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ABSTRACT non-polynomial loss. These optimization problems can be

Motivated by fundamental applications in databases and
relational machine learning, we formulate and study the
problem of answering functional aggregate queries (FAQ) in
which some of the input factors are defined by a collection
of additive inequalities between variables. We refer to these
queries as FAQ-AI for short.

To answer FAQ-AI in the Boolean semiring, we define
relaxed tree decompositions and relaxed submodular and
fractional hypertree width parameters. We show that an
extension of the InsideOut algorithm using Chazelle’s geo-
metric data structure for solving the semigroup range search
problem can answer Boolean FAQ-AI in time given by these
new width parameters. This new algorithm achieves lower
complexity than known solutions for FAQ-AI. It also recovers
some known results in database query answering.

Our second contribution is a relaxation of the set of poly-
matroids that gives rise to the counting version of the submod-
ular width, denoted by #subw. This new width is sandwiched
between the submodular and the fractional hypertree widths.
Any FAQ and FAQ-AI over one semiring can be answered in
time proportional to #subw and respectively to the relaxed
version of #subw.

We present three applications of our FAQ-AIl framework
to relational machine learning: k-means clustering, training
linear support vector machines, and training models using
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solved over a database asymptotically faster than computing
the join of the database relations.
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1 INTRODUCTION

We consider the problem of computing functional aggre-
gate queries with inequality joins, or FAQ-AIl queries for
short. This is a fundamental computational problem that
goes beyond databases: core computation for supervised and
unsupervised machine learning can be formulated in FAQ-AI.

Inequalities occur naturally in scenarios involving tempo-
ral and spatial relationships between objects in databases.
In a retail scenario (e.g., TPC-H), we would like to compute
the revenue generated by a customer’s orders whose dates
closely precede the ship dates of their lineitems. In streaming
scenarios, we would like to detect patterns of events whose
time stamps follow a particular order [13]. In spatial data
management scenarios, we would like to retrieve objects
whose coordinates are within a multi-dimensional range or
in close proximity of other objects [25]. The evaluation of
Core XPath queries over XML documents amounts to the
evaluation of conjunctive queries with inequalities express-
ing tree relationships in the pre/post plane [16].
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1.1 Motivating examples

A key insight of this paper is that the efficient computation
of inequality joins can reduce the computational complexity
of supervised and unsupervised machine learning.

Example 1.1. The k-means algorithm divides the input
dataset G into k clusters of similar data points [19]. Each
cluster G; has a mean y; € R", which is chosen according to
the following optimization (similarity is defined here with
respect to the £, norm):

k
. 2
min X — i .
(GM,GHZ D7 e = pill;

i=1 xeG;

(1)

Let y; ¢ be the £’th component of mean vector y;. For a
data point x € G, the function c¢;; computes the difference
between the squares of the {,-distances from x to p; and
from x to p;:

ci(0) = > [k, = 2x0(puie = p0) = 122 ).
teln]
A data point x € G is closest to mean y; from the set of k
means iff Vj € [k] : ¢;;(x) < 0.

To compute the mean vector y;, we need to compute the
sum of values for each dimension ¢ € [n] over G; : 3¢, X¢-
If the dataset G is the join of database relations (Rp)pe(m]
over schemas S, C [n],Vp € [m], we can formulate this sum
computation as a datalog-like query with aggregates [17]:

IR AN /\ ey(x) <0].

R, (xSp )| A
€[m] Jjelk]

The above notation means that the answer to query Qii’ 9is
the sum of x, over all tuples x satisfying the conjunction on
the right-hand side. Section 4 gives further queries necessary
to compute the k-means. As we show in this paper, such
queries with aggregates and inequalities can be computed

asymptotically faster than the join defining G. O

Simple queries can already highlight the limitations of
current evaluation techniques, as shown next.

Example 1.2. State-of-the-art techniques take time O(N?)
to compute the following query over relations of size < N:

Q2() « R(a,b) AS(b,c) AT(c,d) Aa <d,
Examples 3.9 and 3.19 show how to compute Q, and its

counting version in time O(N!-* log N) using the techniques
introduced in this paper. O

1.2 The FAQ-Al problem

One way to answer the above queries is to view them as func-
tional aggregate queries (FAQ) [5] formulated in sum-product
form over some semiring. We therefore briefly introduce
FAQ over a single semiring.
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First we establish notation. For any positive integer n,
let V = [n]. For i € V, let X; denote a variable/attribute,
and x; denote a value in the discrete domain Dom(X;) of
X;. For any K C V, define Xx = (X))iek, Xk = (Xi)iek €
[Tiex Dom(X;). That is, Xk is a tuple of variables and xg is
a tuple of values for these variables.

Let a semiring (D, @, ®, 0, 1) and a multi-hypergraph H =
(V = [n],E). To each edge K € & we associate a function
Rk : [Toex Dom(X;) — D called factor. An FAQ query over
one semiring with free variables F C V has the form:

Q(xr) = @ ® Rk (xk).

xy\r €[ liev\r Dom(X;) Ke&

(2)

Under the Boolean semiring ({true, false}, Vv, A, false, true),
the query (2) becomes a conjunctive query: The factors Rg
represent input relations, where Rx (xx) = true iff xx € Rk,
with some notational overloading. Under the sum-product
semiring, the query (2) counts the number of tuples in the
join result for each tuple xp, where the factors Ry are indi-
cator functions Rk (xx) = 1y, ery - To aggregate over some
input variable, say X, we can designate an identity factor
Ry (xk) = xk.

Throughout the paper, we assume the query size to be a
constant and state runtimes in data complexity. It is known [5]
that over an arbitrary semiring, the query (2) can be an-
swered in time O(Nftw(Q) . log N), where fhtw denotes the
fractional hypertree width of the query and Q has no free
variables [15]. If Q has free variables, fhtw-width becomes
FAQ-width instead [5]. Here N is the size of the largest factor
Rk . Over the Boolean semiring, the time can be lowered to
O(N®uPW(Q)) [7], where subw is the submodular width [26]
and O hides a polylogarithmic factor in N.

Motivated by the examples in Section 1.1, we formulate a
class of FAQ queries called FAQ-AI: the hyperedge multiset
& is partitioned into two multisets & = &; U &,, where s
stands for “skeleton” and ¢ stands for “ligament”. The in-
put to our class of queries consists of the following: (1)
to each hyperedge K € &;, there corresponds a function
Rk : [liex Dom(X;) — D, as in the FAQ case; (2) to each
hyperedge S € &, there corresponds |S| functions 65 :
Dom(X,) — R, one for every variable v € S. The query
we want to compute is the following:

Q(xr) = @ ®RK(XK) ® ®1Zv€50;§(xv)50 .

xy\F \Ke&Eg Se&y

©)

The summation () is over tuples xy\r € [];eq\r Dom(X;).
The notation 14 denotes the indicator function of the event
A in the semiring (D, ®,®,0,1): 14 = 1 if A holds, and
0 otherwise. The (uni-variate) functions 65 can be user-
defined functions, e.g., 05 (x1) = xf /2, or binary predicates
with one key in Dom(X,) and a numeric value, e.g., a table
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salary(employee_id, salary_value) where employee_id
is a key. The only requirement we impose is that, given x,
the value 63 (x) can be accessed/computed in O(1)-time.

If &, = 0, then we get back the FAQ formulation (2).

Example 1.3. The queries in Section 1.1 are instances of (3):

ii’[)()z@ )| ® ®1c,-j(x)go ,

x¢ ® ® Rp(xsp
X[n] pE[m] J€lk]

4)
Q20) = P R(x1,%2) @ S(xz, x3) ® T(x3, 1) @ 1, x, 0-

X[4]

Q; is on the sum-product semiring. Q; can be on any semir-
ing: Example 3.9 discusses the case of the Boolean semiring
while Example 3.19 discusses the sum-product semiring. O

1.3 Our contributions

To answer FAQ queries of the form (2), currently there are
two dominant width parameters: fractional hypertree width
(fhtw [15]) and submodular width (subw [26]).! It is known
that subw < fhtw for any query, and in the Boolean semiring
we can answer (2) in O(N*“P¥)-time [7, 26]. For non-Boolean
semirings, the best known algorithm, called InsideOut [5, 6],
evaluates (2) in time O(N™" log N). For queries with free
variables, fhtw is replaced by the more general notion of
FAQ-width (faqw) [5]; however, for brevity we discuss the
non-free variable case here.

Following [6], both width parameters subw and fhtw can
be defined via two constraint sets: the first is the set TD of
all tree decompositions of the query hypergraph H, and
the second is the set of polymatroids I}, on n vertices of
‘H. The widths subw and fhtw are then defined as maximin
or minimax optimization problems on the domain pair TD
and T}, subject to “edge domination” constraints for I},. Sec-
tion 2 presents these notions and other related preliminary
concepts in detail.

Our contributions include the following:

Answering FAQ-AIl over Boolean semiring. On the Boolean
semiring, one way to answer query (3) is to apply the PANDA
algorithm [26], using edge domination constraints on &;
and the set TD of all tree decompositions of H = (V,&E =
Es U Ey). However, we can do better. In Section 3.2 we de-
fine a new notion of tree decomposition: relaxed tree de-
composition, in which the hyperedges in &, only have to
be covered by adjacent TD bags. Then, we present a vari-
ant of the InsideOut algorithm running on these relaxed
TDs, using Chazelle’s classic geometric data structure [10]
for solving the semigroup range search problem. We show
that our InsideOut variant meets the “relaxed fhtw” runtime,

1Section 2.1 overviews other notions of widths.
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which is the analog of fhtw on relaxed TD. The PANDA al-
gorithm can use the InsideOut variant as a blackbox to meet
the “relaxed subw” runtime. The relaxed widths are smaller
than the non-relaxed counterparts, and are strictly smaller
for some classes of queries, which means our algorithms
yield asymptotic improvements over existing ones.

