
Verifying Concurrent Search Structure Templates

Siddharth Krishna
Microsoft Research
Cambridge, UK

siddharth@cs.nyu.edu

Nisarg Patel
New York University

USA
nisarg@nyu.edu

Dennis Shasha
New York University

USA
shasha@cims.nyu.edu

Thomas Wies
New York University

USA
wies@cs.nyu.edu

Abstract

Concurrent separation logics have had great success rea-
soning about concurrent data structures. This success stems
from their application of modularity on multiple levels, lead-
ing to proofs that are decomposed according to program
structure, program state, and individual threads. Despite
these advances, it remains difficult to achieve proof reuse
across different data structure implementations. For the large
class of search structures, we demonstrate how one can achieve
further proof modularity by decoupling the proof of thread
safety from the proof of structural integrity. We base our
work on the template algorithms of Shasha and Goodman
that dictate how threads interact but abstract from the con-
crete layout of nodes in memory. Building on the recently
proposed flow framework of compositional abstractions and
the separation logic Iris, we show how to prove correctness
of template algorithms, and how to instantiate them to obtain
multiple verified implementations.

We demonstrate our approach by mechanizing the proofs
of three concurrent search structure templates, based on
link, give-up, and lock-coupling synchronization, and deriv-
ing verified implementations based on B-trees, hash tables,
and linked lists. These case studies include algorithms used
in real-world file systems and databases, which have been
beyond the capability of prior automated or mechanized ver-
ification techniques. In addition, our approach reduces proof
complexity and is able to achieve significant proof reuse.

CCS Concepts: • Theory of computation → Logic and

verification; Separation logic; Sharedmemory algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386029

Keywords: template-based verification, concurrent data struc-
tures, flow framework, separation logic

ACM Reference Format:

Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies.
2020. Verifying Concurrent Search Structure Templates. In Pro-

ceedings of the 41st ACM SIGPLAN International Conference on Pro-

gramming Language Design and Implementation (PLDI ’20), June

15ś20, 2020, London, UK. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3385412.3386029

1 Introduction

Modularity is as important in simplifying formal proofs as it
has been for the design and maintenance of large systems.
There are three main types of modular proof techniques:
(i) Hoare logic [32] enables proofs to be compositional in
terms of program structure; (ii) separation logic [48, 54]
allows proofs of programs to be local in terms of the state
they modify; and (iii) thread modular techniques [30, 33, 50]
allow one to reason about each thread in isolation.

Concurrent separation logics [10, 11, 16, 18, 19, 21, 24, 27,
37, 46, 47, 58, 60] incorporate all of the above techniques
and have led to great progress in the verification of practical
concurrent data structures, including recent milestones such
as a formal proof of the B-link tree [15]. Proofs of such
real-world data structures, however, remain large, complex,
paper-based, and verifiable only by hand.

An important reason why existing proofs, such as that of
the B-link tree, are still so complicated is that they argue
simultaneously about thread safety (i.e., how threads syn-
chronize) and memory safety (i.e., how data is laid out in
the heap). We contend that safety proofs should instead be
decomposed so as to reason about these two aspects inde-
pendently. When verifying thread safety we should abstract
from the concrete heap structure used to represent the data
and when verifying memory safety we should abstract from
the concrete thread synchronization algorithm. Adding this
form of abstraction as a fourth modular proof technique to
our arsenal promises reusable proofs and simpler correctness
arguments, which in turn aids proof automation.



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

Implementations

Hash table (give-up)

B+ tree

Lock coupling list

B-link tree

Hash table (link)

Templates

Give-up

Lock coupling

Link

Abstract spec.

Set ADT

co
de

sh
ar
in
g

Figure 1. The structure of our proofs.

As an example, consider the B-link tree, which uses the
link-based technique for thread synchronization. The follow-
ing analogy [57] captures the essence of this technique. Bob
wants to borrow book 𝑘 from the library. He looks at the
library’s catalog to locate 𝑘 and makes his way to the appro-
priate shelf 𝑛. Before arriving at 𝑛, Bob gets caught up in a
conversation with a friend. Meanwhile, Alice, who works at
the library, reorganizes shelf 𝑛 and moves 𝑘 as well as some
other books to 𝑛′. She updates the library catalog and also
leaves a sticky note at 𝑛 indicating the new location of the
moved books. Finally, Bob continues his way to 𝑛, reads the
note, proceeds to 𝑛′, and takes out 𝑘 . The synchronization
protocol of leaving a note (the link) when books are moved
ensures that Bob can find 𝑘 rather than thinking that 𝑘 is
nowhere in the library. However, when arguing the correct-
ness of this protocol, we do not need to reason about how
books are stored in shelves or how the catalog is organized.
The library patron corresponds to a thread searching for

and performing an operation on the key 𝑘 stored at some
node 𝑛 in the B-link tree and the librarian corresponds to a
thread performing a split operation involving nodes 𝑛 and
𝑛′. As in our library analogy, the synchronization technique
of creating a forward pointer (the link) when nodes are split
works independently of how data is stored within each node
and how these are organized in memory (e.g. as a B-tree or
hash table). Hence, it applies to vastly different concrete data
structures. Our goal is to verify the correctness of template

algorithms once and for all so that their proofs can be reused
across different data structure implementations.

The challenge in achieving this algorithmic proof modular-

ity is in reconciling the template abstractions with the proof
technique of reasoning locally about modifications to the
heap as in separation logic (SL), which is itself critical to ob-
taining simple proofs that are easy to mechanize. The proof
of the link technique depends on certain invariants about the
paths that a search for a key 𝑘 follows in the data structure
graph. However, with the standard heap abstractions used
in separation logic (e.g. inductive predicates), it is hard to
express these invariants independently of the invariants that
capture how the data structure is represented in memory.
Consequently, existing proofs such as the one of the B-link
tree in [15] intertwine the synchronization invariants and the

memory invariants, which makes the proof complex, hard
to mechanize, and difficult to reuse on different structures.

Template Proof Methodology. This paper shows how to
adapt and combine recent advances in compositional abstrac-
tions and separation logic in order to achieve the envisioned
algorithmic proof modularity for the important class of con-
current search data structures.

We base our work on the template algorithms for concur-
rent search structures by Shasha and Goodman [57], who
identified the key invariants needed for decoupling reason-
ing about synchronization and memory representation for
such data structures. The second ingredient is the concurrent
separation logic Iris [34, 35, 37, 39]. We show how to capture
the high-level idea of [57] in terms of a new Iris resource alge-
bra, yielding a general methodology for modular verification
of concurrent search structures. This methodology indepen-
dently verifies that (1) the template algorithm satisfies the
(atomic) abstract specification of search structures assuming
that node-level operations maintain certain shape-agnostic
invariants and (2) the implementations of these operations
for each concrete data structure maintains these invariants.
A key technical improvement over [57] is that our new

resource algebra, in combination with Iris’ notion of atomic

triples [16, 36, 37], avoids explicit reasoning about execution
histories and low-level programming language semantics.
Moreover, it yields a local proof technique that eliminates
the need to reason explicitly about the global abstract state of
the data structure. The latter crucially relies on the recently
proposed flow framework [40, 41], the final ingredient of our
methodology. The flow framework provides an SL-based ab-
straction mechanism that allows one to reason about global
inductive invariants of general graphs in a local manner. Us-
ing this framework, we can do SL-style reasoning about the
correctness of a concurrent search structure template while
abstracting from the specific low-level heap representation
of the underlying data structure.
We note that our methodology generalizes to any data

structure indexed by keys, including implementations of
sets, maps, and multisets (but not, e.g., queues and stacks).
Our approach of separating concurrency templates and heap
implementations requires the data structure to have an ab-
stract state (e.g. as mathematical set or map) with a certain
algebraic structure: we need to be able to decompose the
abstract state into local abstract states that are disjoint in
some sense. Moreover, composition of abstract states needs
to be associative, commutative, and homomorphic to compo-
sition of heap graphs. For instance, consider a binary search
tree representing a mathematical map where each tree node
stores a single key/value pair. If one arbitrarily splits the
tree’s heap graph into disjoint subgraphs, then these sub-
graphs represent disjoint mathematical maps whose union
yields the map represented by the original composed heap



Verifying Concurrent Search Structure Templates PLDI ’20, June 15ś20, 2020, London, UK

graph. We conjecture that all search structure implementa-
tions follow these composition principles.

Case Studies. Wedemonstrate ourmethodology bymech-
anizing the correctness proofs of three template algorithms
for concurrent search structures based on the link, the give-
up, and the lock-coupling technique of synchronization (Fig. 1).
For these, we derive concrete verified implementations based
on B-trees, hash tables, and sorted linked lists, resulting in
five different data structure implementations. ğ4 discusses
the proof of the link template in detail. Section ğ5 presents a
summary of the effort required by our verification approach.

A key advantage of our approach is that we can perform se-

quential reasoning when we verify that an implementation is
a valid template instantiation. We therefore perform only the
template proofs in Iris/Coq and verify the implementations
using the automated deductive verification tool GRASShop-
per [51, 52]. The automation provided by GRASShopper en-
ables us to bring the proofs of highly complicated implemen-
tations such as B-link trees within reach.

Our proofs include a mechanization of the meta-theory of
the flow framework presented in [41], carried out indepen-
dently in both GRASShopper and Iris/Coq. The verification
efforts in the two systems are hence each fully self-contained.
The template proofs done in Iris are parametric to any pos-
sible correct implementation of the node-level operations.
The specifications assumed in Iris match those proved in
GRASShopper. However, we note that there is no formal
connection between the proofs done in the two systems. If
one desires end-to-end certified implementations, one can
perform both template and implementation proofs in Iris/-
Coq (albeit with substantial additional effort). Performing the
proofs completely in GRASShopper or a similar SMT-based
verification tool would require additional tooling effort to
support reasoning about Iris-style resource algebras.

The proofs we obtain are more modular, simpler, and more
reusable than existing proofs of such concurrent data struc-
tures. Our experience is that adapting our technique to a
new template algorithm and instantiating a template to a
new data structure takes only a few hours of proof effort.

Summary. The contributions of this paper are:

• We propose a new methodology for verifying concur-
rent search structure templates that enables proofs to
be compositional in terms of program structure and
state, and exploit thread and algorithmic modularity.
The technique applies to any data structure that is
indexed by keys, including implementations of sets,
maps, and multisets.

• We mechanically prove several complex real-world
data structures such as the B-link tree that are beyond
the capability of existing techniques for mechanized
or automated formal proofs. The resulting proofs are
relatively simple and reusable.

• We mechanize the meta-theory of the flow frame-
work [41] within Coq and GRASShopper, and show
how to use it to construct a general parametric re-
source algebra for flow-based proofs in Iris. The possi-
ble uses of this effort go beyond the specific application
considered in this paper.

2 Overview

A search structure is a key-based store that implements three
basic operations: search, insert, and delete. We refer to a
thread seeking to search for, insert, or delete a key 𝑘 as an
operation on 𝑘 , and to 𝑘 as the operation key. For simplicity,
the presentation here treats search structures as containing
only keys (i.e. as implementations of mathematical sets),
but all our proofs can be easily extended to consider search
structures that store key-value pairs.

