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Abstract—The new 5G communications standard increases
data rates and supports low-latency communication that places
constraints on the computational complexity of channel decoders.
5G low-density parity-check (LDPC) codes have the so-called
protograph-based raptor-like (PBRL) structure which offers
inherent rate-compatibility and excellent performance. Practical
LDPC decoder implementations use message-passing decoding
with finite precision, which becomes coarse as complexity is
more severely constrained. Performance degrades as the preci-
sion becomes more coarse. Recently, the information bottleneck
(IB) method was used to design mutual-information-maximizing
lookup tables that replace conventional finite-precision node
computations. The IB approach exchanges messages represented
by integers with very small bit width. This paper extends the
IB principle to the flexible class of PBRL LDPC codes as
standardized in 5G. The extensions include puncturing and
rate-compatible IB decoder design. As an example of the new
approach, a 4-bit information bottleneck decoder is evaluated for
PBRL LDPC codes over a typical range of rates. Frame error
rate simulations show that the proposed scheme outperforms
offset min-sum decoding algorithms and operates very close to
double-precision sum-product belief propagation decoding.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are used in the
current 5G standard based on their powerful error-correction
performance [1]. The theoretically achievable performance
under message passing decoding requires high-precision mes-
sage representations and computationally complex node opera-
tions. Such implementations introduce impractical latency and
high power consumption. The desired throughput and latency
promised by 5G [1] require practical hardware implementa-
tions that use finite-precision message passing algorithms and
node computations that are simplified by smart approxima-
tions. Still, the error-rate performance of such finite-precision
decoders deteriorates significantly with decreasing precision
[2].

To address the challenge of good performance with low pre-
cision and simple computation, the information bottleneck (IB)
decoder [2]-[6] combines ideas from information theory and
machine learning. IB decoders differ from conventional finite-
precision decoders significantly. First, instead of executing
any conventional arithmetic exactly or approximated, the node
operations are replaced by relevant-information-maximizing
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functions which map discrete input messages onto discrete
output messages.

While similar in operation to the lookup tables developed
for finite-alphabet iterative decoding (FAID) approach [7], [8],
the tables used in IB decoders are learned in an unsupervised
manner, using the IB method [2]-[6].

As with the FAID approach, in the entire decoder no log-
likelihood ratios (LLRs) are processed at any time. Instead,
integer-valued messages, sometimes called cluster indices, are
exchanged. However, whereas the FAID approach is mainly
restricted to regular LDPC codes with variable node degree
three, in our previous work [4], [9], [10], IB decoders with
only 4 bits of precision perform within 0.1 dB of double
precision belief-propagation for arbitrary regular and arbitrary
irregular LDPC codes without puncturing. For irregular codes,
message alignment provides a common representation across
nodes with different degrees [5]. In [11] it was shown that,
with a similar decoder, a throughput up to 500 Gb/s is possible
with high energy and area efficiency.

To the best of our knowledge, all information bottleneck
decoders in literature are tailored for a specific rate. How-
ever, in practical systems a rate-compatible decoding scheme
is favorable. Recently, so-called protograph-based raptor-like
(PBRL) LDPC codes were shown to pair very powerful error-
correcting capabilities and an efficient structure which enables
an inherent rate-compatibility [12].

This paper presents a generalized design of IB decoders to
enable decoding of 5G-related PBRL codes with a bit-width
down to 4 bits while incorporating puncturing and hence rate-
compatibility into the IB decoder itself. In detail, the paper
contains the following main contributions:

o This paper extends the design of IB LDPC decoders from
[4], [5] to include puncturing in both the high-rate mother
code and the degree-one variable nodes of PBRL codes.

o This paper reframes message alignment as its own IB
problem, facilitating designs for irregular LDPC codes.

o Using the new approach, a 4-bit information bottleneck
decoder for a PBRL code family outperforms a 6-bit
offset-min-sum decoder and performs within 0.2 dB of
double precision belief propagation decoding.