Answering FAQ over an arbitrary semiring. Next, to pre-
pare the stage for answering FAQ-Al over an arbitrary semir-
ing, in Section 3.3 we revisit FAQ over a non-Boolean semir-
ing, where no known algorithm can achieve the subw-runtime.
Here, we relax the set I}, of polymatroids to a superset I, of
relaxed polymatroids. Then, by adapting the subw definition
to relaxed polymatroids, we obtain a new width parameter
called “sharp submodular width” (#subw). We show how a
variant of PANDA, called #PANDA, can achieve a runtime
of O(N*"P¥) for evaluating FAQ over an arbitrary semiring.
We prove that subw < #subw < fhtw, and that there are
classes of queries for which #subw is unboundedly smaller
than fhtw.

Answering FAQ-Al over an arbitrary semiring. Getting back
to FAQ-AI, we apply the #subw result under both relaxations:
relaxed TD and relaxed polymatroids, to obtain a new width
parameter called the relaxed #subw. We show that the new
variants of PANDA and InsideOut can achieve the relaxed
#subw runtime. We also show that there are queries for
which relaxed #subw is essentially the best we can hope
for, modulo k-sum-hardness.

Applications in relational Machine Learning. Equipped with
the algorithms for answering FAQ-AI, in Section 4 we return
to relational machine learning applications over datasets de-
fined by feature extraction queries over relational databases.
We show how one can train linear SVM, k-means, and ML
models using Huber/hinge loss functions without completely
materializing the output of the feature extraction queries. In
particular, this shows that for these important classes of ML
models, one can sometimes train models in time sub-linear
in the training dataset size.

1.4 Related work

The full version of the paper [1] revisits two prior results on
the evaluation of queries with inequalities through FAQ-AI
lenses: Core XPath queries over XML documents and inequal-
ity joins over tuple-independent probabilistic databases [30].
Throughout the paper, we contrast our new width notions
with fhtw and subw and our new algorithm #PANDA with
the state-of-the-art algorithms PANDA and InsideOut for
FAQ and FAQ-AI queries.

A seminal work considers the containment and minimiza-
tion problem for queries with inequalities [22]. Efficient eval-
uation of such queries continues to receive good attention



Session 7: Join, Hypergraph, and Aggregate Querie

in the database community [21]. There is a bulk of work on
queries with disequalities (not-equal), e.g., [4, 23], which are
at times referred to as inequalities. Queries with disequalities
are a proper subclass of FAQ-AI (since x # y can be repre-
sented as x < y V x > y). Prior works [4, 23] present several
results for this proper subclass that are stronger than our gen-
eral results for FAQ-AI in this work. In particular, for queries
with disequalities it suffices to consider tree decompositions
only for “skeleton” edges (ignoring “ligament” edges which
-in this case- are the disequalities) [4, 23], whereas for the
more general FAQ-Al we need to consider “relaxed” tree
decompositions (see Def. 3.3).
Section 4 reviews relevant works on machine learning.

2 PRELIMINARIES

We assume without loss of generality in the paper that semir-
ing operations @ and ® can be performed in O(1)-time.
(When the assumption does not hold, for the set semiring
for instance, we can multiply the claimed runtime with the
real operation’s runtime.) All missing proofs and details can
be found in the full version of the paper [1].

2.1 Tree decompositions and polymatroids

We briefly define tree decompositions, fhtw and subw pa-
rameters. We refer the reader to the recent survey by Gottlob
et al. [14] for more details and historical contexts. In what
follows, the hypergraph H should be thought of as the hy-
pergraph of the input query, although the notions of tree
decomposition and width parameters are defined indepen-
dently of queries.

A tree decomposition of a hypergraph H = (V,8E) is a
pair (T, y), where T is a tree and y : V(T) — 2" maps each
node t of the tree to a subset y(t) of vertices such that

(1) every hyperedge S € & is a subset of some y(t), t €
V(T) (i.e. every edge is covered by some bag),

(2) for every vertex v € V, theset {t | v € y(t)}is a
non-empty (connected) sub-tree of T. This is called the
running intersection property.

The sets y(t) are called the bags of the tree decomposition.

Let TD(H) denote the set of all tree decompositions of H.
When H is clear from context, we use TD for brevity.

To define width parameters, we use the polymatroid char-
acterization from Abo Khamis et al. [7]. A function f : 2V —
R, is called a (non-negative) set function on V. A set func-
tion f on V is modularif f(S) = Y ,cs f({v}) forall S € V,
is monotoneif f(X) < f(Y) whenever X C Y, and is submod-
ularif f(XUY)+ f(XNY) < f(X)+ f(Y)forall X,Y C V.
A monotone, submodular set function 4 : 2V — R, with
h(0) = 0 is called a polymatroid. Let I, denote the set of all
polymatroids on V = [n].
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Given H, define the set of edge dominated set functions:
ED:={h|h:2Y >R, h(S) <1,¥S e &E}. (5)

With this, we define the submodular width and fractional
hypertree width of a given hypergraph H:

fhtw(H):= min  max max h(y(t)), (6)
(T, x)eTD heEDNTy, teV(T)
subw(H) := max min max h(y(t)). (7)

heEDNT, (T, x)€TD teV(T)

It is known [26] that subw(H) < fhtw(H), and there are
classes of hypergraphs with bounded subw and unbounded
fhtw. Furthermore, fhtw is strictly less than other width
notions such as (generalized) hypertree width and tree width.

Remark 2.1. Prior to Abo Khamis et al. [7], the commonly
used definition of fhtw(H) is

fhtw(H) :

. (D),
i max pe(x (1))

where p (B) is the fractional edge cover number of a vertex
set B using the hyperedge set &. It is straightforward to show,
using linear programming duality [7], that

h(x(t
[max max. hlx(®)

= max Pg(x(1)), ®)
proving the equivalence of the two definitions. However,
the characterization (6) has two primary advantages: (i) it
exposes the minimax / maximin duality between fhtw and
subw, and more importantly (ii) it makes it completely straight-
forward to relax the definitions by replacing the ED N T}, con-
straints by other applicable constraints, as shall be shown in
later sections. ]

Definition 2.2 (F-connex tree decomposition [8, 31]). Given
a hypergraph H = (V,E) and aset F C V, a tree decom-
position (T, y) of H is F-connex if F =  or the following
holds: There is a nonempty subset V’ C V(T) that forms a
connected subtree of T and satisfies | J;cy y(t) = F.

We use TDF to denote the set of all F-connex tree decom-
positions of H. (Note that when F = 0, TDy = TD.)

2.2 InsideOut and PANDA

To answer the FAQ query (2), we need a model for the repre-
sentation of the input factors Rg. The support of the function
Rk is the set of tuples xg such that R(xg) # 0. We use |Rg]|
to denote the size of its support. For example, if Rx repre-
sents an input relation, then |Rg| is the number of tuples
in Rk. In practice, there often are factors with infinite sup-
port, e.g., Rk represents a built-in function in a database, an
arithmetic operator, or a comparison operator as in (3). To
deal with this more general setting, the edge set & is parti-
tioned into two sets & = Eg U Eq, Where |Rk| is finite for
all K € Eg and |Rk| = oo for all K € &Ex. For simplicity,
we often state runtimes of algorithms in terms of the “input
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size” N := maxgeg, |Rk|. Moreover, we use |Q| to denote
the output size of Q. We always assume that Uscg,, S = V;
otherwise the output size |Q| could be infinite.

InsideOut [5, 6]. To answer (2), the InsideOut algorithm
works by eliminating variables, along with an idea called the
“indicator projection”. Its runtime is described by the FAQ-
width of the query, a slight generalization of fhtw. In the
context of one semiring, we can define faqw(Q) by applying
Definition (6) over a restricted set of tree decompositions
and edge dominated polymatroids. In particular, let F € V
denote the set of free variables in (2), and recall TDf from
Definition 2.2. Then,

EDg := {h | h:2V - Ry, h(S) < 1,YS € Ex}, (9)

f: = i h(x(t 10
2qw(Q) == i e, i h®) - (10)
(remark 2.1) = min max p(*%o()((t)) (11)

(T, x)eTDF teV(T)

Note that faqw(Q) = fhtw(H) when F = 0 and &, = 0
(i.e. & = Eg). A simple result from Abo Khamis et al. [5] is
the following: (Recall that throughout the paper we assume
the query size to be a constant and state runtimes in data
complexity.)

Proposition 2.3. InsideOut answers query (2) in time
O(NR™Q) . 1og N + Q).

To solve the FAQ-AI (3), we can apply Proposition 2.3 with
Eo 2 E¢ (because all ligament factors are infinite). But this
is suboptimal—later, we show a new InsideOut variant that
is polynomially better.

PANDA [7]. In case of the Boolean semiring, i.e., when the
FAQ query (2) is of the form
/\ Ric(xio),

Q(xr) = \/

X\ F €[ ;e\ r Dom(X;) Ke&

(12)

we can do much better than Proposition 2.3. When F =
0, Marx [26] showed that (12) can be answered in time
O(N©OGubw(Q)) The PANDA algorithm [7] generalizes Marx’s
result to deal with general degree constraints, and to meet
precisely the O(N*“*¥(Q))-runtime. In fact, PANDA works
with queries such as (12) with free variables as well. In the
context of this paper, we can define the following notion of
submodular FAQ-width in a very natural way:

f: = i h(x(t)).
smiw(Q) = | max =~ min = max h(x(t)

(13)
Then, the results from Abo Khamis et al. [7] imply:
Proposition 2.4. PANDA answers query (12) in time
O(N™™(@) 110)).

These results only work for the Boolean semiring. Sec-
tion 3 introduces a variant of PANDA, called #PANDA, that
also works for non-Boolean semirings.
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2.3 Semigroup range searching

Orthogonal range counting (and searching) is a classic and
ubiquitous problem in computational geometry [12]: given
a set S of N points in a d-dimensional space, build a data
structure that, given any d-dimensional rectangle, can effi-
ciently return the number of enclosed points. More generally,
there is the semigroup range searching problem [10], where
each point p € S of the N input points also has a weight
w(p) € G, where (G, ®) is a semigroup.? The problem is:
given a d-dimensional rectangle R, compute @pESﬂR w(p).

