Recycled ADMM: Improving the Privacy and Accuracy of
Distributed Algorithms

Xueru Zhang, Mohammad Mahdi Khalili, Mingyan Liu

Abstract—Alternating direction method of multiplier (ADMM)
is a powerful method to solve decentralized convex optimization
problems. In distributed settings, each node performs computa-
tion with its local data and the local results are exchanged among
neighboring nodes in an iterative fashion. During this iterative
process the leakage of data privacy arises and can accumulate
significantly over many iterations, making it difficult to balance
the privacy-accuracy tradeoff. We propose Recycled ADMM (R-
ADMM), where a linear approximation is applied to every even
iteration, its solution directly calculated using only results from
the previous, odd iteration. It turns out that under such a scheme,
half of the updates incur no privacy loss and require much less
computation compared to the conventional ADMM. Moreover,
R-ADMM can be further modified (MR-ADMM) such that each
node independently determines its own penalty parameter over
iterations. We obtain a sufficient condition for the convergence
of both algorithms and provide the privacy analysis based
on objective perturbation. It can be shown that the privacy-
accuracy tradeoff can be improved significantly compared with
conventional ADMM.

Index Terms—differential distributed

ADMM

privacy, learning,

I. INTRODUCTION

ISTRIBUTED optimization and learning are crucial for

many settings where the data is possessed by multiple
parties or when the quantity of data prohibits processing at
a central location. Many problems can be formulated as a
convex optimization of the following form: miny Zfil fi(x).
In a distributed setting, each entity/node ¢ has its own local
objective f;, N entities/nodes collaboratively work to solve
this objective through an interactive process of local compu-
tation and message passing. At the end all local results should
ideally converge to the global optimum.

The information exchanged over the iterative process gives
rise to privacy concerns if the local training data contains
sensitive information such as medical or financial records, web
search history, and so on [2]-[5]. It is therefore highly desir-
able to ensure such iterative processes are privacy-preserving.
We adopt the e-differential privacy to measure such privacy
guarantee; it is generally achieved by perturbing the algorithm
such that the probability distribution of its output is relatively
insensitive to any change to a single record in the input [6].

Existing approaches to decentralizing the above problem
primarily consist of subgradient-based algorithms [7]-[9] and
ADMM-based algorithms [10]-[16]. It has been shown that
ADMM-based algorithms can converge at the rate of O(3)

This work is supported by the NSF under grants CNS-1422211, CNS-
1646019, and CNS-1739517. An earlier version of this paper appeared in the
2018 Allerton Conference on Communication, Control and Computing [1].

X. Zhang, M. Khalili and M. Liu are with the Dept. of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Arbor, MI 48105,
{xueru, khalili, mingyan} @umich.edu

while subgradient-based algorithms typically converge at the
rate of O(ik) where £ is the number of iterations [12].
In this study, we will solely focus on ADMM-based algo-
rithms. While a number of differentially private (sub)gradient-
based distributed algorithms have been proposed [17]-[20],
the same is much harder for ADMM-based algorithms due
to its computational complexity stemming from the fact that
each node is required to solve an optimization problem in
each iteration. Differentially private ADMM has been studied
n [21]-[23]. In particular, Zhang and Zhu [21] proposes the
dual/primal variable perturbation method to inspect the privacy
loss of one node in every single iteration; this, however,
is not sufficient for guaranteeing privacy as an adversary
can potentially use the revealed results from all iterations to
perform inference. Zhang et al. [22] addresses this issue by
inspecting the total privacy loss over the entire process and
the entire network; A penalty perturbation method is proposed
which may improve the privacy-accuracy tradeoff significantly.
Huang et al. [23] applies the first-order approximation to the
augmented Lagrangian in all iterations; however, this method
requires a central server to average all updated primal variables
over the network in each iteration.

Since privacy leakage accumulates over iterations, the total
privacy loss over the entire process can be substantial, making
it difficult to balance the privacy-accuracy tradeoff. In our prior
work [22] we introduced a penalty perturbation method to
achieve a better tradeoff. While the method shows significant
improvement with the right choice of penalty parameters, this
improvement is heavily dependent on such choices and is
not guaranteed. It is therefore important to seek guaranteed
improvement in the privacy-accuracy tradeoff for ADMM-
based algorithms, which is the subject of the present paper.

In this study, we present Recycled ADMM (R-ADMM), a
modified version of ADMM where the privacy leakage only
happens during half of the updates (Algorithm 1). Specifically,
we adopt a linearized approximated optimization in every even
iteration, whose solution is calculated directly using results
from the previous, odd iteration; this solution is also used
for updating the primal variable. These approximated updates
incur no privacy loss and require much less computation.
Compared with conventional ADMM, R-ADMM requires
much less perturbation to provide the same level of privacy
protection, thereby improving the privacy-accuracy trade-off.

We then further generalize R-ADMM and present a mod-
ified R-ADMM, referred to as MR-ADMM, which employs
ideas proposed in [22] and can accommodate non-constant
penalty parameters which are also entity’s own private infor-
mation (Algorithm 2). Since the penalty parameter controls
the updating step size, the algorithm can be more robust by
decreasing the step size. It allows the algorithm to tolerate

more noise, i.e., be more private, without jeopardizing too
much accuracy. As a result the privacy-accuracy trade-off is
further improved.

Both of these algorithms are essentially modifications of
the original distributed ADMM algorithm; privacy in these
algorithms are provided by introducing noise. Accordingly,
the private versions of these algorithms are developed using
the objective perturbation method [24] (Algorithm 3). We
establish a sufficient condition for the convergence of both
algorithms and characterize their corresponding total privacy
loss for private algorithms. Both analysis and experiments
on real-world datasets show that as compared with conven-
tional ADMM algorithm, R-ADMM can improve the privacy-
accuracy tradeoff significantly with much less computation.
Moreover, by controlling the penalty parameters in MR-
ADMM, this privacy-accuracy tradeoff is further improved.

The remainder of the paper is organized as follows. We
present problem formulation and the definition of differential
privacy and ADMM in Section II. Three algorithms are intro-
duced in Section III including R-ADMM, MR-ADMM and the
private MR-ADMM. The convergence analysis of non-private
MR-ADMM, privacy analysis and generalization performance
analysis of (non)-private MR-ADMM are presented in Section
IV, V and VI, respectively. Discussion is given in Section VII.
Numerical results are illustrated in Section VIII and Section
IX concludes the paper. All proofs can be found in full version
[25].

II. PRELIMINARIES
A. Problem Formulation

Consider a connected network! given by an undirected
graph G(.4,&), which consists of a set of nodes .# =
{1,2,--- ,N} and a set of edges & = {1,2,---,E}. Two
nodes can exchange information if and only if they are
connected by an edge. Let ¥; denote node i’s set of neighbors,
excluding itself. Let D; be node ¢’s dataset.

Consider an optimization problem over this network of N
nodes, where the overall objective function can be decomposed
into N sub-objective functions and each depends on a node’s
local dataset, i.e.,

N
win Obj(f, Dan) = > O(fe; Di))
c i=1

The goal is to find a (centralized) optimal solution f. € RY
over the union of all local datasets D, = U;e 4 D; in a
distributed manner using ADMM, while providing privacy
guarantee for each data sample.

B. Differential Privacy [6]

A randomized algorithm .7 (-) taking a dataset as input
satisfies e-differential privacy if for any two datasets D, D
differing in at most one data point, and for any set of possible
outputs S C range(«), Pr(/ (D) € S) < ePr(#/ (D) € S)
holds. We call two datasets differing in at most one data point

'A connected network is one in which every node is reachable (via a path)
from every other node.

as neighboring datasets. £ € [0,00) can be used to quantify
the privacy loss/guarantee. The above definition suggests that
for a sufficiently small ¢, an adversary will observe almost the
same output regardless of the presence (or value change) of
any one individual in the dataset; this is what provides privacy
protection for that individual, the smaller ¢, the smaller privacy
loss, the stronger privacy guarantee.

