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We consider online convex optimization with stochastic constraints where the objective functions are arbitrarily
time-varying and the constraint functions are independent and identically distributed (i.i.d.) over time. Both
the objective and constraint functions are revealed after the decision is made at each time slot. The best known
expected regret for solving such a problem is O(NT), with a coefficient that is polynomial in the dimension
of the decision variable and relies on the Slater condition (i.e. the existence of interior point assumption),
which is restrictive and in particular precludes treating equality constraints. In this paper, we show that such
Slater condition is in fact not needed. We propose a new primal-dual mirror descent algorithm and show that
one can attain O(VT) regret and constraint violation under a much weaker Lagrange multiplier assumption,
allowing general equality constraints and significantly relaxing the previous Slater conditions. Along the way,
for the case where decisions are contained in a probability simplex, we reduce the coefficient to have only
a logarithmic dependence on the decision variable dimension. Such a dependence has long been known in
the literature on mirror descent but seems new in this new constrained online learning scenario. Simulation
experiments on a data center server provision problem with real electricity price traces further demonstrate
the performance of our proposed algorithm.
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1 INTRODUCTION

We consider an online convex optimization (OCO) problem with a sequence of arbitrarily varying
convex objective functions f*(p), t =0,1,2,---, p€ A C R? which are revealed per slot after the
decision is made, and A is a closed bounded convex set. For a fixed time horizon T, define the regret
of a sequence of decisions {/10, ul, e, ,uT_l} C Aas
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The goal of OCO is to choose the decision sequence so that the regret grows sublinearly with
respect to T. OCO is a classical problem and has been considered in a number of previous works
such as [4, 9, 10, 31]. In particular, it is known that for differentiable functions f*(-), the projected
gradient descent algorithm achieves an O(VT) regret which is also worst case optimal. When the
set A is a probability simplex, the mirror descent algorithm further achieves an “almost dimension
free” logarithmic dependency on the dimension d.

The framework considered in this paper builds upon the previous OCO model by incorporating
a sequence of time varying constraint functions ¢! (y), i = 1,2,---, L, which are also revealed
at each time slot t after the decision is made. The goal of this constrained OCO is to choose the
decision sequence {yo, o, ,uT_l} C A so that both the regret and constraint violations grow
sublinearly in T (i.e. Zth_Ol gi () < o(T)) with respect to the best fixed decision in hindsight solving
the following convex program:

T-1 T-1
TEiEth(p), s.t. ng(y) <0,i=12--,L. (1)
t=0 =0

The constrained OCO was first considered in the work [14] where the authors (somewhat surpris-
ingly) show via a counterexample that even with only one constraint, it is not always possible
to achieve the aforementioned goal if we allow both objective and constraint functions to vary
arbitrarily. Such an impossibility result implies that if one wants to obtain meaningful results on
constrained OCO, then more assumptions have to be posed.

The works [11, 13, 19] consider the scenario where the constraint functions are fixed (i.e. do
not depend on the time index t) and propose primal-dual type methods whose analyses give
O(T™2x{B1=B}) regret and O(T'~#/?) constraint violation, where f§ € [0, 1] is an algorithm parame-
ter. This bound is improved in the work [27] where the authors show an O(T) regret bound and
finite constraint violations (i.e. O(1) constraint violation) via Slater condition (i.e. There exists a
u € A such that g; () < 0, Vi). A more recent work [29] shows that one can get logarithm regret
and O(VT) constraint violations if one assumes instead that all objective functions are strongly
convex.

Constrained OCO with stochastic constraints, where g/ (1) = g;(1y") and {y’}} are iid.,
is considered in the works such as [5, 12, 26], where a primal-dual proximal gradient algorithm
is proposed and O(VT) expected regret and constraint violations are shown under the Slater
condition (i.e. there exists a y € A such that E(g; (1, 0")) < 0, Vi). Without Slater condition, the best
known result is again O (T™>*{#1-F}) regret and O(T'7#/?) constraint violation as is shown in [25].
Also, to the best of our knowledge, previous bounds in constrained online learning fail to recover
the “almost dimension free” phenomenon for the probability simplex decision set ubiquitous in
unconstrained scenarios. In this paper, we make steps towards removing the Slater condition while
maintaining the worst case optimal O(NT) regret, constraint violations, and sharpening the dimension
dependency on decision variables.

Slater condition is assumed in the classical analysis of optimization algorithms for constrained
convex programs such as the dual subgradient algorithm [15] and the interior point method [3]. A
key implication of Slater condition, which is adopted in the O(1/VT) convergence rate analysis
in [15], is that it implies the existence and boundedness of Lagrange multipliers. However, the
reverse implication is in general untrue, as one can show that for many equality constrained convex
programs, Lagrange multipliers do exist and are bounded [2]. This makes “Slater condition free”
analysis an important topic in optimization theory and motivates series of improved primal-dual
type algorithms and analysis for constrained convex programs with competitive convergence rate
under the existence of Lagrange multipliers assumption [6, 16, 28, 30].
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Replacing the Slater condition with Lagrangian type assumptions in online problems is highly
non-trivial and does not follow from that of constrained convex programs. A key issue is that the
objective function varies arbitrarily per slot, and so the definition of Lagrange multiplier is not
clear. A simple attempt is to look at in-hindsight problems such as (1) and see if the Lagrange
multiplier of this problem helps with the regret analysis. However, since problem (1) sums the
objectives across the horizon, it hardly gives any insight on the per slot dynamics for any practical
algorithm considered. If we instead look at the per slot constrained problem, then, one might be
able to conduct analysis and obtain per-slot multipliers, but it is not clear how to piece together
the analysis for different slots.

1.1 Contributions

In this paper, we consider the stochastic constrained online learning problem and propose a new
primal-dual online mirror descent framework, which simultaneously weakens the assumptions
and improves the dimension factors in the previously known online proximal gradient type al-
gorithms. We introduce a new sequential existence of Lagrange multipliers condition, which is
shown to be strictly weaker than the Slater condition, allows for equality constraints and bridges
the aforementioned dilemma between on-hindsight problem and per slot problem. We then show
via a new analysis that under such an assumption, the proposed algorithm enjoys a matching
O(NT) expected regret and constraint violations. For the case when decisions are contained
in a probability simplex, we reduce the dimension dependency to have only a logarithmic fac-
tor. Conceptually, our analysis seems to be distinctive from the previous known methods in
the sense that we look at the cumulative objectives over a specifically chosen time period (of
length VT), and consider the following static constrained program starting from any time slot ¢:
minea Z?;;/T E(f"(p)), s.t. E(gi(p,©")) <0, i =1,2,---,L. We demonstrate that the existence
and boundedness of Lagrange multipliers for this problem provides certain weak error bound
conditions for the dual function sufficient to bound the size of the dual variable process, leading to
the desired results.

1.2 Notation

For any vector v € Rd, v >0, v=0, v < 0 means v is entrywise nonnegative, zero and nonpositive,
respectively. The notation [v]; denotes entrywise application of the function max(x,0). The
notation R? stands for the positive orthant of R?. For any set S C R, let int(S) be its interior.
The norms ||v|); := 3%, [o())], V]l := (2%, [0(i)|?>)V/? and ||v]le := max; |0(i)|. For any convex
function f : R¢ — R, we use Vf(v) to denote any one of the subgradients at v and use af (v)
to denote the set of all subgradients at v. For any function g(v, £) which is convex on the first
argument v, Vg(v, &) denotes the subgradient of g on v while fixing &. For any closed set K C R?
and any point x € R?, the distance of x to K is defined as dist(x, K) := minyeg ||x =yl

2 PROBLEM FORMULATION AND ALGORITHMS
2.1 Basic definitions
Let || - || be a general norm in R¥. Define the dual norm on any x € R¢ as ||x||. := SUp |y <1 (x,y),

where (x,y) = ;_;a x(i)y(i). Consider a convex set C C R? (potentially being R itself) with a
non-empty interior, i.e. int(C) # 0. Let w : C — R be a function that is continuously differentiable
in the interior of C. Let A C C be a compact convex subset containing the origin and A° := ANint(C),
which is non-empty. Define the Bregman divergence function D : A X A° — R generated from w(-)
as follows:

D(x,y) = w(x) —o(y) = (Vo(y),x - y).
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The following is a key property of the Bregman divergence:

LEMMA 2.1 (PUsHBACK). Let f : C — R be a continuous convex function. Fix « > 0,y € A°.
Suppose x* € argmin, ., f(x) + aD(x,y) and x* € A°, then, for any z € A,

f(x*)+aD(x"y) < f(z) + aD(z,y) — aD(z,x").

REMARK 2.1. For the case where f is a linear function and w is convex, such a pushback result can
be found, for example, in [17]. For results with f being on domain R?, the proof can be found in [20].
Our result generalizes previous results to arbitrary set A. It is proved in the Supplement (Section A.1)

We say w(-) is a distance generating function if for any x € int(C), «(-) is a continuously
differentiable and strongly convex with modulus § with respect to the primal norm || - ||, i.e.
(x —y,Vo(x) = Vo(y)) = Bllx — yl||%, Vx,y € int(C). It is easy to see if w is a distance generating
function, then, the corresponding D(-, ) satisfies

b
2
Note that D(x, y) behaves asymmetrically on x and y over potentially different domains, which
results from the (possible) non-differentiability of the distance generating function w(-) on the
boundary of A. We provide two examples below:
(1) Theset A = {g € R?: ||p|ly = 1, p > 0} is a probability simplex, C = R? with £,-norm || - ||,
the function w(p) = — X%, p(i) log p(i) is the entropy function, and for any two distributions
ut e, yb e A°,

D(x,y) > =|lx — y||% Vx,y € int(C). (2)

d .
a by _ a/s ,ua(l)
D(p°, b = Zu (i) log 5

is the well-known Kullback-Leibler (KL) divergence. Furthermore, by Pinsker’s inequality, it

is strongly convex with respect to || - ||; with the strongly convex modulus f = 1. The dual
norm in this space is || - ||oo-

(2) The set A is in the Euclidean space R, C = R with the usual £-norm || - ||; and e (x) = % llx]12,
which is strongly convex with respect to || - ||z, D(x,y) = ||x — y||3, and the dual norm is also