2.1 B-link Trees

The B-link tree (Fig. 2) is an implementation of a concurrent
search structure based on the B-tree. A B-tree is a general-
ization of a binary search tree, in that a node can have more
than two children. In a binary search tree, each node con-
tains a key 𝑘0 and up to two pointers 𝑦𝑙 and 𝑦𝑟 . An operation
on 𝑘 takes the left branch if 𝑘 < 𝑘0 and the right branch
otherwise. A B-tree generalizes this by having 𝑙 sorted keys
𝑘0, . . . , 𝑘𝑙−1 and 𝑙 + 1 pointers 𝑦0, . . . , 𝑦𝑙 at each node, such
that 𝐵 ≤ 𝑙 + 1 < 2𝐵 for some constant 𝐵. At internal nodes,
an operation on 𝑘 takes the branch 𝑦𝑖 if 𝑘𝑖−1 ≤ 𝑘 < 𝑘𝑖 . In the
most common implementations of B-trees (called B+ trees),
the keys are stored only in leaf nodes; internal nodes con-
tain łseparatorž keys for the purpose of routing only. When
an operation arrives at a leaf node 𝑛, it proceeds to insert,
delete, or search for its operation key in the keys of 𝑛. To
avoid interference, each node has a lock that must be held
by an operation before it reads from or writes to the node.
When a node 𝑛 becomes full, a separate maintenance

thread performs a split operation by transferring half its
keys (and pointers, if it is an internal node) into a new node
𝑛′, and adding a link to 𝑛′ from the parent of 𝑛. A concurrent
algorithm needs to ensure that this operation does not cause
concurrent operations at 𝑛 looking for a key 𝑘 that was trans-
ferred to 𝑛′ to conclude that 𝑘 is not in the structure. The
B-link tree solves this problem by linking 𝑛 to 𝑛′ and storing
a key 𝑘 ′ (the key in the gray box in the figure) that indicates
to concurrent operations that the key 𝑘 can be reached by
following the link edge if 𝑘 > 𝑘 ′. To reduce the time the
parent node is locked, this split is performed in two steps: (i)
a half-split step that locks 𝑛, transfers half the keys to 𝑛′, and
adds a link from 𝑛 to 𝑛′ and (ii) a complete-split performed
by a separate thread that takes half-split nodes 𝑛, locks the
parent of 𝑛, and adds a pointer to 𝑛′.
Fig. 2 shows the state of a B-link tree where node 𝑦2 has

been fully split, and its parent 𝑛 has been half split. The full



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

1 2 4

(−∞, 4) (−∞,∞)

𝑦0

4 5

[4, 5) [4,∞)

𝑦1

6 7 8

[5, 8) [5,∞)

𝑦2

8 9

[8,∞) [8,∞)

𝑦3

4 5

(−∞,∞) (−∞,∞)

𝑛

8

[5,∞) [5,∞)

𝑛′

(−∞,∞) (−∞,∞)

𝑟

(−∞,∞)

(−
∞
, 4
)

[4, 5) (−
∞
, 8
)

[8,∞)

[5,∞)

[4,∞) [5,∞) [8,∞)

(−∞,∞)

Figure 2. An example B-link tree state in the middle of of a split. Node 𝑛 was full, and has been half-split and children 𝑦2 and
𝑦3 have been transferred to new node 𝑛′ (old edges are shown with dotted lines), but the complete-split has yet to add 𝑛′ to the
parent 𝑟 (the dashed edge). Each node contains an array of keys 𝑘0, . . . , 𝑘𝑙−1 in the middle, an array of pointers 𝑦0, . . . , 𝑦𝑙 in the
bottom, the inset (see ğ4.3) in the top left and the inreach (ğ4.3) in the top right. (The key in the gray box is not considered part
of the contents and determines when to take the link edge.) Each edge is labelled by its edgeset (ğ2.2), and the label with a
curved arrow to the top-left of the root is its inflow (explained in ğ4.3).

split of 𝑦2 moved keys {8, 9} to a new node 𝑦3, added a link
edge, and added a pointer to𝑦3 in its (old) parent 𝑛. However,
this caused 𝑛 to become full, resulting in a half split that
moved its children {𝑦2, 𝑦3} to a new node 𝑛′ and added a link
edge to 𝑛′. The key 5 in the gray box in 𝑛 directs operations
on keys 𝑘 ≥ 5 via the link edge to 𝑛′. The figure shows the
state after this half split but before the complete-split when
the pointer of 𝑛′ will be added to 𝑟 .

2.2 Abstracting Search Structures using Edgesets

The link technique is not restricted to B-trees: consider a
hash table implemented as an array of pointers, where the
𝑖th entry refers to a bucket node that contains an array of
keys 𝑘0, . . . , 𝑘𝑙 that all hash to 𝑖 . When a node 𝑛 gets full, it
is locked, its keys are moved to a new node 𝑛′ with twice the
capacity, and 𝑛 is linked to 𝑛′. Again, a separate operation
locks the main array entry and updates it from 𝑛 to 𝑛′.

While these two data structures look completely different,
the main operations of search, insert, and delete follow the
same abstract algorithm. In both, there is some local rule by
which operations are routed from one node to the next, and
both introduce link edges when keys are moved to ensure
that no other operation loses its way.
To concretize this intuition, let the edgeset of an edge

(𝑛, 𝑛′), written es(𝑛, 𝑛′), be the set of operation keys for
which an operation arriving at a node 𝑛 traverses (𝑛, 𝑛′).
The B-link tree in Fig. 2 labels each edge with its edgeset;
the edgeset of (𝑛,𝑦1) is [4, 5) and the edgeset of the link
edge (𝑦0, 𝑦1) is [4,∞). Note that 4 is in the edgeset of (𝑦0, 𝑦1)
even though an operation on 4 would not normally reach 𝑦0.

1 let rec traverse n k =

2 lockNode n;

3 match findNext n k with

4 | None -> n

5 | Some n' ->

6 unlockNode n;

7 traverse n' k

8 let rec cssOp 𝜔 r k =

9 let n = traverse r k in

10 match decisiveOp 𝜔 n k with

11 | None -> unlockNode n;

12 cssOp 𝜔 r k

13 | Some res -> unlockNode n;

14 res

Figure 3. The link template algorithm, which can be instan-
tiated to the B-link tree algorithm by providing implementa-
tions of helper functions findNext and decisiveOp. findNext
n k returns Some n’ if 𝑘 ∈ es(𝑛, 𝑛′) and None if there exists
no such 𝑛′. decisiveOp n k performs the operation 𝜔 (either
search, insert, or delete) on 𝑘 at node 𝑛.

This is deliberate. In order to make edgeset a local quantity,
we say 𝑘 ∈ es(𝑛, 𝑛′) if an operation on 𝑘 would traverse
(𝑛, 𝑛′) assuming it somehow found itself at 𝑛. In the hash
table, assuming there exists a global root node, the edgeset
from the root to the 𝑖th array entry is {𝑘 | ℎ𝑎𝑠ℎ(𝑘) = 𝑖}. The
edgeset from an array entry to the bucket node is the set of
all keys KS, as is the edgeset from a deleted bucket node to
its replacement.

2.3 The Link Template Algorithm

Fig. 3 lists the link template algorithm [57] that uses edge-
sets to describe the algorithm used by all core operations for
both B-link trees and hash tables in a uniform manner. The
algorithm assumes that an implementation provides certain
primitives or helper functions, such as findNext that finds



Verifying Concurrent Search Structure Templates PLDI ’20, June 15ś20, 2020, London, UK

the next node to visit given a current node𝑛 and an operation
key 𝑘 , by looking for an edge (𝑛, 𝑛′) with 𝑘 ∈ es(𝑛, 𝑛′). For
the B-link tree, findNext does a binary search on the keys in
a node to find the appropriate pointer to follow. For the hash
table, when at the root findNext returns the edge to the array
element indexed by the hash of the key, and at bucket nodes
it follows the link edge if it exists. The function cssOp can be
used to build implementations of all three search structure
operations by implementing the helper function decisiveOp

to perform the desired operation (read, add, or remove) of
key 𝑘 on the node 𝑛.

An operation on key 𝑘 starts at the root 𝑟 , and calls a func-
tion traverse on line 9 to find the node on which it should
operate. traverse is a recursive function that works by fol-
lowing edges whose edgesets contain 𝑘 (using the helper
function findNext on line 3) until the operation reaches a
node 𝑛 with no outgoing edge having an edgeset containing
𝑘 . Note that the operation locks a node only during the call to
findNext, and holds no locks when moving between nodes.
traverse terminates when findNext does not find any 𝑛′

such that 𝑘 ∈ es(𝑛, 𝑛′), which, in the B-link tree case means
it has found the correct leaf to operate on. At this point,
the thread performs the decisive operation on 𝑛 (line 10). If
the operation succeeds, then decisiveOp returns Some res

and the algorithm unlocks 𝑛 and returns res. In case of fail-
ure (say an insert operation encountered a full node), the
algorithm unlocks 𝑛, gives up, and starts from the root again.

If we can verify this link template algorithm with a proof
that is parameterized by the helper functions, then we can
reuse the proof across diverse implementations. In the rest of
this paper, we show how to do this using the flow framework
in the Iris separation logic.

3 A Brief Introduction to Flows

This section describes the flow framework [40, 41], a separa-
tion logic based approach for specifying and reasoning about
unbounded data structures. We give an informal description
of the framework and demonstrate flow-based reasoning
on a simple list example (for a more formal introduction,
see [40, 41]). We use the fundamental flow framework [41]
in this paper as it simplifies our proofs.
Separation logic is based on the powerful concept of lo-

cal reasoning. However, many important properties of data
structure graphs depend on non-local information. For in-
stance, one cannot express the property that a graph is a
tree by conjoining per-node invariants. The flow framework
allows one to specify global graph properties in terms of
node-local invariants by extending the graph with a flow

ś a function from nodes to values from some flow domain.
These flow values are constrained to satisfy the flow equation,
i.e. they must be a fixpoint of a set of algebraic equations
induced by the entire graph (thereby allowing one to cap-
ture global constraints at the node level). When modifying a

𝑟

𝑙

𝑛

𝑚

𝜆id

𝜆id

𝑟

𝑙

𝑛

𝑚

𝜆id

𝜆id

⇝

𝑙

𝑚

1

1

Figure 4. Unlinking a node 𝑛 from a list by swinging the
pointer from its predecessor 𝑙 to its successor𝑚. Edges are
labeled with edge labels for path counting (𝜆0 edges omitted).
The interface of the blue region {𝑙, 𝑛} is shown on the right,
and is preserved by this update.

graph, the framework allows one to perform a local proof
that flow-based invariants are maintained via the notion of
a flow interface. This is an abstraction of a graph region that
specifies the flow values entering and exiting the region; if
these are preserved then the flow values of the rest of the
graph will be unchanged.
The rest of this section illustrates these concepts by con-

sidering some simple examples. Suppose we have a graph 𝐺
on a set of nodes 𝑁 and we want to express the property that
it is a list rooted at some node 𝑟 as a local condition on each
node. To do this, we need to know some global information
at each node: for instance, suppose there existed a function
pc that mapped each node 𝑛 to the number of paths from 𝑟

to 𝑛.1 If for every node 𝑛, pc(𝑛) = 1 and 𝑛 has at most one
outgoing edge (both node-local assertions) then we know
that 𝐺 must be a list rooted at 𝑟 .
This path-counting function pc is an example of a flow

because it can be defined as a solution to the flow equation:

∀𝑛 ∈ 𝑁 . fl(𝑛) = in(𝑛) +
∑

𝑛′∈𝑁

e(𝑛′, 𝑛) (fl(𝑛′)) (FlowEqn)

This is a fixpoint equation on a function fl : 𝑁 → 𝑀 , where
𝑀 is a flow domain, in is an inflow that specifies the default-
/initial flow value of each node, and e is a mapping from pairs
of nodes to edge functions that determine how the flow of one
node affects the flow of its neighbor. The flow framework
works with directed partial graphs that are augmented with a
flow, called flow graphs. A flow graph is a tuple𝐻 = (𝑁, e, fl)

consisting of a finite set of nodes 𝑁 ⊆ 𝔑 (𝔑 is potentially
infinite), a mapping from pairs of nodes to edge functions
e : 𝑁 × 𝔑 → 𝐸, and a function fl such that (FlowEqn) is
satisfied for some inflow in. Flow graph composition𝐻1 ⊙𝐻2

is a partial operator that is a disjoint union of the nodes,

1We assume a definition of pc where pc(𝑟 ) = 1 even in acyclic graphs, this
is because typically we are interested in the reachability of heap nodes from
an external stack pointer.



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

edges, and flow values and is defined only if the resulting
graph continues to satisfy (FlowEqn).
In the case of the path-counting flow, the flow domain

𝑀 is N, the inflow is in(𝑛) ≔ (𝑛 = 𝑟 ? 1 : 0), and the edge
function e(𝑛, 𝑛′) is the identity function 𝜆id ≔ (𝜆𝑚. 𝑚) for
all edges (𝑛, 𝑛′) in 𝐺 and the zero function 𝜆0 ≔ (𝜆𝑚. 0)

otherwise. The flow equation then reduces to the familiar
constraint that the number of paths from 𝑟 to𝑛, pc(𝑛), equals
1 if 𝑛 = 𝑟 else 0, plus the sum of the number of paths to all
𝑛′ that have an edge to 𝑛.