Differential privacy is a worse-case measure; i.e., the bound
is over all possible random outputs and all possible inputs. It is
a strong guarantee, as it can protect against attackers with any
side information. Moreover, it is immune to post-processing
[26]; i.e., given only the differentially private output without
additional information about the true data, it is impossible for
attackers to make it less differentially private.

For an optimization problem over a dataset, there are many
approaches to randomizing the output to preserve differential
privacy and some of the most commonly used are as follows.
(1) Output perturbation: solve the optimization problem first
and then add zero-mean noise (e.g., Laplace, Gaussian) to the
optimal solution. (2) Objective perturbation: add a noisy term
to the objective function first and then solve the perturbed opti-
mization problem. Because of this randomness, the accuracy of
the output also decreases accordingly. The more perturbation,
the output will be less accurate but it also provides the stronger
privacy for individuals. Therefore, there is a privacy-accuracy
tradeoff, and an important issue is how to improve this tradeoff
so that the output can be more accurate under the same privacy
guarantee.

C. Conventional ADMM

To decentralize (1), let f; be the local classifier of each node
i. To achieve consensus, i.e., fi = fo = --- = fn, a set of
auxiliary variables ,J € ¥;} are introduced for
every pair of connected nodes. As a result, (1) is reformulated
equivalently as:

min Obj({ fi}it1, Da
{fit{wij} J({f ! ”

S.t. f,

O (3 ’L
Z (s D 2)

=wij,wi; = fj, 1€N,jEY;

Let {f;} and {w;;} be the shorthand for {f;}ic.» and
{wi; }ier jev,, respectively. Let {w”,)\”} be the short-
hand for {wl‘]?)\,u}r,et/ydeﬂj/“ke{a b}» Where \{,,)\b are dual
variables corresponding to equality constraints f; = w;; and
w;; = f; respectively. The objective in (2) can be solved using

ADMM with the augmented Lagrangian:
N
Ly({fi}. fwis Ny} = 3 01, D)
i=1

N
(fi —wij) + Z Z (A7

i=1je¥

N

33 (T
i=1je
N
B3>

T(wij - fj) 3)

wij|3 + [[wi; — f5113) -

(I[fs =

l\D\d

where 7 is called the penalty parameter. In the (¢ + 1)-th
iteration, the ADMM updates consist of the following:

filt+1) = arg;_nin Ly({fi} Awi (1), A5})
wig(t+1) = argmin Ly({fi(t + 1)}, {wis, A5 (0} 5)
Ayt4+1) = XS +n(filt+1) —wi;(t+1)); (6)
AGt+1) = ML) +n(wig(t+1) = f;(E+1). (D)

Using Lemma 3 in [27], if dual variables \{;(¢) and)\gj(t)
are initialized to zero for all node pairs (i,j), then \{;(t) =
A2(t) and Af;(t) = —A%;(t) will hold for all iterations with
k€ {a,b}i € A, j € V. Let Ni(t) = D ey A5(H) =
> e)\’i’j(t), then the ADMM iterations (4)-(7) can be sim-
plified as (Refer to Appendix A in [22] for proof):

fit+1) = argfmin{O(fi,Di)+2)\i(t)Tfi
N0+ 5O - FB Y ®
JEY:
AN(t+1) =)\i(t)JrgZ(fi(t+1)ffj(t+1)).(9)

JEY;

D. Private ADMM [21] & Private M-ADMM [22]

In private ADMM [21], noise is added either to the updated
primal variable before broadcasting to its neighbors (primal
variable perturbation), or to the dual variable before updating
its primal variable using (8) (dual variable perturbation). The
privacy property is only evaluated for a single node and a
single iteration, but neither method can effectively balance the
privacy-accuracy tradeoff if the total privacy loss is considered.
In our prior work [22], the total privacy loss of the whole
network over the entire iterative process is considered. A
modified ADMM (M-ADMM) was proposed to improve the
privacy-accuracy tradeoff. Specifically, it explores the use of
the penalty parameter n in stabilizing the algorithm. M-
ADMM allows each node to independently determine its
penalty parameter and randomizes the objective function in
primal update (8) by adding a linear noise term correlated to
the penalty parameter while at the same time increasing the
penalty over time. By doing so it is shown that the privacy
and accuracy can be improved simultaneously.

III. ALGORITHMS
A. Recycled ADMM (R-ADMM)

1) Main idea: Fundamentally, the accumulation of privacy
loss over iterations stems from the fact that the individual
data D,y is used in every primal update. If the updates
can be made without directly using this original data, but
only from computational results that already exist, then the
privacy loss originating from these updates will be zero, while
at the same time the computational cost may be reduced
significantly. This idea of “recycling information” is also
supported by the immunity to post-processing that differential
privacy possesses [26], i.e., any computation over an output
that is already differentially private cannot incur additional

privacy loss. Toward this end, R-ADMM modifies the ADMM
algorithm such that we repeatedly use earlier computational
results to make updates.

Algorithm 1: Recycled-ADMM (R-ADMM)
Input: {D;}Y,
Initialize: Vi, generate f;(0) randomly, A;(0) = 0%
for k =1to K do
for i =1to ./ do
Update primal variable f;(2k — 1) via (12);
Calculate the gradient VO(f;(2k — 1), D;);
| Broadcast f;(2k — 1) to all neighbors j € ¥;.

for i =1to .4 do
Calculate 1),y (fi(2k — 1) — f;(2k — 1));
| Update dual variable \;(2k — 1) via (13).
for i =1to .4 do
Use the stored VO(f;(2k — 1), D;) and
N2 jey (fi(2k — 1) — f;(2k — 1)) to update
primal variable f;(2k) via (10);
Keep the dual variable \;(2k) = \;(2k — 1);
| Broadcast f;(2k) to all neighbors j € %;.

Output: primal {f;(2K)}}¥ | and dual {\;(2K)}¥,

2) Making information recyclable: ADMM can outperform
gradient-based methods in terms of requiring fewer number of
iterations for convergence; this however comes at the price of
high computational cost in every iteration. In particular, the
primal variable is updated by performing an optimization in
each iteration. In [13], [28], [29], either a linear or quadratic
approximation of the objective function is used to obtain
an inexact solution in each iteration in lieu of solving the
original optimization problem. While this clearly lowers the
computational cost, the approximate computation is performed
using the local, individual data in every iteration, which means
that privacy loss inevitably accumulates over the iterations.

We begin by modifying ADMM in such a way that in every
even iteration, without using data D, the primal variable
is updated solely based on the existing computational results
from the previous, odd iteration. Compared with conventional
ADMM, these updates incur no privacy loss and less com-
putation. Since the computational results are repeatedly used,
this method is referred to as Recycled ADMM (R-ADMM).

Specifically, in the 2k-th (even) iteration, O(f;, D;)
(Eqn. (8), primal update optimization) is approximated by
O(fi» Di) = O(fi(2k — 1), D) + VO(fi(2k — 1), Di)" (fi —
fi(2k = 1)) + ZIIfs — f2k — DI (v > 0) and only the
primal variables are updated. Using the first-order condition,
the updates in the 2k-th iteration become:

fi(2k) = fi(2k — 1) v quy{VO(fl(% 1), D;)
+20i(2k — 1)+ Y (fi2k = 1) = 2k = 1)} 5 (10)
J€Y;
Ni(2k)=XN(2k—1) . (1)

In the (2k — 1)-th (odd) iteration, the updates are kept the

same as (8)(9):
fi(2k — 1) = argmin{O(fi, D;) + 2Xi(2k — 2)T f;
fi

o ISk —2) + fE-2) - flB Y a2
J€Yi
Ai(2k — 1) = M (2k — 2)
+g ST(fi(2k—1) - f;2k—1)) . (13)

JEY;

Note that in the (2k)-th (even) iteration, we need the gradient
VO(f;(2k — 1), D;) and primal difference g > jev (fi(2k —
1) — f;(2k — 1)) for the updates; these are available di-
rectly from the previous, (2k — 1)-th (odd) iteration, i.e., this
information can be recycled. In this sense, R-ADMM may
be viewed as alternating between conventional ADMM (odd
iterations) and a variant of gradient descent (even iterations),
where ﬁ is the step-size with a slightly modified gradient
term. The complete procedure is shown in Algorithm 1.

