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Future traffic information through vehicular communication allows connected and automated vehicles to optimize their speed
trajectories and drive more safely and efficiently through predictive controllers. Sharing accurate information about the vehicle
allows such controllers perform best, but may raise privacy concerns. To improve privacy guarantee over the shared information
while preserving its utility for predictive controllers, this paper proposes a novel information perturbation mechanism, as opposed
to the baseline of independently perturbing the data in each broadcast. Specifically, the mechanism is applied to the transmitted
vehicle speed, and this perturbed data is used in an optimal speed planner to design a fuel and emissions efficient speed trajectory.
Results show a deterioration of the controller performance when privacy is taken into consideration under the baseline method.
With the proposed method, the controller performance is improved while providing the same privacy guarantee. It is shown that

controller design is also affected by the choice of perturbation mechanism.

Index Terms—vehicular communication, differential privacy, connected automated vehicle, predictive control

I. INTRODUCTION

A vehicle’s movement on the road is constrained by the
route, road and traffic conditions it encounters, such as the
motion of the neighboring vehicles, traffic signals, and local
road and weather conditions. Knowing this information and
future movements of the surrounding vehicles would allow an
automated vehicle to drive more efficiently. In car-following
scenarios, knowing the future speed profile of the leader
vehicle has been shown to be beneficial for an automated
follower vehicle to drive more safely and efficiently [1, 2], as
predictive speed controllers can use this information to design
an optimal trajectory [2, 3].

Regardless of the optimization objective, most of the liter-
ature on optimal speed planning using predictive controllers
for connected and automated vehicles assumes that the future
information is available with high accuracy, either obtained
directly from the leader vehicle, or inferred from vehicle-
to-vehicle (V2V) communication with accurate information
about the leader vehicle [2, 4]. In most real traffic scenar-
ios, a vehicle’s speed is hard to predict accurately due to
uncontrollable factors. Researchers have shown that inaccurate
speed prediction in predictive controllers may increase both
the risk of collision and fuel consumption compared to the
case with accurate information [4]. To address this problem,
they propose two stochastic model predictive controllers and
show that with a certain speed prediction, better performances
are achieved with these stochastic controllers than the de-
terministic one [4]. However, with prediction error, none
of these controllers recover the performance under accurate
information.
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Even if not knowing the true information may degrade
performance, it is not practical to assume that the true in-
formation is available. One potential reason is the drivers’
privacy concerns when their vehicular information (e.g., speed,
location) is transmitted to other, untrusted vehicles. Examples
of these privacy concerns include: (1) Tracking and stalking:
Locations along with other publicly available information can
be used to identify a driver’s personal information, thereby
enabling stalking. Research shows that 5% of U.S. workers
can be uniquely identified by just knowing their home and
work areas [5]. (2) Traffic enforcement: Drivers may be
concerned that V2V tracking could facilitate automated is-
suance of traffic citations. If certain privacy guarantees can be
provided, however, drivers may be more willing to share their
personal driving information. Government organizations also
acknowledge the need to address privacy before implementing
V2V communication technologies [6].

Various notions of privacy have been suggested for applica-
tions in vehicular networks. They can be roughly classified
into anonymity-based and perturbation-based methods. The
former de-identifies each vehicle to provide privacy, either
by replacing the real unique identifier of each vehicle with
some variable and temporary pseudonyms, or by adopting the
k-anonymity technique [7], where at least k vehicles would
share the same set of attributes (that are indirectly related
to identifiers) and form an anonymity set; vehicles within
the same set cannot be distinguished from each other. Solely
changing the pseudonym cannot protect vehicles from being
tracked over time [8], and combining pseudonym with k-
anonymity is therefore preferred [9].

Perturbation-based methods provide privacy by perturbing
transmitted/shared information. Typically, the notion of differ-
ential privacy [10] is adopted, under which each vehicle trans-
mits a noisy version of its actual information. Different from
k-anonymity, where an adversary’s background knowledge
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Fig. 1. Traffic scenario considered in this paper.

must be predefined, differential privacy can protect against
adversaries with any side information and is much stronger.
Researchers have applied differential privacy to vehicular
networks [11, 12]. Most algorithms are either only applicable
to a specific application (e.g., binary classification [12]) or
to a setting with a trustworthy, third-party data collector
gathering speed/location data from all vehicles [11]. Therefore,
designing a more general differentially private method that can
release any type of data in real-time is of interest.