Organisation: The IB method and PBRL LDPC codes are
briefly reviewed in Section II. In Section III, we summarize
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Fig. 1. Information Bottleneck setup, where I(X;T') is the relevant in-
formation, 1(X;Y") is the original mutual information and 1(Y;7) is the
compression information.
the design of IB LDPC decoders. Thereafter, we use message
alignment to incorporate puncturing. Finally, this paper targets
the problem of rate-compatible decoding architectures in Sec-
tion IV. In Section V, numerical simulations comparing the
performance of our proposed decoder with several reference
systems are provided. Section VI concludes the paper.
Notation: The realizations y € ) from the sample space
Y of a discrete random variable Y occur with probability
Pr(Y = y) and p(y) is the corresponding probability distribu-
tion. The cardinality or alphabet size of a random variable is
denoted by |)|. Joint and conditional distributions are denoted

p(x,y) and p(z|y).

II. PREREQUISITES

This section briefly reviews the information bottleneck
method. Furthermore protograph-based raptor-like (PBRL)
LDPC codes are introduced.

A. The Information Bottleneck Method

The information bottleneck method [13] is a mutual-
information-maximizing clustering framework from machine
learning. The overall information bottleneck setup is depicted
in Figure 1. It considers a Markov chain X — Y — T of
three random variables. X is termed the relevant variable, Y is
termed the observation and 7' is a compressed representation
of Y. The compression is described by the conditional dis-
tribution p(¢|y). This compression mapping is designed such
that the mutual information 1(X; 7") is maximized while at the
same time the mutual information I(Y'; T") is minimized. If the
mapping p(t|y) uniquely assigns a ¢ to each y with probability
1, this mapping can be implemented in a lookup table such that
t = f(y). Algorithms to find suitable compression mappings
are described in [14]. These algorithms require the joint
distribution p(z,y) and the desired cardinality |7| of the
compression variable 7" as inputs.

B. Protograph-Based Raptor-Like (PBRL) LDPC Codes

Thorpe [15], [16] introduced LDPC codes constructed from
a protograph, which is a small Tanner graph that describes the
connectivity of the overall LDPC Tanner graph. A copy and
permute operation referred to as lifting obtains the full LDPC
parity check matrix from the protograph. Figure 2 shows the
protograph structure of a PBRL code as described in [12],
[17]. The protograph of an PBRL LDPC code consists of two
parts: (1) a highest-rate code (HRC) protograph and (2) an
incremental redundancy code (IRC) protograph. Thereby, the

Highest-rate code Incremental redundancy code

Fig. 2. Protograph of a PBRL LDPC code with a puntured variable node
in the highest-rate code (shaded node) and degree-one variable nodes being
possibly punctured to adapt the rate (partial shade).

IRC provides lower rates as more of its variable nodes are
transmitted, starting from the top. A more detailed introduction
to PBRL LDPC codes is given in [12], [17].

This paper addresses the issue of designing IB decoders that
accommodate the puncturing that is inherent to PBRL code
families. As pointed out in [17], one or two variable nodes in
the HRC are typically punctured, as indicated by the shaded
HRC variable node in Figure 2. Thus, the IB decoder for the
HRC must be designed to handle this puncturing. Additionally,
all of the IRC variable nodes are punctured for the HRC, but
degree-one variable nodes are added to the protograph as the
rate is lowered. Thus, a degree-one variable node might be
punctured depending on the code rate, as indicated by the
partial shade of the degree-one variable nodes. The IB decoder
must be able to adapt to the induced changes in the degree
distributions and the associated changes in the probability
distributions of message reliabilities that occur as the rate is
lowered.

III. INFORMATION BOTTLENECK DECODING OF LDPC
CODES

In the following section, this paper introduces all the re-
quired steps to construct an information bottleneck decoder as
described in [4] and [5].