Algorithm 2: Modified R-ADMM (MR-ADMM)
Input: {D;}N
Initialize: Vi, generate f;(0) randomly, A;(0) = 0451
Parameter: Vi, select {n;(2k — 1)}5_, s.t.
for K =1to K do
for i =1to ./ do
Update primal variable f;(2k — 1) via (14);
Calculate the gradient VO(f;(2k — 1), D;);
| Broadcast f;(2k — 1) to all neighbors j € 7;.
for i =1to .4 do
Calculate
0i(2k — 1) 325y, (fi(2k = 1) — f5(2k — 1));
| Update dual variable \;(2k — 1) via (15).
for i =1to .4 do
Use the stored VO(f;(2k — 1), D;) and
02k — 1) X e (fil2k— 1) = £5(2k— 1)) t0
update primal variable f;(2k) via (16);
Keep the dual variable \;(2k) = \;(2k — 1);
| Broadcast f;(2k) to all neighbors j € %;.

Output: primal {f;(2K)}¥, and dual {\;(2K)}¥,

B. Modified R-ADMM (MR-ADMM)

1) Making 1 a node’s private information: R-ADMM re-
quires that the penalty parameter 1 be fixed for all nodes in
all iterations. Inspired by M-ADMM in [22], we modify R-
ADMM such that each node can independently determine its
penalty parameter in each iteration. Specifically, replace 7 in
(10), (12) and (13) with 7;(2k — 1). The updating formula is
then given in (14)-(17). The complete procedure is shown in
Algorithm 2.

2) Relationship between R-ADMM and MR-ADMM: MR-
ADMM is a generalized version of R-ADMM. If fix n;(2k —
1) =0, Yk, then MR-ADMM will be reduced to R-ADMM.

Algorithm 3: Private MR-ADMM
Input: {D;}L,, {i(1), -, ou(K)}HL,
Initialize: Vi, generate f;(0) randomly, A;(0) = 0%
Parameter: Vi, select {n;(2k — 1)}5_, s.t.
satisfies 2¢; < ming {2 (£ + 2n;(1)V;)}
for k =1 to K do
for i =1to ./ do
Generate noise €;(2k — 1) ~ exp(—a;(k)||e|]2);
Update primal variable f;(2k — 1) via (18);
| Broadcast f;(2k — 1) to all neighbors j € %;.
for i =1 to ./ do
Calculate
0i(2k — 1) Y ey, (Fi(2k — 1) = £;(2k — 1);
| Update dual variable \;(2k — 1) via (15).
for i =1to ./ do
Use the stored information
M2k~ 1) e, (fi(2 — 1) — f5(2k— 1)) to
update primal variable f;(2k) via (19);
Keep the dual variable \;(2k) = \;(2k — 1);
| Broadcast f;(2k) to all neighbors j € %;.

OLtput: Upper bound of the total privacy loss [3;
primal {f;(2K)}Y, and dual {\;(2K)}¥,

3) Role of n;(2k — 1) in stabilizing the algorithm: The
penalty parameter 7);(2k — 1) directly controls the step size of
the algorithm. Since the goal is to minimize the objective in
(14), if n;(2k — 1) is larger, the solution f;(2k — 1) will be
closer to the primal variable in the previous iteration so that
the penalty term . ||%(fi(Zk—2)+fj(2k—2))—fi| |2 will
be small. In other words, larger n;(2k — 1) results in smaller
update of the primal variable f;(2k—1). In even updates (16),
m can also be regarded as step size as mentioned
earlier. Therefore, increasing 7;(2k — 1) decreases the step size
in both even and odd iterations.

Without perturbation, a decreasing step size might slow
down the convergence. However, when the algorithm is per-
turbed with added noise, a smaller step size could prevent the
variable from deviating too much from the optimal solution in
each update, which in turn stabilizes the algorithm. In the rest
of paper, we will introduce a private algorithm by perturbing
MR-ADMM and illustrate how we can use our ability to
control stability via 7;(2k — 1) to improve the accuracy of
algorithm without jeopardizing privacy.

C. Private MR-ADMM

In this section we present a privacy preserving version of
MR-ADMM. Since MR-ADMM is a generalized version of
R-ADMM, the private version of R-ADMM can be built in a
similar way. In odd iterations, we adopt the objective pertur-
bation [24] where a random linear term ¢, (2k — l)T fi is added
to the objective function in (12)?, where ¢;(2k — 1) follows the

ZPure differential privacy was adopted in this work, but the weaker (e, §)-
differential privacy can be applied as well.

fi(2k—1) = argmin{O(fi,Di)+2)\i(2k—2)Tfi+77i(2k—1)Z\|%(fi(2k—2)+fj(2k:—2))—fi||§}; (14)

Ji JEY,

C a2k)4 M2E—1) (1) — £ (2% —
N2k 1) = X2k —2)+ T];%(fz(zk 1)~ f;(2k = 1)) . (15)

1
fi(2k) = fi(Qk—l)_2m(2k_1)vi+,y{VO(fi(2k_1)aDi)+2)\i(2k_1)
+ni(2k — 1) Y (fi(2k —1) = f;(2k = 1))} ; (16)
J€Y;

XNi(2k) = MN(2k—1) . (17)

probability density proportional to exp{—a;(k)||e; (2k—1)||2}.
Consequently the objective function for updating the primal
variable f;(2k — 1) becomes L"""(2k — 1) given as follows:

LV (2k — 1) = O(f;, Di) + (20i(2k — 2) + €:(2k — 1))T f;
P2k —1) 3 I3 2k~ 2) + f(2k —2) ~ £}
JEY;

To generate this noisy vector ¢;(2k—1), choose the norm from
the gamma distribution with shape d and scale %(k) and the
direction uniformly, where d is the dimension of the feature
space. Node 4’s local result (primal variable) is obtained by
finding the optimal solution to the private objective function:

fi(2k — 1) = argmin LP"™(2k — 1), i€ AN .

i

(18)

In the 2k-th iteration, use the stored results ¢;(2k — 1) +
fj(2k—1)) to update primal variables, where the latter can be
obtained from the dual update in the (2k — 1)-th update, and
the former can be obtained directly from the KKT condition
in the (2k — 1)-th iteration:
—ni(2k = 1) > (2fi(2k = 1)) = fi(2k = 2) = [;(2k = 2)) .
JEY;

Then the even update is given by:

1

(2k) = fi(2k — 1) —
the existing result by KKT

+0i(2k—1) > (fi2k —1) = f;(2k — 1))} . (19)

JEY;

{2 (2k — 1)

the existing result by the previous dual update

Algorithm 3 shows the complete procedure, where the
condition used to generate 7);(1) helps to bound the worst-case
privacy loss but is not necessary in guaranteeing convergence.

IV. CONVERGENCE OF NON-PRIVATE MR-ADMM

Since MR-ADMM is a generalized version of R-ADMM,
we focus on the convergence analysis of MR-ADMM in this

section while the results immediately apply to R-ADMM by
fixing n;(2k — 1) = n, Vk.

We next show that the MR-ADMM (Eqn. (14)-(17)) con-
verges to the optimal solution under a set of common technical
assumptions.

Assumption 1: Function O(f;, D;) is convex and differen-
tiable in f;, Vi.

Assumption 2: The solution set to the original problem (1)
is nonempty and there exists at least one bounded element.

Assumption 3: For all i € 4, O(f;, D;) has Lipschitz
continuous gradients, i.e., for any f! and f?, we have:

IVO(f}, Di) = VO(f2, Di)ll2 < Millfi = fll2 - (28)
By the KKT condition of the primal update (14):
0=VO(fi(2k — 1), D;) +2X;(2k — 2) + n;(2k — 1)
> (2fi(2k = 1) = (fi2k = 2) + f;(2k — 2))) . (29)

JEY;
Define the adjacency matrix A € RV*¥ as:

if node ¢ and node j are connected

otherwise .