Classic results by Chazelle [10] show that there are data
structures for semigroup range searching which can be con-
structed in time O(N log?~! N), and answer rectangular queries
in O(logd_1 N)-time. Also, this is almost the best we can hope
for [11]. There are more recent improvements to Chazelle’s
result (see, e.g., Chan et al. [9]), but they are minor (at most
a log factor), as the original results were already very close
to matching the lower bound.

Most of these range search/counting problems can be re-
duced to the dominance range searching problem (on semi-
groups), where the query is represented by a point ¢, and
the objective is to return EBqSP’PeS w(p). Here, < denotes
the “dominance” relation (coordinate-wise <). We can think
of q as the lower-corner of an infinite rectangle query.

3 RELAXED TREE DECOMPOSITIONS
AND RELAXED POLYMATROIDS

3.1 Connection to a geometric data
structure

We always assume that | Jseg, S = V; otherwise the output
size |Q| could be infinite. We start with a special case of (3)
in which the skeleton part & contains only two hyperedges
U and L. Consider the aggregate query of the form

Q(xr) = @ P1(xy) ® Pa(xr) ® ® 1 65(x0)<0 |>

XY\F Se&e
(14)
where ®; and @, are two input functions/relations over vari-
able sets U and L, respectively. We prove the following very
simple but important lemma:

Lemma 3.1. Let N = max{|®4|, |®,|}, and k = |E¢|, then
when F C U, query (14) can be answered in time O(N -

(log N)max(k—l, l)).

Proor. If there is a hyperedge S € &, for which S C U,
then in a O(N log N)-time pre-processing step we can “ab-
sorb” the factor 15 s, )< into the factor ®;, by replacing
®,(xy) with @;(xy) ® 1y 05(xp)<0- A similar absorption

In a semigroup we can add two elements using @, but there is no additive
inverse.
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can be done with S C L. Hence, without loss of generality we
can assume that S ¢ Land S ¢ U forall S € &E,. Furthermore,
we only need to show that we can compute (14) for F = U,
because after Q(xy) is computed, we can marginalize away
variables x¢\r in O(N log N)-time.

Abusing notation somewhat, for each S € &, and each
T C S, define the function 9; : [Toer Dom(X,) — R by

05(xr) = ) 05 (x0).

veT

(15)

Fix a tuple xy such that ®;(xy) # 0. A tuple x, is said to be
xy-adjacent if tynpxy = mynrxr. We show how to compute
the following sum in poly-logarithmic time:

EB‘I)I(JCU)‘@‘PZ(XL)@ ®lzv€59§(xv)go = (16)
XI\U 568(
@10x0) & €D ®201) 8| (103, (x50012-08 e |- 1)
XL\U Se&y

where the inner sum ranges over only tuples x;, which are
xy-adjacent; non-adjacent tuples contribute 0.

Now, for the fixed x;; and for each x; define the following
k-dimensional points:

q(xu) = (gs(xv))ses, Where gs(xy) = 05y (xsnv),
plxr) = (ps(xi))see, where ps(xr) = =03, ; (xs5\0)-
We write q(xy) < p(xp) to say that g(xy) is dominated by

p(xy) coordinate-wise: qs(xy) < ps(xr) ¥V S € E¢. Assign to
each point p(x1) a “weight” of ®,(x1). Now, taking (17),

@ (DZ(XL) ® (® legmU(XSmU)<—95\U(x5\U))
XIL\U Se&y
@ ® 1gs(xv)<psixr) | ® Dy (x1) (18)
Se&,

XL\U

@ 1g(xv) <p(xr) ® P2(xL).

XL\U

The expression thus computes, for a given “query point”
q(xy), the weighted sum over all points p(x;) that domi-
nate the query point. This is precisely the dominance range
counting problem, which—modulo a O(N (log N)™ax(k=1.1))_
preprocessing step—can be solved in time O((log N)™x(k=1.1))
[10], as reviewed in Section 2.3.

To conclude the proof, note that (14) can be written as
(assuming F C U as is the case in Lemma 3.1)

®1sz5 03 (x0) <0 |
Se&y

same as (16)

(19)

Q(xr) = PP (xv) e P31 ®

XU\F XL\U

where the outer sum ranges over N tuples xy in ®;. O
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Example 3.2. Let R be a binary relation. Suppose we want to
count the number of tuples satisfying R(a, b)) AR(b,c) Aa < c,
then by setting F = 0, U = {a,b}, L = {b,c}, it is easy to
see that the problem can be reduced to the form (14) with
k =1,&, = {{a, c}}. We can thus compute this count in time
O(N log N). m|

3.2 Relaxed tree decompositions

Equipped with this basic case, we can now proceed to solve
the general setting of (3). To this end, we define a new width
parameter.

Definition 3.3 (Relaxed tree decomposition). Let H = (V,
& = E;UE() denote a multi-hypergraph whose edge multiset
is partitioned into &; and &;. A relaxed tree decomposition
of H (with respect to the partition Es U &) is a pair (T, y),
where T = (V(T),E(T)) is a tree, and y : V(T) — 27
satisfies the following properties:

e The running intersection property holds: for each node
v e Vtheset{t € V(T) | v € y(t)} is a connected
subtree in T.

e Every “skeleton” edge S € &; is covered by some bag
x(@),t e V(T).

e Every “ligament” edge S € &, is covered by the union
of two adjacent bags: S C y(s) U x(t), where {s,t} €
E(T).

Let TD? (H ) denote the set of all relaxed tree decompositions
of H (with respect to the skeleton-ligament partition). When
H is clear from context we use TD? for the sake of brevity.
Given F C V, let TDf; denote the set of all relaxed F-connex
tree decompositions of H.

3.2.1 FAQ-Al on a general semiring. We use relaxed TDs in
conjunction with Lemma 3.1 to answer FAQ-Al with a relaxed
notion of faqw. In particular, the relaxed width parameters
of H are defined in exactly the same way as the usual width
parameters defined in Section 2, except we allow the TDs to
range over relaxed ones.

Definition 3.4 (Relaxed faqw). Let Q be an FAQ-Al query (3),
and H = (V,E = E; U &) be its hypergraph. Furthermore,
let &4 C & denote the set of hyperedges K € & for which
|Rk| < oo. Then, the relaxed FAQ-width of Q is defined by

faqw,(Q) := (20)

min max max h(y(t
(T,)()ETDf; heED NI, teV(T) (X( ))

When F = 0, faqw, collapses to fhtwg, in which case we
define the relaxed fhtw for FAQ-Al Q without free variables:

fhtw(Q) := (21)

min max max h(y(t
(T,)()GTDg heEDg NI, teV(T) (X( ))
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A relaxed tree decomposition (T, y) of Q is optimal if its
width is equal to faqw,, i.e.,

faqw,(Q) = max max h(y(t)).

heED,NT, teV(T)
Theorem 3.5. Any FAQ-Al query Q of the form (3) on any
semiring can be answered in time O(N29%¢(Q).(log N
|Ql), where k is the maximum number of additive inequalities
covered by a pair of adjacent bags in an optimal relaxed tree
decomposition.’

Proor. We first consider the case of no free variables be-
cause this case captures the key idea. Fix an optimal relaxed
TD (T, y). We first compute, for each bag t € V(T) of the
tree decomposition, a factor ®; : [];c ;) Dom(X;) — D
such that

Q) = @(@ RK(XK)) ® (® Iy s eg(xv)q)) (22)

xy \Ke&Es Se&e
=D X ety o X 15, 05000120 |-
xy \teV(T) Se&

(23)

To define the factors ®;, we need the notion of indicator
projection [5, 6]. For a given K € &; and t € V(T) such that
J := KN x(t) # 0, the indicator projection of Rk onto the bag
x(t) is a function 7 k : [],¢; Dom(X,) — {0, 1} defined by

ﬂt,K(x]) = {

Recall from Definition 3.3 that every K € &; is covered by
at least one bag y(t) for t € V(T). Fix an arbitrary coverage
assignment « : & — V(T), where K is covered by the bag
x(a(K)). Then, the factors &, are defined by:

(I)t(x)((t)) = ® Rk (xk) ® ® ”t,K(xKﬁ)((t))~

Kea™(t) Ke&;
Kny(t)#0

1 dxgyg st Re((x, xK\7)) # 0,

. (24)
0 otherwise.

(25)
It is easy to verify that (23) holds. Using a worst-case optimal
join algorithm [28, 29, 34] we can compute (25) in time

é(Npgw(x(t))) — O(N™hetD i h(;((t))). (26)
Over all t € V(T), our runtime is bounded by O(N"), where
w= max max h(y(t)). (27)

teV(T) heEDgNI,

The support of each factor ®; has size bounded by N™.
Next we compute (23) in time O(N™). We will make use
of the fact that (T, y) is a relaxed TD. Fix an arbitrary root
of the tree decomposition (T, y); following InsideOut, we
compute (23) by eliminating variables from the leaves of
(T, x) up to the root. Without loss of generality, we assume

3Note that k can be a lot smaller than |E;|.

)max(kfl, 1) +
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that the tree decomposition is non-redundant, i.e., no bag is
a subset of another in the tree decomposition (otherwise the
contained bag factor can be “absorbed” into the containee
bag factor). Let #; be any leaf of (T, y), t; be its parent, where
L = y(t;) and U = y(t;). Now write (23) as follows:

@( ® ‘Pt(xxm)) ® (® 1S s 95<xu>so)

xy \teV(T) Se&e
@ B @ ]o|@ts.cotra)
xy\(\v) XL\u \teV(T) Se&y

= @ ( ® <I>t(xx<r))) ® ® 15 es 05 (x0) <0

xy\(\U) \teV(T)\{t1,t2} Se&y
SN(L\U)=0
@ (Do ed,x)el Ry, o520
XL\U Se&e
SN(L\U)#0

sub-query of the form (14)

The third equality uses the semiring’s distributive law. (Note
that SN (L \ U) # 0 implies that S € (L U U) thanks to
Definition 3.3 and the fact that #; is the only neighbor of #;.)
Lemma 3.1 implies that we can compute the sub-query in
the allotted time. The above step eliminates all variables in
L\ U. Repeatedly applying the above step yields the desired
output Q().