A. Transmission Scheme and Channel Output Quantization

We consider binary LDPC codewords transmitted over a
symmetric additive white Gaussian noise (AWGN) channel
with binary phase shift keying modulation (BPSK) and quan-
tized channel outputs. We use x to denote the equally likely
transmitted symbols, which serve as channel inputs. The
binary channel input x and continuous channel output y are
related by the transition probability p(y|z). Feeding p(y,x)
into the information bottleneck algorithm yields the quantizer
mapping p(ter|y), where t., € Ten denotes the discrete
channel output. Such a mapping is illustrated in Figure 3. In
general, a representative log-likelihood ratio can be assigned
to each quantization region. These representatives correspond
to the quantized channel knowledge which serves as input
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Fig. 3. Quantization boundaries for the BI-AWGN channel computed using
the information bottleneck algorithm from [4].

)

for belief-propagation decoding. In contrast, an information
bottleneck decoder does not use any quantized LLRs, but
processes a single cluster index t., € {1,...,|7.,|} instead.

B. Information Bottleneck Decoders for Unpunctured Binary
LDPC Codes

In recent work [2]-[6], information bottleneck (IB) de-
coders were shown to handle the trade-off between low im-
plementation complexity and near-optimal performance very
well. When constructing an IB decoder, node operations are
optimized specifically for the available discrete input and
output alphabets rather than as approximations of the original
belief propagation operations that assume the uncountable
alphabet of all reals for inputs and outputs. The IB operations
are essentially lookup tables mapping each possible set of
incoming, discrete messages onto a discrete outgoing message.
As a result, only highly informative integer-valued messages
are passed along the edges of a Tanner graph.

To construct the discrete node operations, the joint probabil-
ity distribution of the observed random variable and relevant
random variable are required (cf. Figure 1). In the context
of LDPC decoder design, the observed random variables are
the M incoming discrete messages t'* = [ti",...,t7]T and
the relevant random variable X depends on the node type.
For a variable node, X represents the underlying code bit
of a particular node, whereas, if the mapping is designed
for a check node, X represents the (mod 2)-sum of the
connected, possibly different code bits by,...,by. Given
the joint distribution p(z,t") at each node type in every
iteration, the information bottleneck method allows to squeeze
p(,t") through a compact bottleneck. Meaning that the high-
dimensional discrete observation vector t¥, is mapped onto
a scalar integer-valued cluster index t°%* € T = {1,...,|T]|}
defined by the mapping p(t°“!|t""). However, the information
bottleneck method aims to preserve all relevant information
such that I(X;7T°%) ~ I(X;T). Hence, at any time, X
can be inferred very precisely using p(z[t°“!) (cf. Figure 1).
However, once the mappings are found, the actual decoding
simplifies to lookups in offline generated tables, which map
the sequence of incoming integers t” onto an outgoing
integer-valued message t°“!. Therefore, instead of passing the
meaning p(z|t°“!), e.g. as LLR, only cluster indices are passed
which are never converted to an explicit LLR representation.

C. Message Alignment for Irregular LDPC Codes

In contrast to regular LDPC codes, irregular LDPC codes
are characterized by nodes with varying degrees, i.e., the
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Fig. 4. The message alignment problem posed as an Information Bottle-
neck, where I(X; Z) is the relevant information and I(Y; T°%¢, D) is the
compressed information.

number of incoming messages differs. This paper leverages
the edge-degree distribution [18]:
Amax