Stack the variables f;(t), A;(t) and VO(f;(t), D;) for i €
./ into matrices, i.e.,

fl(t);)\1(15);
R f2(t) Aot
o= | | ervea, a— || crovna
fn(®)” An ()T
Vo(fl(t)7Dl);
A A VO(fQ(t)aDQ
VO(f(t); Dant) = e RV
VOU(0), DT
Let V; = |¥%] be the number of neighbors of node ¢,
and define the degree matrix D = diag([Vy;Va;---;Vy]) €

RNXN " the diagonal matrix D(2k — 1) with D(2k — 1);; =
2n;(2k — 1)V; + ~, and the weight matrix W (2k — 1) =
diag([r (2k—1); 72(2k—1); - -+ ;v (2k—1)]) € RV*N Then
for each k, the matrix form of (16)(17)(29)(15) are given in
(20)-(23):

f2k) = f(2k—1)— D2k —1)"H{VO(f(2k — 1), Day) + 2A(2k — 1) + W (2k — 1)(D — A) f(2k — 1)} ;(20)
2M(2k) = 2A(2k—1); (21)
Onxg = VO(f(2k —1),Day) + 202k —2) + W(2k —1)(2Df(2k — 1) — (D + A) f(2k — 2)) ; (22)
202k —1) = 2A(2k —2) + W (2k —1)(D — A)f(2k — 1) . (23)
Onxa = VO(f(2k—1), Dan) + W(2k — 1)(D + A)D(2k — 3)"'VO(f(2k — 3), Dan)
+ Wi(2k -)(D+A)(f(2k—1) f(2k))
+ W2k —1)(D+ A)D(2k —3)"'W (2k — 3)(D — A) f(2k — 3)
+ 2A(2k — 1)+¢W%2k——1ﬂl)+<A)D(2k 3)712A(2k — 3) ; (24)
202k —1) = 2A(2k —3) + W(2k —1)(D — A)f(2k — 1) . (25)
Onxa = VO(f(t+1), Dau) + W(t +1)(D + A4)D D(t) "' VO(f(t), Dant) + W (t + 1)(D + A)(f(t+1) = f(t))
+ Wt+1)(D+ADE) W) (D — A)f(t) + 2M(t + 1) + W(t + 1) (D + A)D(t) " *2A(¢) ; (26)
2A(t+1) = ()+W(t+1)(D—A)f(t+1) . (27)

Writing f(2k—2) and A(2k—2) in (22)(23) as functions of
f(2k—3), A(2k — 3) using (20)(21), we obtain Eqn. (24)(25).

The convergence of the MR-ADMM is proved by showing
that the pair (f(2k — 1), A(2k — 1)) from odd iterations
converges to the optimal solution. To simplify the notation,
we will re-index every two consecutive odd iterations 2k — 3
and 2k — 1 using ¢t and ¢ + 1, it results in Eqn. (26)(27).

Note that D — A is the laplacian and D + A is the signless
Laplacian matrix of the network, with the following properties
if the network is connected: (i) D + A > 0 is positive semi-
definite; (ii) Null(D — A) = ¢1, i.e., every member in the null
space of D — A is a scalar multiple of 1 with 1 being the
vector of all 1’s [30].

Lemma IV.1. [First-order Optimality Condition [16]] Un-
der Assumptions 1 and 2, the following two statements are
equivalent:

o = DT)T 5 (F3)T] € RY¥ is consensual,
e, fi =f5 == fX = f where f} is the optimal
solution to (1).

o There exists a pair (f*,A*) with 2A* = (D — A)X for
some X € RV*? such that

VO(f*, Dant) + 20" = Onxa ; (30)
(D —A)f* =0nxa - G1)

Lemma IV.1 shows that a pair (f *, A*) satisfying (30)(31)
is equivalent to the optimal solution of our problem, hence
the convergence of the MR-ADMM is proved by showing that
(f(t), A(t)) in (26)(27) converges to a pair (f*, A*) satisfying
(30)(31).

Theorem IV.1. [Sufficient Condition] Consider the modified
ADMM defined by (26)(27). Let {f(t),A(t)} be outputs in
each iteration and { f*, A*} a pair satisfying (30)(31). Denote
Dy = diag([M?; M3;--- ; M%]) € RN*N with 0 < M; <
~+o0 as given in Assumption 3. If n;(t + 1) > n;(t) > 0 and

7:(t) < 400 hold and the following two conditions can also
be satisfied for some constants L > 0 and p > 1:

(4) D)™
(W(t+1)(D

I+ W(t+1)(D+ A)
Ly

-

20 min(D(t))

W(t+1)(D + A)

= W(t+1)(D+ A)D(t)"! (W(t)(D — A)
Ly

20min(D(1) (1 — 1)

t)Vi + v} is the smallest sin-

—A)" "Dy ;

(i)

+%W(t+ DD+ 4)) + Dy .

where O'min([)(t)) = mln{in
gular value of D(t), then (f(t), A(t)) converges to (f*, A¥).
Proof. See Appendix A in [25]. O

By controlling v to be sufficiently large, D(t);;
2n;(t)V; 4+ ~ will be large and conditions (i)(ii) can always
be satisfied under some constants L > 0 and g > 1. Note
that the conditions (i)(ii) are sufficient but not necessary, so in
practice convergence may be attained under weaker settings.

For R-ADMM, take L = 2 and p = 2, then condition (7)(ii)
are reduced to:

(ii)) I+n(D+A)D! Wmi(b)«D)t Dar
(iv) n(D+ A) = 2n(D+ A)D 'nD + '2(D)DM .

Again for a sufficiently large v > 0, (iii)(iv) can be easily
satisfied.

V. PRIVACY ANALYSIS

In this section, we characterize the total privacy loss of
private MR-ADMM as presented in Algorithm 3. Similar to

the previous section, the results also apply to private R-ADMM
by fixing n;(2k — 1) = n, Vk.

As mentioned earlier, Zhang and Zhu [21] only quantifies
the privacy loss of a single node in a single iteration, i.e.,
W < exp(a;(t)) holds Vt,4, where «;(t) is the
bound on the privacy loss of node ¢ at iteration ¢t. However, in
a distributed and iterative setting, the “output” of the algorithm
is not merely the end result, but includes all intermediate
results generated and exchanged during the iterative process;
an attacker can use all such intermediate results to perform
inference. For this reason, we adopt the differential privacy
definition proposed in [22] as follows, which bounds the total
privacy loss during the entire iterative process.

Definition V.1. Consider a connected network G(N , &) with
a set of nodes N ={1,2,--- | N}. Let f(t) = {fi(t)}}¥, de-
note the information exchange of all nodes in the t-th iteration.
A distributed algorithm is said to satisfy (-differential privacy
during T' iterations if for any two datasets Dy, = U; D; and
Doy = U;D;, differing in at most one data point, and for any
set of possible outputs S during T iterations, the following

holds:
Pr{f(t)}{=, € S|l?all) <
Pr({f(t)}{=o € S|Dau) ~

The analysis is focused on the regularized empirical risk
minimization (ERM) problem for binary classification, while
its generalization is discussed in Section VII. Let node i’s
dataset be D; = {(27,y")|n=1,2,--- , B;}, where 27 € R?
is the feature vector representing the n-th sample belonging
to 4, yi* € {—1, 1} the corresponding label, and B; the size of
D;. Then the sub-objective function for each node ¢ is defined
as follows:

exp(B)

B;

> LW e + LR |

n=1

O(fi, D;) =

where C' < B; and p > 0 are constant parameters of the
algorithm, the loss function .Z(-) measures the accuracy of the
classifier, and the regularizer R(-) helps prevent overfitting.