When the query has free variables, the algorithm proceeds
similarly to the case of an FAQ with free variables [5]. O

Example 3.6. Given 3 binary relations R, S and T, consider
a query Q about the number of tuples (g, b, ¢, d) that satisfy:

R(a,b) AS(b,c) AT(c,d) Aa < c)A(c < bYA(d < b). (28)

The query Q has & = Ex = {{a, b}, {b,c},{c,d}} and E, =
Ee = {{a,c}, {b,c}, {b,d}}. Let N = max{|R|, S|, |T|}. Note
that faqw(Q) = 2. In fact, any of the previously known
algorithms, e.g. [5, 6], would take time O(N?) to answer Q.
However, this query has faqw,(Q) = 1, and by Theorem 3.5,
it can be answered in time O(N - log N). (Note that here
2 =k < |&¢| = 3.) An optimal relaxed tree decomposition is
shown in Figure 1. m]

We next give a couple of simple lower and upper bounds
for faqw,. The upper bound shows that, effectively faqw, is
the best we can hope for, if the FAQ-AIl query is arbitrary. The
lower bound shows that, while the relaxed tree decomposi-
tion idea can improve the runtime by a polynomial factor, it
cannot improve the runtime over straightforwardly applying
InsideOut (over non-relaxed tree decompositions) by more
than a polynomial factor.
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Figure 1: An optimal relaxed tree decomposition for

the query in Example 3.6. Ligament edges are dashed.

Each skeleton edge is held in one bag.

Proposition 3.7. For any positive integer m, there exists an
FAQ-Al query of the form (3) for which F = 0, faqw,(Q) > m
and it cannot be answered in time o(N™%¢(Q))  modulo k-sum
hardness.

Proposition 3.8. For any FAQ-Al query Q of the form (3),
we have faqw,(Q) > %faqw(Q); in particular, when Q has no
free variables fhtw,(Q) > %fhtw(Q),

3.2.2 FAQ-AI on the Boolean semiring. Before explaining
how we can adapt PANDA to solve an FAQ-AI query on the
Boolean semiring, we give the intuition with an example.

Example 3.9. Consider the following FAQ-AI:

00 « R(a,b) AS(b,c) ANT(c,d) Aa<d.  (29)

Here faqw,(Q) = faqw(Q) = 2. Using fractional hypertree
width measure and InsideOut (even with relaxed TDs and
Theorem 3.5), the best runtime is O(N?), because no matter
which (relaxed) TD we choose, the worst-case bag relation
size is ©(N?). A key idea of the PANDA framework [7] is
the use of a disjunctive Datalog rule. Consider the following
disjunctive Datalog rule:

U(a,b,c) vW(b,c,d) « R(a,b) AS(b,c) AT(c,d). (30)

There are two relations in the head U and W, and they form
a solution to the rule iff the following holds: if (a, b, ¢, d)
satisfies the body, then either (a,b,c¢) € U or (b,c,d) € W.
Via information-theoretic inequalities [7], we are able to
show that PANDA can compute a solution (U, W) to the
above disjunctive Datalog rule in time O(N'-%). In particular,
both |U| and |W| are bounded by N*!->.

Given the solution (U, W) to (30), it is straightforward to
verify that the following also holds, using the distributivity
of V over A:

(R(a,b) AW(b,c,d)) vV (U(a,b,c) AT(c,d))
— R(a,b) AS(b,c) AT(c,d). (31)
By semijoin-reducing W against S, T, and semjoin-reducing
U against R, S, we conclude that
(R(a,b) AW(b,c,d)) V (U(a,b,c) AT(c,d)) =
R(a,b) AS(b,c) ANT(c,d).
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Finally, we have a rewrite of the original body:
[R(a,b) A\W(b,c,d)Aa < d]V[U(a,b,c) AT(c,d)Aa < d]
= R(a,b) AS(b,c) AT(c,d) Na<d. (32)

By defining intermediate rules, we can compute Q from them:

010 « R(a,b) AW(b,c,d) Aa < d, (33)
Q2() « Ul(a,b,c) AT(c,d) ANa < d, (34)
Q0 « Q10 v Q20). (35)

Q7 and Q; are of the form (14), and thus they each can be an-
swered in O(N!-%)-time (since |U|, [W| < N'-5). This implies
that Q can be answered in O(N!-%)-time overall. o

The strategy outlined in the above example uses PANDA
to evaluate an FAQ-AI query over the Boolean semiring. The
resulting algorithm achieves a natural generalization of the
submodular FAQ-width defined in (13):

Definition 3.10. Given an FAQ-Al query Q (3) over the
Boolean semiring. The relaxed submodular FAQ-width of Q
is defined by

smfwg(Q) := max min  max h(y(t)). (36)

heEDg NI, (T,X)QTDf_, teV(T)

(Recall that the set of relaxed tree decompositions TD;
was defined in Definition 3.3.)

Theorem 3.11. Any FAQ-Al query Q of the form (3) on the
Boolean semiring can be answered in time O(N*™W¢(Q) 1 |Q).

The proof of Theorem 3.11 can be found in Appendix A.1.

3.3 Relaxed polymatroids

A key step in the proof of Theorem 3.11 is to find the Boolean
tensor decomposition (72) of the product over Rk. In a non-
Boolean semiring, this becomes a tensor decomposition on
this semiring:

Ru- B R

Ke&s (T, x)eTDE teV(T)

S(Ta){)

0 (37)

In order to compute this tensor decomposition, we can still
follow the script of the proof of Theorem 3.11, working on
the parameter space of the input factors Rg; however, for the
equality in (37) to hold (it is an identity over the value-space
of the factors), we have to ensure the following property:

For any x s.t. ®K€85 Rk (xg) # 0, there is
exactly one tree decomposition (T, y) € TD; for

which
X

teV(T)
while for the other TDs, the left-hand side above is 0.

T,
S;(t;()(x)((t)) = ® RK(xK)’
Ke&g

(38)
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Essentially, the property ensures that we do not have to per-
form inclusion-exclusion (IE) over the tree decompositions
in TDI{;.4 We do not know how to ensure this property in
general. However, under a relaxed notion of polymatroids,
the property above holds. Since this idea applies to FAQ
queries in general, we start with our result on FAQ queries
first, before specializing it to FAQ-AL.

3.3.1 FAQ over an arbitrary semiring. To explain how we
can guarantee the property (38) for an FAQ query over an
arbitrary semiring, consider the following example. Suppose
that we would like to evaluate the (aggregate) query

Q0 = Z Ria(x1, X2)Ro3(x2, X3) R34 (3, X4) Raq (34, x1). (39)

X[4]

We write R;; instead of R;;(x;, x;) for short. The factors R;;
are functions of two variables R;; : Dom(X;) X Dom(X;) —
R, and they are represented by ternary relations in a database.
Abusing notation we will also use R;; to refer to its support,
i.e,, the binary relation over (X;, X;) such that (x;, x;) € R;;
ifTRij(x,-,xj) # 0.

There are only two non-trivial tree decompositions for
the “4-cycle” query (39): one with bags {1, 2,3} and {3, 4, 1},
and the other with bags {1, 2,4} and {2, 3,4}.> To evaluate
the query, we first solve the relation equation (37), but only
on the supports; i.e., we would like to find relations Sy3, S341,
So34, and S412 such that

Riz A Ry3 A Ry A Ry = (S123 A S341) V (Sa34 A S412) = (40)
(S123 V S234) A (S123 V Sa12) A (S3a1V Sz34) A (S341 V Sa12).
The second = is due to the distributivity of V over A. Since

the last formula is in CNF, we can solve each term separately
by solving 4 different disjunctive Datalog rules:

(S123 V S234) < Riz A Rz A Rsy A Ry, (41)
(S123 V S412) < Riz A Rz A Rsg A Ry, (42)
(S341 V S234) < Riz A Rz A Ry A Ryy, (43)
(8341 V S412) < Riz ARz A Rsg A Ry. (44)

Applying the proof-to-algorithm conversion idea from [7],
the above disjunctive Datalog rules can be solved with the
PANDA algorithm. It is beyond the scope of the main body
of this paper to describe the PANDA algorithm in full details.
However, we can describe a solution. Let N = max{|R5|, |Ra3l,
|R34l, |R411}. For each input relation/factor, define their “light”

4IE is difficult for two reasons: (1) I[E computation explodes the runtime,
and (2) in a general semiring there may not be additive inverses and thus IE
may not even apply.

5The trivial TD with one bag {1, 2, 3, 4} can always be replaced by a non-
trivial TD in the considered bounds/algorithms without making them any
worse. Similarly, redundant TDs can be replaced by non-redundant ones.
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parts as follows.

R{, = {(xi,x}) € Rij : lox,=x,Rijl < VN}.  (45)

Also, for every R;;, define R?j = Ryj \Rfj. Then, one can verify
that the following is a solution to the relational equations
(41)...(44) (and by semijoin-reducing each one of them with
relations R;j, they become a solution to (40) as well):

Sijk = Rij b le.k U miRY 4 Rjk. (46)

Furthermore, it is straightforward to verify that each S;jx
can be computed in O(N'-%)-time. Once we have obtained
this solution to the relational equation, i.e., we have the
relations S;jx, we can extend them naturally into factors (so
that they are represented by 4-ary relations) satisfying (38).
In particular, as functions with range R, they are defined by

Siji(xi> xj, X ) = Rij(xi, x;7) - Rjk (x, Xk ). (47)

The above sketch does not work for a generic FAQ query be-
cause we do not know how to guarantee that (38) is satisfied
given the relational solution returned by PANDA. (If we were
able to do so, then the notion of submodular width would
apply also to #CSP and not just CSP.) However, we are able
to prove that this strategy works (i.e., (38) can be ensured)
under a relaxed notion of polymatroids and a corresponding
“sharp submodular (FAQ) width”.