Il -

2.2 Problem formulation

In this section, we set up the basic formulation of stochastic constrained online optimization.
Let {£'}52, and {y‘}2, be two processes, where {£/}2, can be arbitrarily time varying (might
be chosen based on the system history) and {y*};°, are i.i.d. realizations of a random variable
y with a possibly unknown distribution. Let f(y, &), g;(p, y"),i € {1,2,...,L} be deterministic
functions which are continuous convex in the first component given the second component.
Furthermore, let {h;};"’zo, j€{L2,---, M} be sequences of i.i.d. random vectors in RY, Throughout
the paper, we assume &, y/, h; are mutually independent for all ¢ with system history up to time

tas F; = {&, 77, hj’.}i;(l). For any fixed y € A, we write f' () := f(p, &), g () = gi(p,y"), and
ft(p) =E(f"(p)|%), 9;(1) = E(g" (p)). We further define the vectorized notations

g (W =lg1(my") . gqu(my)’

81 = [E(gi (kv E(gr(my))IT

B () = (R (B t)]T

h() = [(E(hi). 1) .. (E(By). )]
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It is also worth noting that our algorithms and analysis also apply to the special case where {£'}72,

are also i.i.d. for which we have ]_‘t (w) =E(f(p, &) = ]_”(p), Vt.
Define the benchmarking decision in-hindsight y* as a solution to the following static convex
program:

T-1
. —t — -
min > (4) s.t. g(y) <0, h(w) =b, (3)
HeA =5
where b = [by, by, ---, ba]T is a vector of constants. At the beginning of each time slot ¢, none

of the objective function f*(y), constraint function g(y) or random vector hj. is known. The
decision maker is supposed to choose a vector ' € A first before observing these quantities.
The goal is to make sequential (possibly randomized) decisions so that both the expected regret,
defined as 3,7 E(f*(4') — f'(4*)), and expected constraint violations, define as Y,/ E(g! (1))
and E| Zth_Ol hj. (u")|, grow sublinearly with respect to the time horzon T. Throughout this paper,
we make the following boundedness assumption:

AssuMPTION 2.1 (BOUNDEDNESS OF OBJECTIVES AND CONSTRAINT FUNCTIONS).

(1) Objective functions f'(u) and constraint functions gi(y) have bounded subgradients on A, i.e.
there exist constants D1 > 0 and D, > 0 such that [V (p)|l. < Dy, Y1, IVg! (p)||? < D2, for
allpe Ay allt € {0,1,...},and alli € {1,2,...,L}.

(2) There exist constants F,G,H > 0 such that |f*(u)| < F, Vt € {0,1,2,--- }, S, 9" (0)|* < G?
forallpe A, t€{0,1,2,---}, andzyil ||h§||f < H% forallje {1,2,--- ,M}, t € {0,1,...}.

(3) The Bregman divergence D(-,-) is generated from a distance generating w(-) and bounded on
the set A, i.e. there exists a constant R such that sup,.cs yepo D(x,y) < R.

By strong convexity of the Bregman divergence (2), we have

, 2R
sup |[lx —ylI" < —.
x€A,yeN® .B

Note further that KL divergence does not satisfy Assumption 2.1(3), for which we will develop a
separate new algorithm in Section 3.2.

2.3 Primal-dual online mirror descent

We are now in a position to introduce our new online mirror descent (Algorithm 1) for the stochastic
constrained online learning. The algorithm computes the next decision y*! by a proximal mirror
map using p‘, f* and g¢, and control the constraint violations via dual multipliers Q(t) and H(t).

2.4 Sequential Existence of Lagrange Multipliers (SELM)

In this section, we introduce our Lagrange multiplier condition. A detailed comparison between
such a condition and other constraint qualification conditions is delayed to the Supplementary
(Section A.2). We start by defining a partial average function starting from any time slot t as:

k18
TR ONA

Consider the following optimization problem:

min 7 5.0 8(w) < 0, () = b, (7)
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ALGORITHM 1: : Let 4° = y~! € A. Let V,a > 0 be some trade-off parameters. Let Q;(t), H;(t) be
sequences of dual multipliers such that Q;(0) = 0, H;(0) = 0, Vi, j. For each slot t € {0,1,---,T — 1}:

e Choose y! as a solution to the following problem:

L M
min (V977 + Zl Qi(1)Va; ! (™) + ; Hi(O{™, 1) + aD (o ™) @
e Update dual multiplier Q;(t), Hj(t), i € {1,2,---,L}, j € {1,2,---, M} via
Qi(t+1) = max {Qi(t) +4i " (u'), 0} )
Hj(t+1) = Hj(1) + <h§.—1,pf> —b;, (©)

whese g4 = 114 4) (T 1), — 071,
o Observe the objective function f* and constraint functions {g’}- ,, {n }JA’i L

= —tk
where g(u), h(u) are defined in Section 2.2. Denote the solution to this program as f : . Define the
Lagrangian dual function of (7) as

L M
a9 ) = min PG + )4G0+ )y () = b)) ®)
i=1 j=1

where 1 € RE and n € RM are dual variables. For simplicity of notation, we always enforce them to
be row vectors. Now, we are ready to state our condition:

ASSUMPTION 2.2 (SEQUENTIAL EXISTENCE OF LAGRANGE MULTIPLIERS (SELM)). For any time
slot t and any time period k > T, the set of primal optimal solution to (7) is non-empty. Also,
the set of dual optimal solution, which is the set of Lagrange multipliers of (7) denoted as V', =
argmax; gt UeRMq(t’k) (A, 1), is non-empty and bounded. Furthermore, let B > 0 be a constant such
that for anyt € {0,1,---,T — 1} and k = VT, the dual optimal set (Vt*k defined above satisfies
maxujev;, [I[A plllz < B.

REMARK 2.2. SELM asserts the existence and boundedness of Lagrange multipliers on the set of

subproblems (7) for any time epoch t € {0,1,2,---,T — 1} and any time duration k > VT. In the
special case where the objectives are also i.i.d. functions, we have

k-1 k-1 B
70 = 2T 0 = 1 DB E ) = T v ek

and SELM reduces to an existence and boundedness of Lagrange multipliers condition for a single
constrained convex program:

min f(y) s.t. g(u) < 0, h(y) =b.
HEA

REMARK 2.3. In Section A.2 of the Supplement, we show that SELM is implies by certain constraint
qualification conditions and strictly weaker than the Slater conditions. In particular, we obtain the
following simplifications in special cases:

(1) Lemma A.2 shows that Slater condition implies SELM.

(2) Corollary A.10 shows that when the interior of A is non-empty and there are only equality

constraints, the linear independence of {E(h}), E(h}), ---, E(h},)} implies SELM.
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(3) Lemma A.5 shows that when A is the probability simplex and there are only equality constraints,
the linear independence of {1, E(h}), E(h}), ---, E(h},)} implies SELM.
Detailed arguments are deferred to Section A.2 of the Supplement.

The motivation for SELM is as follows: whenever Lagrange multipliers exist and are bounded,
we have the dual function deviates according to a certain curve related to the distance from the set
of Lagrange multipliers, namely, the weak error bound condition (EBC).

Definition 2.2 (Weak error bound condition (EBC)). Let F(x) be a concave function over x € X,
where X is closed and convex. Suppose A* := argmax, . y F(x) is non-empty. The function F(x)
satisfies the weak EBC if there exists constants #, ¢y > 0 such that for any x € X satisfying
diSt(X, A*) > f(),

F(x") = F(x) = ¢ - dist(x, A"),
where dist(x, A*) is defined as:

dist(x, A") = inf ||x —y]l2
yEA*

Note that in Definition 2.2, A* is a closed convex set. This follows from the fact that F(x) is a
convex function and thus all sub level sets are closed and convex. The following lemma shows
SELM implies weak EBC on the dual function:

LEmMA 2.3. FixT > 1. Suppose Assumption 2.2 holds, then for anyt € {0,1,--- ,T—1} andk = VT,
there exists constants co, & > 0, such that the dual function —q*%) (1, n) defined in (8) satisfies the
weak EBC with parameter cy, £,.

This lemma is restated as Lemma A.13 with more explicit expressions on ¢y, £ and the proof is
in Supplement A.5. In the Supplement (Section A.2.3), we also compare this weak EBC with the
classical EBC in optimization theory and show that classical EBC implies weak EBC with explicit
constants.

3 MAIN RESULTS
3.1 Sets with bounded Bregman divergence

In this section, we present our main performance guarantee on Algorithm 1, when Assumption 2.1
and 2.2 hold under the general norm || - || setup in R? as we described in Section 2.1. In particular,
we assume that Assumption 2.1(3), i.e. the Bregman divergence is bounded, holds, which will be
relaxed in Section 3.2.

THEOREM 3.1. Let u* be a solution to the in-hindsight optimization problem (3). Suppose Assumption
2.1and 2.2 hold. Let ¢, ¥ > 0 be absolute constants such that ¢, > ¢ and fy < ?for all ¢y, £y obtained
in Lemma 2.3 overt =0,1,2,--- , T — 1 and k = VT. If we choose a =T,V = \T in Algorithm 1, then
the expected regret and constraint violations satisfy:

LS By - ) < &
=

=
)
=
=
[
=
=
IA
S
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where C}, C}, C; are constants depending linearly on D? + Dy +Dj}+G*+H?+G+H+F and independent

of T.

Note that throughout the paper, we always use Euclidean £,-norm || - ||; to measure the constraint
violation, and it is irrelevant to what norm we choose on the primal space C C R¢.

3.2 The probability simplex case

In this section, we deal with the probability simplex case where the decision set A is a d-dimensional
probability simplex with huge d. While Algorithm 1 can be applied to solve such problems by
choosing D(y, p*™") to be || — p* 1|2, due to the dependencies on the Dy, D;, G, H, F, the constant
factors in Theorem 3.1 linearly depend on d. For mirror descent over a probability simplex, to
improve the dimension dependence, people usually choose the Bregman divergence distance D(-, )
to be the KL divergence. However, KL divergence fundamentally violates the third assumption in
Assumption 2.1. We now present an alternative algorithm in Algorithm 2 and shows that it can
achieve sublinear regret and constraint violations that logarithmically depends on d .

ALGORITHM 2: : Let V,a > 0, 8 € [0,1) be some trade-off parameters. Let D(uq, p2) =

Z?:l 11 (i) log % Let Q;(t), Hj(t) be sequences of dual multipliers such that Q;(0) = 0, H;(0) = 0, Vi, j.