For this binary classification problem, we now state another
result on the privacy property of the private MR-ADMM
(Algorithm 3) using definition V.1 above and additional as-
sumptions on .Z(-) and R(-) as follows.

Assumption 4: The loss function . is strictly convex and
twice differentiable. [V.Z| < 1 and 0 < £” < ¢; with ¢
being a constant.

Assumption 5: The regularizer R is 1-strongly convex and
twice continuously differentiable.

Lemma V.1. Consider the private MR-ADMM (Algorithm
3), Vk = 1,--- K, assume the total privacy loss up to the
(2k — 1)-th iteration can be bounded by Paj—1, then the total
privacy loss up to the 2k-th iteration can also be bounded
by Pox—1. In other words, given the private results in odd
iterations, outputting private results in the even iterations does
not release more information about the input data.

Proof. See Appendix B in [25]. O

Theorem V.1. Normalize feature vectors in the training set
such that ||z}||2 < 1 for all i € A" and n. Then the private
MR-ADMM algorithm (Algorithm 3) satisfies the B-differential
privacy with

uSp el 1.4¢
= - L (k)Y . (32
5_?61%{; Bi((%‘i'Q??i(Qk'—l)Vi) +a;(k)} . (32)
Proof. See Appendix C in [25]. 0

VI. SAMPLE COMPLEXITY ANALYSIS

We next quantify the generalization performance of (non)-
private MR-ADMM. The analysis is focused on the ERM
problem defined in Section V and we assume samples from
each node ¢ are drawn i.i.d. from a fixed distribution P. The
expected loss of node i using classifier f;(¢) at time ¢ is
givenas L(f;(t)) = E(x,y)~p (L (Y fi(t)T X)). Similar to the
analysis in [21], [24], we introduce a reference classifier f.y
with expected loss L(fr.f) and evaluate the generalization
performance using the number of samples (B;) required at
each node to achieve L(fi(t)) < L(fref) + 7 with high
probability.

A. Non-private MR- ADMM

As shown in Section IV, the sequence of outputs
{fP°™(2k—1)} from odd iterations in non-private MR-ADMM
converges to f* = f* as k — oo. Therefore, there exists a
constant A, (k) for each node ¢ at the (2k — 1)-th iteration
such that L(f/°"(2k — 1)) < L(f¥)+ A;(k). Using the same
method as [21], [24], we have the following result.

Theorem VIL.1. Consider a regularized ERM problem with
regularizer R(f) = i||f||* and let frc; be a reference
classifier for all nodes and {f"°"(2k — 1)} be a sequence
of outputs of non-private MR-ADMM in odd iterations (Eqn.

(14)). If the number of samples at node i satisfies

; w max Ww
BZZ p { (T—Al(k}))Q }

for some constant w, then fI'°"(2k — 1) satisfies
Pr(L(fi"(2k = 1)) < L(fref) +7) 21 -6

where 7 > A;(k), Vi, k € Z.
Proof. See Appendix D in [25]. O

As expected, the number of required samples depends on the
choice of the reference classifier via its lo norm || frf||% by
imposing an upper bound b,.s on || f,f||*. The result shows
that if B; satisfies B; > w maxk{%g}(;/)?}, then the non-
private intermediate classifier of each ﬁo&e at odd iterations
will have an additional error no more than 7 as compared to

any classifier with || f,. fH2 < bpeg.

B. private MR-ADMM

We next present the result on the sample complexity of the
private MR-ADMM algorithm. Similar to the analysis of non-
private MR-ADMM, we bound the error of the intermediate
classifier of each node at odd iterations. Since the algorithm is
perturbed with different random noise in different iterations, to
better analyze the effect of noise in a single iteration, we adopt
a strategy similar to that used in [21], by intentionally fixing
the noise in iterations after the targeted iteration. Specifically,
Vi, to compare the private f7"*"(2k — 1) at the (2k — 1)-
th iteration with reference classifier f,..r, we slightly modify
Algorithm 3 such that V&’ > k, the added noise is fixed at
€;(2k' — 1) = €;(2k — 1), which allows us to solely study
the effect of ¢;(2k — 1). This problem can be formulated
as a new MR-ADMM optimization problem where node 7’s
sub-objective function becomes O™ (f;, D;) = O(fi, D;) +
€i(2k—1)T f; and the initialization given by £;(0) = f;(2k—1),
Ai(0) = X;(2k — 1). Let {f*"(2k — 1)} be a sequence of
outputs from odd iterations of this new algorithm; it converges
to a fixed point f., as kK — oco. Therefore, there exists a
constant A (k) for each node 7 at the (2k — 1)-th iteration
such that L(" (2k—1)) < L(f ;o) + A" (E). Using this,
we have the following result.

new

Theorem VI.2. Consider a regularized ERM problem with
regularizer R(f) = 1||f||% let frcs be a reference classifier
for all nodes and { f*"" (2k —1)} be a sequence of outputs of
private MR-ADMM in odd iterations. If the number of samples
at node 1 satisfies

ON log(1/5)

Bizw m,?x{ NC(r—Ar" (k)2

Mo~ — (L + a) 5o (log(d/5))?

for some constants w and a > 0, then fP"™"°(2k — 1) satisfies
Pr(L(fI""(2k = 1) < L(frep) +7) 2 1 =20

where T > A (k), Vi, k € Z.

Proof. See Appendix E in [25]. O

Compared to Theorem VI.I, we see an additional
term 1mposed by the privacy constraints, ie., (1 +
)C(a Gz (log(d/9))%. If ai(k) — oo, the result reduces

to B; > wmaxy {%ﬁ’fk;/&)} the same as given in

Theorem VI.I. The additional term shows that the higher
dimension of features, the more injected noise, which would
require more samples to achieve the same accuracy.

VII. DISCUSSION
A. Improving privacy-accuracy tradeoff

We now provide some intuitive explanation as to why
the ideas presented in this paper work. We explored two
key ideas to improve the privacy-accuracy tradeoff of a dif-
ferentially private algorithm. The first is to accomplish the
computational task by repeatedly using the already released
differentially private outputs. Utilizing differential privacy’s
immunity to post-processing, this information recycling incurs
no additional privacy loss. Since less information is revealed

during computation, less perturbation is required to obtain the
same privacy guarantee, which then improves the privacy-
accuracy tradeoff. The second idea is to improve the the
stability/robustness of the algorithm by directly controlling the
penalty parameter. This allows the algorithm to accommodate
more noise to improve privacy without sacrificing too much
accuracy, which improves the privacy-accuracy tradeoff.

B. Other perturbation methods and privacy analysis tools

While we have primarily used objective perturbation to
make an algorithm differentially private and to calculate the
privacy loss, it should be noted that this is done as an
example to illustrate how MR-ADMM can outperform both R-
ADMM and ADMM in the privacy-accuracy tradeoff. Other
perturbation methods such as output perturbation to achieve
differential privacy (each node perturbs its primal variable
before broadcasting to its neighbors) can be used as well; our
conclusion would still hold. This is because our key ideas
(revealing less information and making the algorithm more
robust/stable to noise via the penalty parameter) are orthogonal
to the choice of the perturbation method.

Similarly, in our privacy analysis we have adopted the
notion of pure e-differential privacy to measure privacy. As
a result, the bound on the total privacy loss can be fairly
large. It is also possible to adopt a weaker notion, the (g,0)-
differential privacy, to find a tighter bound on privacy loss
by allowing the algorithm to violate e-differential privacy
with a small probability §. In this case, the total privacy loss
can be calculated using more advanced composition theorems
such as moments accountant [31] and zero-concentrated dif-
ferential privacy [32]. However, our key ideas (revealing less
information and making the algorithm more robust/stable to
noise via the penalty parameter) are orthogonal to the choice
of the privacy definition and analysis tools used; thus the
algorithmic properties will not be affected by such choices
and the conclusion remains valid.