The problem with assuming each node knows a flow value
that satisfies some global constraint over the entire graph
is that when a program modifies the graph, it can be hard
to show that the flow-based invariants are maintained. In
particular, when the program modifies a small part of the
graph, say by modifying a single edge, we would ideally
like to prove that the flow invariants are preserved by only
reasoning about a small region around the modified edge.
The flow framework enables such local proofs by means of
an abstraction of flow (sub)graphs called flow interfaces.
Consider the simple example of a singly-linked list dele-

tion procedure that unlinks2 a given node 𝑛 from the list
(Fig. 4). The program swings the pointer from 𝑛’s prede-
cessor 𝑙 to 𝑛’s successor𝑚. We use the path-counting flow
and the flow-based local constraints described above to ex-
press the invariant that the graph is a list (we show how
to formally express this later). For a flow graph 𝐻 over the
path-counting flow domain, modifying a single edge (𝑛, 𝑛′)
can potentially change the flow (the path-count) of every
node reachable from 𝑛. However, notice that the modifica-
tion shown in Fig. 4 changes (𝑙, 𝑛) to (𝑙,𝑚) where𝑚 is the
successor of 𝑛. This preserves the flow of every node outside
the modified subgraph 𝐻1 = 𝐻 | {𝑙,𝑛} (shown in blue in Fig. 4)
because there was one path coming out of 𝐻1 and going to
𝑚 both before and after the modification.

Flow interfaces build on this intuition; the interface 𝐼 =
(in, out) of a flow graph 𝐻 with domain 𝑁 is a tuple con-
sisting of the inflow in : 𝑁 → 𝑀 (e.g., how many incoming
paths each node in𝐻 has) and the outflow out : (𝔑\𝑁 ) → 𝑀

(e.g., how many outgoing paths𝐻 has to each external node).
Formally, the inflow of 𝐻 = (𝑁, e, fl) is the in that satisfies
(FlowEqn) (this is unique, see [41]) and the outflow is defined
as out (𝑛) ≔

∑
𝑛′∈𝑁 e(𝑛′, 𝑛) (fl(𝑛′)). For example, the flow in-

terface of {𝑙} in the left of Fig. 4 is ({𝑙 ↣ 1} , 𝜆0 [𝑛 ↣ 1])

because 𝑙 has one incoming path from outside {𝑙} and the sub-
graph {𝑙} has one outgoing path to𝑛. The interface of {𝑙, 𝑛} in
the left and center of Fig. 4 is ({𝑙 ↣ 1, 𝑛↣ 0} , 𝜆0 [𝑚↣ 1]),
which is depicted abstractly on the right. The flow frame-
work tells us that if we have 𝐻 = 𝐻1 ⊙𝐻2 and we modify 𝐻1

to some𝐻 ′
1
with the same interface, then𝐻 ′ = 𝐻 ′

1
⊙𝐻2 exists.

This means that the flow of all nodes in 𝐻2 is unchanged;

2We assume a garbage-collected setting in this paper.

thus it suffices to check that 𝐻 ′
1
satisfies the flow-based in-

variant and has the same interface as 𝐻1, which are both
local checks.

Interfaces are also a convenient abstraction for expressing
specifications. As we have seen, the flow framework requires
expressing graph properties as a combination of global con-
straints (e.g., in path-counting the inflow of the entire graph
determines the root node) and node-local constraints (e.g.,
the path-count of every node is 1). The global constraints can
be expressed in terms of the global interface (of the entire
graph or data structure), for instance in the list case:

𝜑 (𝐼 ) ≔ 𝐼 .in = (𝜆𝑛. (𝑛 = 𝑟 ? 1 : 0)) ∧ 𝐼 .out = 𝜆0

We use 𝐼 .in and 𝐼 .out to denote, respectively, the inflow and
outflow of an interface 𝐼 . Note that, saying the outflow is
uniformly zero makes it a closed list (no pointers leave the
structure) as opposed to a list segment. The node-local con-
straints can be expressed on the singleton interfaces of each
node; as the inflow of a node that does not have a self edge is
equal to its flow, and most constraints on the edges of a node
can also be expressed in terms of its outflow. For instance,
to encode a list, one can say that each node and its singleton
interface satisfy the following predicate: 3

𝜈ls (𝑛, 𝐼𝑛) ≔ 𝐼𝑛 .in(𝑛) = 1 ∧ (𝐼𝑛 .out = 𝜆0 ∨ 𝐼𝑛 .out = 𝜆0 [_↣ 1])

By instantiating the flow domain and specifying 𝜑 and 𝜈
appropriately, one can construct flows and flow interfaces
that capture any graph property of interest [41]. Formally,
flow interfaces form an algebra with a notion of interface
composition 𝐼1 ⊕ 𝐼2 that can be defined independently of
flow graphs. The connection to flow graphs is needed only
to interpret the specifications that we write in terms of flow
interfaces. We can define an abstraction relation between
flow graphs and interfaces and show that interfaces define
a congruence relation on flow graphs. Additionally, flow
interfaces form a separation algebra [12], which means they
can be used in any abstract separation logic (and, as we show
in this paper, in Iris).

In our proofs in ğ4, we specify data structure invariants in
terms of constraints on singleton and global interfaces as de-
scribed above. We then tie the concrete heap representation
of each node to its singleton interface and say that the global
interface is the composition of all singleton interfaces in the
separation logic. The main proof obligation is showing that
the program maintains the per-node condition 𝜈 in its foot-
print (i.e. the set of nodes it modifies), and that it preserves
the interface of the footprint, which will imply that all other
nodes have unchanged flows.

4 Verifying Search Structure Templates

This section shows how to tie together the edgeset frame-
work and flow interfaces in Iris in order to verify template

3Krishna et al. [41] use 𝛾 for this node-local predicate, but we use 𝜈 since
the former is used for ghost locations by Iris.



Verifying Concurrent Search Structure Templates PLDI ’20, June 15ś20, 2020, London, UK

〈
𝐶. CSS(𝑟,𝐶)

〉
cssOp 𝜔 𝑘

〈
res. CSS(𝑟,𝐶 ′) ∗ Ψ𝜔 (𝑘,𝐶,𝐶 ′, res)

〉

Ψ𝜔 (𝑘,𝐶,𝐶 ′, res) ≔




𝐶 ′ = 𝐶 ∧ (res ⇔ 𝑘 ∈ 𝐶) 𝜔 = search

𝐶 ′ = 𝐶 ∪ {𝑘} ∧ (res ⇔ 𝑘 ∉ 𝐶) 𝜔 = insert

𝐶 ′ = 𝐶 \ {𝑘} ∧ (res ⇔ 𝑘 ∈ 𝐶) 𝜔 = delete

Figure 5. Abstract specification of cssOp.

algorithms for concurrent search structures.We use the proof
of the link template from ğ2 as an example. The other tem-
plate algorithms we prove, as well as the implementations we
consider, are described in the next section. For space reasons,
we provide only the intuition for Iris’ key logical constructs
and reasoning steps as and when they are used; for a more
detailed introduction see [35].

We specify the concurrent behavior of search structures us-
ing atomic triples [16, 36, 37]. A specification𝑅 −∗

〈
𝑃

〉
𝑒

〈
𝑄

〉

consists of a local precondition 𝑅, a shared precondition 𝑃
and a postcondition 𝑄 . Such a triple means that the pro-
gram 𝑒 , despite executing in potentially many atomic steps,
appears to operate atomically on the shared state and trans-
form it from 𝑃 to 𝑄 . Any thread-local resources that 𝑒 needs
are captured in 𝑅. Atomic triples are strongly related to the
well-known linearizability [25] criterion for concurrent al-
gorithms. Intuitively, there is a point in time, known as the
linearization point, where 𝑒 updates 𝑃 to 𝑄 .
Our atomic specification of a search structure operation

𝜔 (either search, insert, or delete) in Fig. 5 uses an abstract
predicate CSS(𝑟,𝐶) (for concurrent search structure) that
represents a search structure with root 𝑟 containing the set
of keys 𝐶 . The binder on 𝐶 in the precondition is a special
pseudo-quantifier that captures the fact that during the exe-
cution of 𝜔 , the value of 𝐶 can change (e.g. by concurrent
operations) but at the linearization point, 𝜔 on operation
key 𝑘 changes CSS(𝑟,𝐶) to CSS(𝑟,𝐶 ′) in an atomic step. The
new set of keys𝐶 ′, and the eventual return value res, satisfy
the predicate Ψ𝜔 (𝑘,𝐶,𝐶

′, res) ś here 𝐶 is bound to the con-
tents just before the linearization point. The bottom line is
that clients of the search structure can pretend that they are
using an atomic implementation with specification Ψ𝜔 .

4.1 High-level Proof Idea

As our template algorithms are parameterized by concrete
data structure implementations, their proofs cannot use any
data-structure-specific invariants (such as that the array of
keys in a B-tree is sorted). This also means that the speci-
fications for helper functions like findNext and decisiveOp

assumed by the templates must be data-structure-agnostic.
Furthermore, if we are able to give local specifications to
these helper functions then, since they operate on locked
nodes, we will be able to verify their implementations using
sequential reasoning. The key challenge is that we need to

find a postcondition for decisiveOp that speaks only about
the node 𝑛 that it is called on, yet lets us prove that it also
updates the global contents 𝐶 appropriately.
Here is a first attempt at such a specification. Let us for

the moment abstract from the data layout of the implemen-
tation and reason about mathematical graphs whose nodes
are labelled with sets of keys (their contents). For example in
the B-link tree in Fig. 2, the contents of 𝑦0 are {1, 2}, while
the contents of internal nodes like 𝑛 are ∅. We could say that
decisiveOp 𝜔 𝑛 𝑘 takes in a node 𝑛 with contents𝐶𝑛 and re-
turns𝑛 with updated contents𝐶 ′

𝑛 such that Ψ𝜔 (𝑘,𝐶𝑛,𝐶
′
𝑛, res)

holds. The problem is in showing that this lifts to the entire
structure, i.e. Ψ𝜔 (𝑘,𝐶,𝐶

′, res). This is hard because the re-
lation between 𝐶 and 𝐶𝑛 is that 𝐶 is the union of 𝐶𝑛 for all
nodes 𝑛. Similarly, in the B-link tree in Fig. 2, if an operation
seeking to delete 3 arrived at node 𝑦0 and returned False

because 3 was not present, then the proof must show that 3
is not present anywhere else in the structure.
Intuitively, we know that this is true because the rules

defining a B-link tree ensure that 𝑦0 is the only node where
3 can be present. Let the keyset of a node 𝑛 be the set of
keys ks(𝑛) that, if present in the structure, must be in 𝑛. For
example, the rules of a B-tree dictate that the keyset of node
𝑦0 is (−∞, 4), and the keyset of 𝑦2 is [5, 8). Notice that every
pair of distinct nodes have disjoint keysets; this means given
any key 𝑘 there is exactly one node where 𝑘 could be present.
If we have a data structure where all keysets are disjoint and
the contents of each node 𝑛 are a subset of the keyset of
𝑛, then we can show that it is sufficient for decisiveOp to
ensure that Ψ𝜔 holds on the node 𝑛 such that 𝑘 ∈ ks(𝑛).
In our example, the delete operation was looking for 3 and
called decisiveOp on 𝑦0. As 3 ∈ ks(𝑦0) and all keysets in the
structure are disjoint, we know that if 3 is not in 𝑦0 then 3

cannot be anywhere else in the structure.
To implement this high-level proof idea, we need to answer

the following questions: (1) How do we formalize the proof
argument in a separation logic? (2) How do we specify and
reason locally about keysets (a quantity that depends on
the entire graph)? (3) How do we show that the template
algorithm finds the node 𝑛 with 𝑘 in its keyset? We solve (1)
using a novel Iris resource algebra in ğ4.2 and use flows to
encode keysets to solve (2) and (3) in ğ4.3.