Let po = p—1 = %I.For anyslott € {0,1,---,T -1}

e Leti l=(1-0)pu+ gl.
e Choose pi as a solution to the following problem:

L M
P (voriw )+ Zl Qi(t)Vg! (') + le Hi(Oh™ p) + aD(p i) ©)

e Update each dual multiplier Q;(t), H;(t) via (5) and (6).
e Observe the objective function f* and constraint functions {g; }iL:r {h; }JA/i 1

Compared to Algorithm 1, Algorithm 2 uses the K-L divergence as the particular Bregman
divergence and introduces a probability mixing step ji'™! = (1 — Q)p'~! + %1, which pushes the
update away from the boundary, at each round. Furthermore, it is known that the problem (9)
admits a closed form solution known as the exponential gradient update [10]. More specifically,

define
M

L
= o (VYT (T + ) i)V (T + ) Hi(hT.

i=1 =1
Then, the update p’ can simply be written as
D ep(p @)
iy 71 (k) exp(=p*~1 (k)

We have the following performance bound on this algorithm whose proof is similar to Theorem
3.1 and delayed to the Supplement (Section A.4):

pt (i) = e{1,2,---,d}. (10)

THEOREM 3.2. Suppose the first two in Assumption 2.1 (using || - || = || - | and || - I« = || - |leo)
and Assumption 2.2 hold. Letc, ¢ > 0 be absolute constants such thatcy > ¢ and £y < ?for all ¢g, 4
obtained in Lemma 2.3 overt = 0,1,2,--- ,T —1 and k = \VT. Choosea =T, V = VT, 0 = 1/T in
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Algorithm 2. The expected regret and constraint violations satisfy:

T-1 Ar Ar
R ¢ Cllog(d)
= 2LE(F U - fi) s =+ 2
P 2B - hun) < e

T-1 Ar Arr
. 1 E(,Ut) < i+Cl log(Td)
T & A, VT \T
T-1 Ar Arr

1 _ C Cl'log(Td
B2 S Rty —b|| < 24 200D

T4 IR A

where G}, C1,C!!, C}, C}' are absolute constants depending linearly on D?+ Dy +D?+G?+H?*+G+H+F
and independent of d or T. (Note that Dy, Dy, G, H, F in Assumption 2.1 are independent of d when

Al =11 fleo-)

REMARK 3.1. As a comparison, previously known algorithms and performance bounds, when ap-
plying to this problem, yield worse dependencies on dimension d or time period T. For example, when
assuming Slater condition, Theorem 1 of [26] gives Cpoly(d)/NT regret bound and constraint viola-
tions. Without Slater condition, [12] shows Cy poly(d) /NT regret bound and C;poly(d)/T'* constraint
violation. Here poly(d) stands for polynomial dependency ond and C, Cy, C, are all absolute constants
independent of d or T.

4 SIMULATION EXPERIMENTS

We consider the problem of cost minimization under budget pacing constraints in data center
service scheduling. More specifically, consider a geographically distributed data center consists of
5 server clusters serving one stream of incoming jobs arriving at a central controller. Each cluster
contains 10 servers. The jobs are directed to different clusters for processing by controller with
different per unit electricity costs. In the simulation, we use electricity market price (EMP) data
traces from 5 zones of New York ISO open access pricing data (http://www.nyiso.com/). For example,
Fig 1(a) depicts the per 5 min EMP data of zone DUNWOD between 05/01/2017 and 05/10/2017.
The number of incoming jobs per 5 min is A(t), which is assumed to be poisson distributed with
mean equals 1000. each server k can choose a power allocation option ,u,’C € [0, 30]. This option
determines the following over the 5 min slot:

(1) The electricity money spend of server k: f (u;) = c} - i}, where ¢} is the per unit EMP of

zone server k belongs to.

(2) The number of jobs served gli ( p,’c) which follows a Pareto distribution (a.k.a. power law, see

[7]) of mean 8log(1 + 4py).

(3) Internal budget consumptions hf - i, where h; follows a Pareto distribution of mean 5 units.
In a typical online service system such as ads service, budget is a measure of internal resources
[1]. The goal is to minimize total average electricity cost over T = 10000 slots, i.e. ¥.I_, 211 E(cy -
1;)/T, subject to the following two requirements: (1) The service rate supports the arrival rate:
>, DI E(gy (1)) = ST E(A(t)). Note that since g, (1) is concave function for y; > 0, this
is a convex inequality constraint. (2) The internal budget consumption is well-paced, i.e. each
cluster consumes a fixed ratio of the total consumed budget in expectation. More specifically, in the
simulation, let 73, - - - , 75 be index sets of 5 clusters, then, it is required that Zthl Dke 1 ]E(h]t< . ,u,tc) =
By Tim Xty BORL 1), j=1,2.3and By Bkeruz Bk - 1) = fa- By Tl Bk - 1), where
[B1, B2 B3, Pa] = [0.05, 0.10, 0.25, 0.60]. In Fig 1, we compare our proposed algorithm with the
best fixed solution in hindsight choosing the best fixed power allocation knowing all the data, and a
benchmark Reac algorithm [7]. The Reac algorithm is adapted to our pacing scenario by estimating
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the number of jobs in the next slot via the average of past 10 slots and assign the load according to
the pacing ratio. For cluster 4 and cluster 5 (which take up a total ratio of 0.60), the Reac algorithm
evenly distribute the workload between the two. Our algorithm achieves a similar electricity money
spend with the best fixed solution which is better than Reac, while keeping the average number of
unserved job low and achieving a fast budget pacing.

Electricity market price for Zone 2 Running average electricity money spend

1050
—— Proposed method
asol i —— Best fixed strategy
1000 - —— React algorithm
300 -
950
=
; 250 - o
=3 S 900
= aQ
% 200 - g
kel o
e S s8s0
2 sl =
o
800
100 -
sl 750
0 A . . 700 . . . . . . . . .
o 500 1000 1500 2000 2500 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of slots (per 5 min) Number of slots (per 5 min)
(@) (b)
Time average job delay Budget pacing
600 T T T T T 25 T T T T
—— Proposed method —— Proposed method
— Best fixed strategy — Best fixed strategy
200 ——React algorithm || —— React algorithm

400

300

200

Time average delay

100

Time average violation of pacing

L L L L L L L L L L L L L h Y h f
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of slots (per 5 min) Number of slots (per 5 min)

(©) (d)

Fig. 1. (a) Electricity market prices at zone DUNWOD New York; (b) Average money spent buying electricity;
(c) Average unserved jobs. (d) Average violation of pacing constraints.

5 PROOF OF MAIN RESULTS

In this section, we present the proof Theorem 3.1. The main lemmas as well as how they lead to
the regret and constraint violation bounds will be presented in Section 5.1 and 5.2, respectively.
The detailed proofs of those lemmas will be presented in Section 5.3. The idea of proving Theorem
3.2 is similar and the details will be delayed to the Supplement A 4.

5.1 Proof of regret bound
We start with the following key bound of a “drift-plus-penalty (DPP)” expression:

LEMMA 5.1. Define the drift A(t) = (1Q(t + DIIF = 1Q(1)II2)/2 + (IH(t + DIIZ - [H(D)]I7)/2.
Consider the following “drift-plus-penalty” (DPP) expression at time t: V (V f=" (u'="), u* — p'=1) +
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A(t) + aD(p!, p'~1). Let M = 4RH? | p + G* + 2RD: | where f8 is in (2), then, for any y € A,

VAV W pt = ) + A + aD ()

M
SV ) - £ ) + Y H @) (R )~ b))
j=1

L
+ Qg (W) + aD(p ™) = aD(p') + M. (1)

i=1

This lemma is proved via the property of Bregman divergence (Lemma 2.1). The details are
deferred to Section 5.3.1. Now, for the DPP expression on the left hand side, we also have the
following lower bound:

LEMMA 5.2. Our Algorithm 1 ensures
VYT, = i) +aD (i) = —VED 20 p. (12)

This lemma is also proved in Section 5.3.1. Substituting this bound in to (11), taking y = p* which
is the solution to the in-hindsight problem (3), and taking conditional expectations from both sides,
we readily get:

- DB < VE(f ) - £ IS
20 1 -1) = H H -1
ria| o2 330 (47) ) ]
Jj=1

+aB(D(e', ™) = D ) [T ) 4+ M. (13)

L
+B[ ) 00!~ ()
i=1

Note that

=

(53000 (1)) i) = Sl ) -) =0
Jj=1
L

L
B( Y Qi)™ ) [Fia) = X Qi(0E (gl ) < 0,
i=1 i=1
where, in both inequalities, the first step follows from the fact that h;, g; are iid. and H;(t), Qi(t)
depend on ¥4, and the second step follows from p* being a solution to the in-hindsight optimization
(3), thus, must be feasible, i.e. E(g! ™! (4*)) < 0, E((h;‘l, u*)) = 0. Thus, taking full expectation from
both sides of (13) gives

22
1

E(A(1) + VE(f ' (1) = (") s M+ +aB(D (", p' ) = D(p", 1)),

2ap
Taking a telescoping sum on both sides from 0 to T — 1 and dividing both sides by TV,

S VD?
lZ]E(ft_l(ﬂt_l) _ft_l(y*)) < M e W
=0

D(", 1),
T vt 2ap tyr W)

where we use the fact that since Q;(0) = 0, H;(0) = 0, and Zth_Ol A(t) = (IQ(T) 12+ |IH(T)I2)/2 = o.
Substituting @ = T,V = VT, and D(y", i°) < R yields the desired result with C} = RH?/f + G* +
2RD;/p +D%/2p +R.
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5.2 Proof of constraint violations

In this section, we present the proof of constraint violations in Theorem 3.1. First, it is enough to
bound dual multipliers via the following lemma:

LEmMMA 5.3. The updating rule (5) and (6) delivers the following constraint violation bounds:

BTN

EH—Zh( - < 2ROk VP TZ (DE(IQ) ) + HE(H(D) ).

O{

< EUQOI) , ¥DiD, 1
af T

D
2 25 (DEIQU)IL) + HE(H(D)L),

t=1

This lemma is proved in Section 5.3.2. To bound E(]|Q(t)|]2) and E(||H(¢)||2), we have the
following lemma whose proof can be found in Section 5.3.3:

LEMMA 5.4. Define constant Cy o4, = 2(4RH?/f+G*+2RD:/f+V2D?/(2af) +VF)ty+2(3G*/2+
2RD:/p + 8RH?/B)t + 2aR. Then, for any integer ty > 1, we have the t, step drift satisfies

E(I1Q(t + to)ll3 + IIH(z + o) I 1F77") = 1Q(0)1I7 — IH(2) I3

Q(t) H(t)) '7_-: 1) Cva,. (14)

szon( (=Lto) (22 z

where the dual function ¢~ is defined in (8).

