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We report on the evolution of the average and depth-dependent magnetic order in thin film
samples of biaxially stressed and electron-doped EuTiO3 for samples across a doping range <0.1 to
7.8 ×1020 cm−3. Under an applied in-plane magnetic field, the G-type antiferromagnetic ground
state undergoes a continuous spin-flop phase transition into in-plane, field-polarized ferromagnetism.
The critical field for ferromagnetism slightly decreases with an increasing number of free carriers,
yet the field evolution of the spin-flop transition is qualitatively similar across the doping range.
Unexpectedly, we observe interfacial ferromagnetism with saturated Eu2+ moments at the substrate
interface at low fields preceding ferromagnetic saturation throughout the bulk of the degenerate
semiconductor film. We discuss the implications of these findings for the unusual magnetotransport
properties of this compound.

I. INTRODUCTION

Weyl semimetals (WSMs) are a broadly sought class of
topologically nontrivial semimetals [1]. Their protected,
nondegenerate pairs of band crossings act as chiral Weyl
points, which serve as sources and sinks of Berry flux
in momentum space. The resulting high mobility and
inherent spin-momentum locking of WSMs makes these
materials strong candidates for a multitude of applica-
tions, spanning from spintronics [2] to catalysis [3]. A
WSM state requires breaking either inversion or time re-
versal symmetry in a degenerately doped semiconductor
with one or more pairs of band crossings [1]. As a re-
sult, identifying candidate WSM states requires careful
analysis of both atomic lattice and magnetic symmetries,
and several examples of noncentrosymmetric [4, 5] and
magnetically ordered [6–8] WSM systems have been un-
covered. This study aims to explore relations between
the Weyl physics and the crystallographic details of the
magnetic order in one magnetic WSM candidate.

Recent evidence suggests the presence of band cross-
ings and a WSM phase in Eu1−xSmxTiO3 films grown
on (001)-oriented (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT).
While the parent compound EuTiO3 is a band insulator
due to its 3d0 Ti4+ electronic configuration, small levels
of Sm substitution introduce electrons into the primarily
Ti 3d t2g conduction bands, driving a filling-controlled
metal-insulator transition [9]. At low electron densities,
the measured anomalous Hall effect (AHE) resistance is
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negative. However, upon doping beyond n = 4−5 × 1020

cm−3 the AHE signal becomes positive, similar to behav-
ior in La-substituted EuTiO3 films [10]. This AHE sign
change is suggestive of a shifting in the chemical poten-
tial across one or more nodal band crossings [11]. In the
case of Eu1−xSmxTiO3, density functional theory (DFT)
electronic structure calculations corroborate the presence
of such a pair of band crossings along the Γ-X direction,
in agreement with the details of the magnetotransport
measurements [12]. Taken together, the AHE and DFT
results suggest a WSM phase.

In addition to the Weyl physics, anisotropic magne-
toresistance (AMR) measurements of this material sys-
tem reveal symmetry changes suggestive of field-driven
magnetic phase transitions [13]. The origins of these
various transitions seen in AMR are however currently
unclear, as are the underpinnings of other anomalous
transverse magnetotransport in this material. For in-
stance, the field dependence of the AHE resistance is
nonlinear, nonmonotonic, and not proportional to mag-
netization [12]. This is suggestive of a topological Hall
effect (THE) originating in real or momentum space and
evolves under applied field and doping [14], although al-
ternative explanations have also been proposed [15, 16].
While these magnetotransport results clearly demon-
strate strong coupling of Eu moments to the charge trans-
port, the ability to interpret the mechanisms driving this
behavior is limited by little direct knowledge of the un-
derlying magnetic order in films.

For context, we briefly digress to summarize the struc-
ture and magnetism in bulk samples. In the bulk,
EuTiO3 has a cubic perovskite structure at high tem-
peratures and undergoes an antiferrodistortive transition



2

due to antiphase tilting of oxygen along c (as in SrTiO3)
at 280 K, yielding a tetragonal structure I4/mcm with
a=b parameters 0.25% smaller than c below 50 K [17, 18].
Below TN = 6 K, EuTiO3 orders as a G-type antiferro-
magnet (AFM) in which the 4f7 Eu2+ sites have localized
S=7/2 moments oriented in the ab plane [19]. From the
ordered zero-field state, application of an external mag-
netic field causes a spin-flop transition near µ0H = 0.3
T, though the behavior is strongly anisotropic [20]. As
the applied field approaches 1 T, the magnetization sat-
urates near the expected 7 µB/Eu in a roughly isotropic
manner [20].