Definition 3.12. Given a collection & of subsets of V, a
set function h : 2V — R, is said to be a &-polymatroid
if it satisfies the following: (i) A(0) = 0, (ii) h(X) < h(Y)
whenever X C Y, and (iii) A(X UY)+h(XNY) < h(X)+h(Y)
for every pair X, Y € V suchthat XNY C S for some S € &.
In particular, a 2"V -polymatroid is a polymatroid as defined
in Section 2.1. For V = [n], let I};|g denote the set of all
&-polymatroids on V.

The following definition is a straightforward generaliza-
tion of smfw from (13), where we replace T}, by the relaxed
polymatroids.

Definition 3.13. Given an FAQ query (2) whose hypergraph
isH = (V,8 = Ep U Ew), its #-submodular FAQ-width,
denoted by #smfw(Q), is defined by

#smfw(Q) :=

max

(48)
heEDMT,

i h(x(2)).
. B0, S R @)

1€
When there are no free variables, i.e., F = 0, we define
#subw(Q) := #smfw(Q), to mirror the case when faqw(Q) =

fhtw(Q).

Under the above more restricted width parameter®, our
vision above with condition (38) can now be realized:

®When we relax the polymatroids, the width goes up, and thus it is more
restricted.
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Theorem 3.14. Any FAQ query Q of the form (2) on any
semiring can be answered in time O(N#sMW(Q) | 0)).

Appendix A.2 gives the proof of Theorem 3.14, which in-
volves an appropriate adaptation of PANDA called #PANDA.
Appendix A.3 shows that while #smfw(Q) can be larger than
smfw(Q), it is not larger than faqw(Q) and can be unbound-
edly smaller for classes of queries.

Proposition 3.15 (Connecting #smfw to smfw and faqw).
(a) For any FAQ query Q, the following holds:

smfw(Q) < #smfw(Q) < faqw(Q).
In particular, when Q has no free variables, we have

subw(Q) < #subw(Q) < fhtw(Q). (50)

(49)

(b) Furthermore, there are classes of queries Q for which
the gap between #smfw(Q) and faqw(Q) is unbounded,
and so is the gap between #subw(Q) and fhtw(Q).

Example 3.16. Consider again the count query Q in (39),
which we showed earlier how to compute in time O(N9).
Since Q has no free variables, faqw(Q) = fhtw(Q) = 2 and
#smfw(Q) = #subw(Q). In the proof of Proposition 3.15, we
show that #subw(Q) < 1.5. Therefore, the #PANDA algo-
rithm from the proof of Theorem 3.14 can compute (39) in
time O(N'-%). In fact, the O(N'-) algorithm we described
earlier for (39) is just a specialization of #PANDA. The proof
of Proposition 3.15 offers a family of similar examples. O

3.3.2  FAQ-AI over an arbitrary semiring. Finally, we put ev-
erything together to solve the FAQ-Al problem. The only
(very natural) change is to replace the tree decompositions by
their relaxed version, and the technical details flow through.

Definition 3.17. Given an FAQ-AI query (3) whose hyper-
graphis H = (V,E = E, U Er = Eg U Ewo), its relaxed #-
submodular FAQ-width, denoted by #smfw,(Q), is defined by

#smfwy(Q) :=  max min  max h(y(t)). (51)
Q heEDwNInis,, (T, x)€TD, teV(T) X

When F = 0, we define #subw(Q) := #smfw,(Q).

Theorem 3.18. Any FAQ-AI query Q of the form (3) on any
semiring can be computed in time O(N*™W¢(Q) 1 |Q)).

Example 3.19. Consider the following count query:

Q0= D) R@b) S(b.c) T(c.d) lasprcrazo-  (52)
a,b,c,d

Let N := max{|R|, |S|, |T|}. For the above query faqw(Q)
faqw,(Q) = #smfw(Q) = 2. Any of the previously known
algorithms, including the one from Theorem 3.5 and the one
from Theorem 3.14, would need time O(N?) to compute Q.
In Appendix A.4, we show that #smfw,(Q) < 1.5. As an
example of Theorem 3.18, we also show how to compute the
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above query in O(N'-%). (Using the same method, we can
also solve the counting version of Qs from Example 1.2 in
the same time.) O

4 APPLICATIONS TO RELATIONAL
MACHINE LEARNING

Our FAQ-AI formalism and solution are directly applicable to
learning a class of machine learning models, which includes
supervised models (e.g., robust regression, SVM classifica-
tion), and unsupervised models (e.g., clustering via k-means).
In this section, we show that the core computation of these
optimization problems can be formulated in FAQ-Al over the
sum-product semiring.

4.1 Training ML models over databases

A typical machine learning model is learned over a training
dataset G. We consider the common scenario where the
input data is a relational database I, and the training dataset
G is the result of a feature extraction join query Q over
I [2, 3, 18, 24]. Each tuple (x,y) € G consists of a vector
of features x and a label y. We consider that the feature
extraction query Q has the hypergraph H = (V, &;), where
&; is the set of its skeleton hyperedges.

A supervised machine learning model is a function fg(x)
with parameters f that is used to predict the label y for
unlabeled data. The parameters are obtained by minimizing
the objective function:

JB) = D Ly fox)+22(B),

(x,y)eG

(53)

where L(a, b) is a loss function, Q is a regularizer, e.g., {1 or
{5 norm, and the constant A € (0, 1) controls the influence
of regularization.

Previous work has shown that for polynomial loss func-
tions, such as square loss £(a, b) = (a — b)?, the core com-
putation for optimizing the objective J(f) amounts to FAQ
evaluation [3]. In many instances, however, the loss function
is non-polynomial, either due to the structure of the loss,
or the presence of non-polynomial components embedded
within the model structure (e.g., ReLU activation function in
neural nets) [27].

Examples of commonly used non-polynomial loss func-
tions are: (1) hinge loss, used to learn classification models
like linear support vector machines (SVM) [27], or gener-
alized low rank models (glrm) with boolean principal com-
ponent analysis (PCA) [33]; (2) Huber loss, used to learn
regression models that are robust to outliers [27]; (3) scalene
loss, used to learn quantile regression models [33]; (4) epsilon
insensitive loss, used to learn SVM regression models [27];
and (5) ordinal hinge loss, used to learn ordinal regression
models or ordinal PCA (another glrm) [33].
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Any optimization problem with the above non-polynomial
loss functions can benefit from our evaluation algorithm for
FAQ-AI by reformulating computations in the optimization
algorithm as FAQ-AI expressions over the feature extrac-
tion join query Q. We next exemplify this reformulation for
two such problems: (1) learning a robust linear regression
model using Huber loss, which can be solved with gradient-
descent optimization, and (2) learning a linear support vector
machine (SVM) for binary classification using hinge loss,
which can be solved with subgradient-based optimization
algorithms or with a cutting-plane algorithm for the primal
formulation of linear SVM classification. The full version [1]
details the cases of the scalene, epsilon insensitive, and ordi-
nal hinge loss functions.

We also consider k-means unsupervised clustering and
give an FAQ-AI reformulation of the computation done in
an iteration of the algorithm over the dataset G.

The advantage of FAQ-Al reformulation is that the FAQ-AI
expressions for the aforementioned optimization problems
can be evaluated over relaxed tree decompositions of the
feature extraction query Q and do not require the explicit
materialization of its result G. The size of and time to com-
pute G is O(|I|P"(Q)) [29]. The solution to these optimization
problems can be computed in time sub-linear in the size of
G, using InsideOut or #PANDA.

4.2 Robust linear regression with Huber

loss
A linear regression model is a linear function fg(x) = 7x =
Yie[n] Bixi with features x = (x; = 1,x2,...,x,) and pa-

rameters f = (f1, ..., fn). For a given feature vector x, the
model is used to estimate the (continuous) label y € R. We
learn the model parameters by minimizing the objective J(f)
with the Huber loss function, which is defined as:

1 2 ;

s(a-"D) ifla—b|] <1,
L(a,b) =42 54
(a,b) {%|a—b|—% otherwise. (54)

Huber loss is equivalent to the square loss when |a —
b| < 1 and to the absolute loss otherwise’. In contrast to the
absolute loss, Huber loss is differentiable at all points. It is
also more robust to outliers than the square loss.

To learn the parameters, we use batch gradient descent
optimization, which repeatedly updates the parameters in
the direction of the gradient VJ(f) until convergence. We
provide details on gradient-based optimization in [1]. In this
section, we focus on the core computation of the algorithm,
which is the repeated computation of the objective J(f) and
its gradient VJ(f).

"Without loss of generality, we use a simplified Huber loss. The threshold
between absolute and square loss is given by a constant § and the absolute

S &2
lossis 5 la-b|- 5.
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The gradient VJ(f) is the vector of partial derivatives
with respect to parameters (f;);e[+]. The objective function
J(B) (with €, regularization) and its partial derivative with
respect to f§; are:

I =5 Y (G- fp0* 1y

(x,y)eG

A
+(ly = 0O = 1) - Ly + 5 1Bl
(55)
0
S0 == Y, [ a0 - gyeerer 59
J

(x,y)eG
1
+ 5 Ly 050 = X7 Ly—fy)<0) iyfy(x)1>1 ]

=M= > (W= fp(0) x5 Ly g0 <

(x,y)€G
- 1/ZZXJ'1yffﬁ<x>>1 + 1/2299"1yffﬁ<x)<71~
(x,y)eG (x,y)€G

aJ éﬁ)
OB
without materializing G, by reformulating their data depejn—

dent computation as a few FAQ-Al expressions. We exemplify

Our observation is that we can compute J(f) and

the rewriting for ] (ﬂ ): the rewriting for J(p) is presented
in [1]. We rewrite the first of the three summations in é/(f )
as follows:
D =D Bix) X Ay« (57)
(x,y)eG  i€[n]
= Z Y X y—fpxyl<t — Z Z Pi-xixj - Ly fa(x)1<1
(x,y)eG ie[n] (x,y)eG
= Z y-xj- ly*fﬁ(x)él . 1y*fﬁ(x)>0
(x,y)eG
YN Ty 021 Ty fpi0<0
(x,y)eG
- Bi - xi - xj - 1y_ppxy <1 - Ty—fp(x)>0
i€[n] (x,y)eG
- Z Z ﬁz Xi - Xj+ y —fplx)z-1" y —fp(x)<0-
ie[n] (x,y)eG

The four terms can be expressed as O(n) FAQ-Al expres-
sions of the form (3). For instance, the first part of the ex-
pression is equivalent to the following FAQ-AI query:

Q0 = Z Y- X lyfpx)<t - Ty—fp(x)>0- l_[ Rr(xF)

Yy, xy Fe&,

ligaments &,

J(ﬁ)

The other two summations in both aggregate over x;
and have one inequality that deﬁnes a ligament in &,. They

can be expressed as FAQ-Al expressions. Overall, the gradient
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VJ(B) can be expressed as O(n*) FAQ-AIl expressions. The
full version [1] shows that the same holds for J(8).