This bound establishes the relation between dual multipliers and the dual function. Next, in view
of (14), we would like to show that ]E( glt—1n) (M M)

(Q(t) H()
e

Tt_l) is small. This is done via Lemma

) is far away from the optimal set V" , := argmax; ,q'" """ (4, n),
(t-1,t9) (w M)
VoV

2.3 that whenever

which is nonempty and bounded by Assumption 2.2, E( q Fi- 1) becomes nega-

tive. In fact one can prove the following lemma:

LEMMA 5.5. The dual function has the following bound:

. q(t lto)(Q(t) H‘(/t)) |7t 1) < F+[(G+«/2RH2/ﬁ+C)+CB— H(Q(t) H‘(/t))“z,

where B is defined in Assumption 2.2.

The detailed proof can be found in Section 5.3.4. Substituting the above lemma into (14) and
using a known stochastic drift lemma, one can prove the following bound by setting t, = VT,
V= \/T o = T. The details are in Section 5.3.5:

LEMMA 5.6. The quantity ||(Q(¢), H(t)) |l satisfies the following conditions:
5[, 1)
where C’ = %(4RH2//3+GZ+2RD§/ﬁ+Df/(zﬁ)) andC” = %(2F+3G2/2+2RD§//B+8RH2//3+R+

7(G++/BRHZB+2)+TB+4(2(G+ 2RD§/ﬁ)+\/8RH2/ﬁ)Zlog(2—5(2(6+ 2RD§/ﬁ)+\/8RH2/ﬁ)2))

are absolute constants.

L) < +CNT (15)

Substituting the bound (15) into Lemma 5.3 with @ = T and V = VT gives the final constraint
violation bounds.
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5.3 Proof of Technical Lemmas

Throughout the section, we let 77 be the system history up to time ¢, which includes {g7 }!Z}, {h}!;, and

1 =0’ =0’
{1
5.3.1 Proof of Lemma 5.1 and 5.2.

PrOOF OF LEMMA 5.1. Applying Lemma 2.1 by setting y = ™1, x* = 1!, f(x) = (x, p) and

L M
p=VIFT T + 0V (W) + ) Hi(n)hi
i=1 i=1

we have

L M
<VVf“(u”) + )00V (1 + ZHi<t>h§1,uf> +aD(, ™)

L M
< <VVfH(uH) + Z Qi(Vg T (W) + Z Hi(t)hi ™, u> +a (D(mp ™) =D ph))  (16)

On the other hand, recall that we define
G = gL ) + (Vg (), = )
Using the updating rule (5), (6) and Holder’s inequality that {(x,y) < ||x||||yll., we have
Hi(t+1)* - Hy()* =2H;(t) ((h{ " ') = ba) + [ (i1 ') = bil?
8R

<2H;(t)((hi™' pt) = bi) + B

[T

where the inequality for H;(t + 1)2 — H;(t)? follows from
[(B ') = bl < 2l (L) P+ 2lbif? = 20 (B ) 1P+ 2 [B((h 1)) < 8R/B,
via Assumption 2.1(3) that supa b ep [l1® — pP||? < 2R/B and b; = E((h!™", u*)). Also, we have

01t +1)% — Qi(1)? =max{Qu(1) + 4. (), 0)? — Qu(1)?
<20/ (i) + L (1)
<20, + 2041 (1) + %

where the first inequality follows from the following fact: If Q;(¢) + gi (") > 0, then, the equality
is attained and if Q;() + ¢! (4") < 0, then, max{Q; () + ! (¢"), 0}* = 0 and the inequality follows
from Q;(£)* + 2Q;(£)g! (p") + g (u") > 0. The second inequality follows from the assumption
SUP a bep Il14 — #P||? < 2R/ and the definition of §! (') in Algorithm 1 that

G = (g7 (W + (Vg Dt = )
- - - - _1\\2

<2(gi (W) +2 (Vg WD =)
<2(g;7 ()" + 201 Vg WO -

_ _ 4R _ _
<2(g7' (4t 1))Z+EIIng "EHIA

Vg™ (I,

2
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where the last inequality follows from Assumption 2.1 and (2). Thus, we have
L M AR M
AW = ) Qu(0GE () + ) Hi0) (ki) = bi) + = ) I
=1 i=1 i=1
L aR &
g T+ Y Vg (I
i=1 =
L M 2
. 4RH* 2RD
< 2, Q03" + D HiO (ki p) = b+ ==+ C" o+ =2, (17)
i=1 i=1

where the last inequality follows from Assumption 2.1(1). To this point, we consider the following
drift-plus-penalty term, by (17),

A +V (VD = ™) + aD (')

L M
< 2000 (g7 1) + (Vg Tt = )+ Y H (o) (R - )
i=1 j=1

4RH? 2RD?

’B +G2 + ’B 2 +V<Vft_1(,ut_1),pt _,Ut_1> +aD(pt,yt_l).

Now, by (16), we have for any p € A,
A +V(VF (0 = ) +aD ()

L M
< 2,0 (97 G+ (Vi D = ) + ) H (1) ((hj-’lw - bi)
i=1 Jj=1

4RH? 2RD? ~ o ~
t +G+ 5 2+ aD(pp' ") = aD(p ') + VAV ) p = i)

+

Note that by convexity, we have for any p,
A= A (T B A A (T WTE Ty
T R\ A (T NTE B
Thus, it follows (11) holds.
ProOOF OF LEMMA 5.2. We have
VAV ), = ) +aD ()
2V (V= )+ Lt

e 2B ]
2 = VIV DNl = g7+ Sl =
LLAWRE o
>-V —||,ut—pt 1”2 ; ﬁ”Vft l(llt 1)”* ” P ,ut 1”2
2

_ t—1,, t=1y|2 4 2
= ﬁllf WOl =z - ,6

where the first inequality follows from the strong convexity (2), the second mequahty follows from

Holder’s inequality, the third inequality follows from the fact that ab < £ +b , Va, b, and the last
inequality follows from the bound ||[Vf*~!(x'~1)||. < D;.

]
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5.3.2  Proof of Lemma 5.3. We start with a supporting lemma:

LEmMA 5.7. The updating rule (5) and (6) delivers the following constraint violation bounds:

T- T-1
E t D
Z l < BUQW) P25 (- 1)
=0 +ll2 t=
T-1 T-
1 E(IHM)I)  H 1 _ b

Bz > h(y') —b|| < T E(Ilu £)

t=0 2 t=0

ProOF OF LEMMA 5.7. We prove the first inequality and the second inequality is proved in the

same way. Note by (5), we have

Qi(t+1) =max{Q;(t) + ;" (™) + (Vg; " (u" ™). p" = '), 0}
>max{Q;(t) +g; ' (1) = IVg; " (W DI’ = p'7l, 0}
2Qi(t) +g; 7 (1) = IVg; " (WDl = 171
Taking a telescoping sum from both sides from 0 to T — 1,
T-1 T-1
Qi(T) = D" gh(u) = > IVgF ()™ = |l
=0 =0
Rearranging the terms and dividing both sides by T give
T-1 T-
1 t Qz( ) teob-1 t+1_ ot
— ; = Vy; . —pl
T 2,900 < T;n gi (DIl =

Note that the right hand side is nonnegative due to Q;(T) > 0, the inequality still holds if take the
max with 0 from the left hand side, i.e. denote [x] := max{x, 0}, then,

7-1
Qi(T) 1 _
=t r IVg: (Dl =

T-1
.

gi(p t)

t=0 t=0

Thus, we have

T-1 T-1
157 LT
7 g(;f)l +z 194N = |
=0 +llo t=0 \ i=1
T-1
QDI Do XYy
T T H ol

where the second inequality follows from Assumption 2.1.
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t+1

ProOOF OF LEMMA 5.3. It is enough to bound the difference term E(||u**! — 4'||). We start from

the relation (16) by taking p = p*~!
M
VYT, et Z Qi(t) (Vi (u =), ity + 3" Hie) (R ) + aD (', i)
=1
L
VAV ) + ) i) (Vi )
i=1

M
+ ) H () (B Ty —aD (). (18)
j=1

Note that we have

(VA = i) < IV DT = I < Dyl = it

On the other hand, we also have

L L
Z Qi() (Vgi (W, T =) SIIQ(t)IIzJ Z(“Vgi(ﬂt_l)”*”ﬂt —pD?

<D )IQ() 2l = 1M,

and

M
ZHj(t) (hi ™ =) < IIH(t)IIzJ
j=1

Substituting the above three bounds into (18) gives

™M=

(Il = =) < HIH ol =

Il
—-

i

- - 1 -
D(u', p™) + D ) < ~ (VD1 + D2 Q(1)llz + HIH(#) 12) [T
By strong convexity (2), we have
D', '™ + D' ) = Bllpt = P
Thus, it follows,
- 1 -
Bl = p'HIP < ~ (VD1 + D2l Q)2 + HIIH(1)]l2) Il = p M

Solving the above quadratic inequality yields

Iy = p M < aiﬂ (VD + De[|Q()[l2 + HIH(£)l2) -

Taking the expectation from both sides and subtracting this bound into Lemma 5.7 result in

1 T-1
T ZE(II')] <
+1l2

t=0

EAIQMI) VD1D2
T

T
;D—ﬁ > (DEAIQ()I) + HE(IH(1)IL))

R

the details. o

with exactly the same computation and we omit
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5.3.3  Proof of Lemma 5.4. For simplicity of notations, let constant ¢ be the minimum over all
¢o’s and let £ be the maximum over all £’s in Lemma 2.3 witht =0,1,2,---,T — 1 and k = \T. We
start with the following supporting lemma:

LemMa 5.8. Consider the ty slots drift for some positive integer t,, then we have

1Q(t + to) I} + IIH(2 + o) 17 = 1Q(H)1I7 — IH@®)II7
2

t+to— t+tg— t+to—

<v Z o 1(u>+ZQ,<t> Z s 1(#)+ZH(1‘) Z (7 = )+ 5 Creare 19)