AQ) =D At
=2

Pmax

p(O) = paC®t, ()
d=2

where \; denotes the fraction of edges connected to variable
nodes with degree d and p,; denotes the fraction of edges
connected to check nodes with degree d. Information bottle-
neck decoders pass integer-valued cluster indices ¢ instead of
log-likelihood ratios. As the eventspace of T is independent
of the node degree d but in contrast the particular meaning
p(z|t°“ d) depends on the node degree, a receiving node
cannot resolve if the message originates from a conveying
node with high or low degree from the cluster indices alone. As
the variety of node degrees increases also the range of the dif-
ferent meanings increases likewise. In turn, the decoder cannot
exploit the full error-correction capabilities of the LDPC code
because it cannot uniquely recover the actual meaning of the
received message. In [5], it was revealed that with a processing
at the origin nodes called message alignment, information
bottleneck decoders can achieve competitive performance for
LDPC codes with non-optimized irregular degree distributions.
As an extension to the original mutual-information based
lookup table design, message alignment considers the three
random variables T°% X and D jointly, i.e, the clusters,
the channel input (which is the relevant random variable),
and the node degree. Given the node dependent meanings
p(x,t°%|d) and the edge degree distributions, the task is to
find a mapping p(z[t°“*, d) such that [(X;T°% D) ~ 1(X; Z)
[5]. Using this modified objective, message alignment ensures
that identical outgoing cluster indices of nodes with different
degrees correspond to similar beliefs on the code bits. In fact,
Figure 4 reveals that the objective of message alignment is
closely related to the information bottleneck setup from Figure
1. Leveraging the information bottleneck notation, one would
refer to X as the relevant quantity and 7°“" and D represent
the observation which squeeze through a compact bottleneck
resulting in Z which is a compressed version of T°% and D
but preserves the maximum relevant information I(X; Z).

IV. INFORMATION BOTTLENECK PBRL LDPC DECODERS

To decode PBRL LDPC codes the respective decoders must
support puncturing. Although puncturing itself is a fairly easy
problem for conventional decoders, the existing design of in-
formation bottleneck decoders prohibits the use of puncturing.
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Fig. 5. Information bottleneck graph for a concatenated lookup table for
dy = 4 with message alignment.

This section contains our main contributions. First, this paper
shows how to incorporate punctured nodes using message
alignment. Second, this paper devises a generalized scheme
well suited for the structure of PBRL codes enabling rate-
compatibility.

A. Constructing Information Bottleneck Decoders for Punc-
tured PBRL LDPC Codes

To increase the code rate, “punctured” codeword bits are
not transmitted and are thus unknown to the receiver. In
conventional approaches this corresponds to an LLR=0 for
the respective punctured bits.

Going back to Figure 3 reveals that the information-
optimum channel quantizer is fully symmetric [19]. Typically,
the resolution of the analog-to-digital converter (ADC) is a
power of two and thus even. In this case, the LLR=0 can not
be represented properly. Usually the quantization boundaries
are then shifted to be able to represent LLR = 0.

In information bottleneck decoders, LLR representations
are ignored. Furthermore, the decoder is designed using
density evolution and thus requires the complete knowledge
of the statistics of the decoder input. Hence, constructing
an information bottleneck decoder for puncturing is far less
straightforward than in conventional decoders. In the following
we propose a generic extension to include puncturing which
leverages the message alignment technique.

Without loss of generality, we consider a variable node
with degree d, = 4 which processes one channel message
and three messages received from connected check nodes
to generate extrinsic information about the underlying code
bit. Figure 5 shows this processing as a concatenation of
two-input-lookup tables. In Figure 5 each lookup table is
depicted as trapezoid with the input vector t* = [tin in]T
or t' = [ti",, "7 and output t2“*. The respective mappings
are found using the information bottleneck method. The joint
distribution in the first stage, which is processing the input
vector t* = [t ¢1"]T is computed as follows (See [4] for
details.):

p(@, [, E01T) = ——p(a, t3)p(a,67). (@)

p(x)
Clearly, p(z, [ti?,"]T) and thus also p(z[t$“!), which is used
in the next step, depend on the statistics of the quantized
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Fig. 6. Considering puncturing as message alignment problem, where I(X; Z)
is the relevant information and I(Z; T, P) is the compressed information.

channel output (cf. Section III-A). When incorporating punc-
turing, p(x,t7) differs depending on whether the variable
node is punctured or not. First, we introduce the random
variable P with event space ¢ €{true, false} indicating if a
node is punctured or not. In this paper, the puncturing rate
indicates the fraction of variable nodes with degree d > 1 that
are punctured. In the next section, it will become clear why
punctured variable nodes with degree d = 1 are ignored when
computing the puncturing rate. As a result, we rewrite (2) as

ooz, ). (3)