This study considers a car-following scenario, where a
leader vehicle generates its speed profile with the differential
privacy constraint and broadcasts it periodically. Based on
this information, the follower vehicle designs its own optimal
speed using a planner that aims at reducing fuel consumption
and tailpipe emissions. To satisfy the differential privacy
constraint for the leader while achieving a sufficiently accurate
speed preview for the follower, a new perturbation method
is introduced to balance the trade-off between privacy and
accuracy. Simulation results show that the proposed method
can generate differentially-private speed broadcasts with suffi-
ciently accurate information for improving fuel and emissions
performance through predictive speed planning, while with
the baseline method, the perturbed information with the same
differential privacy guarantee is nearly useless for improving
these performances.

We next present the problem formulation and definition of
differential privacy followed by the two different perturbation
mechanisms.

II. COMMUNICATION-AIDED SPEED PLANNING
A. Problem formulation

We focus on the application of predictive speed planning
through private V2V communication. The traffic scenario
considered is described in Fig. 1. We assume that vehicle A
is broadcasting its information, and other vehicles within the
communication range of vehicle A, such as vehicles B and C,
can receive the broadcast information. The information sent
is vehicle A’s predicted speed in the next few seconds to a
minute.

The vehicle that is immediately following vehicle A, e.g. the
follower vehicle B in Fig. 1, can use the leader’s information
for predictive speed planning. The follower is equipped with
a communication receiving unit, an on-board optimal speed
controller, and a radar to measure the current speed and the

inter-vehicular distance to the leader vehicle A. The optimal
speed controller integrates vehicle A’s future speed received
through V2V communication and radar measurements to es-
timate the motion of A in the near future, and uses it as a
traffic constraint for vehicle B to optimize its future speed
trajectory. For instance, if B knows that A is going to perform
an acceleration followed by a deceleration and an extended
stop, then B can utilize this information to determine the best
way to drive in terms of fuel economy, driving comfort, and/or
emissions through the optimal speed planner in Fig. 1.

However, as mentioned in Sec. I, drivers’ personal informa-
tion can further be inferred from the vehicles’ speeds/locations.
Thus, privacy concerns inevitably arise when the vehicles’
information is disseminated among connected vehicles. In the
car-following scenario, the leader’s true speed is eventually
revealed to the follower completely due to the radar. The driver
of the leader may nonetheless wish to keep their information
private from other non-follower vehicles or roadside units that
are within the communication range of the leader and can
receive the leader’s future speed trajectory, but cannot detect
the actual speed directly with radar. An example is vehicle C
in Fig. 1 that is referred to as attacker vehicle.

If the precise future speed information of vehicle A is
transmitted to vehicle C, then the information such as whether
vehicle A is speeding or not, whether its driver is erratic or
not, etc., will be revealed directly. To keep vehicle A’s speed
private from the attacker vehicle C, A should broadcast private
versions of the future speed profile instead.

We adopt the perturbation-based method by adding noise to
trajectories and use differential privacy as a notion of privacy
to measure the privacy risk of each vehicle. We assume the
attacker can have any side information about the leader and
follower vehicles, including all algorithms they implement, the
noise distributions the leader uses, etc. The attacker vehicles,
by receiving the same noisy trajectory broadcasts as the
follower, can extract almost the same amount of information
from these trajectories about the leader as the follower. We say
almost, because the follower has additional information from
the radar while the attackers do not. Therefore, to preserve A’s
privacy from C, and simultaneously provide useful information
to B’s optimal speed planner, the perturbation should be
carefully designed to balance the trade-off between privacy
and accuracy.

B. Differential privacy [10]

Differential privacy centers around the idea that the output
of a certain mechanism or computational procedure should be
statistically similar given singular changes to the input, thereby
preventing meaningful inference from observing the output.

