randomized MPC when predicted speed information is utilized to plan for fuel efficient
trajectory in a car-following scenario. They introduce slack variables to represent violations
of the distance constraint to avoid infeasible solutions, and show that chance constrained
MPC performs well in improving fuel efficiency, driving comfort and avoiding collisions.
The E2C-MPCrg with a hard distance constraint can be also dealt with in a similar manner if
speed preview is generated by some predictors.

Other two existing gaps for real-road implementation is real-time implementability of the
nonlinear MPC and the assumption that the follower vehicle could satisfy all the traffic rules
by following the leader vehicle. For the first issue, despite that EZXC-MPCrp is significantly
faster than the original E2C-MPCnox formulation, its computation speed on a real control
hardware has not been tested in this work. One possible way to transform the nonlinear MPC
into a problem that can be solved in real-time in a vehicle control unit, e.g., is mentioned in
[33], where authors provide a way to solve the nonlinear MPC problem approximately by
transforming it online into quadratic programming problems that require computation times
that are sometimes only marginally larger than linear MPC.

For the second issue, the controller presented in this work is not capable of dealing with
cases where the follower vehicle needs to stop at either stop signs or traffic intersections,
when the leader vehicle passes. Other works have presented control strategies to use vehicle-
to-vehicle communication and signal phasing and timing information to develop fuel efficient
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speed trajectories for automated vehicles through travelling at fuel efficient speeds and avoid-
ing red lights by tracking a target velocity designed based on timing and position information
of the upcoming traffic light [10]. Potentially, a similar idea can also be applied here by re-
moving the distance constraint and adding a velocity tracking term in the cost function, when
there is no leader vehicle or the vehicle is near to a traffic light. The applicability of such
techniques in the context of this work is an open research question.

7. Conclusion

An energy and emissions conscious model predictive control formulation is developed to in-
crease fuel economy without compromising emissions in a diesel CAV by planning an optimal
speed trajectory based on a given leader drive cycle and a flexible following distance between
the two vehicles. Simulation results with a validated medium duty diesel truck model confirm
that the new formulation can achieve 5-15% improvement in the fuel economy with a cor-
responding 0-25% NOx emissions reduction in all the drive cycles tested. This performance
is shown to be in contrast to the conventional energy conscious formulation that focuses on
only fuel economy and thus its good performance in fuel economy improvement is always ac-
companied by a penalty in emissions performance. The new formulation’s design parameters,
namely, the prediction horizon and the equivalence factor, are studied to understand their im-
pact on the controller’s performance, and it is found that a good performance can be achieved
with the same design parameters across all the drive cycles tested, where a good performance
means improved fuel economy without a reduction, and in fact often an improvement, in NOx
emissions performance. The analysis of the computational performance of the new controller
reveals that an online implementation could be feasible. Hence, the results encourage further
development and experimental testing of this controller. Important challenges for the pro-
posed method are that accurate information of the lead vehicle speed within the future 40 s is
required to use the predictive controller for speed planning, and to honor traffic rules which
are not captured by following the leader vehicle. Analyzing the effect of inaccurate prediction
on E2C-MPC performance and developing remedies to minimize the expected deterioration
in performance and to honor additional traffic rules are identified as important future research
directions.
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