in 4in]T 1

p(z, [ten. t1"] o) = p(x)p(xv
Due to the concatenation of lookup tables as shown in Figure
5 all subsequent tables depend on P. Consequently, in a
straightforward implementation the number of required lookup
tables will increase drastically to account for all possible
combinations of punctured and non-punctured nodes and their
respective degrees. This paper proposes a novel design objec-
tive which includes puncturing in the table design. In turn,
P and T are considered jointly, i.e., the objective is to find
a mapping p(z[t°“, o) such that 1(X;T°4, P) ~ 1(X;Z).
As depicted in Figure 6 the resulting problem is basically a
message alignment setup. As a result, one creates the mapping
p(z[t°“ o) and the meaning p(x|z) such that all subsequently
constructed tables do not depend any longer on the node
being punctured or not. This approach significantly reduces
the number of distinct lookup tables.

B. Constructing Information Bottleneck Decoders for Rate-
Compatible PBRL LDPC Codes

PBRL codes can operate close to the theoretical limit for
a wide range of code rates [17]. The rate can be easily
adapted by puncturing or transmitting the degree-one variables
(cf. Figure 2). As a punctured degree-one variable node
always conveys an LLR equal to zero to the connected
check nodes, these check nodes and thus entire parts of the
respective Tanner graph are deactivated [17], meaning that no
relevant information propagates from the punctured degree-
one nodes towards the inner variable nodes with very high
degree (cf. Figure 2). Hence, puncturing degree-one nodes,
i.e., deactivating parts of the Tanner graph changes the effective
degree distribution Acfr(2) # A(z) and perr(z) # p(z). To
allow information bottleneck decoders to cope with punctured
degree-one nodes and rate-adaptability the effective degree
distribution is of crucial importance. To determine the effective
degree distribution, the following strategy is proposed:
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Variable Node: If an edge carries no information, this would
correspond to LLR = 0 in a conventional decoder, the effective
node degree seen by the outgoing message is reduced by one.

Check Node: 1f already one edge which is used to generate
extrinsic information contributes no information, i.e., the cor-
responding LLR = 0, the outgoing message will automatically
carry no extrinsic information. Thus, only the fraction of edges
over which extrinsic information is passed is considered for
each effective degree.

The computations are performed offline given a parity check
matrix for every iteration. In Figure 5, we have depicted an
unfold variable node. It can be seen that in the general scheme
only one tree of lookup tables for the highest node degree in
the code has to be constructed. All nodes with smaller degrees
can easily reuse the tables. As mentioned above, puncturing
degree-one variable nodes reduce the effective degree distribu-
tion. However, in the context of the concatenated structure pre-
sented in Figure 5, this paper argues that puncturing basically
only effects the depth of the lookup tree, because if a message
is punctured it would not contribute any relevant information
and thus can be skipped. Hence, designing a decoder for the
lowest code rate, yields the maximum depth of the lookup
tree. Higher code rates will reuse this architecture but require
individually optimized tables. It is possible to reuse the same
tables for a range of code rates, but this analysis is left to the
journal version of this paper due to space limitations.

V. RESULTS AND DISCUSSION

In this section, we present and discuss results obtained
performing frame error rate simulations for an exemplary
PBRL LDPC code. The code was taken from [17]. The code
has K = 1032 information bits, and is evaluated for various
code rates R, range from R, = 1/3 up to R, = 2/3.

We propose to construct all involved lookup tables just once
for a fixed design-Ej,/Ny. The constructed lookup tables are
then stored and applied for all E},/Ny. Hence, the lookup table
construction needs to be done only once and offline.