In our V2V communication context, this differential privacy
is provided by perturbing the true information coming from
each vehicle. Specifically, each vehicle transmits a noisy
version of its future speed trajectory, by either randomizing the
trajectory directly or randomizing the algorithm that generates
the trajectory. After randomization, the output (trajectory) is
no longer deterministic but a random vector with a certain
distribution that depends on the form of the added noise (e.g.,
Gaussian, Laplace, etc.).
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Fig. 2. Two-step illustration of the proposed method: Vehicle A’s perturbed
speed at each broadcast is determined by the convex combination of the true
speed and the estimation from the previous broadcast.

When done correctly, the conditional probability distribu-
tions of this random output given all possible speed trajectories
should be similar, and differential privacy guarantees this holds
for any possible random output. The bound on the differences
of those distributions can be used to quantify the privacy risk:
a smaller discrepancy implies stronger privacy. Specifically,
this difference is characterized by the log-likelihood ratio; thus
the privacy risk can vary from zero to infinity. With a small
privacy risk, an attacker has no confidence in guessing the true
speed when given a noisy speed, as all values after perturbation
are likely to give the same output, with similar likelihood
values. Consider an extreme case where the distributions are
the same; then the inference that an attacker can make from the
transmitted output will be the same, regardless of its true value,
thereby conferring complete privacy protection (zero privacy
risk). In contrast, if the precise trajectory is transmitted without
any perturbation, then the probability of observing this output
would be 1 for this particular trajectory and O for all other
possible trajectories, resulting in infinite privacy risk.

Differential privacy is a worse-case measure; i.e., the bound
is over all possible random outputs and all possible inputs. It is
a strong guarantee, as it can protect against attackers with any
side information. Moreover, it is immune to post-processing;
i.e., given only the differentially private output without ad-
ditional information about the true data, it is impossible for
attackers to make it less differentially private.

In the next section, two perturbation mechanisms are intro-
duced to preserve differential privacy for vehicle A.

C. Two perturbation mechanisms

A naive method for vehicle A to protect its privacy is
adding independent noise to the data at each broadcast, which
serves as the baseline. The noise we adopt follows zero-mean
Gaussian distribution. However, this method is problematic
because of the temporal correlation in the data (e.g., the
speed/location of vehicle A is highly correlated in consecutive
broadcasts). The attacker with statistical knowledge of this
correlation can be particularly hard to defend against, as it
can use all transmitted information to make the inference. As
a result, the privacy risk to vehicle A is accumulated over
all the broadcasts and the total privacy risk can be extremely
large.
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Fig. 3. (Upper) Transmitted information perturbed by the baseline method

and the proposed method, and (lower) information available to vehicle B at
two consecutive time steps.

To address this issue, one approach is to factor this cor-
relation into the perturbation mechanism. We propose a new
method, where for vehicle A the broadcast data in each step is
based on both the broadcast data in the previous step and the
true data (see Fig. 2). The idea is based on two observations:
(1) Since the vehicular data generated in two consecutive
broadcasts is highly correlated, and the perturbed data is also
correlated with the original unperturbed data, we can use the
perturbed data from the previous broadcast to estimate the
true data of the current broadcast based on the statistical
properties of the trajectory (e.g., mean, variance, correlation).
Various estimators can be used; we adopt the commonly used
Minimum Mean Square Error (MMSE) estimator. (2) Because
the computation over the existing differentially private outputs
will not leak additional privacy (by post-processing property),
the estimation procedure does not increase the privacy risk.
Thus, technically, vehicle A can broadcast just the estimates all
the time. However, solely relying on estimated speed will lead
to a fairly inaccurate sequence compared to the ground truth;
i.e., although privacy risk does not accumulate, the estimation
error does. To balance the competing needs of accuracy and
privacy, we must calibrate the broadcast data using the true
data. Among the potential approaches to this calibration, we
simply take the convex combination of the estimate and true
value as a first step. Finally, we add noise that follows zero-
mean Gaussian distribution to this combination to generate the
broadcast speed.

D. Privacy analysis & discussion

Note that the proposed method is a generalized version
of the baseline; it reduces to the baseline if estimated speed
has zero weight in the convex combination. By adjusting the
weights of the estimated and true speeds, the proposed method
can always improve the privacy-accuracy trade-off, and poten-
tially significantly compared to the baseline. By repeatedly
using the already transmitted speed in the estimation, less
information about the real speed is revealed in each broadcast.