In EuTiO3/LSAT(001) films, G-type AFM order was
first observed via resonant X-ray magnetic scattering
with a similar ordering temperature as bulk samples [21].
In this geometry, the substrate applies a 1% compressive
epitaxial strain in the ab plane and lengthens the unit
cell along c, an effect confirmed by both X-ray diffrac-
tion and first-principles studies [21]. Näıvely, this should
result in a similar anisotropic crystal field environment
for the Eu moments in both LSAT epitaxial samples and
bulk samples. This should render Eu moments in films
to also orient in the ab-plane at zero field. Corroborating
this, the ab-plane is the magnetic easy plane as probed by
both film magnetoresistance and magnetometry [10, 13].
Our earlier neutron diffraction measurements established
that, at zero field, the G-type AFM order of the parent
system persists in metallic samples (n < 9×1020 cm−3)
with only a slightly decreasing onset temperature [12].

In this study, we report the evolution of magnetic or-
der under an applied in-plane magnetic field in a series
of Eu1−xSmxTiO3 samples with chemical potentials that
span across the proposed Weyl nodes in this compound.
Specifically, we examined an undoped insulating parent
sample with x = 0, a semimetallic sample with Fermi
level very near the proposed Weyl node with x = 0.02
(n = 4.0 × 1020 cm−3), and a fully metallic sample with
x = 0.04 (n = 7.8 × 1020 cm−3). Using a combination of
neutron diffraction and polarized neutron reflectometry
(PNR), we determine the average and depth-dependent
magnetic structures. We find that, independent of dop-
ing, the application of external magnetic fields above 0.3
T begins to quench AFM order and drive a spin-flop tran-
sition. Neutron reflectometry measurements on the sam-
ple close to the reported Weyl state reveal the presence
of an interfacial layer where a FM state is stabilized at
the substrate interface at fields as small as 0.5 T. The
implications of our findings for recent magnetotransport
measurements are discussed.

II. METHODS

Neutron scattering measurements were performed on
100 nm thick Eu1−xSmxTiO3 films grown epitaxially on
(LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) (001) single crystal
substrates using hybrid molecular beam epitaxy (MBE),
the details of which have been reported elsewhere [9].

Neutron diffraction measurements were collected on the
BT-7 triple-axis spectrometer at the NIST Center for
Neutron Research [22]. Measurements were taken with
initial and final neutron energies fixed at Ei = Ef = 14.7
meV using a pyrolitic graphite (PG) monochromator and
analyzer. One PG filter was placed before the sample and
two after the sample to greatly reduce higher harmonic
contamination. The collimator configuration was open-
50′-50′-120′ before the monochromator, sample, analyzer,
and point detector, respectively. Samples were oriented
in the [H 0 L] scattering plane and mounted within a 3He
insert in a 7 T vertical field continuous magnet cryostat.
Film peaks are indexed to a tetragonal unit cell (space
group I4/mcm, a = 5.48 Å, c = 7.9 Å for the film)
throughout this paper. We also index the LSAT (001)
substrate peaks to a tetragonal cell, due to the presence
of anti-phase boundary reflections. Uncertainties repre-
sent one standard deviation in the data.

Polarized neutron reflectometry (PNR) measurements
were performed using the PBR reflectometer at the NIST
Center for Neutron Research with an incident wavelength
of 4.75 Å. The sample was mounted in the same sample
environment used at BT-7, with the film’s surface normal
to the scattering wavevector q. PNR measurements were
collected on field cooling at 2 T from 35 K. Reflectometry
datasets were reduced [23] and refined to slab layer mod-
els using the Refl1D code, which implements an optical
matrix formalism [24, 25].