4.2 Ghost State and Disjoint Keysets

Iris models both the knowledge of threads about the shared
state (e.g. 𝑘 ∈ ks(𝑛)) and protocols for modifying the shared
state (e.g. only locked nodes can be modified) using the no-
tion of ghost state. Ghost state, also known as logical or
auxiliary state, is program state that helps with the proof but
has no effect on run-time behavior. A proof about a program
using ghost state transfers to a proof of the original program
via łerasurež of the ghost state. Ghost state can be allocated
by the prover at any time at unused ghost names, the ana-
logue of memory addresses for concrete locations, and will



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

contain values drawn from a user-specified resource algebra
(RA). A resource algebra is a generalization of the partial
commutative monoid (PCM) algebra commonly used by sepa-
ration logics. It consists of a set𝑀 , a validity predicateV(−),
a core function |−| that maps elements to their core (a gener-
alization of units), and a binary operation (·) : 𝑀 ×𝑀 → 𝑀

(see [35] for formal definitions). Iris expresses ownership of
ghost state by the proposition 𝑎

𝛾 which asserts that own-
ership of a piece 𝑎 ∈ 𝑀 of the ghost location 𝛾 (analogous
to the points-to predicate from standard separation logics).
Ghost state can be split and combined according to the rules

of the underlying RA: 𝑎 𝛾
∗ 𝑏

𝛾
⊣⊢ 𝑎 · 𝑏

𝛾
. Furthermore,

Iris maintains the invariant that the composition of all the
pieces of ghost state at a particular location is valid (as given
by V). To do this, Iris restricts updates to ghost locations to
only frame-preserving updates 𝑎 ⇝ 𝑏, i.e. those pairs such
that 𝑏 composes with any frame (other element) that 𝑎 could
have composed with.

For instance, given an RA𝑀 , the authoritative RAAuth(𝑀)

(see [35] for the formal definition) can be used to model situa-
tions where one thread owns an authoritative element 𝑎 ∈ 𝑀

and other parties are allowed to own fragments 𝑏 ∈ 𝑀 ,
with the invariant that all fragments 𝑏 ≼ 𝑎 (shorthand for
∃𝑐. 𝑎 = 𝑏 · 𝑐). This can be used to model, for example, a
shared heap, where there is a single authoritative heap 𝑎
and each thread owns a fragment of it. The invariant that
all fragments 𝑏 ≼ 𝑎 implies that the fragments owned by
all threads are consistent. We write •𝑎 for ownership of the
authoritative element and ◦𝑏 for fragmental ownership.
In order to talk about the keysets and contents of nodes,

we use an authoritative RA of pairs of sets of keys (𝑋,𝑌 )
such that 𝑌 ⊆ 𝑋 (a constraint we can enforce in the validity
predicateV). We call this the keyset RA and define the RA op-
erator to be component-wise disjoint union. We can then de-

note the abstract state of the search structure by •(KS,𝐶)
𝛾

(where KS is the key space, or set of all keys, and 𝐶 is the
global contents), and denote the local abstract state (see ğ1)

of each node by ◦(𝐾𝑛,𝐶𝑛)
𝛾
(where𝐾𝑛 and𝐶𝑛 are the keyset

and contents, respectively, of 𝑛). By the definition of the au-

thoritative RA, the assertion •(KS,𝐶)
𝛾
∗∗𝑛∈𝑁 ◦(𝐾𝑛,𝐶𝑛)

𝛾

expresses that the sets 𝐾𝑛 for each 𝑛 ∈ 𝑁 are disjoint and
their union is included in KS . Moreover, 𝐶𝑛 ⊆ 𝐾𝑛 and simi-
larly the 𝐶𝑛 sets are disjoint and are included in 𝐶 . If we can
tie each 𝐶𝑛 and 𝐾𝑛 to the contents and keyset, respectively,
of 𝑛, then an assertion like the one above gives us the desired
disjoint decomposition of abstract state into local states.
The keyset RA has frame-preserving updates such as:

ks-del

V((𝐾,𝐶)) V((𝐾𝑛,𝐶𝑛)) 𝑘 ∈ 𝐾𝑛

•(𝐾,𝐶), ◦(𝐾𝑛,𝐶𝑛) ⇝ •(𝐾,𝐶 \ {𝑘}), ◦(𝐾𝑛,𝐶𝑛 \ {𝑘})

This rule says that if •(𝐾,𝐶)
𝛾
and ◦(𝐾𝑛,𝐶𝑛)

𝛾
are valid

resources such that 𝑘 ∈ 𝐾𝑛 then we can update the fragment
to (𝐾𝑛,𝐶𝑛 \ {𝑘}) (for instance when we remove 𝑘 from the
contents of a node𝑛) and the authoritative resource to (𝐾,𝐶\
{𝑘}) (meaning 𝑘 is also removed from the global contents).
Combining this with a similar rule for insertions, we get the
following lemma:

ks-upd

•(𝐾,𝐶)
𝛾
∗ ◦(𝐾𝑛,𝐶𝑛)

𝛾
∗ 𝑘 ∈ 𝐾𝑛 ∗ Ψ𝜔 (𝑘,𝐶𝑛,𝐶

′
𝑛, res)

¤|⇛∃𝐶 ′. •(𝐾,𝐶 ′)
𝛾
∗ ◦(𝐾𝑛,𝐶

′
𝑛)

𝛾
∗ Ψ𝜔 (𝑘,𝐶,𝐶 ′, res)

This lemma is expressed in terms of Iris’ basic update modal-
ity ¤|⇛. The intuitive meaning of 𝑃 ¤|⇛𝑄 is that if we have the
resource 𝑃 then we can do a ghost state update and get 𝑄 .

4.3 Encoding Keysets using Flows

We now turn to the question of how to tie the sets used in the
keyset RA to the concrete nodes, and reason locally about
graph updates and their effects on keysets using flows (ğ3).

To define keysets using flows, we build on the concept of
edgesets. Recall that the edgeset es(𝑛, 𝑛′) is the set of keys
for which an operation arriving at a node 𝑛 traverses (𝑛, 𝑛′).
Let the inset of a node 𝑛, written ins(𝑛), be defined by the
following fixpoint equation

∀𝑛 ∈ 𝑁 . ins(𝑛) = in(𝑛) ∪
⋃

𝑛′∈𝑁

es(𝑛′, 𝑛) ∩ ins(𝑛′)

where in(𝑛) ≔ (𝑛 = 𝑟 ? KS : ∅). The inset of a node 𝑛 is thus
KS if 𝑛 equals the root 𝑟 , else the set of keys 𝑘 that are in the
inset of a predecessor 𝑛′ such that 𝑘 ∈ es(𝑛′, 𝑛). Intuitively,
ins(𝑛) is the set of keys for which operations could poten-
tially arrive at 𝑛 in a sequential setting. For example, in Fig. 2
insets are shown in the top-left of each node; ins(𝑦2) = [5, 8)

and ins(𝑛′) = [5,∞). Let the outset of 𝑛, outs(𝑛), be the keys
in the union of edgesets of edges leaving 𝑛. The keyset can
then be defined as ks(𝑛) = ins(𝑛) \ outs(𝑛).

If the equation defining the inset looks familiar, the reason
is that it is just (FlowEqn) in disguise using sets and set
operations, and edge functions that take the intersection
with the appropriate edgeset. This means we can define a
flow domain where the flow at each node is the inset of that
node. This will allow us to talk about the keyset in node-local
conditions: in particular, we can now give meaning to the
ghost state storing the keysets that were described in ğ4.2.
Encoding the inset as a flow requires using multisets of

keys4 as the flow domain. We label each edge (𝑛, 𝑛′) in a
graph𝐺 by the function ees(𝑛,𝑛′) ≔ (𝜆𝑋 . es(𝑛, 𝑛′) ∩𝑋 ). If the
global inflow is in = (𝜆𝑛. (𝑛 = 𝑟 ? KS : ∅)), which encodes
the fact that operations on all keys 𝑘 start at the root 𝑟 , then
the flow equation implies that fl(𝑛) is the inset of 𝑛.
How does the link template ensure that 𝑘 ∈ ks(𝑛) when

decisiveOp is called? In the absence of concurrent operations

4We cannot use sets of keys because a flow domain is a cancellative com-
mutative monoid [41], and set union is not cancellative.



Verifying Concurrent Search Structure Templates PLDI ’20, June 15ś20, 2020, London, UK

(particularly concurrent split operations), this follows be-
cause we start off at the root 𝑟 , where by definition𝑘 ∈ ins(𝑟 ),
and traverse an edge (𝑛, 𝑛′) only when 𝑘 ∈ es(𝑛, 𝑛′), main-
taining the invariant that 𝑘 ∈ ins(𝑛). When there does not
exist an outgoing edge with 𝑘 in the edgeset, we know by
definition that 𝑘 ∈ ks(𝑛).
In the presence of concurrent split operations, the 𝑘 ∈

ins(𝑛) invariant no longer holds because the inset of a node
𝑛 shrinks after a split. For example, when the split operation
shown in Fig. 2 completes and 𝑟 is linked to 𝑛′, then the
inset of 𝑛 will reduce from (−∞,∞) to (−∞, 5) as all keys
larger than 5 will go from 𝑟 directly to 𝑛′. This means that
an operation looking for a key 𝑘 > 5 which was on 𝑛 before
the split will now find itself at a node such that 𝑘 ∉ ins(𝑛).
Fortunately, the operation is not lost: if it traverses the

link edge, it will arrive at a node with 𝑘 in its inset (namely,
𝑛′). This means that if we add 𝑘 back to the inset of 𝑛, then
we would not be changing the keyset of any node: 𝑘 will not
be in 𝑛’s keyset as it is in the edgeset of the link edge, and 𝑘 is
already in the inset of 𝑛′. Because this quantity is no longer
the inset (as 𝑘 would not arrive at 𝑛 in a sequential setting),
we call this the inreach of 𝑛, written inr(𝑛) (intuitively, this
is the set of keys 𝑘 that can start at 𝑛 and reach the node
containing 𝑘 in its keyset). Fig. 2 shows the inreach of each
node in its top-right corner; the inreach of𝑦2 is [5,∞) despite
its inset’s being only [5, 8) because it can still reach nodes
with keys in [8,∞) in their keyset via link edges.

Formally we define the inreach to be the solution to the
following fixpoint equation

∀𝑛 ∈ 𝑁 . inr(𝑛) = in(𝑛) ∪
⋃

𝑛′∈𝑁

es(𝑛′, 𝑛) ∩ inr(𝑛′)

where in is any inflow such that in(𝑟 ) = KS. This may look
identical to the definition of inset, but there is a subtle, but
vital, difference: by not constraining the inflow of non-root
nodes, we enable the split operation to add flow to nodes it
has split to ensure that their inreach records the fact that they
can still reach keys 𝑘 that were moved to other nodes. For
example, in Fig. 2 when the full-split adds the edge (𝑟, 𝑛′) and
re-routes keys in [5,∞) to take (𝑟, 𝑛′) instead of (𝑟, 𝑛), then
𝑛’s inset reduces from (−∞,∞) to (−∞, 5). However, the
full-split can instead increase in(𝑛) from ∅ to [5,∞), thereby
preserving its inreach of (−∞,∞). As the newly added keys
[5,∞) are propagated via the link edge to a node that has
them in its inset (𝑛′), this increase in inflow does not change
any keysets.
We have one final issue to solve: as it stands, the full-

split does not preserve the interface of {𝑟, 𝑛, 𝑛′} because the
outflow to 𝑦2 and 𝑦3 has increased. The reason is that the
flow domain is multisets of keys, and since we increased
in(𝑛) by [5,∞) there are now two copies of these keys
leaving 𝑛′. Our solution is to tweak the edge functions to

inr(𝐼𝑛, 𝑛) ≔ 𝐼𝑛 .in(𝑛) outs(𝐼𝑛) ≔
⋃

𝑛′∉dom(𝐼𝑛 )

outs(𝐼𝑛, 𝑛
′)

outs(𝐼𝑛, 𝑛
′) ≔ 𝐼𝑛 .out (𝑛

′) ks(𝐼𝑛, 𝑛) ≔ inr(𝐼𝑛, 𝑛) \ outs(𝐼𝑛, 𝑛)

inFP(𝑛) ≔ ∃𝑁 . ◦𝑁
𝛾𝑓

∗ 𝑛 ∈ 𝑁

inInr(𝑘,𝑛) ≔ ∃𝑅. ◦𝑅
𝛾𝑖 (𝑛)