Theorem 4.1. Let I be an input database where N is the
largest relation in I, and Q be a feature extraction query. For
any robust linear regression model B x, the objective J(B)
and gradient V J(B) with Huber loss can be computed in time
O(N#smtwe(Q)) vith #PANDA and in time O(N%¢(Q) Jog N)
with InsideOut.

4.3 Linear support vector machines

A linear SVM classification model is used for binary classi-
fication problems where the label y € {+1}. For the fea-
tures x (x1 = 1,x2,...,x,), the model learns the pa-
rameters ff = (Bi, ..., fn) of a linear discriminant function
fp(x) = BT x such that fg(x) separates the data points in G
into positive and negative classes with a maximum margin.
The parameters can be learned by minimizing the objective
function (53) with the hinge loss function:

L(a,b) = max{0,1—a- b}. (58)

Hinge loss is non-differentiable, and thus standard gradi-
ent descent optimization is not applicable. We next discuss
two alternative approaches for solving this optimization.

The first approach is based on the observation that the
loss function is convex, and the objective admits subgradient
vectors, which generalize the standard notion of gradient.
The optimization problem can be solved with subgradient
based updates. Pegasos is a well-know algorithm for this
approach [32].

The alternative approach is to solve the primal formulation
of the problem, which avoids the non-differentiable objective
by turning it into a constraint optimization problem with
slack variables. Joachims proposed a cutting-plane algorithm
which solves this optimization problem efficiently [20].

For both approaches, the number of iterations of the opti-
mization algorithm is independent of the size |G| of training
dataset G [20, 32]. Thus, the time complexity for finding the
solution is O(|G]).

Despite the fact that the two approaches solve the same
problem, they have been hugely influential in their own right.
We therefore consider both approaches, and show that by
reformulating their computation as FAQ-Al we can solve
them asymptotically faster than materializing the training
dataset G, i.e., sublinear in |G|.

4.3.1 Subgradient-based optimization for linear SVM clas-
sification. We first use subgradient-based optimization to
compute the parameters of the SVM model; The full ver-
sion [1] gives the details. The core of the optimization is
the repeated computation of the objective and the partial
derivatives in terms of (f;);en]. The objective J(B) (with £,

425

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

2J(B)

regularization) and the partial derivative =5 g are:
A
JB)= ), max{o.1-y(F )+ 1B (59)
(x,y)eG
9J(B)
. Z Y- X ypre<t + A (60)
! (x,y)€G
oJ(B)

Both J(f) and ~5p, can be reformulated as FAQ-AIl ex-

pressions and computed without materializing G. We first
rewrite the objective (derivation steps shown in [1]):

A
Z max{0,1 - y(fx)} + 3 ”ﬂ”%

(x,y)eG
A n
2 1815 +Z ly=11grx<1 — Z Z Bixily=11pg7x <1

(x,y)€G i=1 (x,y)€G

(61)

FAQ-AI of the form (3)

+Z 192,11,3Tx2_1+zn: Z Bixily——1lpryes 1.

(x,y)eG i=1(x,y)eG

FAQ-ALI of the form (3)

FAQ-AI of the form (3) FAQ-AI of the form (3)

—ag(ﬁf ) can also be rewritten into two FAQ-AI expressions:
= D yx Ay + AB 62)
(x,y)eG
:Aﬁj— Z xj'1y=llﬁszl+ Z xj'1y=—l1ﬁTxZ—l'
(x,y)€G (x,y)eG

FAQ-AI of the form (3) FAQ-AI of the form (3)

Theorem 4.2. Let I be an input database where N is the
largest relation in I, and Q be a feature extraction query. For
any linear SVM classification model B x, the objective J(f)
and gradient V J(B) with hinge loss can be computed in time
O(N#smwe(Q)y vyith #PANDA and in time O(Nfa%¢(Q) Jog N)
with InsideOut.

4.3.2 Cutting-plane algorithm for linear SVM classification
in primal space. An alternative to learning linear SVM via
subgradient-based optimization is to pose the problem as a
constraint optimization problem. The equivalent formulation
for minimizing the objective (59) is the primal formulation
of linear SVM [27]:

. 1 2, C
min  C[BP = D ey (63)
B.&x,y=0 2 G (x,y)€G
st yfp(x) 21— &y, Y(x,y) € G.

where £ , are slack variables and C is the regularization
parameter.

The optimization problem solves for the hyperplane fg(x)
that classifies the data points (x,y) € G into two classes, so
that the margin between the hyperplane and the nearest data
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Algorithm 1: Training classification SVM via (64)
1 W« 0
2t « 0;

3 repeat
4 te—t+1;

5 (ﬂ(t)’ é.'(f)) — argmil’lﬂ,gzo {% ”ﬁ”g + Céf;

6

// Working set

<ﬁ Z(x y)eT yx> = Fl f VYT € (W}
7| TO: (x y) €Gly(pV.x) <1}
8 W — WU (TW)

9 until F - ﬁ <ﬁ ? Z(x y)eT () yx> < E(t) + €;

point for each class is maximized. For each (x,y) € G, the
slack variable &y , encodes how much the point violates the
margin of the hyperplane.

Joachims’ cutting-plane algorithm solves (63) in linear
time over the training dataset [20]. The algorithm solves the
following structural classification SVM formulation, which is
equivalent to (63):

min 2B+ CE (64
1
st <ﬂ, Dy > |—||T| £, VT CG.

(x,y)€T

This formulation has 2!C! constraints, one for each possible
subset T C G, and a single slack variable & that is shared by
all constraints.

Algorithm 1 presents Joachims’ cutting-plane algorithm
for solving (64). It iteratively constructs a set of constraints
‘W, which is a subset of all constraints in (64). In each round
t, it first computes the optimal value for ) and ) over
the current working set ‘W. Then, it identifies the constraint
T® that is most violated for the current (), and adds this
constraint to “W. It continues until T*) is violated by at most
€.Joachims showed that Algorithm 1 finds the e-approximate
solution to (64) in O(1)-many iterations [20]. Hence |"W| and
the number of constraints of the optimization problem are
bounded by a number independent of |G|.

Next, we consider the inner optimization problem at line
5. Although |'W| is small, the number n of variables can still
be large. This prohibits solving with quadratic programming
as it can take up to O(n®) [27]. Its Wolfe dual, on the other
hand, is a quadratic program with only a constant number
of variables that is independent of n and one constraint. Let
XT = X (x,y)eT YX. We next present the derived Wolfe dual
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(its derivation from (64) is in [1]):

<Z arxr, Z OCTXT>+ Z IT|ar (65)

a>0
TeWwW TeWwW TeWwW
LY ars g
S.t. ar = ——
G
TeW |G|
where & = (ar )T ey is the vector of constraints.

Theorem 4.3. Let I be an input database where N is the
largest relation in I, and Q be a feature extraction query. A
linear SVM classification model can be learned over the training
dataset Q(I) with Joachims’ cutting-plane algorithm in time
O(N*smtwe(Q)) vyith #PANDA and in time O(N9%¢(Q) Jog N)
with InsideOut.

4.4 k-means clustering

We next consider k-means clustering, which is a popular
example of an unsupervised machine learning algorithm.

An unsupervised machine learning model is computed
over a dataset G C R”, for which each tuple x € G is a
vector of features without a label. A clustering task aims to
divide G into k clusters of “similar” data points with respect
to the £, norm: G = Uf:lGi, where k is a given fixed positive
integer. Each cluster G; is represented by a cluster mean
pi € R™ One of the most ubiquitous clustering methods,
Lloyd’s k-means clustering algorithm (also known as the k-
means method), involves the optimization problem (1) with
respect to the partition (G;);e[x] and the k means (p;);e[k]-
Other norms or distance measures can be used, e.g., if we
replace £, with ¢;-norm, then we get the k-median problem.
The subsequent development considers the £;-norm.

Lloyd’s algorithm can be viewed as a special instantiation
of the Expectation-Maximization (EM) algorithm. It itera-
tively computes two updating steps until convergence. First,
it updates the cluster assignments for each (G;);e[]

(i} (o)

and then it updates the corresponding k-means (p1;);e[x)

Hi= |G| Z

Our observation is that we can reformulate the updating
of the k-means as FAQ-Al expressions, without explicitly
computing the partitioning (G;);e[x]. For a given set of k-
means (§1;);je[k], let ¢;j(x) be the following function:

Gi={x Gl -l < x| vi < (k1

(67)

cy(@) = D [0ee = pi.e)* = (e = pye)’]
€€[n]
= DUk = 2xe(uie + pre) — ) (68)
L€(n]
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where (1 ¢ is the £’th component of mean vector y;. A data
point x € G is closest to center p; if and only if ¢;;(x) < 0
holds Vj € [k].