III. EXPERIMENTAL RESULTS

We first discuss the results of neutron diffrac-
tion measurements probing the evolution of AFM in
Eu1−xSmxTiO3 samples as a function of electron doping
and in-plane magnetic field. Given the presence of half-
order reflections from the LSAT substrate at the film’s
AFM reflection conditions, care must be taken to resolve
magnetic signal from the film against the large back-
ground of the neighboring substrate peaks. Due to a com-
bination of the large Eu2+ moment and elongation of the
EuTiO3 c axis, this can be successfully achieved via anal-
ysis of magnetic Bragg peaks at tetragonal [odd 0 odd]
positions (here, the (103), (105), and (303) in all three
samples). As an example, the (103) reflection of the in-
termediate x = 0.02 doping sample is shown in Fig. 1.
The film is apparent as increased intensity along the low-q
side of the substrate peak and can be resolved via sub-
traction of the high temperature background as shown in
the Fig. 1 inset. All the AFM reflections resolved in this
way were instrument resolution-limited along the h and
l axes, consistent with long-range G-type AFM order.

With applied field, we observe a reflection correspond-
ing to a partial ferromagnetic polarization of the Eu mo-
ments at the (004) wave vector. Upon increasing field,
the intensity of this peak and related ferromagnetic re-
flections is enhanced, and the AFM peaks diminish. This
is indicative of the sample undergoing a continuous spin-
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FIG. 1. Magnetic neutron diffraction: raw diffraction scans
along l are shown both at base temperature (blue) and at the
10 K ‘background’ (gold). Inset: the background-subtracted
scan (black) reveals the G-type AFM SmxEu1−xTiO3 peak.
This is fit to a simple Gaussian (red) with fixed width and
fixed center to extract the area. Widths were fixed to the
instrumental resolution; in the case of (103), 0.018 r.l.u. along
l (7 nm = 9c).

flop transition. Looking first at the metallic, highly
doped x = 0.04 sample, the aforementioned method of
measuring l-scans was used to track both the AFM (103)
and FM (004) components of the canted magnetic or-
der under increasing field strengths through the spin-flop
transition. The peak areas from fits to l scans through
both reflections are plotted as a function of field in Fig.
2(a).

After we measured this transition in the metallic x =
0.04 sample, the spin-flop transitions in the other two
x = 0 and x = 0.02 samples were parameterized by first
confirming the position of the (103) and (004) peaks with
l-scans at zero-field and high-field, respectively, followed
by counting at the peak positions upon sweeping field.
These results are shown in Fig. 2(b) and 2(c) for the x =
0.02 and x = 0 samples, respectively, and the difference
in measurement methodology is the reason for difference
in the relative sizes of the error bars.

The field-driven canting of the zero-field AFM order,
summarized in Fig. 2, shows a suppression of the G-type
AFM reflection intensity with increasing field for all sam-
ples that occurs in a manner largely independent of dop-
ing level or metallicity. The nominal spin-flop transition
begins at fields as small as 0.25 T with a small but statis-
tically significant intensity decrease in all but the inter-
mediate doped sample, for which the intensity decrease is
within uncertainty. Most of the AFM signal suppression
occurs between 0.25 T and 1.5 T, above which, the Eu
moments are fully polarized in all samples. This behav-

FIG. 2. Order Parameters: AFM peaks in green and FM
peaks in red are shown for (a) metallic (b) semimetallic and
(c) parent SmxEu1−xTiO3\LSAT(001) samples. Data are
shown in symbols, and lines are error function fits to the data.
In (b), the black symbols are magnetoresistance taken at 2 K
with I||H⊥c for a similarly doped sample n = 3.4×1020 cm−3

which is 50 nm thick. Diffraction samples are 100 nm thick.
Details are in the text.
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FIG. 3. Field-Concentration phase diagram based on diffrac-
tion measurements of the parent, intermediate, and metallic
samples. Label abbreviations are ‘AFM’ antiferromagnetism
and ‘FM’ saturated ferromagnetism. The applied field is in-
plane, perpendicular to the tetragonal c axis. Error bars are
from fit uncertainties in Fig. 2. Colored regions are spec-
ulative guides to the eye. Inset: Sketch of one predicted
pair of conduction band crossings, projected on the spin z-
component. Horizontal dashed lines indicate the Fermi energy
at different carrier concentrations. DFT calculations predict
Weyl nodes for n ≈ 4×1020 cm−3 near (±0.24π/a, 0, 0).
Adapted from Ref. [12].

ior is consistent with prior studies of the bulk magneti-
zation [20]. Analysis of the full width at half maximum
(FWHM) along l and h at representative fields shows that
the AFM peaks remain resolution-limited throughout the
entire range of fields, indicating that three-dimensional
long-range order is maintained throughout the transition.