To guarantee the same level of privacy as the baseline, the
proposed method requires less perturbation, since it reveals
less information than the baseline. Thus, the proposed method
has a higher accuracy under the same privacy guarantee; i.e.,
an improved privacy-accuracy trade-off.

Once the attacker vehicle receives private trajectory gener-
ated either by the baseline or proposed method, it may apply
a noise reduction algorithm to further improve accuracy, e.g.,
by averaging/filtering out the random disturbance. Regardless,
the privacy is unaffected by these post-processing strategies.
Additionally, most noise reduction algorithms can only take a
sequence of data points over multiple broadcasts as input, but
not a single data in one broadcast. Thus, they do not satisfy
the real-time requirement in V2V systems. In the rest of paper,
we only compare the baseline and proposed method without
any post-processing.

Note that the concept of sharing noisy information in V2V
communication is compatible with existing standards. Cooper-
ative Awareness Messages (CAMs) can be disseminated peri-
odically in the Intelligent Transport Systems (ITS) network un-
der European Telecommunications Standards Institute (ETSI)
standards. Specifically, vehicular information such as speed,
location and their corresponding precision with a confidence
level of 95% are broadcast by each vehicle (see Annex B in
ETSI EN 302 637-2). However, no precision requirement is
specified. Therefore, we can adjust precision purposefully for
protecting privacy. As long as the perturbation’s magnitude is
carefully controlled such that the information is still useful,
the existing standards still apply.

E. Speed profile after perturbation

Now we present the speed profile of vehicle A after per-
turbation. We assume that vehicle A has its speed profile
determined before starting the drive cycle, which is shown
in the top plot in Fig. 3 and corresponds to the EPA Federal
Test Procedure. However, this information should be perturbed
when broadcast to protect privacy. Two example trajectories
of the randomly perturbed drive cycle using the baseline
and proposed methods are also shown in the same plot. The
variances of added noise in the perturbed cycles are chosen
such that their privacy guarantees are the same.

Once the trip starts, vehicle A broadcasts its perturbed future
speed for every second within a time interval, the length of
which is equal to the prediction horizon of the predictive speed
controller on vehicle B. For illustration, the time interval is set
to 10 s in the bottom plot of Fig. 3. The actual length used
to obtain the simulation results in Sec. IV is 40 s. Since each
speed is transmitted multiple times during multiple broadcasts,
the total privacy loss will be accumulated if the noisy speed
is generated independently in every broadcast. Attacker C
can use time-averaging to make a better inference about the
true speed. To address this issue, the same noisy speed is
reused and transmitted during multiple broadcasts instead of
generating a new value independently in each broadcast. The
procedure is illustrated in the bottom plot of Fig. 3, where
every two consecutive broadcasts, i.e., t =11 s and 12 s, have
an overlap, and the information during the overlapping portion

at t = 12 s repeats what is sent at = 11 s, except for the first
second of each broadcast, when true information is available
to the immediate following vehicle B from the radar. Based
on this, an optimal speed planner is designed and used for
vehicle B as described in the next section.

III. OPTIMAL VEHICLE SPEED PLANNER

This section describes the planner we use for vehicle B
that aims at optimally reducing fuel consumption and tailpipe
emissions.

A. MPC formulation

A model predictive controller (MPC) is adopted as the opti-
mal speed planner for vehicle B. The MPC decides the optimal
acceleration through the following iterative process: (1) At the
current time step, MPC solves an optimal control problem that
minimizes a cost function over the prediction horizon subject
to constraints. The cost function represents a weighted sum of
fuel consumption and tailpipe NOx emissions calculated from
a model. The constraints include an inter-vehicular distance
constraint, which is generated from the predicted speed of the
vehicle A, maximum speed and acceleration constraints, and
system dynamics. (2) Even though the optimization determines
the optimal acceleration trajectory for the entire prediction
horizon, only the solution at the current time-step is applied
to the vehicle. (3) At the next time step, steps (1) and (2) are
repeated with the new information available to the optimizer.

The model used to simulate fuel consumption and tailpipe
NOx emissions and the selection of cost function are described
in the following subsections.