∗ 𝑘 ∈ 𝑅

N(𝑛, 𝐼𝑛,𝐶𝑛) ≔ node(𝑛, 𝐼𝑛,𝐶𝑛) ∗ ½ 𝐼𝑛
𝛾ℎ (𝑛)

∗ ◦(ks(𝐼𝑛, 𝑛),𝐶𝑛)
𝛾𝑘

∗ inFP(𝑛) ∗ dom(𝐼𝑛) = {𝑛}

𝜑 (𝑟, 𝐼 ) ≔ V(𝐼 ) ∧ 𝐼 .in(𝑟 ) = KS ∧ 𝐼 .out = 𝜆0

CSS(𝑟,𝐶) ≔ ∃𝐼 . •𝐼
𝛾𝐼

∗ 𝜑 (𝑟, 𝐼 ) ∗ •(KS,𝐶)
𝛾𝑘

∗ • dom(𝐼 )
𝛾𝑓

∗ ∗
𝑛∈dom(𝐼 )

(

∃𝑏, 𝐼𝑛 . ℓ (𝑛) ↦→ 𝑏 ∗ (𝑏 ? True : ∃𝐶𝑛 . N(𝑛, 𝐼𝑛,𝐶𝑛))

∗ ◦𝐼𝑛
𝛾𝐼

∗ ½ 𝐼𝑛
𝛾ℎ (𝑛)

∗ •inr(𝐼𝑛, 𝑛)
𝛾𝑖 (𝑛)

∗ dom(𝐼𝑛) = {𝑛}

)

Figure 6. The invariant for the link template proof.

ees(𝑛,𝑛′) ≔ (𝜆𝑋 . {𝑘 ↣ (𝑘 ∈ es(𝑛, 𝑛′) ∩ 𝑋 ? 1 : 0)}), essen-
tially projecting the multiset intersection back to a set, and
preventing multiple copies of keys from being propagated.
We now have an invariant for traverse: 𝑘 ∈ inr(𝑛). This

is true at the root, because KS = in(𝑟 ) ⊆ inr(𝑟 ), and it
is preserved during traversal since findNext follows edges
with 𝑘 in the edgeset. We will ensure that no concurrent
operations reduce the inreach of any node by adding an
appropriate constraint to the search structure predicate CSS
in ğ4.4. The keyset of each node 𝑛 that is stored in the keyset
RA is defined to be inr(𝑛) \ outs(𝑛). This means that when
findNext returns None, 𝑘 ∈ inr(𝑛) by the traversal invariant
and 𝑘 ∉ outs(𝑛) by the specification of findNext. Thus 𝑘 ∈

ks(𝑛), which by ğ4.2 is sufficient to ensure correctness of the
decisive operation.

4.4 An Invariant for the Link Template

Fig. 6 contains our definition of the search structure predicate
CSS that captures the link template invariant.5 CSS is param-
eterized by a heap representation predicate node(𝑛, 𝐼𝑛,𝐶𝑛)

whose definition is implementation-specific, and provided
by the user for implementation proofs (more on this later).
Our definition ofCSS captures both the invariant maintained
by the shared state as well as the protocol threads follow for
modifying it:

• We use an authoritative RA of flow interfaces at location𝛾𝐼
for the flow-based reasoning. Like the keyset RA from ğ4.2,

CSS contains the assertion •𝐼
𝛾𝐼

∗ ∗𝑛∈𝑁 ◦𝐼𝑛
𝛾𝐼

which
makes 𝐼 the global interface, i.e. the composition of 𝐼𝑛
for all fragments 𝐼𝑛 . This allows threads to modify the
structure as long as they preserve the flow interface of

5The top part of Fig. 6 introduces some shorthand notation, which overload
some symbols used before because they express the same quantities.



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

the modified region (see ğ3). We require that 𝐼 satisfies
𝜑 (𝑟, 𝐼 ) (see Fig. 6), which says that the global interface is
valid, the global inflow at the root 𝑟 is the key space KS (as
per the inreach equation from ğ4.3), and that the search
structure is closed. The former is used to prove that the
traversal invariant 𝑘 ∈ inr(𝑛) holds initially, when 𝑛 = 𝑟 ,
and the latter is used to prove that operations do not leave
the structure during traversal.

• We use the keyset RA described in ğ4.2 at ghost location
𝛾𝑘 . Note that the N predicate ties the fragments to each
node’s contents and keysets.

• We use an authoritative RA of sets of nodes at location 𝛾𝑓
to encode the footprint, i.e. the domain of the search struc-
ture’s global interface. CSS owns the authoritative version

• dom(𝐼 )
𝛾𝑓
, and the following properties of authoritative

sets allow threads to take snapshots of the footprint and
assert locally that a given node is in the footprint:

auth-set-upd

𝑋 ⊆ 𝑌

•𝑋 ⇝ •𝑌

auth-set-snap

•𝑋 ⇝ •𝑋 · ◦𝑋

auth-set-valid

V(•𝑋 · ◦𝑌 )

𝑌 ⊆ 𝑋

The inFP predicate in Fig. 6 uses this RA to express the
fact that we have a pointer to a node in the footprint (e.g.,
to prove that lockNode is called on an allocated node).

• We assume that every node 𝑛 ∈ dom(𝐼 ) has a lock bit at
location ℓ (𝑛) that is set to True iff node 𝑛 is locked. This
lock protects the node predicate N, which can be removed
from CSS by threads when locking the node (and hence,
transfer the node into local state).

• We use fractional RAs at locations 𝛾ℎ (𝑛) for each node 𝑛
to store one half of the node’s singleton interface 𝐼𝑛 inside
and outside N. Since fractional RAs can only be updated
when both halves are together, this prohibits other threads
from modifying the interface of 𝑛 when one thread has
locked 𝑛 and removed N(𝑛, 𝐼𝑛,𝐶𝑛) from CSS.

• Finally, we use an authoritative RA of sets of keys, at
locations 𝛾𝑖 (𝑛) for each node 𝑛, to encode the inreach of
each node. This RA has similar rules as the authoritative
RA of sets of nodes at location 𝛾𝑓 , hence threads can take
snapshots of a node 𝑛’s inreach and assert that a given key
is in it even when they have not locked 𝑛 (using the inInr
predicate from Fig. 6).

4.5 Proof of the Link Template

Before we describe the link template proof, we start by pre-
senting the assumptions it makes about its implementation
(summarized in Fig. 7). Recall that we need local specifica-
tions for the helper functions findNext and decisiveOp. Our
specifications say that findNext is given a node 𝑛 satisfying
node(𝑛, 𝐼𝑛,𝐶𝑛) and returns None if 𝑘 is not in the outset of 𝑛
else Some(𝑛′) such that 𝑘 is in the outflow to 𝑛′ (by our defi-
nition of edge functions, this means 𝑘 ∈ es(𝑛, 𝑛′)). Similarly,
decisiveOp expects a node node(𝑛, 𝐼𝑛,𝐶𝑛) such that 𝑘 is in
the keyset of𝑛. If decisiveOp returnsNone then it returns the

{
node(𝑛, 𝐼𝑛,𝐶𝑛) ∗ 𝑘 ∈ inr(𝐼𝑛, 𝑛)

}

findNext n k{
𝑣. node(𝑛, 𝐼𝑛,𝐶𝑛)∗

(
𝑣 = None ∗ 𝑘 ∉ outs(𝐼𝑛)

∨ 𝑣 = Some(𝑛′) ∗ 𝑘 ∈ outs(𝐼𝑛, 𝑛
′)
)

}

{
node(𝑛, 𝐼𝑛,𝐶𝑛) ∗ 𝑘 ∈ inr(𝐼𝑛, 𝑛) ∗ 𝑘 ∉ outs(𝐼𝑛)

}

decisiveOp 𝜔 n k{
𝑣. node(𝑛, 𝐼𝑛,𝐶

′
𝑛)∗

(
𝑣 = None ∗𝐶𝑛 = 𝐶′

𝑛

∨ 𝑣 = Some(𝑣′) ∗ Ψ𝜔 (𝑘,𝐶𝑛,𝐶
′
𝑛, 𝑣

′)
)

}

node(𝑛, 𝐼𝑛,𝐶𝑛) ∗ node(𝑛, 𝐼
′
𝑛,𝐶

′
𝑛) −∗ False

Figure 7. Assumptions the link template proof makes on
helper functions and implementation-specific predicates.
These are defined and proved by implementations.

node unchanged. On the other hand, if it returns Some(𝑣 ′)

then the node is now node(𝑛, 𝐼𝑛,𝐶
′
𝑛), and the return value

satisfies the search structure specification with respect to
the old and new contents of the node 𝑛 (Ψ𝜔 (𝑘,𝐶𝑛,𝐶

′
𝑛, 𝑣

′)).
Note that these specifications use standard Hoare triples{
𝑃
}
𝑒

{
𝑄

}
instead of atomic triples 𝑅 −∗

〈
𝑃

〉
𝑒

〈
𝑄

〉
. This

is because our definition of CSS and the use of node-level
locks mean that they operate on local state that is not shared.
Finally, we assume that the heap representation predicate
node(𝑛, 𝐼𝑛,𝐶𝑛) implies that we have ownership of the heap
location 𝑛; in particular, we need the property that it cannot
be duplicated, hence owning two copies of it implies False.6

We now turn to the template proof: recall that our ob-
jective is to prove the atomic triple for cssOp from Fig. 5.
Unlike standard Hoare triples, when proving a triple 𝑅 −∗〈
𝑃

〉
𝑒

〈
𝑄

〉
, we cannot use 𝑃 throughout the proof of pro-

gram 𝑒 . We can łpeekž into the precondition 𝑃 , but only for
the duration of an atomic step, and after the step we must
either łcommitž and establish the postcondition 𝑄 (this will
be at the linearization point) or łabortž and re-establish 𝑃 .
Fig. 8 presents a proof outline of the link template algo-

rithm, where the intermediate assertions in braces show the
context of the proof (the premises that are currently avail-
able). All free variables in the intermediate assertions are
implicitly existentially quantified. We use a standard lock
module with specs given in lines 1 and 2. For our case stud-
ies, we used a simple spin lock and proved this specification,
but note that we can swap it out with a more complex lock
implementation if necessary. The specification of traverse
is shown in the lines above and below the procedure. In
the precondition, the assertions before the magic wand are
resources that one needs in order to call traverse and use
its atomic specification; these will be available in our proof
context when traverse is called.
The cssOp operation begins with a call to traverse on

line 20. To satisfy traverse’s precondition, we need to peek

6The magic wand operator −∗ is the SL analogue of implication.