The field dependence for both the FM and AFM com-
ponents of the magnetic order can be parameterized via
error functions, which allow a systematic extraction and
analysis of saturation and crossover fields. We used er-
ror functions of the form A

2 [1±erf(µ0H−µ√
2σ

)] for the FM

(AFM) components, with free parameters magnitude A,
center µ, and variance σ. Critical fields Bon (Boff ) were
defined as 5%, and the saturation field Bsat to be 95%,
of the maximum fit value for FM (AFM) order. These
values are used to define the phase boundaries in Fig. 3.

Compiling our diffraction data, we depict a magnetic
phase diagram as a function of carrier concentration. We
highlight the AFM phase, the spin-flop transition, and
the unsaturated and saturated FM phases. The thresh-
olds for field-polarization decrease with electron concen-
tration, consistent with conduction electrons destabiliz-

FIG. 4. Polarized Neutron Reflectometry: (a) data for the
semimetallic intermediate doping sample (n = 4.0 × 1020

cm−3) at various applied fields at 0.35 K along with refined fits
for magnetically uniform (dashed line) and interfacial mag-
netism (solid lines) models. (b) Magnetic scattering length
density models from which the fits to the data were calcu-
lated. Grey data points are the best fit refined magnetization
value for each slab in the two slab model with error plotted
as the 95% confidence interval.

ing the AFM ground state. We note that field-polarized
FM order is saturated below 3(1) K yet persists to 13(1)
K at 3 T for the metallic sample, in agreement with fea-
tures in the magnetoresistance [26].

The diffraction measurements described report on the
volume-averaged field evolution of magnetism in the
Eu1−xSmxTiO3 sample series. However, it is well known
that the properties of thin films may deviate from the
bulk behavior due to effects such as strain or charge
transfer near heterointerfaces [27]. Therefore, we utilized
PNR to further investigate the intermediate x = 0.02
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doped sample’s depth-dependent, magnetization profile.
In doing so, we observed a magnetic interfacial layer ad-
jacent to the substrate, where the saturated FM state is
stabilized at lower fields than seen in our bulk-sensitive
diffraction measurements. The following paragraphs de-
scribe how this interfacial layer was resolved.

The magnetic depth profile was determined by fitting
two comparative models to the measured and reduced
reflectivity data, shown for lower fields (i.e. 0.5 T and
1 T) in Fig. 4(a). The first model considered was a
uniformly magnetized film, and the corresponding best fit
to the data is shown by the black dashed curves in Fig.
4(a). As seen in the righthand panels, which highlight
the high q region, a uniform magnetization model does
not capture the falloff of the reflectivity curve properly.
Specifically looking at the R++ scattering channel, it can
be seen that a uniform magnetization model results in a
flattened oscillation amplitude that is much smaller than
the measured data.

Therefore, we considered a second model with two
magnetic slabs to simulate a non-uniform magnetic depth
profile. Each slab in the model was free to fit both its
thickness and magnetization. The best fit results of this
model are shown by the solid color curves in Fig. 4(a)
and correspond to the χ2 values in colored font. Clearly,
these non-uniform models capture the high q oscillations
missed by the uniform magnetic model. The improved fit
quality can also be seen in the numerical goodness of fit
for each model. It is important to note that, in testing the
two slab magnetization model, the refinement was initial-
ized in a variety of starting conditions (i.e. thin layer at
substrate, thin layer at surface, equal layer thicknesses)
and that regardless of how the model was initialized, the
end result converged to an interfacial layer near the sub-
strate and not at the film’s outer surface.

The magnetization models corresponding to these best
two-slab fits are plotted in Fig. 4(b) in units of moment
per Eu-ion and color coded to match the reflectivity fits
in Fig. 4(a). First, at 2 T, the depth profile is that of
a fully saturated film with 6.92(4) µB/Eu, very near the
expected 7 µB/Eu expected for fully polarized S = 7/2
Eu moments. Importantly, here the model “chooses” to
be magnetically uniform even when modeled as two in-
dependent magnetic slabs, which is consistent with neu-
tron diffraction results suggesting that a 2 T field is suf-
ficient to saturate the system. However, when the field
is lowered to 1 T, the majority of the sample volume
has a reduced magnetization of 4.88(3) µB/Eu follow-
ing the trend expected from our diffraction results. Yet
near the interface, we observe a region approximately 2
nm in thickness that remains in a saturated state. The
enhanced magnetism in this interfacial layer persists to
fields as low as 0.5 T, the lowest field at which we col-
lected PNR data, even as the bulk of the film continues
to reduce its net magnetization.