We use this inequality to reformulate the mean vector y;
as O(n) FAQ-AI expressions. First, we express |G;| as:

Qi0 =D ] teswso || | | Rexr) |-
€[k]

x \j Fe&;

(69)

Then, for each ¢ € [n], the sum }}, ¢, x¢ can be reformulated
in FAQ-AI as follows (similarly to (4)):

Qie() = fo l_[ ey (x)<0 l—[ Rr(xrF) |-
x JéElk]

Fe&g
Each component (y;, ¢)ee[n) equals the division of Q;, by Q;.
Overall, the mean vector y; can be computed with O(n)
FAQ-AI expressions of the form (3).

(70)

Theorem 4.4. Let I be an input database where N is the
largest relation in I, and Q be a feature extraction query where
n is the number of its variables. Each iteration of Lloyd’s k-
means algorithm can be computed in time O(N*™W¢(Q)) ith
#PANDA and in time O(N™a¥¢(Q) logk_1 N) with InsideOut.
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A MISSING DETAILS FROM SECTION 3

A.1 Proof of Theorem 3.11
Theorem 3.11. Any FAQ-Al query Q of the form (3) on the
Boolean semiring can be answered in time O(Ns™we(Q) 1 |0)).

Proor. As in the proof of Theorem 3.5, we first assume
there are no free variables; the generalization to F # 0 is
trivial. When F = 0, the query (3) is written in Datalog as:

o A Ren A [Zesso}.

Keé&g Se&e Lves

(71)

We write Ry instead of Rk (xx) and 63 instead of 05 (x,) to
avoid clutter. It will be implicit throughout this proof that
the subscript of a factor/function indicates its arguments. To
Sy
(over variables y(t)) for every bag t € V(T) of every relaxed
tree decomposition (T, y) € TDg such that the relations
S(T LX)
x(1)

answer query (71), the first step is to find one relation

together form a solution to the following equation:

A RN

Ke&s (T. x)€TD{ t€V(T)

(72)

Note that the right-hand side of (72) is a Boolean tensor de-
composition of the left-hand side. The idea of using Boolean
tensor decomposition to speed up query evaluation was used

in [4] in the context of queries with disequalities. Assum-
X)

x(t)

efficiently satisfying (72), then (71) can be answered by an-

swering for each (T, y) € TDg an intermediate query:

A\ S A [ =]

teV(T) Se&r LveS

ing that we can compute the intermediate relations S x,

(T, )()
Sx(t)

QA () (73)

The final answer Q is obtained by the trivial Datalog rule:

)« \/ o"Vo.

4
(T, x)€TD,

(74)

The key point here is that each intermediate query (73) is an
FAQ-Al query (3) with faqw, = 1, and thus from Theorem 3.5

each one of them can be answered in time O(M) where

( )()|

M= S

max max

(75)
(T. x)€TDf t€V(T)

It remains to show how to compute tables S;T(t))( ) that form

a solution to (72); to do so, we apply distributivity of V over A
to rewrite the right-hand side of (72) as follows. Let M be the
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collection of allmaps f5 : TDg — 2V such that B(T, y) = x(t)
for some t € V(T); in other words, f selects one bag y(t) out
of each tree decomposition (T, y). Then, from the distributive

law we have
V A =N\ V
BeM(T, x)eTD}

(T, x)eTD teV(T

S(T X)

(T, x)
x(t) 5

st (70

which means to solve the relational equation (72) we can
instead solve the equation

AV

BeM(T, x)eTD§

(T,x) _
Sy = AS Rk. (77)
Ke&s

To solve the above equation, for each f € M we can find

tables S 5 (T that form a solution to the following equation
(T, x)
Vo Spiy= A R (78)
(T, x)€TD{

To do that, for each f € M, we compute a solution to the
following disjunctive Datalog rule:

Vo Wity = \ B

(T, x)€TD§ Ke&s

(79)

Once we obtain the relations W,é (TX )

them against the input relations Rk, in order to obtain
that solve (77).

Finally, we evaluate each disjunctive Datalog rule (79) by
running the PANDA algorithm, which computes the rule in
time bounded by O(N¢?)), where

e(p) =

we can semijoin-reduce

(T, x)
Sﬁ(T X)

max 1'1'111'1
heEDgNTy (T, y)e

h(ﬁ(T X)) (80)

Maximizing over € M, the runtime is bounded by O(N"),
where

) 81
w = max e(f) o1
= max max min h(B(T, 32
e M heED&T, (T, y)eTD (B(T, x)) (82)

) in (BT, 83
heBRhr, P e ML 20) (83)

= max min  max h(y(t)) = smfw,(Q). (84)

heEDwNT, (T, )()eTD‘ teV(T)

The first equality in (84) follows from the minimax lemma
in [7]. Our reasoning above also shows that M from (75) is
bounded by Ns™fwe(Q), ]

A.2 Proof of Theorem 3.14

Theorem 3.14. Any FAQ query Q of the form (2) on any
semiring can be answered in time O(N**™W(Q) 4 |Q]).
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Proor. The PANDA algorithm [7] takes as input a disjunc-
tive Datalog query of the form

\/ Gp(xp) « /\ Ry (xk).

BeB Ke&

(85)

The above query has an input relation R for each hyper-
edge K € & in the query’s hypergraph H = (V,&). The
output to the above query is a collection of tables Gg, one for
each “goal” (or “target”) B in the collection of goals 8. The
output tables (Gp)peg must satisfy the logical implication
in (85): In particular, for each tuple x, that satisfies the con-
junction A geg Rk (xk), the disjunction \/ gcg Gg(xp) must
hold. Query (30) is an example of (85). A disjunctive Dat-
alog query (85) can have many valid outputs. The PANDA
algorithm computes one such output in time O(N*), where

max min h(B). (86)

heEDgNI, BEB

e =

(Recall notation from Section 2.2.)

In what follows, we describe a variant of PANDA, called
#PANDA, that takes a disjunctive Datalog query (85), and
computes the following:

e A collection of tables (Gg)peg that form a valid output
to query (85), i.e. that satisfy the logical implication
in (85).

additionally computes a collection of “filter” tables
(F I(<B) )KE & one table F I((B) for each hyperedge K € € in
the input hypergraph H. The output tables Gg along
with the associated filters (FI(<B))KE s satisfy the fol-
lowing condition: For each tuple x, that satisfies the
conjunction A geg Rx(xk), there is exactly one target
B € B where the conjunction /\ FI((B) (xk) holds, and

Keé&
for that target B, Gg(xp) holds as well. In particular,

the following equivalences hold:

VA 20

BeB LKe&

/\ FIQB)(XK)} =

Ke&

/\ Re(xx), (87)

Ke&

Ga(xs) A /\ FI((B)(xK)}, VB € B, (88)
Ke&

where \/ above denotes the exclusive OR.

#PANDA computes the above output tables (Gg)geg and

B P
((FI(< ))KES)BEB in time O(N*®) where
e/ = max minh(B). (89)
heEDg Ty, BB

Now we briefly explain how to tweak the PANDA algo-
rithm into #PANDA satisfying the above characteristics. We
refer the reader to [7] for more details about PANDA. At a

Moreover, associated with each output table Gg, #PANDA
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high level, the PANDA algorithm starts with proving an ex-
act upperbound on e from (86) using a sequence of proof
steps, called the proof sequence. Then PANDA interprets
each step in the proof sequence as a relational operator, and
then uses this sequence of relational operators as a query
plan to actually compute the query in time O(N¢). One of
the proof steps used in PANDA is the decomposition step
h(Y) — h(X) + h(Y|X) for some X C Y C V. The rela-
tional operator corresponding to this decomposition step is
the “partitioning” operator, in which we take an input (or
intermediate) table Ry and partition it into a small number
k = O(log|R|) of tables R(l), . ,R(Yk), based on the degrees
of variables in Y with respect to variables in X C Y. In
particular, define the degree of Y w.r.t. a tuple tx € mxRy as

degg, (YItx) = |{#} € Ry | £ = tx}]| (90)

In the partitioning step, we partition tuples tx € mxRy into k
buckets based on degRY (Y|tx) and partition Ry accordingly.
After partitioning, PANDA creates k independent branches
of the problem, where in the j-th branch, Ry is replaced
by Rg) , for each j € [k]. PANDA continues on each branch
independently and end up computing a target Gg for some
B € B that is potentially different for each branch.

From the proof sequence construction described in [7], we
note the following: If the constructed proof sequence that
is used to prove the bound on e in (86) contains a decom-
position step h(Y) — h(X) + h(Y|X), then the proof of the
bound on e must have relied on some submodularity con-
straint on h of the form A(X) + H(ZUY) < h(Y) + h(Z U X)
for some Z C V where Z N'Y = 0. However, the new
bound (89) used in #PANDA only relies on submodularities
h(X) + h(ZUY) < h(Y) + h(Z U X) where X C K for
some K € &. (Recall T, g, from Definition 3.12.) There-
fore, in #PANDA, whenever we apply a partitioning step of
Ry into R(l), ... ,R(Yk) based on the degrees degp (Y|tx) of
tx € mxRy, we can add nXRg) into the filter FI(<B) for some

FI((B) — FI(<B) 3 ﬁXRgf) on the j-th
branch. Semijoin-reducing ﬂxR(;) into some F I(<B) is possible
thanks to the fact that X C K for some K € &. Moreover, this

semijoin-reduction of filters F ;B) maintains (87). (Initially, we

K € &, i.e. we can set

start with filters F I(<B) that are identical to the input relations
Rk, which trivially satisfies (87).)