Proor oF LEMMA 5.8. We start from equation (11). Substituting (12), we have

L M
MO+ VT ) = 7)< 3 0i0g () + ) (o) (B ) - by)
i=1 j=1

4RH? 2RD? V*D?
+GP+ —2+ L aD(p, '™t — aD(p, p).
B B 2af

Take the summation from both sides between t to t + f; — 1 for some t; to be determined later, we
obtain

1Q(t + to) 17 + IH(t + to)[IF — 1Q(H)17 — IH(D)II3

2
Z ZQlu)g, Y + Z ZH(r)( )~ by)
7=t =t j=1
2 212
(4Rﬁ]—[z +G2+ ZRﬁl)Z +‘;Dﬁ )t0+0[D(y, t— 1) —OCD(ﬂ, t+to— l)
t+ty—1
VO - N (W) (20)

Usmg Assumption 2.1, we have V 3507 f7-1(;7=1) < VFt;. Recall that Q;(t + 1) = max{Q; (t) +
gi(p*), 0}, where

Gi() =g (W) + (Vg (T = ),
and H;(t +1) = H;(t) + <h§._1,,ut> — bj, we have
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t+tp—1 L
D Qi) - Q) g ()
=t i=1
t+to—
Z Z<Z| WD) - g7 ()l
T=t+1 i=1 7/=
t+tp—17—-1 L
DIDIN ARSI T IlE
T=t+1 /=t i=1
t+tp—17—-1 L

DI IPN Al 2 7 Rl r2

T=t+1 /=t i=1

3 2RD?
<t? (EGQ + 5 2), (21)

where the second from the last inequality follows from ||u — u*~!||? < 2R/p, and the last inequality
follows from Assumption 2.1. Similarly, we can show that

Y H(r) H;(1) (1, 47) — b < 28R (22)
B
=t j=1

Substituting the above two bounds into (20), using the fact that aD (g, p**%~1) > 0 and D(y, p*) <

2 2
R and that Cy 4, =2 (4RﬁHZ +G+ ZRﬁD + ‘;aDﬂl + VF) to+2 (%G2 + ZRﬁDZ + 8RﬁH ) t2 + 2aR yields

the desired result. ]

Proor oF LEMMA 5.4. Taking a conditional expectation from both sides of (5.8) conditioned on
F'1, we get

E(I1Q(t + to)ll3 + IIH(z + o) I 1F77") = 1Q(0) I3 — IIH(2) I3

t+ty—1 t+ty—1
<2E|V Y T IFT 1)+zZQl<t)E( Z 9 l(u))
7=t

t+ty—

+ZZH (t)]E( Z ({7, bj)) +Cvary (23)

where we use the following two facts: (1) The multipliers Q(t), H(t) € F*'. (2) The functions g7
and h? are independent of system history #*~' and thus the conditional expectation equals the
expectation.

Note that by definition, f*(u) = f(y, '), and according to the notation in (7),

t+to—1 t+to—1 (t1,
( 2 S w1 1) VEe| ) S 1(;1)] 7 1)=VtoE(f( 4w 177,
Furthermore,
t+tp—1 t+tp—1 _
D, gf_l(u)) = tog; (1), E( >, <h§‘1,ﬂ>) = toh; (p).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 50. Publication date: June 2020.



Online Primal-Dual Mirror Descent under Stochastic Constraints 50:19

Substituting these two relations into (23), we get

E(I1Q(t + to) I3 + IH(t + to) I3 177") = 1Q(D)II3 ~ IIH(t)I|§

<2Vt()E f( 0)( ) ZQI( )—( ) Z J( )(h ([J) b )|7:t 1)+CVat0~ (24)

The key, as is mentioned in the proof outline, is to realize that

H . o Qilt) g 0 ¢

=1

where q(*%) is the Lagrangian dual function defined in (8) with dual variables (Q‘(, ), L) This
implies if we choose y = pg in (24) as one of the solutions to the above problem, then, we can
transform the bound (24) to (14) and finish the proof. O

5.3.4  Proof of Lemma 5.5. We take ty = VT and by SELM (Assumption 2.2), there exists a solution
to the maximization problem

A" = argmax, , q'“" (A, 7).

Let (A%, *) be one of the solutions to this problem. Recall that we define ¢ to be the minimum over
all ¢y’s and define ¢ to be the maximum over all 4’s in Lemma 2.3 witht = 0,1,2,---,T — 1 and

k = VT. If dist ((Q(t) H(t)) A*) > ¢, then, by Lemma 2.3 we have

H
g (2 HO)

V'V
=g (B By e e, gy g0 o, )
<-c- dlSt((Q‘(/t) H‘(/t)) A* ) + (ttO)(A* n )
< —c-dist ((@ %t)), A*) 7 (o)
<= &2 B rewe

where the first inequality follows from Lemma 2.3, the second inequality follows from choosing p
as the solution to the following problem

. bl — -
min f (p) s.t. g(p) <0, h(p) =b,
HEA

and using weak duality. The third inequality follows from triangle inequality and the boundedness
of Lagrange multipliers max, e+ [|[A, p]ll2 < B.
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On the other hand, if dist ((% H() ), A*) < ¢, then, one has

Vv v

(am)%‘)@
957 =)

"+ ZQ‘( 5.+ Z

M A B
=min 7 <y>+Z( a0 + (400 - Aii(u)) # 2 (i -+ (T2 - o))

=1 v
- ZRH2
<q"™ (A%, ") +{’(G+,f 5 < F+£’
Qo

where we choose (1%, i*) to be a point in A* closest to ( T’ %) the first inequality follows from

-bj)

> <le( - _l(”)> <1Q()/V - A Lllg(wll. < GF
i=1

NE h & RH?_
;< ]‘y) ’fhj(u)>sIIH(t)/V—y*||2||h(,,)||2£ /zﬁ Z

and the second inequality follows from weak duality. Overall, we finish the proof.

5.3.5  Proof of Lemma 5.6. The proof Lemma 5.6 is based on Lemma 5.5 and a general drift bound.
First, substituting Lemma 5.5 into (14) in Lemma 5.4, we have

E(I1Q(t + to) |15 + IH(E + to) I3 [F71) = 1Q()IZ — IH(®)]I3
< Cyon + 2(F +7(G + \2RHZ/B +7) +EB)Vt0 - 2zt0||(Q(t), H(t))”z. (25)

This bound is the key to our analysis. Intuitively, if || (Q(), H(t))|l; is very large at certain time slot
t, then, || (Q(t +1to), H(t +19))||2 becomes very small. Since || (Q( +ty), H( +to)) |2 is nonnegative,
this means ||(Q(#), H(?))||> cannot be too large to start with. To transform this intuition into a
uniform bound on (Q(t), H(t)) over all time slots, we invoke the following drift lemma:

LEMMA 5.9 (LEMMA 5 oF [26]). Let {Z(t),t > 1} be a discrete time stochastic process adapted to
a filtration {F (t),t > 1} with Z(0) = 0 and ¥ (0) = {0, Q}. Suppose there exist integer ty > 0, real
constants 0 € R, Sppax > 0 and 0 < { < Syax such that

|Z(t+1) = Z(t)| <Smax. (26)

E[Z(t + to) - Z(D)|F (1)) S: todmaxs  IfZ(1) < 6

~tof, ifZ(t) 20 (27)

hold forallt € {0,1,2,...}. Then, E[Z(t)] < 0 + to "‘"”‘ log [ "‘"”‘] vVt €{0,1,2,...}.

To apply this lemma, we set Z(t) = ||(Q(#), H(t))|l; and check conditions (26) and (27), for
which we detail below:
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ProoF oF LEMMA 5.6. For condition (26), we have

1(Q(t +1), H(t + 1)) ll> — [1(Q(t), H())ll]
<[(Q(t+1) —Q(t), H(t +1) —H(1))|l

L M
SJZ@DZ +JZ(<h;,uf> ~ by
i=1 j=1
<2(G+\/2RD§) +\/&I_I2
< ; T

On the other hand, for condition (27) we start from (25). Suppose

H( " ())H cv,a,to+2(F+?(G+\/2RH2//3+E)+EB)Vt0
(1), H)| = _ ,
2

cly

then, we can derive from (25) that

E(1Q(t + to)lly + IIH(t + to) Iy 1F77") = 1Q(0)II; = IH (D) II;

_22

<~ 2l(Q), H(D) Il < ~2ll(QU), HO)l: + =2,

which implies

B(IQ(t + o)l + G + )l |7~ < (II(Q(t) 1), - Cto) .

Taking a square root from both sides and by Jensen’s inequality,

C t()

B([l(Qe+ o), Hee+ )| |77 <@, )| -

Overall, by Lemma 5.9, we obtain

Cvaus + 2(F +7(G +BRHZJB +0) + EB)VtO

Tt
2

ZRD 2

8t0(2(G+ 2RD§/ﬁ)+\/M)2 2|2(G+/55) + /SRH)

-1
+ - og =

5(|@e. 1) ) <

Taking V = VT, a = T and t, = VT and recalling the definition of Cy ;, yields:

(e, vy} < VT

2
where C’ -—C(“%H +G2+ ZRﬁD + )andC” ~=£(2F+§G2 ZR;2+8RﬁH +R+2(G +8RHZ/ B+

)+ sRHZ)z

) +cB+4(2(G + J2RD2/p) + +/8RH?/ ) Iog ) are constants. ]
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6 CONCLUSIONS

This paper proposes a new primal-dual online mirror descent framework for stochastic constrained
online learning problem. We introduce a new sequential existence of Lagrange multipliers condition,
which is shown to be strictly weaker than the Slater condition, and prove that the proposed algorithm
enjoys a O(VT) expected regret and constraint violations. We also obtain an almost dimension free
result in the special case when the decision set is a probability simplex. Simulation experiments
demonstrate the performance of the proposed algorithm.
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A SUPPLEMENT
A.1 The pushback property of Bregman divergences
In this section, we prove the following key property of the Bregman divergence:

LEMMA A.1. Let f : C — R be a convex function. Fixa > 0,y € A°. Supposex™ € argmin, ., f(x)+
aD(x,y) and x* € A°, then, for any z € A,

f(x*) +aD(x*,y) < f(z) + aD(z,y) — aD(z,x").
Proor oF LEMMA A.1. First of all, we recall the following known facts about convex functions

and their subgradients whose proofs can be found, for example, in [2]:

e The set 9f (x) is non-empty for any x € int(C).
e For any bounded subset X C int(C), the union Uyexdf (x) is bounded.