C. Privacy analysis for a broader class of optimizations

In Section V, the privacy property of the private MR-
ADMM is analyzed for the ERM binary classification problem.
This is so that we can easily compare with ADMM and M-
ADMM in [21], [22]. This privacy analysis can be extended to
more general forms of O(f;, D;), such as multi-class settings.
There have been extensive studies on the differentially private
ERM with convex loss function [33], which can also be
adopted for our framework.

VIII. NUMERICAL EXPERIMENTS

We use the Adult dataset from the UCI Machine Learning
Repository [34]. It consists of personal information of around
48,842 individuals, including age, sex, race, education, occu-
pation, income, etc. The goal is to predict whether the annual
income of an individual is above $50,000.

Following the same pre-processing steps as in [22], the final
data includes 45,223 individuals, each represented as a 105-
dimensional vector of norm at most 1. We then randomly

riginal ADMM
CN-20,4-2
—N=20,7=1

—N-= 20 Orlgmal ADMM

Average Loss

0 5 10 15 20 25 30 35 40 45 50

(a) R-ADMM: n = 0.5

043 043
— R-ADMM

— MR-ADMM (9= 1+ qz)
04t —MR-ADMM (q, = 1+2q,) 0.41
—MR-ADMM (q, = 1 +3a,)

[—R-ADMM
—MR-ADMM (q, = 1.01

)
—MR-ADMM (q, = 1.02)
— MR-ADMM (q, = 1.03)
)
)

0.42

04 — MR-ADMM (q, = 1.04)

2 —MR-ADMM (g, =1+4q,)]
< 039 —MR-ADMM (g, = 1+5q,) Joss —— MR-ADMM (g, = 1.05)
g &

£ 038 So38

H 2

< <

°
@
8

0.37
0.36 0.36

0.35

0.34 0.34
0 10 20 30 40 50 0 10 20 30 40 50

(b) ni(2k — 1) = Miqu (i)* © i (2k —1) = gf

Fig. 1. Convergence properties of R-ADMM and MR-ADMM: Fig. 1(a)
illustrates the average loss over iterations of R-ADMM for the network of
different sizes under fixed n = 0.5 and different . Dashed (resp. solid)
curves represent the performance over a randomly generated small (resp. large)
network with N = 5 (resp. N = 20) nodes. Fig. 1(b)1(c) illustrate the average
loss over iterations of MR-ADMM for a randomly generated network with
N = 5 nodes. Black curve represents the R-ADMM where n;(t) = n =1
is fixed for all nodes and all iterations. Each colored curve represents MR-
ADMM with n;(2k — 1) increasing over iterations at different speed. In
Fig. 1(b), each node i adopts 1;(2k — 1) = 1;q1(i)* as penalty parameter
in 2k — 1-th iteration, where [n1,- -+ ,n5] = [1, 1.03,1.02,0.8,1.01], g1 =
lg1(1),--- ,q1(5)] = 1+kqa (each k € {1,--- ,5} corresponds to one curve
in plot) and g2 = [g2(1),- - , ¢2(5)] = [0.01,0.005, 0.003,0.015, 0. 01]C In
Fig. 1(c), each node adopts the same penalty parameter 7;(2k — 1) = ¢7 in
odd iterations.

0.162

0.1615

0.161

0.1605

0.16

classification error rate

0.1595

0.159
0 005 01 015 02 025 03 035 04

Fig. 2. The effect of p, fixing C = 1750.

partition this sample set into a training set (40,000 samples)
and a testing set (5,223 samples). The training samples are
then evenly distributed across nodes in a network.

We use as loss function the logistic loss .Z(z) = log(1 +
exp(—2)), with || <1 and .£” < ¢; = 1. The regularizer
is R(f;) = 3|/ f:|/3. We measure the accuracy of the algorithm

0.5 T

T T
—+-MR-ADMM (y = 0.5)
—$~MR-ADMM (y = 1)

—$-MR-ADMM (y=2)
— Non-private

<

~

@
T

Average Loss

1
~

0.35

(a) Accuracy comparison for different v (o = 1)

0.44 . T T
—+-MR-ADMM (y = 0.5)
042\ } —4$-MR-ADMM (y=1)
2 —$—MR-ADMM (4 = 2)
= 04t — Non-private
S
<t
S038
<
[e L R LR LR AL £2 22 23 2
0 5 10 15 20 25 30 35 40 45 50
t
(b) Accuracy comparison for different v (o = 2)
0251
[IMR-ADMM (v = 0.5)
[TIMR-ADMM (v = 1)
[IMR-ADMM (v = 2)
o 02 [INon-private
)
s
S015F
c
S
©
L 01f
‘@
(2}
©
o
0.05
0
a=2 a=1
(c) Classification error rate comparison
Fig. 3. The effect of v on the performance of MR-ADMM, fixing

n;(2k — 1) = 1.01%: in Fig. 3(a)3(b), green curves represent the non-private
conventional ADMM while other curves represent the private MR-ADMM
with different v and each of them illustrates the overall result summarized
from 10 independent runs of experiments under the same parameter. The
corresponding classification error rates are shown in Fig. 3(c). It shows that
varying -y within a certain range doesn’t effect the performance significantly.

by the average loss over the training set:

B;

N
L(t) = jvz é 1z<y?fi<t>%?>,

n=
and the classification error rate over the testing set Sies¢:

Z(wj,yj)estm 1(y; # 9;)
Z(xjayj)estest 1

FE =

)

where g; is the prediction of sample (xj,y;) by using the
averaged classifier f(t) = & Zl_l fi(t), and each f;(t) is
the local classifier(primal variable) of node ¢ after ¢ iterations.

We measure the privacy of an algorithm by the upper bound:

1.461
¥ +20:(2k — 1)Vi)

P(t) = max{z 2C

ma + ailk))}.

The smaller L(¢) and P(t), the higher accuracy and stronger
privacy guarantee.

0.44
+MR ADMM (n(2k — 1) —1.017)
Y —$—MR-ADMM (5(2k — 1) = 1.02")
042\ } —3-MR-ADMM (5(2k — 1) = 1.03")
H —3-MR-ADMM (n(2k — 1) = 1. 04*)
2 A MR-ADMM (5(2k — 1) = 1.05%)
204\ — Non-private i
S
©
g
z 0.38 - —
S V;L\Liq,:
0.36 [TYTTTIrE? EER
L L
0 5 10 15 20 25 30 35 40 45 50
t
(a) Accuracy comparison for different n(2k — 1) (o = 2)
0.5 T T
—3-MR-ADMM (7(2k — 1) =1.01%)
—3-MR-ADMM ((2k — 1) = 1.02")
—3-MR-ADMM (5(2k — 1) = 1.03")
0.5 ~3-MR-ADMM (n(2k — 1) = 1.04")| |
8 —MR-ADMM (n(2k — 1) = 1.05")
= —— Non-private
(0]
S A
g \
s
2 AN
.4 N\ i
z0 AHQ& LTI
S Dt
Sassss ”‘i:::;pﬁ—z::
035} I I | | I i =

0 5 10 15 20 25 30 35 40 45 50

(b) Accuracy comparison for different (2k — 1) (@ = 1)

25 12
——MR-ADMM (7(2k 1) = ——MR-ADMM (5(2k — 1) = 1.01F)
20 ||~ MR-ADMM ((2t~ 1) = 10 ||~ MR-ADMM (n(2k — 1) = 1.02")
——MR-ADMM (4(2k — 1) = —o— MR-ADMM (5(2k — 1) = 1.03")
o ||~ MR-ADMM ((2t ~1) = o gl o MR-ADMM (n(2k— 1) = L0) iad
8is MR-ADMM (n(2k - 1) = g MR-ADMM (n(2k — 1) = 105")
> > .
9 o 36
10 Y £
o o a4
”pa’
5 ™ 2
pe
oo
0 0
0 10 20 30 40 5 0 10 20 30 40 5(

(c) Privacy comparison (o = 2) (d) Privacy comparison (o = 1)

022 [IMR-ADMM (7 1) = L.01F
[IMR-ADMM —1) = 102"

(
(n(2
[ZIMR-ADMM (7
02f [_IMR-ADMM (7
[_IMR-ADMM (7
[_]Non-private

| |

a=1 a=2

zk)
)
Zk - 035)
2k —1) = 1.04%)
2k —1) = 1.05")

Classification error rate
) °
> ®

0.