Now that we have described the #PANDA algorithm sat-
isfying the above properties, we explain how to use it as a
blackbox to solve an FAQ query Q of the form (2) in time
O(N*s™W(Q) 4 10]). Following the same notation as in the
proof of Theorem 3.11, let M be the collection of all maps
B TD? — 2V such that B(T, y) = y(t) for some t € V(T);
in other words, f selects one bag y(t) out of each tree decom-
position (T, y). For each f € M, we use #PANDA to solve
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the following rule:

Vo |Gsann /\ Fz(f(T’X))]

(T, x)€TDF Keé&

ARK (91)

Ke&

The solutions collectively satisfy the following:

W fosnon A #T0 -

PeEM(T, x)eTDF Ke&

N\ R

Ke&

Now we distribute the outer conjunction A gcp( over the ex-
clusive OR V/, which results in an exclusive OR outside and a
big conjunction inside. Using the same diagonalization argu-
ment from [7], we know that for this inner conjunction there
must exist some tree decomposition (T, X) € TDF where the
conjunction contains G ;) for all ¢ € V(T). Thanks to (88),
we can keep those terms Gy ;) in the conjunction and drop
out all other terms Gg(r, ;) to get an equivalent conjunction.
We interpret the resulting conjunction as an FAQ query:
The input factors to this FAQ query are all filter F I(f T2 in
the conjunction along with G ;) for all t € V(T); all other
Gp(r, y) have been dropped. Now we solve this FAQ query by
running InsideOut over the tree decomposition (T, ). We
repeat the above for every conjunction. Afterwards, because
different conjunctions are joined together with an exclusive
OR, we can simply add up individual query results.
From (89), the total runtime is O(N" + |Q|), where

h(B(T, )
P o, 1)

h(x(t)) = #smf
et b, (T oDy oy X (1)) = Fsmfw(Q).

w = max max min
PeM heEDwﬂF,,‘gdo (T, x)eTDF

max
heEDNT,

1€

A.3 Proof of Proposition 3.15
Proposition 3.15.
(a) For any FAQ query Q, the following holds:

smfw(Q) < #smfw(Q) < faqw(Q). (92)

In particular, when Q has no free variables, we have

subw(Q) < #subw(Q) < fhtw(Q). (93)

(b) Furthermore, there are classes of queries Q for which
the gap between #smfw(Q) and faqw(Q) is unbounded,
and so is the gap between #subw(Q) and fhtw(Q).

Proor. First we prove part (a). The first inequality in (92)
follows directly from the definitions of #smfw and smfw
along with the fact that I}, C T},|g,. To prove the second
inequality in (92), we use the following variant of the Modu-
larization Lemma from [7]:
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Claim 1 (Variant of the Modularization Lemma [7]). Given

a hypergraph H = (V = [n], &) and a set B C V, we have
max h(B) = max h(B), (94)
heEDNT, heEDNM,,

where ED is given by (5) and M,, denotes the set of all modular
functionsh : 2V — R,. (A function h : 2V — R, is modular
ifh(X) = Siex h(D),YX CV.)

Proor of Craim 1. Obviously, the LHS of (94) is lower-
bounded by the RHS. Next, we prove LHS < RHS. WLOG we
assume B = [k] for some k € [n]. Leth” = arg max, cgpnr, , A(B)-
Define a function A : 2V — R, as follows:

R(F) = 3 (W ([i]) = h*([i = 1])).
i€eF
Obviously 4 € M,, and h(B) = h*(B). Next, we prove h € ED
by proving that for every F C [n] where F C E for some
E € &, the following holds: h(F) < h*(F).

The proof is by induction on |F|. The base case when
|F| = 0 is trivial. For the inductive step, consider some F
where F C E for some E € &. Let j be the maximum integer
in F, then by noting that |F N [j — 1]| < |F|, we have

h(F) (D) - A (U - 1] + Z (R*([i]) = h*([i — 11))
icF—{j}

R ([ = " ([ - 1]) + A(F N [j — 1])

R(FU[j-1])-h([-1]) +h(FN[i-1])

REU[-1)-hA([j-1]) +h* Fn[j-1]) < h*(F).

<

The first inequality above is by induction hypothesis, and
the second inequality follows from the fact that h* is a &-
polymatroid (recall Definition 3.12). Both steps rely on the
fact that F N [j — 1] € E for some E € &. Consequently,
h € ED N M,,. Since h(B) = h*(B), this proves Claim 1. O

Now we prove the second inequality in (92):

Fomtw(Q) = el Do, (Sl P )

S o, hethnt e, o M ®)

%0, B heebre, hx(®)

Caim) = min, mex,, mar, Wao)
(Strong duality) = min  max PS (x(1)) = faqw(Q).

(T, x)€TDF teV(T)

The fact that maxpeep,nm, (X (t)) = p’édo()((t)) follows
from the two sides being dual linear programs. (Recall the
definition of p* from Section 2.1.)

Now, we prove part (b) of Proposition A.3. In [7], we con-
structed a class of graphs/queries where the gap between
fhtw and subw is unbounded. We will re-use the same con-

struction here and prove that the upperbound on subw that
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we proved in [7] is also an upperbound on #subw. The up-
perbound proof is going to be different from [7] though since
here we can only use &-polymatroid properties to prove the
bound (recall Definition 3.12).

Given integers m and k, consider a graph H = (V,8E)
which is an “m-fold 2k-cycle”: The vertex setV :=; U...U
Ly is a disjoint union of 2k-sets of vertices. Each set I; has
m vertices in it, i.e., I; {1]1, IJZ, ..., I'"}. There is no edge
between any two Vertices within the set I; for every j € [2k],
i.e,, I;isan independent set. The edge set & of the hypergraph
is the union of 2k complete bipartite graphs Ky, n:

E=(L xL)U (I xB)U -+ U (g1 X Ipg) U (Ik X I1).

Finally consider an FAQ query Q that has a finite-sized input
factor Rk for every K € &, ie., Eg = E and Ec, = 0 (recall
notation from Section 2.2). Assuming Q has no free variables,
then faqw(Q) = fhtw(Q) and #smfw(Q) = #subw(Q).

We proved in [7] that fhtw(Q) > 2m. Next we prove that
#subw(Q) < m(2—1/k). Let h be any function in EDg NIy g, -
We recognize two cases:

e Case 1: h(I;) < 0 for some i € [2k]. WLOG assume

h(I;) < 6. Consider the TD

For bag B = I; U I; U I;14, using Eg-polymatroid prop-
erties (Definition 3.12), we have

h(B) < h(lL)+h(I; U Iis1)

< k(L) +Z

e Case 2: h(I;) > 0 for all i € [2k]. Consider the TD

Bag B, Bag B,

If bl

l’l+1 <9+m‘

For convenience, given any vertex I{ , define the vertex
set V/ as follows:

V/ =LULU...UL U {I},If,...,l{‘l}.
From Eg-polymatroid properties, we have
k+1 m
h(B,) = h(;UL) +ZZ ({#uvi 1))
i=3 j=1
k+1 m
< hnub)+ Y S h({t e} {EL)})
i=3 j=1
k+1 m o k+1 m
= hnub)+ > S h({tL e ) - > h({E,}
i=3 j=1 i=3 j=1
k+1 m k+1
< UL+ > S h({ILE L)) = > )
i=3 j=1 i=3
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>~

k+1

Z h(Ii_1) < km — (k — 1)6.

i=3

+1

m
(e,

j=1

IA
Il
oo

i

In a symmetric way, we can also show that h(B;) < km—(k—
1)0. By setting 0 = (1 — 1/k)m, we prove that #subw(Q) <
m(2 — 1/k). Since fhtw(Q) > 2m, this proves part (b). m|

A.4 More details on Example 3.19

Consider the count query from Example 3.19. First we prove
that #smfw,(Q) < 1.5. Here F = (. We will use two relaxed
tree decompositions in TD‘;: The first (T3, y1) has two bags
{a, b, c} and {c, d}. The second (T3, y2) has two bags {a, b} and
{b,c,d}. (Both are relaxed TDs because the ligament edge
14+b+c+d<o 1S N0t contained in any bag; recall Definition 3.3.)
Following (51), for each h € EDg N Tjg,,, we will pick one
TD or the other. In particular, given some h € EDg N Ty g, :

o If h(b) > 1/2, then h(bc|b) < 1/2. We pick (Ty, y1)-
From Eg-polymatroid properties (Def. 3.12), we have

h(abc) = h(ab) + h(abclab) < h(ab) + h(bc|b) < 1.5,
h(ed) < 1.
o If h(b) < 1/2, we pick (T2, x2).
h(ab) < 1,
h(bed) = h(b) + h(bed|b) < h(b) + h(cd) < 1.5.

This proves that #smfw,(Q) < 1.5.

Finally, as a special case of #PANDA, we explain how to
solve the above query in time O(N'%) (where recall N :=
max{|R|,|S|,|T|}). Let

s = by eSIlie | (b.e') €S} < VN,
sh = s\st.

Now we can write

Q0 = D R(@b) (8 (b,c) + 5" (b,0)) T(e,d) - Larpseraso
a,b,c,d
= Qp+0" o where
Qf() = Z )+ 8(b,¢) T(e,d) - Larpscrasos
@bc U(a,b.c)
Q") = Z (a,b) - $"(b,¢) - T(c,d) Laspcsasor
a.b.c W (b, c,d)

Both U and W above have sizes < N'->. Using the algorithm
from the proof of Theorem 3.5, Q€ can be answered in time

O(N'1og N) using the relaxed TD (T, y1), while Q" can
be answered in the same time using (T3, y2).



	Abstract
	1 Introduction
	1.1 Motivating examples
	1.2 The FAQ-AI problem
	1.3 Our contributions
	1.4 Related work

	2 Preliminaries
	2.1 Tree decompositions and polymatroids
	2.2 InsideOut and PANDA
	2.3 Semigroup range searching

	3 Relaxed tree decompositions and relaxed polymatroids
	3.1 Connection to a geometric data structure
	3.2 Relaxed tree decompositions
	3.3 Relaxed polymatroids

	4 Applications to relational Machine Learning
	4.1 Training ML models over databases
	4.2 Robust linear regression with Huber loss
	4.3 Linear support vector machines
	4.4 k-means clustering

	Acknowledgments
	References
	A Missing details from Section 3
	A.1 Proof of Theorem 3.11
	A.2 Proof of Theorem 3.14
	A.3 Proof of Proposition 3.15
	A.4 More details on Example 3.19