B. Fuel and emissions model

A vehicle with a diesel engine is modeled for this work.
Both vehicle fuel consumption and tailpipe emissions are cal-
culated based on knowledge of vehicle speed and acceleration,
as well as air temperature, which is assumed to be constant
at 25 °C. This is done by modeling vehicle longitudinal
dynamics, gear shift, engine outputs (e.g., fuel consumption
and inputs to aftertreatment system), aftertreatment thermal
dynamics and NOx reduction ratio. The aftertreatment system
comprises a Diesel Oxidization Catalyst (DOC) and a Selective
Catalytic Reactor (SCR). NOx reduction process happens in
the SCR and the reduction ratio is determined by the SCR
temperature.

C. MPC objective function

The objective for the controller is to reduce fuel consump-
tion and tailpipe emissions. Thus, the objective function is
designed to be a weighted sum of two terms, one for fuel and
the other for emissions.

Smoothing the speed trajectory leads to lower torque and
power demand, which improves fuel efficiency when traveling
the same distance. Thus, squared acceleration is the term in the
objective function to reduce fuel consumption. On the other
hand, high NOx reduction ratio is preferred to reduce tailpipe
NOx consumption. NOx conversion ratio in the SCR reaches



its maximum in the range of 220 —320 °C, which, in medium-
to-light duty drive cycles, corresponds to a requirement of
turbine temperature staying above the threshold temperature of
240 °C. Thus, we include the squared difference between the
threshold temperature and the turbine temperature if turbine
temperature is lower than the threshold as the term to reduce
tailpipe NOx emissions. The above two terms are used as
an alternative to fuel consumption and tailpipe emissions
to reduce controller complexity and computation time. It is
shown in Sec. IV that this objective function is able to
effectively balance fuel consumption and NOx emissions.

IV. EFFECTS OF PRIVACY ON VEHICLE PERFORMANCE

In this section, the above-described optimal speed planner is
applied to vehicle B under different scenarios to assess how the
perturbation employed by vehicle A affects the performance
of the speed planner. For comparison, the following three
scenarios are considered, where vehicle A broadcasts

« true future speed without considering privacy (Case 1).

« a private version of future speed using the proposed
method (Case 2).

e a private version of future speed using the baseline
method (Case 3).

We re-emphasize that speed profiles applied in Case 2 and
Case 3 have the same differential privacy guarantee.

The speed planner uses a weight factor w to adjust the
trade-off between minimizing acceleration (to reduce fuel
consumption) and increasing turbine temperature (to reduce
NOx emissions). To explore the trade-off, the weight is varied
between simulations as w=0,1,...,5, where larger w means
larger penalty on emissions. For all the 3 cases considered, the
same set of weights is used to produce the simulation results
in Fig. 4. In all the simulations vehicle A is assumed to follow
the EPA Federal Test Procedure as the drive cycle.

As observed from Fig. 4, for Case 1, when true speed
information of vehicle A is available to the controller, fuel
consumption is reduced by 15% when the total tailpipe NOx
is no more than the nominal trajectory, i.e., the case in which
the follower follows the leader’s true speed trajectory exactly.

Now consider the cases involving perturbations. When
comparing Case 2 and Case 3 with Case 1, the overall
performance worsens with decreased accuracy of the V2V
information. Since the speed planner aims to minimize two
competing costs, i.e., fuel and emissions, and it is impossible
to achieve the minimum for both simultaneously, we evaluate
the planner performance by looking at the fuel consumption
when NOx emissions are the same, or by looking at the NOx
emissions when the fuel consumptions are the same (Fig. 4).
Graphically, the controller performance can be approximately
viewed as the distance between the curve and the nominal
point (1,1). Note that the trajectories in Case 2 and Case 3
have the same privacy guarantee, but Case 2 yields better
performance. Hence, with the proposed method the planner
performance is improved compared to the baseline without
increasing the privacy risk. Note that here we assume that the
desired level of differential privacy guarantee is given, and
only the perturbation mechanism is designed to yield better
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with optimal speed planners with different weight factors w when information
accuracy is changed.

performance than baseline and simultaneously preserve the
privacy, as we mentioned in Sec. II-C. However, as far as
the authors know, it is not easy to come up with a maximum
level of privacy or to design a perturbation mechanism for any
privacy level, to theoretically guarantee that better performance
is achieved compared with the nominal trajectory. Monte
Carlo simulations can be done to approximate the maximum
tolerated level for differential privacy.