By definition of Bregman divergence, we have for any x, y € A°,

D(x,y) = o(x) — o(y) = (Vo (y),x —y),
and
VD (x,y) = Vo(x) — Vo(y).
Now, we claim the following optimality condition:

Claim 1: For any z € A, there exists a Vf(x*) € df (x*) such that following holds:
(Vf(x")+aVo(x*) —aVo(y),z — x*) > 0.

Proor or CrLamM 1. Fix a constant k € (0, 1). Since A is a convex set, it follows (1 —h)x* +hz € A.
Thus, by the fact that x* is a minimizer:
f(x") +aD(x",y)
<f((1=h)x" +hz) +aD((1 = h)x™ + hz,y)
=f((1 = h)x" +hz) + a (D(x",y) + (VD(x",y), h(z — x™)) + o(h))
=f((1 = h)x* + hz) + aD(x", y)
+a((Vo(x") = Vo(y), h(z = x*)) + o(h)),
where the first equality follows from the fact that D(x, z) is continuously differentially on the first
argument at x = x* with o(h) representing a high order term such that limj,_,o 0(h)/h = 0, and the

second equality follows from the definition of Bregman divergence. Canceling the common term
aD(x",y) and rearranging the terms give

J((A = h)x" +hz) - f(x")
h
Since f is convex and (1 — h)x* + hz € int(C), Yh < 1, we have for any Vf((1 — h)x* + hz) €
Af ((1 = h)x* + hz).

F(x*) = f((1 = h)x* + hz) +{(VF((1 = h)x" + hz), h(x" — 2)) .

> —a (Vo (x*) = Vo(y),z — x*) — o(ah)/h. (28)

Substituting this bound into (28) gives
(Vf((1=h)x" +hz),z—x") > —a (Vo(x") = Vo(y),z — x*) — o(ah) /h. (29)

To this point, consider any sequence {h}r>o C (0, 1) such that limy_,, A = 0. By the aforemen-
tioned property of subgradient, we have the union Ug>0df ((1 — hx)x™ + hiz) is bounded. Thus, the
sequence {Vf((1— hg)x™ + hiz) }i»o is bounded, and there exists a subsequence {V f((1 — hg,)x* +
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hi,2)}e>0 such that Vf((1 — hg,)x™ + hg,z) — d. On the other hand, by definition of subgradient,
we have for any u € C,

fw) = f((1 = hg,)x"™ + hg,z) + <Vf((1 — hg,)x" + hi,z), u — ((1— hg,)x™ + hk[z)> .
Taking the limit £ — co gives
fw) > f(x") +{du—x7),
where we use the fact that a convex function must be continuous on the interior point x* of C. This

implies that d € 9f (x*). Substituting {hg, },>o into (29) and taking the limit finish the proof. O

Thus, by Claim 1, we have there exists a Vf(x"),
a(D(z,y) — D(z,x7))
=a (w(z) —w(y) = (Vo(y).z - y) - a (o(z) - o(x") = (Vo (x"),z = x"))
=a (o(x") —w(y) + (Vo (x"),z = x") = (Vo(y),z - )
=a (o(x") = w(y) +(Vf(x")/a+ Vo(x*) - Vo(y),z = x") = (Vo(y),z - y))
—(Vf(x"),z=x")+a (Vo(y),z - x*)
2a (o(x") - o(y) = (Vo (y),x" —y)) —(Vf(x"),z - x%)
=aD(x",y) = (Vf(x"),z = x%)
zaD(x",y) + f(x") = f(2),
where third equality follows from adding and subtracting the term (Vf(x*), z — x*)—a (Vo (y), z — x*),
the first inequality follows from the aforementioned optimality condition and the last inequality

follows from convexity that f(z) > f(x*) + (Vf(x*),z — x*). Rearranging the terms yields the
desired result. O

A.2 SELM and constraint qualifications

A.2.1 Slater condition implies SELM. The SELM assumption is actually implied by the Slater
condition. More specifically, Slater condition considers the scenario where there is no equality
constraint and there exists a p € A such that g;(¢) < 0, Vi € {1,2,---,L}. First of all, it is well-
known that the Slater condition is sufficient for the existence of a dual optimal solution (see, for
example, [2]). Furthermore, the following lemma, which is essentially the same as Lemma 1 of [15],
implies that the set of dual optimal solutions is also bounded:

LEMMA A.2. Consider the convex program (7) without equality constraints h(y) = 0, and define

— ’k _ .
the Lagrange dual function q'*F) (1) = inf,,ep {f(t )(,u) + 2 Aig; (p)}. Suppose there exists ji € A
such that g, () < —e Vi € {1,2,---,L} for some positive constant ¢ > 0. Then, the level set
Vi = {Al,lg, - AL >0, q(t’k) A) = q(”k) (/1)} is bounded for any nonnegative A. Furthermore, we

have
(t.k) (

-1(7F _ (tk) 7
max [l < e () - g0 D).

Note that since | ()| is bounded by some constant F > 0 as stated in Assumption 2.1. Taking
- —(tk
A = A* for any optimal dual solution A*, and notice that f (t )(ﬁ) < F,and

—(t.,k
q(f,k) (/1*) > minf(t )(ﬂ) > —F,
HEN

the above lemma readily implies max;eq+ ||A||z < 2F/e. Thus, Slater condition implies the existence
and boundedness of Lagrange multipliers.
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A.2.2  SELM is implied by Mangasarian-Fromovitz constraint qualification (MFCQ). In this section,
we show SELM is able to handle general equality constraints and thus strictly weaker than the Slater
condition. In 1977, J. Gauvin [8] observed that for any constrained convex program, where both
the objective and constraint functions are continuously differentiable, the Mangasarian-Fromovitz
constraint qualification (MFCQ) condition is in fact equivalent to the boundedness of the KKT set.’
More specifically, MFCQ is defined as follows:

Definition A.3 (Mangasarian-Fromovitz constraint qualification (MFCQ)). Consider a convex

program:

minimize, cga f(x),

subjectto  g¢;i(x) <0,i€e{1,2,---,L}, (30)

<hj,x> = bj, _] (S {1, 2, ,M}

It satisfies MFCQ if (a) The solution to (30) exists. (b) The vectors {h; }JNi , are linearly independent.
(c) For a solution x* to the program, there exists some y € R? such that (Vg;(x*),y) < 0, Vi € I(x*),
where I(x*) = {i | gi(x*) = 0}

THEOREM A.4 ([8]). Let x™ be a solution to (30). Consider the Karush-Kuhn-Tucker(KKT) set for
the program (30), which is the set K(x*) of vectors (A,5) € RL x RM such that the following set of
equations holds:

L M
—Vf(x*) = Z /Ingi(x*) + Z I]jhj,
i=1 j=1

A> 0, Aig,-(x*) =0, Vie {1,2,"' ,M}
Then, the set K(x*) is non-empty and bounded if and only if MFCQ is satisfied for (30).

Note that compared to (30) our program (7) has an extra set constraint p € A. The good news is
that for the case where A is a probability simplex, i.e. it can be written explicitly as {y € R? : p; >
0, Vi, Z?:l y; = 1}, applying Theorem A .4, we have the following lemma whose proof is delayed to
Section A.5:

LeEmMA A.5. Consider the optimization problem (7) for any soecific time slot t and any time period
k where A is the probability simplex. Suppose (a) The vectors {1, E(h!), E(h}), ---, E(h},)} are
linearly independent. (b) There exists a solution to (7), denoted as ji*, and a vector y € R such that
<V§i(,u*),y> <0, Vi € I(p*), where I(p*) = {i | g;,(¢*) = 0}. Then, the set of Lagrange multipliers
V* = argmaxy pr ,epm q'"®) (A, 1), where %) is defined in (8), is non-empty and bounded.

REMARK A.1. In the case where there is no inequality constraints in (7), lemma A.5 gives a simple
objective-irrelevant equivalence condition of SELM that {1, ]E(hi), E(hé), e E(h}tw)} are linearly
independent, which could be useful for online linear program.

For general scenarios where A is just an arbitrary abstract convex set, we have the following
definition of generalized MFCQ following [18]. First, we have the definitions of normal cones and
tangent cones:

Definition A.6 (Normal cone). Consider any set S C RY, the normal cone of S at any x € S is
N(S,x)={ge RY (gx—y) =20, Vy e R%}.

In fact, MFCQ does not require convexity of the constrained programs. Thus, the result in [8] even applies to non-convex
programs.
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Note that normal cone at x € S is the subgradient of the indicator function of S, namely Is(x).
To see this, consider any y € R4, then, we have g is a subgradient of Is(x) at x if

Is(y) 2 Is(x) +{g,y — x), Vy e R
Note that if y ¢ S, then Is(y) = +o0, otherwise, Is(y) = Is(x) = 0. Thus, (g,x —y) > 0.

Definition A.7 (Tangent cone). Consider any set S C R?, the tangent cone of S at any x € S is
T(S,x) :=cone(S—x)={Ad: 1>0,deS—x},
andS-x={yeRLy=z-x, dz € S}.
Definition A.8 (Generalized MFCQ). Consider a convex program:
minimizeyes f(x),
subjectto  ¢i(x) <0,ie{1,2,---,L}, (31)
(hj,x)=bj, je{1,2- M}
It satisfies the generalized MFCQ if (a) The vectors {h;} = are linearly independent. (b) For a solution
x* to the above program, there exists some y € int(T(S, x*)) such that (Vg;(x*),y) < 0, Vi € I(x*)

and any subgradient Vg;(x*), where I(x*) = {i | g;(x*) = 0} and int(T (S, x*)) denotes the interior
of T(S, x¥).

Note that this definition requires the interior of T(S, x*) to be non-empty, which does not work
for the case where S is a probability simplex. This is why we have a separate lemma (Lemma A.5).
When assuming the interior of T (S, x*) is non-empty, we have the following theorem:

THEOREM A.9 ([18]). Let x™ be a solution to (31). Consider the Karush-Kuhn-Tucker(KKT) set of
the program (31), which is the set K(x*) of vectors (1,5) € RL x RM such that the following set of
equations holds:

L M
0€af(x") + ) AVgi(x") + > njhy+ N(S,x°),
i=1 j=1

A>0, Ligi(x*) =0, Vie {1,2,--- ,M}.
Then, the set K(x*) is non-empty and bounded if and only if (30) satisfies the generalized MFCQ.