Verifying Concurrent Search Structure Templates PLDI ’20, June 15ś20, 2020, London, UK

1 inFP(𝑛) −∗
〈
𝐶. CSS(𝑟,𝐶)

〉
lockNode n

〈
CSS(𝑟,𝐶) ∗ N(𝑛, 𝐼𝑛,𝐶𝑛)

〉

2 N(𝑛, 𝐼𝑛,𝐶𝑛) −∗
〈
𝐶. CSS(𝑟,𝐶)

〉
unlockNode n

〈
CSS(𝑟,𝐶)

〉

3

4 inFP(𝑛) ∗ inInr(𝑘,𝑛) −∗
〈
𝐶. CSS(𝑟,𝐶)

〉

5 let rec traverse n k =

6 lockNode n;

7
{
N(𝑛, 𝐼𝑛,𝐶𝑛) ∗ 𝑘 ∈ inr(𝐼𝑛, 𝑛)

}

8 match findNext n k with

9 | None ->
{
N(𝑛, 𝐼𝑛,𝐶𝑛) ∗ 𝑘 ∈ inr(𝐼𝑛, 𝑛) ∗ 𝑘 ∉ outs(𝐼𝑛)

}

10 n

11 | Some n' ->
{
N(𝑛, 𝐼𝑛,𝐶𝑛) ∗ 𝑘 ∈ inr(𝐼𝑛, 𝑛) ∗ 𝑘 ∈ outs(𝐼𝑛, 𝑛

′)
}

12
{
N(𝑛, 𝐼𝑛,𝐶𝑛) ∗ inFP(𝑛

′) ∗ inInr(𝑘,𝑛′)
}

13 unlockNode n;
{
inFP(𝑛′) ∗ inInr(𝑘,𝑛′)

}

14 traverse n' k

15
〈
𝑣. CSS(𝑟,𝐶) ∗ N(𝑣, 𝐼𝑣,𝐶𝑣) ∗ 𝑘 ∈ inr(𝐼𝑣, 𝑘) ∗ 𝑘 ∉ outs(𝐼𝑣)

〉

16

17
〈
𝐶. CSS(𝑟,𝐶)

〉

18 let rec cssOp 𝜔 r k =

19
{
inFP(𝑟 ) ∗ inInr(𝑘, 𝑟 )

}

20 let n = traverse r k in

21
{
N(𝑛, 𝐼𝑛,𝐶𝑛) ∗ 𝑘 ∈ inr(𝐼𝑛, 𝑘) ∗ 𝑘 ∉ outs(𝐼𝑛)

}

22 match decisiveOp 𝜔 n k with

23 | None ->
{
N(𝑛, 𝐼𝑛,𝐶𝑛)

}

24 unlockNode n;
{
True

}

25 cssOp 𝜔 r k

26 | Some res ->

27
{
N(𝑛, 𝐼𝑛,𝐶

′
𝑛) ∗ Ψ𝜔 (𝑘,𝐶𝑛,𝐶

′
𝑛, res) ∗ 𝑘 ∈ ks(𝐼𝑛, 𝑛)

}

28 (* Linearization point: open CSS(𝑟,𝐶) *)

29





•(KS,𝐶)
𝛾𝑘

∗ ◦(ks(𝐼𝑛, 𝑛),𝐶𝑛)
𝛾𝑘

∗ Ψ𝜔 (𝑘,𝐶𝑛,𝐶
′
𝑛, res)

∗ 𝑘 ∈ ks(𝐼𝑛, 𝑛) ∗ node(𝑛, 𝐼𝑛,𝐶
′
𝑛) ∗ ½ 𝐼𝑛

𝛾ℎ (𝑛)
∗ · · ·




30





•(KS,𝐶′)
𝛾𝑘

∗ ◦(ks(𝐼𝑛, 𝑛),𝐶
′
𝑛)

𝛾𝑘
∗ Ψ𝜔 (𝑘,𝐶,𝐶′, res)

∗ node(𝑛, 𝐼𝑛,𝐶
′
𝑛) ∗ ½ 𝐼𝑛

𝛾ℎ (𝑛)
∗ · · ·





31 (* Close CSS(𝑟,𝐶′), prove postcondition *)

32
{
N(𝑛, 𝐼𝑛,𝐶

′
𝑛)

}

33 unlockNode n;
{
True

}

34 res

35
〈
𝑣. CSS(𝑟,𝐶′) ∗ Ψ𝜔 (𝑘,𝐶,𝐶′, 𝑣)

〉

Figure 8. The link template algorithm with a proof outline.

into CSS and take a snapshot of the global footprint (using
auth-set-snap and 𝜑 (𝑟, 𝐼 ) ⇒ 𝑟 ∈ dom(𝐼 )), obtaining inFP(𝑟 ).
Also, 𝜑 (𝑟, 𝐼 ) ⇒ 𝑘 ∈ inr(𝐼𝑟 , 𝑟 ) so we also take a snapshot of
𝑟 ’s inreach at ghost location 𝛾𝑖 (𝑟 ) to add inInr(𝑘, 𝑟 ) to our
context. The resulting context is depicted in line 19.
To call traverse we also need CSS(𝑟,𝐶), so we need to

peek into the precondition again. This is allowed because
traverse has an atomic triple, it thus behaves atomically and
we can peek into atomic preconditions around calls to it.
After traverse returns, we add its postcondition in line 15 to
our context (minus CSS(𝑟,𝐶), which needs to be given back
to re-establish cssOp’s precondition since we do not commit
here). The next step is the call to decisiveOp, for which we
already have the precondition in our context.

We then look at the two possible outcomes of decisiveOp.
In the case where it returns None, our context is unchanged,
so we execute unlockNode using the N(𝑛, 𝐼𝑛,𝐶𝑛) in our con-
text. We can use the specification of cssOp on the recursive
call on line 25 to complete this branch of the proof.
On the other hand, if decisiveOp succeeds, we get back

a modified node node(𝑛, 𝐼𝑛,𝐶 ′
𝑛) with new contents 𝐶 ′

𝑛 that
satisfies the search structure specification Ψ𝜔 (𝑘,𝐶𝑛,𝐶

′
𝑛, res)

locally (line 27). We now need to show that this modifica-
tion results in cssOp’s postcondition; this is essentially the
linearization point of this algorithm.

To do this, we again open the atomic preconditionCSS(𝑟,𝐶).
We now have the context in line 29 (we have also expanded
N(𝑛, 𝐼𝑛,𝐶

′
𝑛)), and now we can apply our ghost update ks-upd

to update the global contents and get the context in line 30.
In particular, we have Ψ𝜔 (𝑘,𝐶,𝐶

′, res) andCSS(𝑟,𝐶 ′), which
allows us to łcommitž and establish the postcondition. We
finally execute the call to unlockNode using the remaining
N(𝑛, 𝐼𝑛,𝐶

′
𝑛) predicate

7, and complete the proof.
The proof of traverse follows a similar line-by-line rea-

soning using the appropriate specifications of helper func-
tions; the intermediate contexts are shown in Fig. 8.

4.6 Proofs of Template Implementations

To obtain a verified implementation of the link template,
one needs to specify the concrete representation of a node
by defining the node predicate and provide code for the
helper functions that satisfies the specifications in Fig. 7. As
mentioned before, these specifications use sequential Hoare
triples and have access only to the heap representation of
the given node. Thus, if their implementations are sequential
code, we can verify them using an off-the-shelf separation
logic tool that can verify sequential heap-manipulating code.

5 Proof Mechanization and Automation

In addition to the link template presented in the previous
section, we have also verified the give-up and lock-coupling
template algorithms from [57], as depicted in Fig. 1. For the
link and give-up templates, we have derived and verified im-
plementations based on B-trees and hash tables. For the lock-
coupling template we have considered a sorted linked list
implementation. The lock-coupling template also captures
the synchronization performed by maintenance operations
on algorithms such as the split operation on B+ and B-link
trees when they traverse the data structure.
The proofs of the template algorithms have been mecha-

nized using the Coq proof assistant, building on the formal-
ization of Iris [37]. These proofs parameterize over the imple-
mentation of the helper functions (e.g. decisiveOp, findNext,
etc.) and the heap representation predicate node. The con-
crete implementations of these helper functions have been

7Technically, we perform the linearization at the same time as executing
unlockNode, but we omit the details here for space reasons.



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

Table 1. Summary of templates and instantiations verified in
Iris/Coq and GRASShopper. For each algorithm or library, we
show the number of lines of code, lines of proof annotation
(including specification), total number of lines, and the proof-
checking / verification time in seconds.

Module Code Proof Total Time

Templates (Iris/Coq)

Flow library 0 2803 2803 114
Link template 14 487 501 55
Give-up template 18 390 408 49
Lock-coupling template 26 980 1006 238
Total 58 4660 4718 456

Implementations (GRASShopper)

Flow library 0 721 721 9
Array library 143 320 463 9
B+ tree 63 99 162 21
B-link (core) 85 161 246 36
B-link (half split) 34 192 226 94
B-link (full split) 17 137 154 697
Hash table (link) 54 99 153 10
Hash table (give-up) 60 138 198 13
Lock-coupling list 59 300 359 51
Total 515 2167 2682 940

verified using the separation logic based deductive program
verifier GRASShopper [52]. As the tool uses SMT solvers to
largely automate the verification process, this provided us
with a substantial decrease in effort.

Our verification effort includes a mechanization of the
meta-theory of flows [41] (i.e. that flow interfaces form an
RA). Our formalization is parametric in the flow domain
(i.e. the underlying cancellative, commutative monoid). We
also provide instantiation of the meta-theory for the specific
flow domains used in our proofs (e.g. multisets). We have
duplicated this effort in Iris/Coq and GRASShopper in order
to make the two parts of our verification self-contained. The
formalization is available as two standalone libraries that
can be reused for other flow-based proofs in these systems.

In addition to the helper functions of each data structure
that are assumed by the templates, we have also verified
the split operations for B-link trees. The B-link tree uses a
two-part split operation: a half-split that creates a new node,
transfers half the contents from a full node to this new node,
and adds a link edge; and a full-split that completes the split
by linking the original node’s parent to the new node. For
the split operations, we assume a harness template for a
maintenance thread that traverses the data structure graph
to identify nodes that are amenable to half splits. While we
have not verified this harness, we note that it is a variation of
our lock-coupling template where the abstract specification
leaves the contents of the data structure unchanged. For

the implementations of half and full splits, we verify that
the operation preserves the flow interface of the modified
region as well as its contents. The full development of our
mechanization effort is available online8.
Table 1 provides a summary of our development. Experi-

ments have been conducted on a laptop with an Intel Core
i7-5600U CPU and 16GB RAM. We split the table into one
part for the templates (proved in Coq) and one part for the
implementations (proved in GRASShopper). We note that
for the B-link tree, B+ tree and hash table implementations,
most of the work is done by the array library, which is shared
between all these data structures. The size of the proof for
the lock-coupling list and maintenance operations is rela-
tively large. The reason is that these involve the calculation
of a new flow interface for the region obtained after the mod-
ification. This requires the expansion of the definitions of
functions related to flow interfaces, which are deeply nested
quantified formulas. GRASShopper enforces strict rules that
limit quantifier instantiation so as to remain within certain
decidable logics [4, 51]. Most of the proof in this case in-
volves auxiliary assertions that manually unfold definitions.
The size of the proof could be significantly reduced with a
few simple tactics for quantifier expansion.
It is difficult to assess the overall time effort spent on

verifying the link template algorithm, which was the first
algorithm that we considered. The reason is that we designed
our verification methodology as we verified the template.
However, with all the machinery now in place, our experi-
ence is that verifying a new template algorithm is a matter
of a few hours of proof effort. In fact, adapting the link tem-
plate proof to the give-up template was straightforward and
required only minor changes. Our experience with adapting
implementation proofs is similar.

We believe that our case studies are representative of real-
world applications and that our methodology can be widely
applied. The template algorithms that we have verified fo-
cus on lock-based techniques with fixed linearization points
inside a decisive operation. In fact, many real-world applica-
tions perform better using lock-based algorithms instead of
lock-free algorithms as the latter tend to copy data more9. On
the other hand, our methodology does not require locking,
and can be extended to prove lock-free algorithms such as
the Bw-tree [42]. While our methodology can, in theory, be
applied to any search structure implementation, there are
implementations that use very specific concurrency tech-
niques that cannot be used by other heap representations

8https://github.com/nyu-acsys/template-proofs/tree/pldi_2020
9For instance, Apache’s CouchDB uses a B+ tree with a global write lock;
BerkeleyDB, which has hosted Google’s account information, uses a B+ tree
with page-level locks in order to trade-off concurrency for better recovery;
and java.util.concurrent’s hash tables lock the entire list in a bucket during
writes, which is more coarse-grained than the one we verify.



Verifying Concurrent Search Structure Templates PLDI ’20, June 15ś20, 2020, London, UK

(e.g. Harris’ list [29]). Our technique would give us a łsingle-
usež template in such cases, but this would still structure the
proof and make it simpler to construct and verify.