In the two-slab PNR refinements discussed above, the
magnetization in each slab was allowed to vary up to 8
µB/fu to account for the possibility of a Ti 3d1 moment

co-aligned with the Eu moments (which would only be
germane to the interface layer). This procedure resulted
in refined interface magnetization values of 7.6 and 8
µB/fu for the 1 T and 0.5 T data sets, respectively. How-
ever, crucially, the error on this interfacial magnetization
is large (95% confidence interval ≈ 6.9 to 8 µB/fu) and
overlaps with both the refined 2T value and the theoreti-
cal S = 7/2 value. In other words, we cannot distinguish
between models with and without a moment on the Ti
site. To prove this point, in the Supplemental Materials
we present the results of refinements in which the inter-
facial moment is given an upper bound of 7 µB/fu. The
results and conclusions are essentially identical to those
in the main text, with changes in χ2 and magnetization
in the thick, upper EuTiO3 layer being smaller than the
error. Only the interfacial layer thickness changes no-
tably, increasing an average of 18% to offset the 12%
reduction in magnetization. Further analysis of the co-
variance matrix shows these two parameters are highly
correlated can be traded for one another in the modeling.
Despite this coupling of parameters, our data neverthe-
less demonstrate that the interface layer remains robustly
FM in the low field regime where the bulk of the sample
behaves as a canted antiferromagnet.

IV. DISCUSSION

Our neutron diffraction results and recently pub-
lished anisotropic magnetoresistance (AMR) measure-
ments paint a coherent picture of the magnetic structure
evolution as a function of field. EuTiO3 films with or
without Sm doping are G-type antiferromagnets at zero
field. This AFM state remains relatively stable until ap-
proximately 0.3 T as shown in Fig. 2, at which point
we observe the onset of a FM signal coincident with the
initial reduction of AFM order. This field strength is,
within error, the same field at which bulk samples of the
parent EuTiO3 undergo a spin-flop transition and the Eu
moments reorient from the c-axis into the ab-plane [20].
Moreover, 0.3 T is where the onset of the AMR signal oc-
curs in doped thin film samples [13]. Demonstrating this,
in Fig. 2(b), the longitudinal magnetoresistance (MR) of
an intermediately electron doped sample is plotted (solid
black dots) alongside the diffraction data and shows re-
markable similarity to the development of the FM com-
ponent of magnetic order. Together these data suggest
that 100 nm thick EuTiO3 films, independent of doping,
are thick enough that they retain a bulk-like spin-flop
transition near 0.3 T in which the moments reorient into
the plane of the film and retain the same propagation
vector.

Further connecting to prior AMR measurements, Fig.
2 and Fig. 3 show the spin-flop transition proceeds
smoothly until the AFM component of the ordered state
is completely suppressed between 1 T and 1.5 T, depend-
ing on the doping level. This is remarkable since, at 0.8 T,
AMR data shows a distinct transition wherein the four-
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fold symmetric AMR signal undergoes a 45◦ rotation (i.e.
a rotation of the AMR maximum from [1 0 0] to [1 1 0]).
K. Ahadi, et al. attribute this transition to changes in the
electronic structure, such as the movement of Weyl nodes
[13]. The absence of any abrupt features in our diffraction
data near 0.8 T supports this hypothesis, though there
is considerable measurement uncertainty which could ob-
scure subtle magnetic transitions < 1 µB over a narrow
range of magnetic field. Our data are instead consistent
with a continuous canting of the moments within the ab-
plane, from antiparallel at 0.3 T to parallel above 1 T.
Within this picture, we can then use the absolute Eu mo-
ment determined from the bulk slab in our PNR refine-
ments to determine the evolution of canting as a function
of field for the intermediate doped sample. Specifically,
we find the canting angle to be 23.4(2)◦ and 44.2(2)◦ at
0.5 T and 1 T fields, respectively.