Applying the above theorem to (7) with S = A, we readily get the equivalence condition for the
existence and boundedness of Lagrange multipliers for (7) as follows

CoroLLARY A.10. Consider the optimization problem (7) for any time slot t and any time period k
where A has an nonempty interior. Suppose (a) The vectors {E(hi), E(hL), ---, E(hfw)} are linearly
independent. (b) There exists a solution to (7), denoted as p*, and a vectory € int(T (A, p*)) such that
<V§i(,u*),y> <0, Vi € I(p*), where I(u*) = {i | g;,(¢*) = 0}. Then, the set of Lagrange multipliers
V* = argmaxy gL ,epm q*®) (A, 1), where %) is defined in (8), is non-empty and bounded.

A.2.3 SELM implies weak EBC. In this section, we prove a key property of SELM, namely Lemma

2.3, which says SELM implies a weak EBC condition. We restate the lemma as follows, and for
simplicity, we omit the subscript ¢, k on the set V* for simplicity:

LEmMMA A.11. Suppose Assumption 2.2 holds, then, there exists constants cg, £y > 0 such that the dual
function ¢*¥) (1, ) defined in (8) satisfies a weak error bound condition, namely, for any (A*, n*) € V*,
gt (A5, n7) = R (A, n) = ¢ - dist((A,5), V™) for any (A, n) such that dist((A, ), V*) > £.
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Proor oF LEMMA A.11. Since V* is bounded, there must exist £, > 0 such that S; := {(4,n) :
dist((A, 1), V*) = lo} # 0. Define g := sup, , c s, q'*®) (1, ). Then, since the set S; is closed, there

exists some constant ¢y > 0 such that ¢(*¥) (A%, 5*) — § > coly. Now, consider any (A, ) such that
dist((A,n), V*) = ly, and choose (1*,n*) € V* such that

(X", = argmin ;) cqpell (Ao, 10) = (A )13, (32)

Le [[(A%n%) = (4 )z = dist((4, n), V*) > k. i
Choose 6 := H(An)l—o—(/ln)\lz Note that 0 < 8 < 1. Let (4, 7) := ((1 — 0)A* + 04, (1 — O)n™ + On).

The next claim shows that A7) € S
Claim 1: (1, 7) € S;.

Proor. It is easy to verify that || (/i, ) — (A*, 1) |l2 = k. To prove this claim, it suffices to show
that

(" n") = argmin e | (A7) = (Ao, 10) [

To see this, suppose on the contrary, there exists (4, 1) # (A%, 1*) such that (A, 77) attains the above
minimum, then, by the strong convexity of the square norm function and convexity of the set V*,
the solution is unique, and it follows

IAD = Al < [T = Won)lle + A7) = A0z
<%0 = A )l + 10" = (Al = 1A% 77) = (A ) l2,

where the strict inequality follows from the aforementioned strong convexity and the last equality
follows from the fact that (1, n”) € L. However, this implies A, 7 is of smaller distance to (4, 7)
contradicting (32). )

By the concavity of ¢(*F) (1, ), we have,
g (1 =01 + 04, (1 - 0)p* +0n) > (1 -0)g"™® (A", 7%) + 0% (A, n). (33)
This further implies that

¢ i) 2 (1=0)g" P X n") +6¢'F (2,1)
= ¢ LD - g W) 2 00 (A = P 7).

Recalling the definition of G = sup; ,ycs, q'*®) (1, 1) and that (A 1) € 81 by Claim 1, we have

G—q"P ") = 0(g"P (A, ) - ¢F (A%, n))

* * 1 * * ~
=g @) =g A 2 2@ P W) - 9.
Recalling that ¢'“F) (A*, 1) — § = coly and 6 = H(/1’7)l—0—(/1r1)Hz we have

O, %) = g0 (A n) = codist((A, ), V),

and we finish the proof. O
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A.3 On the relation between weak EBC and classical EBC

Recall that the classical EBC, which has been shown to accelerate the convergence rate solving
unconstrained and constrained programs [21-24], is stated as follows:

Definition A.12. Let F(x) be a convex function over x € X. Suppose A" := argmin, y F(x) is
non-empty. The function F(x) is said to satisfy the error bound condition (EBC) with parameters
B €(0,1],8 > 0and Cs > 0 if for any x € S, the §-sublevel set defined as {x € X | F(x) — F(x*) <
6, x* € A*},

dist(x, A*) < Cs(F(x) — F(x*))”, (34)

where Cs is a positive constant possibly depending on §. In particular, when § = 1/2, F(x) is said
to be locally quadratic and when f = 1, it is said to be locally linear.

The following lemma shows that if the dual function further satisfies classical EBC, then, we can
show that weak EBC holds with computable constants #, ¢y > 0.

LEMMA A.13. Suppose Assumption 2.2 holds, the dual function ¢'*F) (), n) is continuous and sat-
isfies an EBC as is defined in Definition A.12, then, one has for any (1,n) € RL x RM such that
dist((A,n), V*) > Cs0”,

dist((A, 1), V") < Cs8P7 (¢'"P (A", %) = 4" (A, m)),

forany A € RL, n e RM.
The proof of this lemma is delayed to Section A.5.

A.4 Proof of Theorem 3.2

In this section, we present the proof for Theorem 3.2. The proof takes into account the fact that A
is the probability simplex and the effect of pull-away operation i*™! = (1 — §)pu*~! + gl. Note that
in this probability simplex case, we have sup,, , ca [l111 = p2ll1 < 1, which will be used to replace
the frequently used relation sup, , x llp1 — pall < /% in the proof for general cases. Note further
that when A is the probability simplex and D(yy, yi2) is chosen to be K-L divergence, we do not
have a uniform bound R such that sup gtz €A D(pn, p2) < R. Fortunately, our analysis does not need
such a uniform bound but instead uses a bound on D(py, fi) where fi; is in the form of i’ specified
in Algorithm 2.
The following lemma bounds the difference between D(p, i) and D(, u*™1):

LEMMA A.14. Consider any g, pts € A C RY such that (i) > 0, Vi € {1,2,---,d}, and let
o =(1-0)uy + Gél,for some 0 € (0, 1], then, it follows

D(p1, fiz) = D(p, pi2) < Ologd.
Furthermore, D(y, i) < log(d/6).
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Proor oF LEMMA A.14. We have

D(p, f1z) — D(p, pi2)
m | ml)
‘Z’“ ) (l" () o8 ﬂz(i))

Hz(i)
—Zﬂl i) log 2 (i)

1) (10gﬂz(l) log ((1 Oyl + 0% ))

IA

MQ. T M&.

9 [tog ) (1= 0) o (i - 01 d)

1

=0 Z (1) (log oy (i) + log d)

<0logd,

where the first inequality follows from the concavity of log function. Furthermore, the second
inequality follows from

p1(2)
fiz (1)

_ S ()1 ,ul(i)
‘;” VO 0 (1) + 0/d

d
D(pu, o) = ), (i) log
i=1

d
<= > (i) log((1 - 0)us™ (i) +0/d)
i=1

<log(d/9).

finishing the proof. O

A.4.1  Regret bound. First of all, by the same proof as that of Lemma 5.1 one can show the
following:

VAV Tt = i) # A + aD (' 1Y)
L M
< V(ft_l(,ll) _ ft—l(yf—l)) + Z Q,(t)gf_l(‘u) + ZH](t) ((hj_l,ﬂ> — b]) '|‘H2 + G2 +D§
i=1 Jj=1

+aD(p, i) — aD(p, pt).  (35)
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Furthermore, similar to that of Lemma 5.2, we have
VAVF G = )+ aD (Y
VAV )t = ) +aD (i = VOV T (1) e
_ _ ~p o . _ _
V(Y .t - i) + Ellu’ —ATHE = VOV T () e

_ _ ~f [24 ~fe _ _
> = VIVF (™) ool = i 1|I1+5||ut — @ = VOIVA T (1) lleo
o 1% o
> V=1l = Y2+ — VA Y + =g = a2 = VOV (1Y |
> V|l = T+ S IVF T IR + Sl = = VO

V2 . .
=- (gllVft YOG+ VOV (1) o)
VD?
>— o - VoD;. (36)

Substituting (36) into (35) gives

A®+ V(T = 7N w)

L M
_ _ V2
< ;Qi(t)gf () +;Hj(t) ((h; L) —bj) +H? +G*+ D} + —D} + V6D,

+aD(u i) —aD(p ). (37)

Using Lemma A.14, we get
AW+ VT = 7 ()

L M
. . v
< > Qi0)g T () + DT Hi(O (R )y = bj) + HE + G* + D3 + 5=} +V6D,

i=1 j=1
+aflogd +aD(u, u'™") — aD(, ).

The rest follows from the same argument as that of Section 5.1 after (13) and we omit the details
for brevity.

A.4.2  Constraint violations. Similar as before, we start with the following lemma:

LEmMMA A.15. The updating rule (5) and (6) delivers the following constraint violation bounds:

T-1
2 %ngl < 2O 22y, 4 B (IQI) + HE(IM) ) + D20,
=0 +ll2 ¢
T-1
B % > R0 b < 2R 2y, 1m0 + HEI) L) + Ho.
t=0 2

PrROOF OF LEMMA A.15. Using Lemma 5.7, it is enough to bound the difference E(||p"*! — ytlll).
For this, applying Lemma 2.1 by setting y = p'™!, x* = pf, and f(x) = (x, p) with

L M
p=VVF T+ Y 0V + Y (DR

i=1 j=1
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we have

L M
<VVf“1 W+ ) QO (W + ) HI(DA ;f> +aD (e, i)
i=1 j=1

L M
) <va T+ D iV T + ) Hy (R P>

i=1 =
+a(D(p i'™") = D(p 1))
Taking p = ji* ™! in (38) gives,

V<vft—1(‘ut—1)’ut> + A

L
i=1

M
Qu(t) (Vi ('), ity + > Hy() (B ') + aD(p! i)
Jj=1

(38)

L M
S VAT ) 0 (Vg i ) 4 Y () () - aD G ).
i=1 j=1

Note that we have
(VP B = ) < IV G sl = 5 < Dl =

Also, we have

L L
Z Qi) (Vgi (W A = ) <IQ() Z(”Vgi(ﬂt_l)”oo”llt — [ h)?