6 Related Work

Our work builds on the search structure templates of [57],
the Iris separation logic [35], and the flow framework [40, 41].
Our main technical contributions relative to these works are
a new proof technique for verifying template algorithms of
concurrent search structures that relies on the integration of
the flow framework into Iris. The notion of edgesets and key-
sets are taken from [57] but we show how to reason locally
about them using flows. Specifically, we capture the essence
of the Keyset Theorem of [57] in terms of an Iris RA, thereby
eliminating any dependencies on a specific programming
language semantics, and allowing us to easily mechanize the
proof in Iris. We also provide a full mechanization of the
meta-theory of the flow framework presented in [41] in Co-
q/Iris and GRASShopper. We note that Krishna et al. [40] use
the flow framework to verify a template algorithm based on
the give-up technique. However, their proof is only on paper,
still depends on a meta-level Keyset Theorem like [57] and
uses a bespoke program logic that is difficult to mechanize
due to limitations of the original flow framework (cf. [41]).
To our knowledge, we are the first to provide a mecha-

nized proof of a concurrent B-link tree. Unlike the proof
of da Rocha Pinto et al. [15], which is not mechanized, our
proof does not assume node-level operations to be given as
primitives. In particular, we also verify the challenging split
operation. The only other comparable proof is that of a B+
tree in [44]. However, this work only considers a sequential
B-tree implementation and the proof is considerably more
complex than ours (encompassing more than 5000 lines of
proof for roughly 500 lines of code). Moreover, much of our
proof can be reused to verify other concurrent search struc-
tures that rely on linking, such as the concurrent hash table
implementation that we consider.
Feldman et al. [23] show how to simplify linearizability

proofs of concurrent data structures with unsynchronized
searches by reasoning purely sequentially about the traversal
performed by the search. Their contribution is orthogonal
to ours as they do not aim to parameterize the concurrency
proof by the heap representation of the data structure.

Iris does not support reasoning about deallocation. There-
fore our proofs assume a garbage collected environment.
However, Meyer and Wolff [45] demonstrate a similar proof
modularity by decoupling the proof of data structure cor-
rectness from that of the underlying memory reclamation
algorithm, allowing the correctness proof to be carried out
under the assumption of garbage collection. An alternative
approach to extending our proofs to deal with memory recla-
mation is to use Iron [5], a recent extension of Iris that allows

proving absence of memory leaks. It is a promising direc-
tion of future work to integrate these approaches and our
technique in order to obtain verified data structures where
the user can mix-and-match the synchronization technique,
memory layout, and the memory reclamation algorithm.
There exist many other program logics that help modu-

larize the correctness proofs of concurrent systems [6, 16,
19, 24, 28, 31, 46, 53, 60, 61]. Like Iris, their main focus is on
modularizing proofs along the interfaces of components of a
system (e.g. between the client and implementation of a data
structure) and accounting for differences in the concurrency
semantics across different abstraction layers [28]. Instead,
we focus on modularizing the proof of a single component
(a concurrent search structure) so that the parts of the proof
can be reused across many diverse implementations.
As discussed in ğ5, lock-free implementations of search

structures often have non-fixed as well as external lineariza-
tion points. Much work has been dedicated to addressing
this challenge [7, 9, 14, 17, 20, 26, 38, 43, 49, 62]. However,
we note that these papers do not aim to separate the proof
of thread safety from the proof of structural integrity. In
fact, we see our contributions as orthogonal to these works.
For example, we can build on the recent work of supporting
prophecy variables in Iris [36] to extend our methodology
to non-blocking algorithms.

Note, our approach does not critically depend on the use of
Iris. For example, our proof methodology can be replicated in
other separation logics that support user-defined ghost state,
such as FCSL [55], which would also be useful if one wanted
to extend this work to non-linearizable data structures [56].

Fully automated proofs of linearizability by static analysis
and model checking have been mostly confined to simple
list-based data structures [1, 3, 8, 13, 22, 59]. Recent work
by Abdulla et al. [2] shows how to automatically verify more
complex structures such as concurrent skip lists that com-
bine lists and arrays. However, it is difficult to devise fully
automated techniques that work over a broad class of diverse
heap representations. In particular, structures like the B-link
tree considered here are still beyond the state of the art.

7 Conclusion

We have presented a proof technique for concurrent search
structures that separates the reasoning about thread safety
from memory safety. We have demonstrated our technique
by formalizing and verifying three template algorithms, and
showed how to derive verified implementations with signifi-
cant proof reuse and automation. The result is fully mecha-
nized and partially automated proofs of linearizability and
memory safety for concurrent search structures.



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

Acknowledgments

This work is funded in parts by NYU WIRELESS and by the
National Science Foundation under grants 1925605, CCF-
1618059, and CCF-1815633. We thank Ketan Kanishka for
his help on mechanizing the flow meta-theory in Coq. We
also thank the Iris chat room for their patience and support,
especially Ralf Jung, Robbert Krebbers, and Dan Frumin.

References
[1] Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson,

and Ahmed Rezine. 2013. An Integrated Specification and Verifica-
tion Technique for Highly Concurrent Data Structures. In Tools and

Algorithms for the Construction and Analysis of Systems - 19th Inter-

national Conference, TACAS 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,

March 16-24, 2013. Proceedings (Lecture Notes in Computer Science),
Nir Piterman and Scott A. Smolka (Eds.), Vol. 7795. Springer, 324ś338.
https://doi.org/10.1007/978-3-642-36742-7_23

[2] Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh. 2018. Frag-
ment Abstraction for Concurrent Shape Analysis. In Programming

Languages and Systems - 27th European Symposium on Programming,

ESOP 2018, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,

2018, Proceedings (Lecture Notes in Computer Science), Amal Ahmed
(Ed.), Vol. 10801. Springer, 442ś471. https://doi.org/10.1007/978-3-319-
89884-1_16

[3] Daphna Amit, Noam Rinetzky, ThomasW. Reps, Mooly Sagiv, and Eran
Yahav. 2007. Comparison Under Abstraction for Verifying Linearizabil-
ity. In Computer Aided Verification, 19th International Conference, CAV

2007, Berlin, Germany, July 3-7, 2007, Proceedings (Lecture Notes in Com-

puter Science), Werner Damm and Holger Hermanns (Eds.), Vol. 4590.
Springer, 477ś490. https://doi.org/10.1007/978-3-540-73368-3_49

[4] Kshitij Bansal, Andrew Reynolds, Tim King, Clark W. Barrett, and
ThomasWies. 2015. Deciding Local Theory Extensions via E-matching.
In Computer Aided Verification - 27th International Conference, CAV

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II

(Lecture Notes in Computer Science), Daniel Kroening and Corina S.
Pasareanu (Eds.), Vol. 9207. Springer, 87ś105. https://doi.org/10.1007/

978-3-319-21668-3_6

[5] Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019.
Iron: managing obligations in higher-order concurrent separation logic.
PACMPL 3, POPL (2019), 65:1ś65:30. https://doi.org/10.1145/3290378

[6] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. 2005. Vari-
ables as Resource in Separation Logic. In Proceedings of the 21st An-

nual Conference on Mathematical Foundations of Programming Se-

mantics, MFPS 2005, Birmingham, UK, May 18-21, 2005 (Electronic

Notes in Theoretical Computer Science), Martín Hötzel Escardó, Achim
Jung, and Michael W. Mislove (Eds.), Vol. 155. Elsevier, 247ś276.
https://doi.org/10.1016/j.entcs.2005.11.059

[7] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza.
2013. Verifying Concurrent Programs against Sequential Specifications.
In Programming Languages and Systems - 22nd European Symposium on

Programming, ESOP 2013, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-

24, 2013. Proceedings (Lecture Notes in Computer Science), Matthias
Felleisen and Philippa Gardner (Eds.), Vol. 7792. Springer, 290ś309.
https://doi.org/10.1007/978-3-642-37036-6_17

[8] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza.
2015. On Reducing Linearizability to State Reachability. In Automata,

Languages, and Programming - 42nd International Colloquium, ICALP

2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II (Lecture Notes

in Computer Science), Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann (Eds.), Vol. 9135. Springer, 95ś107.

https://doi.org/10.1007/978-3-662-47666-6_8

[9] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun
Mutluergil. 2017. Proving Linearizability Using Forward Simulations.
In Computer Aided Verification - 29th International Conference, CAV

2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II (Lec-

ture Notes in Computer Science), Rupak Majumdar and Viktor Kuncak
(Eds.), Vol. 10427. Springer, 542ś563. https://doi.org/10.1007/978-3-

319-63390-9_28

[10] Stephen Brookes. 2007. A semantics for concurrent separation logic.
Theor. Comput. Sci. 375, 1-3 (2007), 227ś270. https://doi.org/10.1016/j.

tcs.2006.12.034

[11] Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent separation
logic. SIGLOG News 3, 3 (2016), 47ś65. https://dl.acm.org/citation.

cfm?id=2984457

[12] Cristiano Calcagno, PeterW. O’Hearn, andHongseok Yang. 2007. Local
Action and Abstract Separation Logic. In 22nd IEEE Symposium on

Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland,

Proceedings. IEEE Computer Society, 366ś378. https://doi.org/10.1109/

LICS.2007.30

[13] Pavol Cerný, Arjun Radhakrishna, Damien Zufferey, Swarat Chaud-
huri, and Rajeev Alur. 2010. Model Checking of Linearizability of
Concurrent List Implementations. In Computer Aided Verification, 22nd

International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.

Proceedings (Lecture Notes in Computer Science), Tayssir Touili, By-
ron Cook, and Paul B. Jackson (Eds.), Vol. 6174. Springer, 465ś479.
https://doi.org/10.1007/978-3-642-14295-6_41

[14] Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor
Vafeiadis. 2015. Aspect-oriented linearizability proofs. Logical Methods

in Computer Science 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:

20)2015

[15] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Mike Dodds, Philippa
Gardner, and Mark J. Wheelhouse. 2011. A simple abstraction for
complex concurrent indexes. In Proceedings of the 26th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland,

OR, USA, October 22 - 27, 2011, Cristina Videira Lopes and Kathleen
Fisher (Eds.). ACM, 845ś864. https://doi.org/10.1145/2048066.2048131

[16] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.
2014. TaDA: A Logic for Time and Data Abstraction. In ECOOP 2014

- Object-Oriented Programming - 28th European Conference, Uppsala,

Sweden, July 28 - August 1, 2014. Proceedings (Lecture Notes in Computer

Science), Richard E. Jones (Ed.), Vol. 8586. Springer, 207ś231. https:

//doi.org/10.1007/978-3-662-44202-9_9

[17] Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and
Anindya Banerjee. 2017. Concurrent Data Structures Linked in Time.
In 31st European Conference on Object-Oriented Programming, ECOOP

2017, June 19-23, 2017, Barcelona, Spain (LIPIcs), Peter Müller (Ed.),
Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1ś8:30.
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8

[18] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J.
Parkinson, and Hongseok Yang. 2013. Views: compositional reasoning
for concurrent programs. In The 40th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’13, Rome,

Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot
(Eds.). ACM, 287ś300. https://doi.org/10.1145/2429069.2429104

[19] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J.
Parkinson, and Viktor Vafeiadis. 2010. Concurrent Abstract Predicates.
In ECOOP 2010 - Object-Oriented Programming, 24th European Confer-

ence, Maribor, Slovenia, June 21-25, 2010. Proceedings (Lecture Notes in

Computer Science), Theo D’Hondt (Ed.), Vol. 6183. Springer, 504ś528.
https://doi.org/10.1007/978-3-642-14107-2_24

[20] Mike Dodds, Andreas Haas, and Christoph M. Kirsch. 2015. A Scalable,
Correct Time-Stamped Stack. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,



Verifying Concurrent Search Structure Templates PLDI ’20, June 15ś20, 2020, London, UK

POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and
David Walker (Eds.). ACM, 233ś246. https://doi.org/10.1145/2676726.

2676963

[21] Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svend-
sen, and Lars Birkedal. 2016. Verifying Custom Synchronization Con-
structs Using Higher-Order Separation Logic. ACM Trans. Program.

Lang. Syst. 38, 2 (2016), 4:1ś4:72. https://doi.org/10.1145/2818638

[22] Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. 2013. Au-
tomatic Linearizability Proofs of Concurrent Objects with Cooperating
Updates. In Computer Aided Verification - 25th International Confer-

ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings

(Lecture Notes in Computer Science), Natasha Sharygina and Helmut
Veith (Eds.), Vol. 8044. Springer, 174ś190. https://doi.org/10.1007/978-

3-642-39799-8_11

[23] Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinet-
zky, and Sharon Shoham. 2018. Order out of Chaos: Proving Lin-
earizability Using Local Views. In 32nd International Symposium on

Distributed Computing, DISC 2018, New Orleans, LA, USA, October

15-19, 2018 (LIPIcs), Ulrich Schmid and Josef Widder (Eds.), Vol. 121.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1ś23:21. https:

//doi.org/10.4230/LIPIcs.DISC.2018.23

[24] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the Relation-
ship Between Concurrent Separation Logic and Assume-Guarantee
Reasoning. In Programming Languages and Systems, 16th European

Symposium on Programming, ESOP 2007, Held as Part of the Joint Eu-

ropean Conferences on Theory and Practics of Software, ETAPS 2007,

Braga, Portugal, March 24 - April 1, 2007, Proceedings (Lecture Notes in

Computer Science), Rocco De Nicola (Ed.), Vol. 4421. Springer, 173ś188.
https://doi.org/10.1007/978-3-540-71316-6_13

[25] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok
Yang. 2009. Abstraction for Concurrent Objects. In Programming

Languages and Systems, 18th European Symposium on Programming,

ESOP 2009, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.