We consider three reference schemes to compare the perfor-
mance of our decoder. Decoding of a codeword is stopped after
a maximum number of 100 decoding iterations or earlier if the
syndrome check is successful. First, we consider a double-
precision belief propagation decoder with flooding schedule.
The received samples are not quantized and the internal
operations are additions at the variable node and box-plus at
the check node. Second, we use the layered normalized min-
sum algorithm (NMSA) [20], [21] with 6 bit resolution at the
check node and 6 bits at the variable node. Again the inputs to
the decoder are not quantized. The operations here are again
additions at the variable nodes but the normalized min-sum
approximation is used at the check nodes. Third, we use the
offset-min-sum decoder with only 4 bit resolution at the check
node and 6 bits at the variable node to prevent an overflow
when adding the 4 bit messages received from the channel
quantizer. Finally, we designed our proposed information
bottleneck decoder for a fully 4 bit integer architecture. This
means, starting form the channel quantizer which outputs 4
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Fig. 7. Frame error rates for the proposed scheme (diamond-marker), and
the reference schemes summarized in Table I for the considered PBRL LDPC
code with code rate R, = 1/2.
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Fig. 8. Frame error rates for the proposed scheme (diamond-marker) and the
reference schemes summarized in Table I for the considered PBRL LDPC
code with code rate R. = 1/3 (blue, dashed), 2/3 (red, dotted).

bit integers, the internal messages require only 4 bits and only
lookup operations performed. These lookups do not mimic
any arithmetic function but realize the relevant-information
preserving mappings found using the information bottleneck
method.

The most important parameters of the applied decoders
are summarized in Table I for a quick overview. First we
consider a decoder designed for a fixed rate of R = 0.5.
The results are shown in Figure 7. As expected the belief-
propagation (BP) decoder ( -marker) achieves the best frame
error rate performance, but at the same time, has the highest
computational complexity (cf. Table I). Although all applied
operations in the information bottleneck decoder ( -marker)
are simple lookups, the decoder performs only less than 0.2
dB worse than the benchmark. The results are even more
remarkable when considering the tremendous gap to the offset-
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TABLE I
SIMULATION PARAMETERS

decoder node operation (check / var)  precision exchanged messages  precision check node  precision variable node  channel quantizer
sum-product box-plus / addition 64 bit 64 bit 64 bit None
offset min-sum offset-min() / addition 4 bit 4 bit 6 bit 4 bit
layered NMSA  normalized-min() / addition 6 bit 6 bit 6 bit None
proposed lookup table / lookup table 4 bit 4 bit 4 bit 4 bit

min-sum decoders with an even slightly higher resolution.
Please note, that PBRL codes have typically variable nodes
with very large degrees. From the gap of 0.75 dB noticed
in Figure 7 we conclude that a conventional offset-min-
sum decoder which exchanges only 4 bit messages can not
be used for PBRL codes with such a coarse quantization,
since the dynamic range of the LLRs cannot be captured
appropriately. The gap can be reduced by choosing a finer
resolution as indicated by the frame error rate curve for the 6
bit NMSA decoder. However, with the generalized design for
information bottleneck decoders proposed in this paper, both
challenges, i.e., puncturing and rate-compatible design can be
efficiently tackled to enable fully 4 bit decoders for PBRL
codes. Figure 8 shows results for various other rates. For all
considered rates, the belief propagation decoder with double-
precision resolution and no channel quantizer achieves the best
performance. However, again we observe that the proposed
information bottleneck decoder operates very close to this
benchmark. Interestingly, the proposed schemes outperforms
the 4 bit offset min-sum decoder and the 6 bit NMSA decoder
for all investigated rates.

VI. CONCLUSION

This paper uses the information bottleneck method to ef-
ficiently represent reliability information, reducing the data
transfer and computational complexity of 5G protograph-based
raptor-like LDPC decoding. The proposed decoder extends
the information bottleneck method to incorporate puncturing
and leverages the inherent rate-compatibility of this powerful
class of LDPC codes to develop a rate-compatible decoder.
The proposed information bottleneck framework integrates a
message alignment module to dynamically adjust to the degree
distribution of input messages. This approach accommodates
puncturing for all supported rates without significantly increas-
ing the number of required information bottleneck lookup ta-
bles. The proposed information bottleneck decoder exchanges
only 4 bit integers and replaces the arithmetic in the node
operations by lookup tables. This decoder performs only 0.2
dB worse than the belief-propagation decoder and outperforms
the offset-min-sum algorithm. Future work will investigate
information bottleneck decoders with flexible bit widths to
allow performance to be optimized based on available memory
and a table reuse for several code rates.
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