=

(e) Classification error rate comparison

Fig. 4. The effect of n;(2k — 1) on the performance of MR-ADMM,
fixing v = 0.5: in Fig. 4(a)4(b), green curves represent the non-private
conventional ADMM while other curves represent the private MR-ADMM
with different 7; (2k — 1) = qf (qg1 = 1.01,1.02,1.03,1.04, 1.05) and each
of them illustrates the overall result summarized from 10 independent runs
of experiments under the same parameter. Fig. 4(c)4(d) illustrate the upper
bound of their privacy loss and the corresponding classification error rates are
shown in Fig. 4(e).

A. Convergence of non-private R-ADMM & MR-ADMM

Fig. 1(a) shows the convergence of R-ADMM with different
v and fixed n = 0.5 for a small network (N = 5) and a
large network (N = 20), both are randomly generated. Due
to the linear approximation in even iterations, it’s possible to
cause an increased average loss as shown in the plot. However,
the odd iterations will always compensate this increase; if
we only look at the odd iterations, R-ADMM achieves a
similar convergence rate as conventional ADMM. « can also
be thought of as an extra penalty parameter for each node
in even iterations to punish its update, i.e., the difference
between f;(2k) and f;(2k —1). Larger y can result in smaller

0.48 T
——ADMM (DVP)|
0.46 —&—M-ADMM
: —#—R-ADMM
—4—MR-ADMM
——Non-private []
2
o
So.
»
S
©
g
<<
t
(a) Accuracy comparison (o = 2)
T
07l —F—ADMM (DVP)| |
—§—M-ADMM
0.65 - —4—R-ADMM i
B —4—MR-ADMM
06 ' ——Non-private ||
0
; BEssdisveifl
R s vt ifittitiil
<3
S 051
5
Z o451
048 \/\/\l\ﬂ“ : .
04+ 34 B
e H§'§’§§’H+f§*§ﬂ§*HHHH{;§H
0.35 - =
03 \ \ \ \ \ \ \ \ \
0 5 10 15 20 25 30 35 40 45 50
t
(b) Accuracy comparison (o = 1)
1.8 T
—F—ADMM (DVP)|
1.6 ml
141 ml
—— Non-private
2
§ 1.2 ¢
S 1
g
g
<ol %M@WWWW
06 §\§ g
4 SSBES
0.4 Fens iRy H_HmféifHHf§fH++&—a—HHﬁ
0.2 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
t
(c) Accuracy comparison (o = 0.5)
25 14 7
[~—ADMM (DVP) [~—ADMM (DVP)
20|~ M-ADMM 121]=-M-ADMM 6
w ||~-R-ADMM 10} |-~ R-ADMM w5
& 5| [=-MR-ADMM 2 || +-MR-ADMM 2
K 8 N
T 7)
S1o g6 g3
& g, g,
5
2 1
0 0 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
t t t
d) a=2 e)a=1) a=0.5
0.3 {C_JADMM (DVP)|
[EM-ADMM
[IR-ADMM
£ 0.25 [CIMR-ADMM
= [INon-private
8
© 02k
c
k=3
g
§ 015
8
o
01
0.05

a=2 a=1 a=05

(g) Classification error rate comparison

Fig. 5. Performance comparison: in Fig. 5(a)5(b)5(c), green curves represent
the non-private conventional ADMM while other curves represent different
private algorithms and each of them illustrates the overall result summarized
from 10 independent runs of experiments under the same parameter. M-
ADMM (blue) and MR-ADMM (magenta) adopt the varied penalty parameter
while ADMM (black) and R-ADMM (red) adopt the fixed 7;(t) = n = 1.
Fig. 5(d)5(e)5(f) illustrate the upper bound of their privacy loss and the
corresponding classification error rates are shown in Fig. 5(g).

oscillation between even and odd iterations but will also lower
the convergence rate.

Fig. 1(b)1(c) show the convergence of MR-ADMM with
penalty parameters 7;(2k — 1) increasing at different speed.
We see that increasing penalty slows down the convergence,
and larger increase in ¢ (i) slows it down more. In 1(b), each
node adopts different penalty parameter 7);(2k — 1) in each
iteration while in 1(c), the same penalty parameter is shared
among all the nodes. The convergence is attained in both cases.

B. Private R-ADMM & MR-ADMM

1) The effect of p, v, n;(2k — 1): We next inspect the ac-
curacy and privacy of the private R-ADMM and MR-ADMM
(Algorithm 3), and compare it with the private (conventional)
ADMM using dual variable perturbation (DVP) [21], the
private M-ADMM using penalty perturbation (PP) [22].

To begin, we first examine the effect of p in controlling
overfitting. Fig. 2 shows the classification error rate over the
testing set under different p, where the classifiers are trained
with original ADMM and the algorithm runs for 50 iterations.
Since the classification error rate is minimized at p ~ 0.22,
we will use p = 0.22 in the following experiments.

For simplicity of presentation, in the next set of experiments
the penalty 7);(¢t) = n(t) in both M-ADMM and MR-ADMM
and noise a;(k) = «, Vi, k. We observe similar results when
a;(t), n;(t) vary from node to node.

For each parameter setting, we perform 10 independent
runs of the algorithm, and record both the mean and the
range of their accuracy. Specifically, L!(t) denotes the average
loss over the training dataset in the ¢-th iteration of the [-th
experiment (1 < [< 10). The mean of average loss is given
by Lpean(t) = = 101Ll(t) and the range L, qnge(t) =

10 Lul=

L'(t) — min L'(t). The 1 th Lrange(t
max (t) min (t) e larger the range ge(t)

the less stable tHefalgorithm, i.e., under the same parameter
setting, the difference in performances (convergence curves)
of two experiments is larger. In the next few plots, Lyqnge (%)
is shown as the size of a vertical bar centered at L,,eqn ().
Similarly, let E' be the classification error rate over the testing
set in the [-th experiment, with an average error rate Fy,cqn =

10 .
%0 I—1 E' and range Erqnge = max E'— min E' shown
= 1<1<10 1<1<10

as the size of a vertical bar centered at F,,,,. Each parameter
setting also has a corresponding upper bound on the privacy
loss denoted by P(t).

In the non-private case, v controls the oscillation between
even and odd iterations, as well as the convergence rate. We
now examine its effect when MR-ADMM is perturbed. Fig.
3 shows the average loss over the training set (Fig. 3(a)3(b))
and the classification error rate over the testing set (Fig. 3(c))
under different v > 0, noting that the corresponding privacy
loss of these cases are the same under the same «. It shows that
varying - (within a certain range) does not effect performance
significantly. For the next set of experiments, we fix v = 0.5.

The effect of 7;(2k — 1) on the performance of private
MR-ADMM is illustrated in Fig. 4, where the pair Fig. 4(a),
4(c) is for the case when noise parameter is a = 2 (low
privacy requirement) and the pair Fig. 4(b), 4(d) is for the case
when a = 1 (high privacy requirement). Although increasing

7;(2k — 1) over time can decrease the convergence rate of
non-private MR-ADMM (Fig. 1(b)1(c)), it helps to stabilize
the algorithm when MR-ADMM is perturbed and can improve
the accuracy while maintain the privacy guarantee. Moreover,
the improvement is more significant when algorithm is un-
der higher perturbation (high privacy requirement) and when
7;(2k — 1) increases faster (within a range).