The influence of prediction inaccuracy on fuel consumption
and emission performances are different. As shown in Fig. 5,
with the same weight factor selected in the MPC, as the infor-
mation becomes more inaccurate, fuel consumption increases
while tailpipe NOx emissions reacts unpredictably.

The increase in fuel consumption is expected for the follow-
ing reason. When the predictive information is inaccurate, cur-
rent distance and speed information from the radar on vehicle
B, which is accurate and updated at every time step, will force
B to accelerate or decelerate to follow vehicle A. This causes
a more oscillatory drive cycle. If the information is accurate,



there is better agreement between the radar information and
the V2V information, which means B is aware of vehicle A’s
movement in advance and can be more optimal in selecting a
smoother trajectory, which costs less fuel.

For the tailpipe NOx emissions, which are affected by both
the amount of engine emitted NOx and aftertreatment reaction
ratio, there does not exist an as consistently monotonic rela-
tionship with the level of inaccuracy as the fuel consumption.
In the simulations performed, as shown in Fig. 5, overall
tailpipe NOx decreases with the level of inaccuracy when w
is small, while when w is large, Case 3 creates more total
tailpipe NOx than Case 2. This shows that with a small w,
increase in reduction ratio is the major effect compared with
the increase in engine NOx emissions under this simulated
setting. However, with a large w, a higher weight is already
used in the temperature related term that leads to higher af-
tertreatment temperature and thus enters the temperature range
that produces a higher reduction ratio. Further temperature
increase caused by the oscillations mentioned above does
not improve the reduction ratio as much as the engine NOx
increase caused by the oscillations. Thus, higher engine NOx
emissions become the major effect and yield worse tailpipe
NOx performance. If the control objective is maintaining the
same tailpipe NOx as the nominal trajectory and reduce fuel
consumption, these analyses show that the weight w in Case 2
should be larger than in Case 3. This expresses the need for an
integrated design strategy, in which the tuning of the controller
weight is done with consideration of the perturbation method
and requirement for guaranteeing privacy.

V. CONCLUSION

An application of predictive speed planning in a car-
following scenario is studied with differential privacy con-
siderations. A new perturbation mechanism is proposed to
guarantee a certain level of differential privacy for the leader
vehicle while still providing sufficiently accurate information
to the follower vehicle for speed planning with good perfor-
mance. As compared to the baseline method that independently
perturbs speed in every broadcast, our method generates the
speed profile with the same differential privacy guarantee but
with higher accuracy. The improved accuracy in the broad-
cast information then leads to better overall speed planning
performance. Meanwhile, for more specific control objectives,
selection of the control parameter is also affected by the
selection of the perturbation mechanism.

The main conclusion of this work is that inaccuracies in the
broadcast information of a leader vehicle that are introduced
due to privacy concerns can have a significant impact on the
performance of predictive speed planners the follower vehicles
may utilize. This negative impact can be reduced through co-
development of the differential privacy and predictive speed
planning strategies. The results in this paper demonstrate the
potential benefits of a more comprehensive design and analysis
perspective, and motives further development of integrated
strategies.
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Fig. 1. Traffic scenario considered in this paper.
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Fig. 2. Two-step illustration of the proposed method: Vehicle A’s perturbed speed at each broadcast is determined by the convex combination of the true
speed and the estimation from the previous broadcast.
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Fig. 3. (Upper) Transmitted information perturbed by the baseline method and the proposed method, and (lower) information available to vehicle B at two
consecutive time steps.
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Fig. 4. Normalized fuel consumption vs. tailpipe NOx emissions curve for trajectories optimized over the FTP drive cycle with different weight factors w
when the optimal speed planner is using speed profiles from vehicle A with different privacy guarantees. The nominal case refers to the scenario when vehicle
B follows the same speed trajectory as vehicle A.
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Fig. 5. Variation of normalized fuel consumption and tailpipe NOx emissions with optimal speed planners with different weight factors w when information
accuracy is changed.