-~

<DNIQ(0)lo + 1" = &M,

and

M M
DUH; () (R - ) an(t)nz\JZ(uhg-lumnpf — i )2
Jj=1 j=1

<H|H®)|lollp" = 7.
Thus, it follows from the above three bounds,
p pe 1 p
D@, g + D ) < - (VD + Dl|Q()[l2 + HIH () [l2) 1" = 7 lv-
By Pinsker’s inequality, we have

D', ') + DA ) 2 Ml = 7
Thus, it follows,

re 1 .
' = g 7HIE < 26% + - (VD1 + D2l Q)2 + HIH(1)]l2) Il = @
Solving the above quadratic inequality
o 2
Il = "l < — (VD1 + Da[|Q(0)lz + HIH(D)1]2) + 20,
which implies

_ 2
[l = "Ml < = (VD1 + D[ Q)2 + HIH(1)]l2) + 30,
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Taking the expectation from both sides and subtracting this bound into Lemma 5.7 results in
T-

7 Z l

JEBUQWIL) | o, 2VDID,
[24

2
15 2D2

f — (DE(1Q(D)l2) + HE(|IH(2)]|2))

% Zf;ol h(pt) - b” with exactly the same computation and we
2

omit the proof. O

Now, by Lemma A.15 it is enough to bound Q(#) and H(¢), for which we have the following
lemma:

LeMMaA A.16. Consider the ty slots drift for some positive integer t,, then we have

1Q(t + o) l17 + IH(2 + to) 7 — Q1) 1I7 — IH(2) I3
2

t+t)— t+ty— t+ty—

=% Z £ 1(u>+ZQl(t) Z g 1(H)+ZH(t) Z( : ,u>—b,-)+§év,a,to, (39)

where

~ 3 V2
Cviat, = 2(H* + EGZ + D3ty +2(H* + G* + D} + Z—Df +VOD; + allogd)ty + 2alog(d/0)
a
Proor oF LEMMA A.16. First of all, summing both sides of (37) from 7 =ttor =1+, — 1 gives

1Q(t +to)lI7 + IH(t + 1)1 - 1Q@) 13 — IH@)II3

2
t+ty— t+t—1 M V2
Z Z Qi(0)gr ™ (p) + Z:; ; H; (1) ((hT™ ) = bj) + (H2 +G* 42D + D} + V6D |t
t+tp—1 t+ty—1
VT E = ) + aD i = aD (T @ Y (D) = Dl pth).
=t T=t+1
(40)
By Lemma A.14, one has
t+ty—1
@ Y, (D) =D ™)) < thablogd.
T=t+1

and

aD(p, i1 < alog(d/0),
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Thus, substituting these two bounds into (40) gives

1Q(t + to) I} + IIH(2 + o) 15 = 1Q(H)1I7 — IH@®)II7

2
t+tp—1 L t+th—1 M t+ip—1
< 3@+ DL D TH @Ry =b)+V DT () = 7 (W)
=t i=1 =t j=1 =t

VZ
+ (H2 +G*+2D2 + ng +VOD; + af log d) to +alog(d/6). (41)

Furthermore, following the steps to obtain (21) and (22) by invoking ||u* — p'~!||; < 1, we have
ttg-1 M
D0 D (Hir) = Hy(8) (b ) < 652,
=t j=1
t+tg—1 L 3
D D00 - 20 gi 0 < (2 + %),
=t =1

and V Zf;tt"_l FTY(u™1) < t)VF. Substituting these three bounds into (41) and recall the definition
of éV,a,to in the statement of the lemma give the final bound. O
Using the previous bound, one can prove the following lemma:

LEmMMA A.17. If we take V = VT,a = T, to = T,0 = 1/T in Algorithm 2, then the quantity
1(Q(r), H(2))ll> satisfies the following conditions:

A A 2log(d) 2
5] (e, H(t))Hz) <& +CNT+ %() +=VTlogTd, (42)
where ¢’ = %(H2 +G*+ D2+ D?/2 +D1) and C" = %(H2 +3G*+D2+F+1(G+H+¢) +cB+
2(2(G + D,) + H)? log(w)) are absolute constants independent of d ort.

Proor oF LEMMA A.17. Following the same arguments as those in Lemma 5.4, 5.5 and 5.6, we
can show

Cvaty + Z(F +0(G+H+70) + EB)VtO

(|, 1)) <

Tt

+

= =2

2
4t (2(G + Dy) + H) o (s (2(G+Dy) + H)*\
C

Taking V = VT,a=T,t,=T,0 =1/T and recalling the definition of éV,a,to yields
a oA 2log(d) 2
B(](@e. 1) ) < ¢+ VT %() +=VTlogTd,
where ¢’ = %(H2 +G*+D? +Df/2+D1) and ¢ = %(H2 +3G*+D2+F+1(G+H +¢) +TB +
2(2(G + Dy) + H)? log (BATDIH) ). o

The constraint violations in Theorem 3.2 then follows by combining Lemma A.15 and Lemma
A.17.
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A.5 Proof of other supporting lemmas
Proor oF LEMMA A.5. We expand the simplex constraints in (7) explicitly and the full dual
function writes

d

L M d
. bk -
q(()t,k)(,L 7, u, v) = n;]g}]f () + ZAngi(p) + Z nj <E(h§),u> - Zuipi + U(Z ui —1).
H i=1 j=1 i=1

i=1

Let g5 = MaX) o yerM, u0,0eR q(()t’k) (A, 1, u, v). By the assumption of lemma A.5 and Theorem A.4
we have the solution set K(p*) of vectors (4, 1, u, v) of the following equations (KKT conditions)
is non-empty and bounded:

L M d
—bk — *
Vi () + Z AiVg; (1) + Z njE(h§~) - Z uie; +01 =0,
i=1 j=1 i=1
A>0,u>0, (43)

/1191(11*) = 0’ Vi e {1’ 2’ e ’M},
wip; =0, Vie{1,2,---,d}.

It can be verified that

* k
K(/J )= argmax, >, »eRM, u>0,0eR CIét )(L n, a, 0)

—(t.k
and we have zero duality gap, i.e. q; = f(t )(y*). Our goal is to show that the set V*, defined in
the statement of the lemma, is equal to the set {(1*, n*) | (A%, ", u*,v*) € K(¢*), I u*,0v*}.
First of all, for any (1%, n*,u*,v*) € K(y*), we have q(t’k) A0 = q(()t’k) (A%, 7, u', v%) = g,

—(tk —(tk
Since we have zero duality gap g, = f(t >(,u*) and one always has ¢(**) (1, 1) < f(t )(/1*), VA e

—(tk
RL 5 e RM, it follows q'*% (1, n*) = f(t )(,u*). Thus, not only do we have a zero duality
gap of ¢*%) (1*, %), we also have A*,n* being the solution to the dual maximization problem
max, cpt, neRMq(t’k) (4, n), showing that V* is non-empty and { (1%, n*) | (A", n*, u*, 0*) € K(y*), u*,0*} C
V.
For the other direction, we pick any (A*,n*) € V* and consider the following optimization
problem:

L M
a0 @) = min 70+ Y 4G,00 + ) k(o) (44)

i=1 j=1

By zero duality gap, the solution to this optimization problem is equal to ]_C(t’k) (¢*). Thus p* must
be one of the solution points of (44) such that the complementary slackness A7g;(y*) = 0, Vi €
{1,2,---,L} is satisfied.” Furthermore, it is obvious that MFCQ is also satisfied for (44) (we only
need to check the simplex constraints satisfy MFCQ, which is obvious). Thus, by Theorem A .4,
we have there exists u* > 0,0" € R such that the stationary condition (43) is satisfied, and u;y; =
0, Vi € {1,2,---,d}. Combining with the previous complementary slackness A7g;(u*) = 0, we
arrive at the conclusion that (1%, %, u*,v*) € K(g*). This implies V* C {(A*, %) | (A", 5%, u*,0*) €
K(y*), 3u*,0*}. Overall, we have the set V" is also bounded and we finish the proof. )

2Suppose on the contrary A7g;(4") < 0 for some index i, then, this means taking p* gives smaller value of the objective

—(t.k —(t.k
than f (0 (¢*), contradicting the fact that the minimum is f (0 (p*).
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Proor or LEMMA A.13. First of all, note that by the EBC, for any (4, ) € Ss, one hasdist((A, 1), V*) <
Cs0P, thus, for those (1, 7) such that dist((A, 7), V*) > Cs6”, (A, 5) ¢ Ss. We then recall the fol-
lowing result:

LEmMMA A.18 ([24]). Consider any convex function F : X — R such that the minimal set A" is
non-empty. Then, for any x € X and any ¢ > 0,

dist(x!, A*) (
£

I = x| < F(x) - F(xD)),

where xz = argmin, g [[x — X¢||, and S; is the e-sublevel set defined in Lemma A.13.

Applying this lemma to our scenario, we define

(AL,n}) = argmin [|(As,7s) — (A 7)]l2
(As.115)€Ss

and take function to be ¢(*¥) (A, ) and consider the 5-superlevel set Ss. By lemma (A.18), we readily
have

(A7) = (A n Dl
dist((A%, nl), V*
dis (( 55775) )

Cs6P s
<= (a P ) - g )

=Cs6"1 (g9 (Afsn)) = q*P ().

(4“0 = g0 )

On the other hand,
dist((A 7). V") < C5 (¢ (A°,n") = " 0 n))

Now, we claim that g% (1%, p*) —¢(*%) (/1;, n;) = 8. Indeed, suppose on the contrary, ¢*%) (1*, 5*) -
q(t’k) (Ag, ryg) < 8, then, by the continuity of the function q(”k), there exists & € (0,1) and (A, p’) =
a (A5, nt) + (1 - a) (A7) such that "% (A%, ") — g0 (X', ") = 8, ie. (V1) € S5, and [|(A, ) —
)z = all(h ) = A nDllz < 1A n) = (A}, 1)) |l2, contradicting the definition that (A, nl) =

argmin;, e 55 1(As,15) = (A )2
Thus, we have

dist((Af, 1)), V) < CsP~ (g9 (A7) = P (W) )
Overall, we have

dist((4, 1), V*) <dist((A, 7)), V") +[1(An) = (A5, D)Lz
<Cs6" (g™ (") - ¢ ().

and we finish the proof. O
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