2) Performance comparison among different algorithms:
Our last set of experiments is conducted to compare the
performance of different algorithms with results illustrated
in Fig. 5. The noise parameters of both MR-ADMM and
R-ADMM are set as « shown in the plots, and the noise
parameters of conventional ADMM and M-ADMM are chosen
respectively such that they have approximately the same total
privacy loss bounds. We set 7;(2k — 1) = 1.04* in MR-
ADMM. We see that both private R-ADMM (red) and private
MR-ADMM (magenta) outperform private ADMM (black)
and M-ADMM (blue) with higher accuracy and lower privacy
loss. In particular, the private MR-ADMM (magenta) has
the highest accuracy with the lowest privacy loss among all
algorithms; the improvement is more significant with smaller
total privacy loss. This improvement is also illustrated by the
classification error rate over the testing set in Fig. 5(g).

IX. CONCLUSION

In this work, we presented Recycled ADMM (R-ADMM),
a modified version of ADMM that can improve the privacy-
utility tradeoff significantly with less computation. The idea is
to repeatedly use the existing computational results instead of
the original individuals’ data to make updates. We also modify
R-ADMM (MR-ADMM) by incorporating the idea from [22]
to further improve the privacy-utility tradeoff of R-ADMM.
The idea is to stabilize algorithm by decreasing its step-size,
i.e., increasing penalty parameters, over iterations. A sufficient
condition for the convergence and the privacy analysis using
objective perturbation of two algorithms are established. The
experiments on real-world dataset also validate the algorithm.

REFERENCES

[11 X. Zhang, M. M. Khalili, and M. Liu, “Recycled admm: Improve
privacy and accuracy with less computation in distributed algorithms,”
in 2018 56th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). 1EEE, 2018, pp. 959-965.

[2] I. Vakilinia, D. K. Tosh, and S. Sengupta, “Privacy-preserving cyberse-
curity information exchange mechanism,” in 2017 International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), July 2017, pp. 1-7.

[3] M. M. Khalili, X. Zhang, and M. Liu, “Contract design for purchasing
private data using a biased differentially private algorithm,” in Proceed-
ings of the 14th Workshop on the Economics of Networks, Systems and
Computation. ACM, 2019, pp. 4:1-4:6.

[4] 1. Vakilinia, J. Xin, M. Li, and L. Guo, “Privacy-preserving data
aggregation over incomplete data for crowdsensing,” in 2016 IEEE
Global Communications Conference (GLOBECOM), Dec 2016, pp. 1-6.

[5] X.Zhang, C. Huang, M. Liu, A. Stefanopoulou, and T. Ersal, “Predictive
cruise control with private vehicle-to-vehicle communication for improv-
ing fuel consumption and emissions,” IEEE Communications Magazine,
2019.

[6] C. Dwork, “Differential privacy,” in Proceedings of the 33rd Interna-
tional Conference on Automata, Languages and Programming - Volume
Fart 11, ser. ICALP’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
1-12.

[71

[8]

[91
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48-61, 2009.

I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 6, pp. 1291-1306, 2011.

S. Gade and N. H. Vaidya, “Private optimization on networks,” in 2018
Annual American Control Conference (ACC), June 2018, pp. 1402-1409.
Z. Xu, G. Taylor, H. Li, M. A. Figueiredo, X. Yuan, and T. Goldstein,
“Adaptive consensus admm for distributed optimization,” in Interna-
tional Conference on Machine Learning, 2017, pp. 3841-3850.

Z. Xu, M. A. Figueiredo, and T. Goldstein, “Adaptive admm with
spectral penalty parameter selection,” arXiv preprint arXiv:1605.07246,
2016.

E. Wei and A. Ozdaglar, “Distributed alternating direction method of
multipliers,” in 2012 IEEE 51st Annual Conference on Decision and
Control (CDC). 1IEEE, 2012, pp. 5445-5450.

Q. Ling and A. Ribeiro, “Decentralized linearized alternating direction
method of multipliers,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. 1EEE, 2014, pp.
5447-5451.

W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization.”
IEEE Trans. Signal Processing, vol. 62, no. 7, pp. 1750-1761, 2014.
R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus
optimization,” in International Conference on Machine Learning, 2014,
pp. 1701-1709.

Q. Ling, Y. Liu, W. Shi, and Z. Tian, “Weighted admm for fast decen-
tralized network optimization,” IEEE Transactions on Signal Processing,
vol. 64, no. 22, pp. 5930-5942, 2016.

M. Hale and M. Egerstedty, “Differentially private cloud-based multi-
agent optimization with constraints,” in American Control Conference
(ACC), 2015. IEEE, 2015, pp. 1235-1240.

Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proceedings of the 2015 International Conference on
Distributed Computing and Networking. ACM, 2015, p. 4.

S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 50-64, 2017.

A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Fast and dif-
ferentially private algorithms for decentralized collaborative machine
learning,” Ph.D. dissertation, INRIA Lille, 2017.

T. Zhang and Q. Zhu, “Dynamic differential privacy for admm-based
distributed classification learning,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 1, pp. 172-187, 2017.

X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and

accuracy of ADMM-based distributed algorithms,” in Proceedings of

the 35th International Conference on Machine Learning, vol. 80, 2018,
pp- 5796-5805.

Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “Dp-admm:
Admm-based distributed learning with differential privacy,” IEEE Trans-
actions on Information Forensics and Security, 2019.

K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization,” Journal of Machine Learning Research,
vol. 12, no. Mar, pp. 1069-1109, 2011.

X. Zhang, M. M. Khalili, and M. Liu, “Recycled admm: Improving
the privacy and accuracy of distributed algorithms,” arXiv:1910.04581,
2019.

C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 34, pp. 211-407, 2014.

P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” Journal of Machine Learning Re-
search, vol. 11, no. May, pp. 1663-1707, 2010.

A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Decentralized quadrat-
ically approximated alternating direction method of multipliers,” in
Signal and Information Processing (GlobalSIP), 2015 IEEE Global
Conference on. 1EEE, 2015, pp. 795-799.

Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DIm: Decentralized linearized
alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 63, no. 15, pp. 40514064, 2015.
J. Kelner, “An algorithmist’s toolkit,” 2007. [Online].
http://bit.ly/2C4yRCX

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 308-318.

Available:

(32]

(33]

[34]

(35]

M. Bun and T. Steinke, “Concentrated differential privacy: Simplifi-
cations, extensions, and lower bounds,” in Theory of Cryptography
Conference. Springer, 2016, pp. 635-658.

D. Wang, M. Ye, and J. Xu, “Differentially private empirical risk
minimization revisited: Faster and more general,” in Advances in Neural
Information Processing Systems, 2017, pp. 2722-2731.

M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

K. Sridharan, S. Shalev-shwartz, and N. Srebro, “Fast rates for regular-
ized objectives,” in Advances in Neural Information Processing Systems
21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., 2009,
pp. 1545-1552.

Xueru Zhang (xueru@umich.edu) received the
B.Eng. degree in electronic and information en-
gineering from Beihang University (BUAA), Bei-
jing, China, in 2015, the M.S. degree in electrical
and computer engineering from the University of
Michigan, Ann Arbor, in 2016. She is currently
pursuing the Ph.D. degree in electrical and com-
puter engineering with the University of Michigan.
Her research interests include fairness and privacy
in machine learning, distributed optimization and
sequential decision making.

Mohammad Mahdi Khalili (khalili@umich.edu)
received the B.S. and M.S. degrees in electrical
engineering from the Sharif University of Tech-
nology, Tehran, Iran, in 2013 and 2015, and M.S.
degree in Applied Mathematics from the University
of Michigan, Ann Arbor in 2018. He is currently
pursuing the Ph.D. degree in electrical and computer
engineering with the University of Michigan. His re-
search interests include fairness in machine learning
and the applications of mathematical economics in
network security and privacy.

Mingyan Liu (mingyan@umich.edu, Ph.D in elec-
trical engineering from the University of Maryland,
College Park) is a professor and the Peter and Evelyn
Fuss Chair of Electrical and Computer Engineering
at the University of Michigan, Ann Arbor. Her
interests are in sequential decision and learning
theory, game theory and incentive mechanisms, with
applications to large-scale networked systems. She is
a Fellow of the IEEE and a member of the ACM.