Proceedings (Lecture Notes in Computer Science), Giuseppe Castagna
(Ed.), Vol. 5502. Springer, 252ś266. https://doi.org/10.1007/978-3-642-

00590-9_19

[26] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A
Mechanised Relational Logic for Fine-Grained Concurrency. In Pro-

ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich
Grädel (Eds.). ACM, 442ś451. https://doi.org/10.1145/3209108.3209174

[27] Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010.
Reasoning about Optimistic Concurrency Using a Program Logic
for History. In CONCUR 2010 - Concurrency Theory, 21th Interna-

tional Conference, CONCUR 2010, Paris, France, August 31-September

3, 2010. Proceedings (Lecture Notes in Computer Science), Paul Gastin
and François Laroussinie (Eds.), Vol. 6269. Springer, 388ś402. https:

//doi.org/10.1007/978-3-642-15375-4_27

[28] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,
Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and
Tahina Ramananandro. 2018. Certified concurrent abstraction layers.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2018, Philadelphia, PA,

USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM,
646ś661. https://doi.org/10.1145/3192366.3192381

[29] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking
Linked-Lists. In Distributed Computing, 15th International Conference,

DISC 2001, Lisbon, Portugal, October 3-5, 2001, Proceedings (Lecture

Notes in Computer Science), Jennifer L. Welch (Ed.), Vol. 2180. Springer,
300ś314. https://doi.org/10.1007/3-540-45414-4_21

[30] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.

Lang. Syst. 12, 3 (1990), 463ś492. https://doi.org/10.1145/78969.78972
[31] Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Sum-

mers. 2013. Abstract Read Permissions: Fractional Permissions without
the Fractions. In Verification, Model Checking, and Abstract Interpreta-

tion, 14th International Conference, VMCAI 2013, Rome, Italy, January

20-22, 2013. Proceedings (Lecture Notes in Computer Science), Roberto
Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.), Vol. 7737.
Springer, 315ś334. https://doi.org/10.1007/978-3-642-35873-9_20

[32] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.
Commun. ACM 12, 10 (1969), 576ś580. https://doi.org/10.1145/363235.

363259

[33] Cliff B. Jones. 1983. Specification and Design of (Parallel) Programs. In
Information Processing 83, Proceedings of the IFIP 9th World Computer

Congress, Paris, France, September 19-23, 1983, R. E. A. Mason (Ed.).
North-Holland/IFIP, 321ś332.

[34] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.
Higher-order ghost state. In Proceedings of the 21st ACM SIGPLAN

International Conference on Functional Programming, ICFP 2016, Nara,

Japan, September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and
Eijiro Sumii (Eds.). ACM, 256ś269. https://doi.org/10.1145/2951913.

2951943

[35] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. J. Funct.

Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

[36] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna
Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020. The
future is ours: prophecy variables in separation logic. PACMPL 4, POPL
(2020), 45:1ś45:32. https://doi.org/10.1145/3371113

[37] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-
ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, Mumbai, India, January 15-17,

2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 637ś650.
https://doi.org/10.1145/2676726.2676980

[38] Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkin-
son. 2017. Proving Linearizability Using Partial Orders. In Program-

ming Languages and Systems - 26th European Symposium on Program-

ming, ESOP 2017, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April

22-29, 2017, Proceedings (Lecture Notes in Computer Science), Hongseok
Yang (Ed.), Vol. 10201. Springer, 639ś667. https://doi.org/10.1007/978-

3-662-54434-1_24

[39] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, and Lars Birkedal. 2017. The Essence of Higher-Order Con-
current Separation Logic. In Programming Languages and Systems -

26th European Symposium on Programming, ESOP 2017, Held as Part

of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture

Notes in Computer Science), Hongseok Yang (Ed.), Vol. 10201. Springer,
696ś723. https://doi.org/10.1007/978-3-662-54434-1_26

[40] Siddharth Krishna, Dennis E. Shasha, and ThomasWies. 2018. Go with
the flow: compositional abstractions for concurrent data structures.
PACMPL 2, POPL (2018), 37:1ś37:31. https://doi.org/10.1145/3158125

[41] Siddharth Krishna, Alexander J. Summers, and Thomas Wies. 2020.
Local Reasoning for Global Graph Properties. Programming Languages

and Systems - 29th European Symposium on Programming, ESOP 2020,

as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2020 (2020). To appear.
[42] Justin J. Levandoski and Sudipta Sengupta. 2013. The BW-Tree: A

Latch-Free B-Tree for Log-Structured Flash Storage. IEEE Data Eng.

Bull. 36, 2 (2013), 56ś62. http://sites.computer.org/debull/A13june/

bwtree1.pdf



PLDI ’20, June 15ś20, 2020, London, UK Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies

[43] Hongjin Liang and Xinyu Feng. 2013. Modular verification of lin-
earizability with non-fixed linearization points. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI

’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cor-
mac Flanagan (Eds.). ACM, 459ś470. https://doi.org/10.1145/2491956.

2462189

[44] J. Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-
nesky. 2010. Toward a verified relational database management system.
In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL 2010, Madrid, Spain, January

17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM,
237ś248. https://doi.org/10.1145/1706299.1706329

[45] Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data
structures from memory reclamation for static analysis. PACMPL 3,
POPL (2019), 58:1ś58:31. https://doi.org/10.1145/3290371

[46] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán An-
drés Delbianco. 2014. Communicating State Transition Systems for
Fine-Grained Concurrent Resources. In Programming Languages and

Systems - 23rd European Symposium on Programming, ESOP 2014, Held

as Part of the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (Lec-

ture Notes in Computer Science), Zhong Shao (Ed.), Vol. 8410. Springer,
290ś310. https://doi.org/10.1007/978-3-642-54833-8_16

[47] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning.
Theor. Comput. Sci. 375, 1-3 (2007), 271ś307. https://doi.org/10.1016/j.

tcs.2006.12.035

[48] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local
Reasoning about Programs that Alter Data Structures. In Computer

Science Logic, 15th International Workshop, CSL 2001. 10th Annual Con-

ference of the EACSL, Paris, France, September 10-13, 2001, Proceedings

(Lecture Notes in Computer Science), Laurent Fribourg (Ed.), Vol. 2142.
Springer, 1ś19. https://doi.org/10.1007/3-540-44802-0_1

[49] Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav,
and Greta Yorsh. 2010. Verifying linearizability with hindsight. In
Proceedings of the 29th Annual ACM Symposium on Principles of

Distributed Computing, PODC 2010, Zurich, Switzerland, July 25-28,

2010, Andréa W. Richa and Rachid Guerraoui (Eds.). ACM, 85ś94.
https://doi.org/10.1145/1835698.1835722

[50] Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel
Programs: An Axiomatic Approach. Commun. ACM 19, 5 (1976), 279ś
285. https://doi.org/10.1145/360051.360224

[51] Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2013. Automating
Separation Logic Using SMT. In Computer Aided Verification - 25th

International Conference, CAV 2013, Saint Petersburg, Russia, July 13-

19, 2013. Proceedings (Lecture Notes in Computer Science), Natasha
Sharygina and Helmut Veith (Eds.), Vol. 8044. Springer, 773ś789. https:
//doi.org/10.1007/978-3-642-39799-8_54

[52] Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. GRASShop-
per - Complete Heap Verification with Mixed Specifications. In Tools

and Algorithms for the Construction and Analysis of Systems - 20th In-

ternational Conference, TACAS 2014, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,

France, April 5-13, 2014. Proceedings (Lecture Notes in Computer Sci-

ence), Erika Ábrahám and Klaus Havelund (Eds.), Vol. 8413. Springer,
124ś139. https://doi.org/10.1007/978-3-642-54862-8_9

[53] Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Con-
current Local Subjective Logic. In Programming Languages and Systems

- 24th European Symposium on Programming, ESOP 2015, Held as Part

of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes

in Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer, 710ś735.
https://doi.org/10.1007/978-3-662-46669-8_29

[54] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In 17th IEEE Symposium on Logic in Computer Science
(LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE
Computer Society, 55ś74. https://doi.org/10.1109/LICS.2002.1029817

[55] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mech-
anized verification of fine-grained concurrent programs. In Proceed-

ings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, Portland, OR, USA, June 15-17,

2015, David Grove and Steve Blackburn (Eds.). ACM, 77ś87. https:

//doi.org/10.1145/2737924.2737964

[56] Ilya Sergey, Aleksandar Nanevski, Anindya Banerjee, and Germán An-
drés Delbianco. 2016. Hoare-style specifications as correctness con-
ditions for non-linearizable concurrent objects. In Proceedings of the

2016 ACM SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA 2016, part

of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November

4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 92ś110.
https://doi.org/10.1145/2983990.2983999

[57] Dennis E. Shasha and Nathan Goodman. 1988. Concurrent Search
Structure Algorithms. ACM Trans. Database Syst. 13, 1 (1988), 53ś90.
https://doi.org/10.1145/42201.42204

[58] Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent
Abstract Predicates. In Programming Languages and Systems - 23rd

European Symposium on Programming, ESOP 2014, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS

2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in

Computer Science), Zhong Shao (Ed.), Vol. 8410. Springer, 149ś168.
https://doi.org/10.1007/978-3-642-54833-8_9

[59] Viktor Vafeiadis. 2009. Shape-Value Abstraction for Verifying Lineariz-
ability. In Verification, Model Checking, and Abstract Interpretation, 10th

International Conference, VMCAI 2009, Savannah, GA, USA, January

18-20, 2009. Proceedings (Lecture Notes in Computer Science), Neil D.
Jones and Markus Müller-Olm (Eds.), Vol. 5403. Springer, 335ś348.
https://doi.org/10.1007/978-3-540-93900-9_27

[60] Viktor Vafeiadis and Matthew J. Parkinson. 2007. A Marriage of Re-
ly/Guarantee and Separation Logic. In CONCUR 2007 - Concurrency

Theory, 18th International Conference, CONCUR 2007, Lisbon, Portu-

gal, September 3-8, 2007, Proceedings (Lecture Notes in Computer Sci-

ence), Luís Caires and Vasco Thudichum Vasconcelos (Eds.), Vol. 4703.
Springer, 256ś271. https://doi.org/10.1007/978-3-540-74407-8_18

[61] Shale Xiong, Pedro da Rocha Pinto, Gian Ntzik, and Philippa Gardner.
2017. Abstract Specifications for Concurrent Maps. In Programming

Languages and Systems - 26th European Symposium on Programming,

ESOP 2017, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,

2017, Proceedings (Lecture Notes in Computer Science), Hongseok Yang
(Ed.), Vol. 10201. Springer, 964ś990. https://doi.org/10.1007/978-3-662-
54434-1_36

[62] He Zhu, Gustavo Petri, and Suresh Jagannathan. 2015. Poling: SMT
Aided Linearizability Proofs. In Computer Aided Verification - 27th

International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,

2015, Proceedings, Part II (Lecture Notes in Computer Science), Daniel
Kroening and Corina S. Pasareanu (Eds.), Vol. 9207. Springer, 3ś19.
https://doi.org/10.1007/978-3-319-21668-3_1


	Abstract
	1 Introduction
	2 Overview
	2.1 B-link Trees
	2.2 Abstracting Search Structures using Edgesets
	2.3 The Link Template Algorithm

	3 A Brief Introduction to Flows
	4 Verifying Search Structure Templates
	4.1 High-level Proof Idea
	4.2 Ghost State and Disjoint Keysets
	4.3 Encoding Keysets using Flows
	4.4 An Invariant for the Link Template
	4.5 Proof of the Link Template
	4.6 Proofs of Template Implementations

	5 Proof Mechanization and Automation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