Between 1.3 and 2 T, FM order saturates. This agrees
well with a final transition in AMR measurements where
the symmetry gradually reduces from four-fold to two-
fold over this same field range [13]. This two-fold sym-
metry, hysteresis in the anomalous Hall signal, and ad-
ditional intensity on the zone center diffraction peaks all
indicate that the high-field state is one of field-induced
FM order. Importantly, both the FM saturation field and
the AFM order suppression field decrease with increased
doping; see Fig. 3. This reveals that the addition of itin-
erant electrons to the system destabilizes the AFM state,
in agreement with recent theoretical results [28]. Simi-
lar behavior is seen in doped bulk crystals, where mag-
netization and electron transport studies on very highly
electron-doped bulk crystalline samples (near 0.1 addi-
tional electrons per Ti) have previously shown that AFM
order is quenched and an unusual field-polarized ferro-
magnetic (FM) order becomes dominant [29].

These results combined with our observation of inter-
facial FM stabilized at the substrate interface are consis-
tent with a picture of magnetism in EuTiO3 films wherein
AFM and FM ground states are energetically close and
slight changes in orbital filling can tip the balance [30].
There exist several microscopic theories to explain the
propensity for FM order, including: an indirect Eu 5d
exchange [30], an RKKY interaction between Eu 4f and
Ti 3d states [10], or coupling between Eu 5d and Ti 3d
states in the conduction band [28]. However, additional
work is needed to determine which of these explanations,
or which combination of them, is operational within dif-
ferent doping and strain regimes. In this regard, the
observation of the FM interfacial layer in our PNR data
provides an intriguing experimental geometry in which
to probe and decouple these various possible stabilizing
contributions, and follow-up studies along these lines are
in progress.

In prior transverse magnetotransport measurements,

there is a distinct change in the sign of the AHE as a
function of doping [12]. However, our neutron measure-
ments show little difference in the magnetic order under
applied field between differently doped samples with the
exception of a slight change in the FM saturation values
and threshold spin-flop fields discussed above. Rather,
the sign of the AHE resistance changes with doping in a
manner consistent with the chemical potential crossing a
Weyl node, as sketched schematically in the inset to Fig-
ure 3. For Weyl semimetals, the AHE is known to be pro-
portional to the net magnetization [15], with the magni-
tude dependent to simplistic approximation on the Weyl
node separation in reciprocal space [31]. In the present
case, the AHE magnitudes are uncorrelated with the
diffraction results—suggesting that the electronic state is
weakly informed by the average Eu magnetism. We also
propose that the interfacial FM layer may itself be re-
sponsible for some unusual magnetotransport signatures
in this system. The hypothesis that magnetic inhomo-
geneity can potentially ‘mimic’ a topological Hall effect,
as reported for SrRuO3 [16], is an avenue that should be
explored.

V. SUMMARY

In summary, we report neutron scattering measure-
ments of the evolution of long-range magnetic order as
a function of both magnetic field and electron doping in
the Weyl semimetal candidate Eu1−xSmxTiO3 on LSAT
(001). The evolution of magnetic order under an applied,
in-plane magnetic field correlates well with previous mag-
netrotransport data reporting unconventional AMR ef-
fects. The persistence of an AFM ground state and simi-
lar spin-flop field thresholds as a function of electron dop-
ing suggest the presence of an additional electronic phase
transition at intermediate fields in semimetallic x = 0.02
samples, as well as a nonmagnetic origin of the appar-
ent topological Hall effect. Using polarized neutron re-
flectometry to probe depth-dependent magnetism in the
semimetallic sample, we resolve a saturated ferromag-
netic interfacial layer that forms at the substrate interface
in doped samples prior to the completion of the spin-flop
transition throughout the bulk of the film. The impact
of this inhomogeneity within the magnetic depth profile
in transverse magnetotransport measurements warrants
future study.
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P. Niklowitz, and P. Böni, Physical Review Letters 102,
186602 (2009).

[15] K. S. Takahashi, H. Ishizuka, T. Murata, Q. Y. Wang,
Y. Tokura, N. Nagaosa, and M. Kawasaki, Science Ad-
vances 4, 1 (2018).

[16] D. Kan, T. Moriyama, K. Kobayashi, and Y. Shimakawa,
Physical Review B 98, 2 (2018).

[17] V. Goian, S. Kamba, O. Pacherová, J. Drahokoupil,
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